xref: /freebsd/sys/dev/vge/if_vge.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *	o Jumbo frame support up to 16K
52  *	o Transmit and receive flow control
53  *	o IPv4 checksum offload
54  *	o VLAN tag insertion and stripping
55  *	o TCP large send
56  *	o 64-bit multicast hash table filter
57  *	o 64 entry CAM filter
58  *	o 16K RX FIFO and 48K TX FIFO memory
59  *	o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84 
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125 
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128 
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131 
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133 
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137 
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
150 		"VIA Networking Velocity Gigabit Ethernet" },
151 	{ 0, 0, NULL }
152 };
153 
154 static int	vge_attach(device_t);
155 static int	vge_detach(device_t);
156 static int	vge_probe(device_t);
157 static int	vge_resume(device_t);
158 static int	vge_shutdown(device_t);
159 static int	vge_suspend(device_t);
160 
161 static void	vge_cam_clear(struct vge_softc *);
162 static int	vge_cam_set(struct vge_softc *, uint8_t *);
163 static void	vge_clrwol(struct vge_softc *);
164 static void	vge_discard_rxbuf(struct vge_softc *, int);
165 static int	vge_dma_alloc(struct vge_softc *);
166 static void	vge_dma_free(struct vge_softc *);
167 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int	vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174 		vge_fixup_rx(struct mbuf *);
175 #endif
176 static void	vge_freebufs(struct vge_softc *);
177 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 static int	vge_ifmedia_upd(struct ifnet *);
179 static int	vge_ifmedia_upd_locked(struct vge_softc *);
180 static void	vge_init(void *);
181 static void	vge_init_locked(struct vge_softc *);
182 static void	vge_intr(void *);
183 static void	vge_intr_holdoff(struct vge_softc *);
184 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
185 static void	vge_link_statchg(void *);
186 static int	vge_miibus_readreg(device_t, int, int);
187 static int	vge_miibus_writereg(device_t, int, int, int);
188 static void	vge_miipoll_start(struct vge_softc *);
189 static void	vge_miipoll_stop(struct vge_softc *);
190 static int	vge_newbuf(struct vge_softc *, int);
191 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void	vge_reset(struct vge_softc *);
193 static int	vge_rx_list_init(struct vge_softc *);
194 static int	vge_rxeof(struct vge_softc *, int);
195 static void	vge_rxfilter(struct vge_softc *);
196 static void	vge_setmedia(struct vge_softc *);
197 static void	vge_setvlan(struct vge_softc *);
198 static void	vge_setwol(struct vge_softc *);
199 static void	vge_start(struct ifnet *);
200 static void	vge_start_locked(struct ifnet *);
201 static void	vge_stats_clear(struct vge_softc *);
202 static void	vge_stats_update(struct vge_softc *);
203 static void	vge_stop(struct vge_softc *);
204 static void	vge_sysctl_node(struct vge_softc *);
205 static int	vge_tx_list_init(struct vge_softc *);
206 static void	vge_txeof(struct vge_softc *);
207 static void	vge_watchdog(void *);
208 
209 static device_method_t vge_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		vge_probe),
212 	DEVMETHOD(device_attach,	vge_attach),
213 	DEVMETHOD(device_detach,	vge_detach),
214 	DEVMETHOD(device_suspend,	vge_suspend),
215 	DEVMETHOD(device_resume,	vge_resume),
216 	DEVMETHOD(device_shutdown,	vge_shutdown),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 
222 	DEVMETHOD_END
223 };
224 
225 static driver_t vge_driver = {
226 	"vge",
227 	vge_methods,
228 	sizeof(struct vge_softc)
229 };
230 
231 DRIVER_MODULE(vge, pci, vge_driver, 0, 0);
232 DRIVER_MODULE(miibus, vge, miibus_driver, 0, 0);
233 
234 #ifdef VGE_EEPROM
235 /*
236  * Read a word of data stored in the EEPROM at address 'addr.'
237  */
238 static void
239 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
240 {
241 	int i;
242 	uint16_t word = 0;
243 
244 	/*
245 	 * Enter EEPROM embedded programming mode. In order to
246 	 * access the EEPROM at all, we first have to set the
247 	 * EELOAD bit in the CHIPCFG2 register.
248 	 */
249 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
250 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
251 
252 	/* Select the address of the word we want to read */
253 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
254 
255 	/* Issue read command */
256 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
257 
258 	/* Wait for the done bit to be set. */
259 	for (i = 0; i < VGE_TIMEOUT; i++) {
260 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
261 			break;
262 	}
263 
264 	if (i == VGE_TIMEOUT) {
265 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
266 		*dest = 0;
267 		return;
268 	}
269 
270 	/* Read the result */
271 	word = CSR_READ_2(sc, VGE_EERDDAT);
272 
273 	/* Turn off EEPROM access mode. */
274 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
275 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
276 
277 	*dest = word;
278 }
279 #endif
280 
281 /*
282  * Read a sequence of words from the EEPROM.
283  */
284 static void
285 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
286 {
287 	int i;
288 #ifdef VGE_EEPROM
289 	uint16_t word = 0, *ptr;
290 
291 	for (i = 0; i < cnt; i++) {
292 		vge_eeprom_getword(sc, off + i, &word);
293 		ptr = (uint16_t *)(dest + (i * 2));
294 		if (swap)
295 			*ptr = ntohs(word);
296 		else
297 			*ptr = word;
298 	}
299 #else
300 	for (i = 0; i < ETHER_ADDR_LEN; i++)
301 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
302 #endif
303 }
304 
305 static void
306 vge_miipoll_stop(struct vge_softc *sc)
307 {
308 	int i;
309 
310 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
311 
312 	for (i = 0; i < VGE_TIMEOUT; i++) {
313 		DELAY(1);
314 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
315 			break;
316 	}
317 
318 	if (i == VGE_TIMEOUT)
319 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
320 }
321 
322 static void
323 vge_miipoll_start(struct vge_softc *sc)
324 {
325 	int i;
326 
327 	/* First, make sure we're idle. */
328 
329 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
330 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
331 
332 	for (i = 0; i < VGE_TIMEOUT; i++) {
333 		DELAY(1);
334 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
335 			break;
336 	}
337 
338 	if (i == VGE_TIMEOUT) {
339 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
340 		return;
341 	}
342 
343 	/* Now enable auto poll mode. */
344 
345 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
346 
347 	/* And make sure it started. */
348 
349 	for (i = 0; i < VGE_TIMEOUT; i++) {
350 		DELAY(1);
351 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
352 			break;
353 	}
354 
355 	if (i == VGE_TIMEOUT)
356 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
357 }
358 
359 static int
360 vge_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct vge_softc *sc;
363 	int i;
364 	uint16_t rval = 0;
365 
366 	sc = device_get_softc(dev);
367 
368 	vge_miipoll_stop(sc);
369 
370 	/* Specify the register we want to read. */
371 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
372 
373 	/* Issue read command. */
374 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
375 
376 	/* Wait for the read command bit to self-clear. */
377 	for (i = 0; i < VGE_TIMEOUT; i++) {
378 		DELAY(1);
379 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
380 			break;
381 	}
382 
383 	if (i == VGE_TIMEOUT)
384 		device_printf(sc->vge_dev, "MII read timed out\n");
385 	else
386 		rval = CSR_READ_2(sc, VGE_MIIDATA);
387 
388 	vge_miipoll_start(sc);
389 
390 	return (rval);
391 }
392 
393 static int
394 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
395 {
396 	struct vge_softc *sc;
397 	int i, rval = 0;
398 
399 	sc = device_get_softc(dev);
400 
401 	vge_miipoll_stop(sc);
402 
403 	/* Specify the register we want to write. */
404 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405 
406 	/* Specify the data we want to write. */
407 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
408 
409 	/* Issue write command. */
410 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411 
412 	/* Wait for the write command bit to self-clear. */
413 	for (i = 0; i < VGE_TIMEOUT; i++) {
414 		DELAY(1);
415 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416 			break;
417 	}
418 
419 	if (i == VGE_TIMEOUT) {
420 		device_printf(sc->vge_dev, "MII write timed out\n");
421 		rval = EIO;
422 	}
423 
424 	vge_miipoll_start(sc);
425 
426 	return (rval);
427 }
428 
429 static void
430 vge_cam_clear(struct vge_softc *sc)
431 {
432 	int i;
433 
434 	/*
435 	 * Turn off all the mask bits. This tells the chip
436 	 * that none of the entries in the CAM filter are valid.
437 	 * desired entries will be enabled as we fill the filter in.
438 	 */
439 
440 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443 	for (i = 0; i < 8; i++)
444 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445 
446 	/* Clear the VLAN filter too. */
447 
448 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449 	for (i = 0; i < 8; i++)
450 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451 
452 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455 
456 	sc->vge_camidx = 0;
457 }
458 
459 static int
460 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
461 {
462 	int i, error = 0;
463 
464 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
465 		return (ENOSPC);
466 
467 	/* Select the CAM data page. */
468 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
469 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
470 
471 	/* Set the filter entry we want to update and enable writing. */
472 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
473 
474 	/* Write the address to the CAM registers */
475 	for (i = 0; i < ETHER_ADDR_LEN; i++)
476 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
477 
478 	/* Issue a write command. */
479 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
480 
481 	/* Wake for it to clear. */
482 	for (i = 0; i < VGE_TIMEOUT; i++) {
483 		DELAY(1);
484 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
485 			break;
486 	}
487 
488 	if (i == VGE_TIMEOUT) {
489 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
490 		error = EIO;
491 		goto fail;
492 	}
493 
494 	/* Select the CAM mask page. */
495 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
497 
498 	/* Set the mask bit that enables this filter. */
499 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
500 	    1<<(sc->vge_camidx & 7));
501 
502 	sc->vge_camidx++;
503 
504 fail:
505 	/* Turn off access to CAM. */
506 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
507 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
508 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
509 
510 	return (error);
511 }
512 
513 static void
514 vge_setvlan(struct vge_softc *sc)
515 {
516 	struct ifnet *ifp;
517 	uint8_t cfg;
518 
519 	VGE_LOCK_ASSERT(sc);
520 
521 	ifp = sc->vge_ifp;
522 	cfg = CSR_READ_1(sc, VGE_RXCFG);
523 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
524 		cfg |= VGE_VTAG_OPT2;
525 	else
526 		cfg &= ~VGE_VTAG_OPT2;
527 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
528 }
529 
530 static u_int
531 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
532 {
533 	struct vge_softc *sc = arg;
534 
535         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
536 		return (0);
537 
538 	(void )vge_cam_set(sc, LLADDR(sdl));
539 
540 	return (1);
541 }
542 
543 static u_int
544 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
545 {
546 	uint32_t h, *hashes = arg;
547 
548 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
549 	if (h < 32)
550 		hashes[0] |= (1 << h);
551 	else
552 		hashes[1] |= (1 << (h - 32));
553 
554 	return (1);
555 }
556 
557 /*
558  * Program the multicast filter. We use the 64-entry CAM filter
559  * for perfect filtering. If there's more than 64 multicast addresses,
560  * we use the hash filter instead.
561  */
562 static void
563 vge_rxfilter(struct vge_softc *sc)
564 {
565 	struct ifnet *ifp;
566 	uint32_t hashes[2];
567 	uint8_t rxcfg;
568 
569 	VGE_LOCK_ASSERT(sc);
570 
571 	/* First, zot all the multicast entries. */
572 	hashes[0] = 0;
573 	hashes[1] = 0;
574 
575 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
576 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
577 	    VGE_RXCTL_RX_PROMISC);
578 	/*
579 	 * Always allow VLAN oversized frames and frames for
580 	 * this host.
581 	 */
582 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
583 
584 	ifp = sc->vge_ifp;
585 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
586 		rxcfg |= VGE_RXCTL_RX_BCAST;
587 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
588 		if ((ifp->if_flags & IFF_PROMISC) != 0)
589 			rxcfg |= VGE_RXCTL_RX_PROMISC;
590 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
591 			hashes[0] = 0xFFFFFFFF;
592 			hashes[1] = 0xFFFFFFFF;
593 		}
594 		goto done;
595 	}
596 
597 	vge_cam_clear(sc);
598 
599 	/* Now program new ones */
600 	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
601 
602 	/* If there were too many addresses, use the hash filter. */
603         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
604 		vge_cam_clear(sc);
605 		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
606 	}
607 
608 done:
609 	if (hashes[0] != 0 || hashes[1] != 0)
610 		rxcfg |= VGE_RXCTL_RX_MCAST;
611 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
612 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
613 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
614 }
615 
616 static void
617 vge_reset(struct vge_softc *sc)
618 {
619 	int i;
620 
621 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
622 
623 	for (i = 0; i < VGE_TIMEOUT; i++) {
624 		DELAY(5);
625 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
626 			break;
627 	}
628 
629 	if (i == VGE_TIMEOUT) {
630 		device_printf(sc->vge_dev, "soft reset timed out\n");
631 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
632 		DELAY(2000);
633 	}
634 
635 	DELAY(5000);
636 }
637 
638 /*
639  * Probe for a VIA gigabit chip. Check the PCI vendor and device
640  * IDs against our list and return a device name if we find a match.
641  */
642 static int
643 vge_probe(device_t dev)
644 {
645 	struct vge_type	*t;
646 
647 	t = vge_devs;
648 
649 	while (t->vge_name != NULL) {
650 		if ((pci_get_vendor(dev) == t->vge_vid) &&
651 		    (pci_get_device(dev) == t->vge_did)) {
652 			device_set_desc(dev, t->vge_name);
653 			return (BUS_PROBE_DEFAULT);
654 		}
655 		t++;
656 	}
657 
658 	return (ENXIO);
659 }
660 
661 /*
662  * Map a single buffer address.
663  */
664 
665 struct vge_dmamap_arg {
666 	bus_addr_t	vge_busaddr;
667 };
668 
669 static void
670 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
671 {
672 	struct vge_dmamap_arg *ctx;
673 
674 	if (error != 0)
675 		return;
676 
677 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
678 
679 	ctx = (struct vge_dmamap_arg *)arg;
680 	ctx->vge_busaddr = segs[0].ds_addr;
681 }
682 
683 static int
684 vge_dma_alloc(struct vge_softc *sc)
685 {
686 	struct vge_dmamap_arg ctx;
687 	struct vge_txdesc *txd;
688 	struct vge_rxdesc *rxd;
689 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
690 	int error, i;
691 
692 	/*
693 	 * It seems old PCI controllers do not support DAC.  DAC
694 	 * configuration can be enabled by accessing VGE_CHIPCFG3
695 	 * register but honor EEPROM configuration instead of
696 	 * blindly overriding DAC configuration.  PCIe based
697 	 * controllers are supposed to support 64bit DMA so enable
698 	 * 64bit DMA on these controllers.
699 	 */
700 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
701 		lowaddr = BUS_SPACE_MAXADDR;
702 	else
703 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
704 
705 again:
706 	/* Create parent ring tag. */
707 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
708 	    1, 0,			/* algnmnt, boundary */
709 	    lowaddr,			/* lowaddr */
710 	    BUS_SPACE_MAXADDR,		/* highaddr */
711 	    NULL, NULL,			/* filter, filterarg */
712 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
713 	    0,				/* nsegments */
714 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
715 	    0,				/* flags */
716 	    NULL, NULL,			/* lockfunc, lockarg */
717 	    &sc->vge_cdata.vge_ring_tag);
718 	if (error != 0) {
719 		device_printf(sc->vge_dev,
720 		    "could not create parent DMA tag.\n");
721 		goto fail;
722 	}
723 
724 	/* Create tag for Tx ring. */
725 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
726 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
727 	    BUS_SPACE_MAXADDR,		/* lowaddr */
728 	    BUS_SPACE_MAXADDR,		/* highaddr */
729 	    NULL, NULL,			/* filter, filterarg */
730 	    VGE_TX_LIST_SZ,		/* maxsize */
731 	    1,				/* nsegments */
732 	    VGE_TX_LIST_SZ,		/* maxsegsize */
733 	    0,				/* flags */
734 	    NULL, NULL,			/* lockfunc, lockarg */
735 	    &sc->vge_cdata.vge_tx_ring_tag);
736 	if (error != 0) {
737 		device_printf(sc->vge_dev,
738 		    "could not allocate Tx ring DMA tag.\n");
739 		goto fail;
740 	}
741 
742 	/* Create tag for Rx ring. */
743 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
744 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
745 	    BUS_SPACE_MAXADDR,		/* lowaddr */
746 	    BUS_SPACE_MAXADDR,		/* highaddr */
747 	    NULL, NULL,			/* filter, filterarg */
748 	    VGE_RX_LIST_SZ,		/* maxsize */
749 	    1,				/* nsegments */
750 	    VGE_RX_LIST_SZ,		/* maxsegsize */
751 	    0,				/* flags */
752 	    NULL, NULL,			/* lockfunc, lockarg */
753 	    &sc->vge_cdata.vge_rx_ring_tag);
754 	if (error != 0) {
755 		device_printf(sc->vge_dev,
756 		    "could not allocate Rx ring DMA tag.\n");
757 		goto fail;
758 	}
759 
760 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
761 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
762 	    (void **)&sc->vge_rdata.vge_tx_ring,
763 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
764 	    &sc->vge_cdata.vge_tx_ring_map);
765 	if (error != 0) {
766 		device_printf(sc->vge_dev,
767 		    "could not allocate DMA'able memory for Tx ring.\n");
768 		goto fail;
769 	}
770 
771 	ctx.vge_busaddr = 0;
772 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
773 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
774 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
775 	if (error != 0 || ctx.vge_busaddr == 0) {
776 		device_printf(sc->vge_dev,
777 		    "could not load DMA'able memory for Tx ring.\n");
778 		goto fail;
779 	}
780 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
781 
782 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
783 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
784 	    (void **)&sc->vge_rdata.vge_rx_ring,
785 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
786 	    &sc->vge_cdata.vge_rx_ring_map);
787 	if (error != 0) {
788 		device_printf(sc->vge_dev,
789 		    "could not allocate DMA'able memory for Rx ring.\n");
790 		goto fail;
791 	}
792 
793 	ctx.vge_busaddr = 0;
794 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
795 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
796 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
797 	if (error != 0 || ctx.vge_busaddr == 0) {
798 		device_printf(sc->vge_dev,
799 		    "could not load DMA'able memory for Rx ring.\n");
800 		goto fail;
801 	}
802 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
803 
804 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
805 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
806 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
807 	if ((VGE_ADDR_HI(tx_ring_end) !=
808 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
809 	    (VGE_ADDR_HI(rx_ring_end) !=
810 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
811 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
812 		device_printf(sc->vge_dev, "4GB boundary crossed, "
813 		    "switching to 32bit DMA address mode.\n");
814 		vge_dma_free(sc);
815 		/* Limit DMA address space to 32bit and try again. */
816 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
817 		goto again;
818 	}
819 
820 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
821 		lowaddr = VGE_BUF_DMA_MAXADDR;
822 	else
823 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
824 	/* Create parent buffer tag. */
825 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
826 	    1, 0,			/* algnmnt, boundary */
827 	    lowaddr,			/* lowaddr */
828 	    BUS_SPACE_MAXADDR,		/* highaddr */
829 	    NULL, NULL,			/* filter, filterarg */
830 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
831 	    0,				/* nsegments */
832 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
833 	    0,				/* flags */
834 	    NULL, NULL,			/* lockfunc, lockarg */
835 	    &sc->vge_cdata.vge_buffer_tag);
836 	if (error != 0) {
837 		device_printf(sc->vge_dev,
838 		    "could not create parent buffer DMA tag.\n");
839 		goto fail;
840 	}
841 
842 	/* Create tag for Tx buffers. */
843 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
844 	    1, 0,			/* algnmnt, boundary */
845 	    BUS_SPACE_MAXADDR,		/* lowaddr */
846 	    BUS_SPACE_MAXADDR,		/* highaddr */
847 	    NULL, NULL,			/* filter, filterarg */
848 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
849 	    VGE_MAXTXSEGS,		/* nsegments */
850 	    MCLBYTES,			/* maxsegsize */
851 	    0,				/* flags */
852 	    NULL, NULL,			/* lockfunc, lockarg */
853 	    &sc->vge_cdata.vge_tx_tag);
854 	if (error != 0) {
855 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
856 		goto fail;
857 	}
858 
859 	/* Create tag for Rx buffers. */
860 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
861 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
862 	    BUS_SPACE_MAXADDR,		/* lowaddr */
863 	    BUS_SPACE_MAXADDR,		/* highaddr */
864 	    NULL, NULL,			/* filter, filterarg */
865 	    MCLBYTES,			/* maxsize */
866 	    1,				/* nsegments */
867 	    MCLBYTES,			/* maxsegsize */
868 	    0,				/* flags */
869 	    NULL, NULL,			/* lockfunc, lockarg */
870 	    &sc->vge_cdata.vge_rx_tag);
871 	if (error != 0) {
872 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
873 		goto fail;
874 	}
875 
876 	/* Create DMA maps for Tx buffers. */
877 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
878 		txd = &sc->vge_cdata.vge_txdesc[i];
879 		txd->tx_m = NULL;
880 		txd->tx_dmamap = NULL;
881 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
882 		    &txd->tx_dmamap);
883 		if (error != 0) {
884 			device_printf(sc->vge_dev,
885 			    "could not create Tx dmamap.\n");
886 			goto fail;
887 		}
888 	}
889 	/* Create DMA maps for Rx buffers. */
890 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
891 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
892 		device_printf(sc->vge_dev,
893 		    "could not create spare Rx dmamap.\n");
894 		goto fail;
895 	}
896 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
897 		rxd = &sc->vge_cdata.vge_rxdesc[i];
898 		rxd->rx_m = NULL;
899 		rxd->rx_dmamap = NULL;
900 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
901 		    &rxd->rx_dmamap);
902 		if (error != 0) {
903 			device_printf(sc->vge_dev,
904 			    "could not create Rx dmamap.\n");
905 			goto fail;
906 		}
907 	}
908 
909 fail:
910 	return (error);
911 }
912 
913 static void
914 vge_dma_free(struct vge_softc *sc)
915 {
916 	struct vge_txdesc *txd;
917 	struct vge_rxdesc *rxd;
918 	int i;
919 
920 	/* Tx ring. */
921 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
922 		if (sc->vge_rdata.vge_tx_ring_paddr)
923 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
924 			    sc->vge_cdata.vge_tx_ring_map);
925 		if (sc->vge_rdata.vge_tx_ring)
926 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
927 			    sc->vge_rdata.vge_tx_ring,
928 			    sc->vge_cdata.vge_tx_ring_map);
929 		sc->vge_rdata.vge_tx_ring = NULL;
930 		sc->vge_rdata.vge_tx_ring_paddr = 0;
931 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
932 		sc->vge_cdata.vge_tx_ring_tag = NULL;
933 	}
934 	/* Rx ring. */
935 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
936 		if (sc->vge_rdata.vge_rx_ring_paddr)
937 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
938 			    sc->vge_cdata.vge_rx_ring_map);
939 		if (sc->vge_rdata.vge_rx_ring)
940 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
941 			    sc->vge_rdata.vge_rx_ring,
942 			    sc->vge_cdata.vge_rx_ring_map);
943 		sc->vge_rdata.vge_rx_ring = NULL;
944 		sc->vge_rdata.vge_rx_ring_paddr = 0;
945 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
946 		sc->vge_cdata.vge_rx_ring_tag = NULL;
947 	}
948 	/* Tx buffers. */
949 	if (sc->vge_cdata.vge_tx_tag != NULL) {
950 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
951 			txd = &sc->vge_cdata.vge_txdesc[i];
952 			if (txd->tx_dmamap != NULL) {
953 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
954 				    txd->tx_dmamap);
955 				txd->tx_dmamap = NULL;
956 			}
957 		}
958 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
959 		sc->vge_cdata.vge_tx_tag = NULL;
960 	}
961 	/* Rx buffers. */
962 	if (sc->vge_cdata.vge_rx_tag != NULL) {
963 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
964 			rxd = &sc->vge_cdata.vge_rxdesc[i];
965 			if (rxd->rx_dmamap != NULL) {
966 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
967 				    rxd->rx_dmamap);
968 				rxd->rx_dmamap = NULL;
969 			}
970 		}
971 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
972 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
973 			    sc->vge_cdata.vge_rx_sparemap);
974 			sc->vge_cdata.vge_rx_sparemap = NULL;
975 		}
976 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
977 		sc->vge_cdata.vge_rx_tag = NULL;
978 	}
979 
980 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
981 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
982 		sc->vge_cdata.vge_buffer_tag = NULL;
983 	}
984 	if (sc->vge_cdata.vge_ring_tag != NULL) {
985 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
986 		sc->vge_cdata.vge_ring_tag = NULL;
987 	}
988 }
989 
990 /*
991  * Attach the interface. Allocate softc structures, do ifmedia
992  * setup and ethernet/BPF attach.
993  */
994 static int
995 vge_attach(device_t dev)
996 {
997 	u_char eaddr[ETHER_ADDR_LEN];
998 	struct vge_softc *sc;
999 	struct ifnet *ifp;
1000 	int error = 0, cap, i, msic, rid;
1001 
1002 	sc = device_get_softc(dev);
1003 	sc->vge_dev = dev;
1004 
1005 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1006 	    MTX_DEF);
1007 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1008 
1009 	/*
1010 	 * Map control/status registers.
1011 	 */
1012 	pci_enable_busmaster(dev);
1013 
1014 	rid = PCIR_BAR(1);
1015 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1016 	    RF_ACTIVE);
1017 
1018 	if (sc->vge_res == NULL) {
1019 		device_printf(dev, "couldn't map ports/memory\n");
1020 		error = ENXIO;
1021 		goto fail;
1022 	}
1023 
1024 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1025 		sc->vge_flags |= VGE_FLAG_PCIE;
1026 		sc->vge_expcap = cap;
1027 	} else
1028 		sc->vge_flags |= VGE_FLAG_JUMBO;
1029 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1030 		sc->vge_flags |= VGE_FLAG_PMCAP;
1031 		sc->vge_pmcap = cap;
1032 	}
1033 	rid = 0;
1034 	msic = pci_msi_count(dev);
1035 	if (msi_disable == 0 && msic > 0) {
1036 		msic = 1;
1037 		if (pci_alloc_msi(dev, &msic) == 0) {
1038 			if (msic == 1) {
1039 				sc->vge_flags |= VGE_FLAG_MSI;
1040 				device_printf(dev, "Using %d MSI message\n",
1041 				    msic);
1042 				rid = 1;
1043 			} else
1044 				pci_release_msi(dev);
1045 		}
1046 	}
1047 
1048 	/* Allocate interrupt */
1049 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1050 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1051 	if (sc->vge_irq == NULL) {
1052 		device_printf(dev, "couldn't map interrupt\n");
1053 		error = ENXIO;
1054 		goto fail;
1055 	}
1056 
1057 	/* Reset the adapter. */
1058 	vge_reset(sc);
1059 	/* Reload EEPROM. */
1060 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1061 	for (i = 0; i < VGE_TIMEOUT; i++) {
1062 		DELAY(5);
1063 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1064 			break;
1065 	}
1066 	if (i == VGE_TIMEOUT)
1067 		device_printf(dev, "EEPROM reload timed out\n");
1068 	/*
1069 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1070 	 * MAC will receive magic packet which in turn confuses
1071 	 * controller.
1072 	 */
1073 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1074 
1075 	/*
1076 	 * Get station address from the EEPROM.
1077 	 */
1078 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1079 	/*
1080 	 * Save configured PHY address.
1081 	 * It seems the PHY address of PCIe controllers just
1082 	 * reflects media jump strapping status so we assume the
1083 	 * internal PHY address of PCIe controller is at 1.
1084 	 */
1085 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1086 		sc->vge_phyaddr = 1;
1087 	else
1088 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1089 		    VGE_MIICFG_PHYADDR;
1090 	/* Clear WOL and take hardware from powerdown. */
1091 	vge_clrwol(sc);
1092 	vge_sysctl_node(sc);
1093 	error = vge_dma_alloc(sc);
1094 	if (error)
1095 		goto fail;
1096 
1097 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1098 	if (ifp == NULL) {
1099 		device_printf(dev, "can not if_alloc()\n");
1100 		error = ENOSPC;
1101 		goto fail;
1102 	}
1103 
1104 	vge_miipoll_start(sc);
1105 	/* Do MII setup */
1106 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1107 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1108 	    MIIF_DOPAUSE);
1109 	if (error != 0) {
1110 		device_printf(dev, "attaching PHYs failed\n");
1111 		goto fail;
1112 	}
1113 
1114 	ifp->if_softc = sc;
1115 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1116 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1117 	ifp->if_ioctl = vge_ioctl;
1118 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1119 	ifp->if_start = vge_start;
1120 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1121 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1122 	    IFCAP_VLAN_HWTAGGING;
1123 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1124 		ifp->if_capabilities |= IFCAP_WOL;
1125 	ifp->if_capenable = ifp->if_capabilities;
1126 #ifdef DEVICE_POLLING
1127 	ifp->if_capabilities |= IFCAP_POLLING;
1128 #endif
1129 	ifp->if_init = vge_init;
1130 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1131 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1132 	IFQ_SET_READY(&ifp->if_snd);
1133 
1134 	/*
1135 	 * Call MI attach routine.
1136 	 */
1137 	ether_ifattach(ifp, eaddr);
1138 
1139 	/* Tell the upper layer(s) we support long frames. */
1140 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1141 
1142 	/* Hook interrupt last to avoid having to lock softc */
1143 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1144 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1145 
1146 	if (error) {
1147 		device_printf(dev, "couldn't set up irq\n");
1148 		ether_ifdetach(ifp);
1149 		goto fail;
1150 	}
1151 
1152 fail:
1153 	if (error)
1154 		vge_detach(dev);
1155 
1156 	return (error);
1157 }
1158 
1159 /*
1160  * Shutdown hardware and free up resources. This can be called any
1161  * time after the mutex has been initialized. It is called in both
1162  * the error case in attach and the normal detach case so it needs
1163  * to be careful about only freeing resources that have actually been
1164  * allocated.
1165  */
1166 static int
1167 vge_detach(device_t dev)
1168 {
1169 	struct vge_softc *sc;
1170 	struct ifnet *ifp;
1171 
1172 	sc = device_get_softc(dev);
1173 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1174 	ifp = sc->vge_ifp;
1175 
1176 #ifdef DEVICE_POLLING
1177 	if (ifp->if_capenable & IFCAP_POLLING)
1178 		ether_poll_deregister(ifp);
1179 #endif
1180 
1181 	/* These should only be active if attach succeeded */
1182 	if (device_is_attached(dev)) {
1183 		ether_ifdetach(ifp);
1184 		VGE_LOCK(sc);
1185 		vge_stop(sc);
1186 		VGE_UNLOCK(sc);
1187 		callout_drain(&sc->vge_watchdog);
1188 	}
1189 	if (sc->vge_miibus)
1190 		device_delete_child(dev, sc->vge_miibus);
1191 	bus_generic_detach(dev);
1192 
1193 	if (sc->vge_intrhand)
1194 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1195 	if (sc->vge_irq)
1196 		bus_release_resource(dev, SYS_RES_IRQ,
1197 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1198 	if (sc->vge_flags & VGE_FLAG_MSI)
1199 		pci_release_msi(dev);
1200 	if (sc->vge_res)
1201 		bus_release_resource(dev, SYS_RES_MEMORY,
1202 		    PCIR_BAR(1), sc->vge_res);
1203 	if (ifp)
1204 		if_free(ifp);
1205 
1206 	vge_dma_free(sc);
1207 	mtx_destroy(&sc->vge_mtx);
1208 
1209 	return (0);
1210 }
1211 
1212 static void
1213 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1214 {
1215 	struct vge_rxdesc *rxd;
1216 	int i;
1217 
1218 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1219 	rxd->rx_desc->vge_sts = 0;
1220 	rxd->rx_desc->vge_ctl = 0;
1221 
1222 	/*
1223 	 * Note: the manual fails to document the fact that for
1224 	 * proper opration, the driver needs to replentish the RX
1225 	 * DMA ring 4 descriptors at a time (rather than one at a
1226 	 * time, like most chips). We can allocate the new buffers
1227 	 * but we should not set the OWN bits until we're ready
1228 	 * to hand back 4 of them in one shot.
1229 	 */
1230 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1231 		for (i = VGE_RXCHUNK; i > 0; i--) {
1232 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1233 			rxd = rxd->rxd_prev;
1234 		}
1235 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1236 	}
1237 }
1238 
1239 static int
1240 vge_newbuf(struct vge_softc *sc, int prod)
1241 {
1242 	struct vge_rxdesc *rxd;
1243 	struct mbuf *m;
1244 	bus_dma_segment_t segs[1];
1245 	bus_dmamap_t map;
1246 	int i, nsegs;
1247 
1248 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1249 	if (m == NULL)
1250 		return (ENOBUFS);
1251 	/*
1252 	 * This is part of an evil trick to deal with strict-alignment
1253 	 * architectures. The VIA chip requires RX buffers to be aligned
1254 	 * on 32-bit boundaries, but that will hose strict-alignment
1255 	 * architectures. To get around this, we leave some empty space
1256 	 * at the start of each buffer and for non-strict-alignment hosts,
1257 	 * we copy the buffer back two bytes to achieve word alignment.
1258 	 * This is slightly more efficient than allocating a new buffer,
1259 	 * copying the contents, and discarding the old buffer.
1260 	 */
1261 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1262 	m_adj(m, VGE_RX_BUF_ALIGN);
1263 
1264 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1265 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1266 		m_freem(m);
1267 		return (ENOBUFS);
1268 	}
1269 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1270 
1271 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1272 	if (rxd->rx_m != NULL) {
1273 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1274 		    BUS_DMASYNC_POSTREAD);
1275 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1276 	}
1277 	map = rxd->rx_dmamap;
1278 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1279 	sc->vge_cdata.vge_rx_sparemap = map;
1280 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1281 	    BUS_DMASYNC_PREREAD);
1282 	rxd->rx_m = m;
1283 
1284 	rxd->rx_desc->vge_sts = 0;
1285 	rxd->rx_desc->vge_ctl = 0;
1286 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1287 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1288 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1289 
1290 	/*
1291 	 * Note: the manual fails to document the fact that for
1292 	 * proper operation, the driver needs to replenish the RX
1293 	 * DMA ring 4 descriptors at a time (rather than one at a
1294 	 * time, like most chips). We can allocate the new buffers
1295 	 * but we should not set the OWN bits until we're ready
1296 	 * to hand back 4 of them in one shot.
1297 	 */
1298 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1299 		for (i = VGE_RXCHUNK; i > 0; i--) {
1300 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1301 			rxd = rxd->rxd_prev;
1302 		}
1303 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1304 	}
1305 
1306 	return (0);
1307 }
1308 
1309 static int
1310 vge_tx_list_init(struct vge_softc *sc)
1311 {
1312 	struct vge_ring_data *rd;
1313 	struct vge_txdesc *txd;
1314 	int i;
1315 
1316 	VGE_LOCK_ASSERT(sc);
1317 
1318 	sc->vge_cdata.vge_tx_prodidx = 0;
1319 	sc->vge_cdata.vge_tx_considx = 0;
1320 	sc->vge_cdata.vge_tx_cnt = 0;
1321 
1322 	rd = &sc->vge_rdata;
1323 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1324 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1325 		txd = &sc->vge_cdata.vge_txdesc[i];
1326 		txd->tx_m = NULL;
1327 		txd->tx_desc = &rd->vge_tx_ring[i];
1328 	}
1329 
1330 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1331 	    sc->vge_cdata.vge_tx_ring_map,
1332 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1333 
1334 	return (0);
1335 }
1336 
1337 static int
1338 vge_rx_list_init(struct vge_softc *sc)
1339 {
1340 	struct vge_ring_data *rd;
1341 	struct vge_rxdesc *rxd;
1342 	int i;
1343 
1344 	VGE_LOCK_ASSERT(sc);
1345 
1346 	sc->vge_cdata.vge_rx_prodidx = 0;
1347 	sc->vge_cdata.vge_head = NULL;
1348 	sc->vge_cdata.vge_tail = NULL;
1349 	sc->vge_cdata.vge_rx_commit = 0;
1350 
1351 	rd = &sc->vge_rdata;
1352 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1353 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1354 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1355 		rxd->rx_m = NULL;
1356 		rxd->rx_desc = &rd->vge_rx_ring[i];
1357 		if (i == 0)
1358 			rxd->rxd_prev =
1359 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1360 		else
1361 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1362 		if (vge_newbuf(sc, i) != 0)
1363 			return (ENOBUFS);
1364 	}
1365 
1366 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1367 	    sc->vge_cdata.vge_rx_ring_map,
1368 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1369 
1370 	sc->vge_cdata.vge_rx_commit = 0;
1371 
1372 	return (0);
1373 }
1374 
1375 static void
1376 vge_freebufs(struct vge_softc *sc)
1377 {
1378 	struct vge_txdesc *txd;
1379 	struct vge_rxdesc *rxd;
1380 	struct ifnet *ifp;
1381 	int i;
1382 
1383 	VGE_LOCK_ASSERT(sc);
1384 
1385 	ifp = sc->vge_ifp;
1386 	/*
1387 	 * Free RX and TX mbufs still in the queues.
1388 	 */
1389 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1390 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1391 		if (rxd->rx_m != NULL) {
1392 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1393 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1394 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1395 			    rxd->rx_dmamap);
1396 			m_freem(rxd->rx_m);
1397 			rxd->rx_m = NULL;
1398 		}
1399 	}
1400 
1401 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1402 		txd = &sc->vge_cdata.vge_txdesc[i];
1403 		if (txd->tx_m != NULL) {
1404 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1405 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1406 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1407 			    txd->tx_dmamap);
1408 			m_freem(txd->tx_m);
1409 			txd->tx_m = NULL;
1410 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1411 		}
1412 	}
1413 }
1414 
1415 #ifndef	__NO_STRICT_ALIGNMENT
1416 static __inline void
1417 vge_fixup_rx(struct mbuf *m)
1418 {
1419 	int i;
1420 	uint16_t *src, *dst;
1421 
1422 	src = mtod(m, uint16_t *);
1423 	dst = src - 1;
1424 
1425 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1426 		*dst++ = *src++;
1427 
1428 	m->m_data -= ETHER_ALIGN;
1429 }
1430 #endif
1431 
1432 /*
1433  * RX handler. We support the reception of jumbo frames that have
1434  * been fragmented across multiple 2K mbuf cluster buffers.
1435  */
1436 static int
1437 vge_rxeof(struct vge_softc *sc, int count)
1438 {
1439 	struct mbuf *m;
1440 	struct ifnet *ifp;
1441 	int prod, prog, total_len;
1442 	struct vge_rxdesc *rxd;
1443 	struct vge_rx_desc *cur_rx;
1444 	uint32_t rxstat, rxctl;
1445 
1446 	VGE_LOCK_ASSERT(sc);
1447 
1448 	ifp = sc->vge_ifp;
1449 
1450 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1451 	    sc->vge_cdata.vge_rx_ring_map,
1452 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1453 
1454 	prod = sc->vge_cdata.vge_rx_prodidx;
1455 	for (prog = 0; count > 0 &&
1456 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1457 	    VGE_RX_DESC_INC(prod)) {
1458 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1459 		rxstat = le32toh(cur_rx->vge_sts);
1460 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1461 			break;
1462 		count--;
1463 		prog++;
1464 		rxctl = le32toh(cur_rx->vge_ctl);
1465 		total_len = VGE_RXBYTES(rxstat);
1466 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1467 		m = rxd->rx_m;
1468 
1469 		/*
1470 		 * If the 'start of frame' bit is set, this indicates
1471 		 * either the first fragment in a multi-fragment receive,
1472 		 * or an intermediate fragment. Either way, we want to
1473 		 * accumulate the buffers.
1474 		 */
1475 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1476 			if (vge_newbuf(sc, prod) != 0) {
1477 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1478 				VGE_CHAIN_RESET(sc);
1479 				vge_discard_rxbuf(sc, prod);
1480 				continue;
1481 			}
1482 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1483 			if (sc->vge_cdata.vge_head == NULL) {
1484 				sc->vge_cdata.vge_head = m;
1485 				sc->vge_cdata.vge_tail = m;
1486 			} else {
1487 				m->m_flags &= ~M_PKTHDR;
1488 				sc->vge_cdata.vge_tail->m_next = m;
1489 				sc->vge_cdata.vge_tail = m;
1490 			}
1491 			continue;
1492 		}
1493 
1494 		/*
1495 		 * Bad/error frames will have the RXOK bit cleared.
1496 		 * However, there's one error case we want to allow:
1497 		 * if a VLAN tagged frame arrives and the chip can't
1498 		 * match it against the CAM filter, it considers this
1499 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1500 		 * We don't want to drop the frame though: our VLAN
1501 		 * filtering is done in software.
1502 		 * We also want to receive bad-checksummed frames and
1503 		 * and frames with bad-length.
1504 		 */
1505 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1506 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1507 		    VGE_RDSTS_CSUMERR)) == 0) {
1508 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1509 			/*
1510 			 * If this is part of a multi-fragment packet,
1511 			 * discard all the pieces.
1512 			 */
1513 			VGE_CHAIN_RESET(sc);
1514 			vge_discard_rxbuf(sc, prod);
1515 			continue;
1516 		}
1517 
1518 		if (vge_newbuf(sc, prod) != 0) {
1519 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1520 			VGE_CHAIN_RESET(sc);
1521 			vge_discard_rxbuf(sc, prod);
1522 			continue;
1523 		}
1524 
1525 		/* Chain received mbufs. */
1526 		if (sc->vge_cdata.vge_head != NULL) {
1527 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1528 			/*
1529 			 * Special case: if there's 4 bytes or less
1530 			 * in this buffer, the mbuf can be discarded:
1531 			 * the last 4 bytes is the CRC, which we don't
1532 			 * care about anyway.
1533 			 */
1534 			if (m->m_len <= ETHER_CRC_LEN) {
1535 				sc->vge_cdata.vge_tail->m_len -=
1536 				    (ETHER_CRC_LEN - m->m_len);
1537 				m_freem(m);
1538 			} else {
1539 				m->m_len -= ETHER_CRC_LEN;
1540 				m->m_flags &= ~M_PKTHDR;
1541 				sc->vge_cdata.vge_tail->m_next = m;
1542 			}
1543 			m = sc->vge_cdata.vge_head;
1544 			m->m_flags |= M_PKTHDR;
1545 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1546 		} else {
1547 			m->m_flags |= M_PKTHDR;
1548 			m->m_pkthdr.len = m->m_len =
1549 			    (total_len - ETHER_CRC_LEN);
1550 		}
1551 
1552 #ifndef	__NO_STRICT_ALIGNMENT
1553 		vge_fixup_rx(m);
1554 #endif
1555 		m->m_pkthdr.rcvif = ifp;
1556 
1557 		/* Do RX checksumming if enabled */
1558 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1559 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1560 			/* Check IP header checksum */
1561 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1562 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1563 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1564 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1565 
1566 			/* Check TCP/UDP checksum */
1567 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1568 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1569 				m->m_pkthdr.csum_flags |=
1570 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1571 				m->m_pkthdr.csum_data = 0xffff;
1572 			}
1573 		}
1574 
1575 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1576 			/*
1577 			 * The 32-bit rxctl register is stored in little-endian.
1578 			 * However, the 16-bit vlan tag is stored in big-endian,
1579 			 * so we have to byte swap it.
1580 			 */
1581 			m->m_pkthdr.ether_vtag =
1582 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1583 			m->m_flags |= M_VLANTAG;
1584 		}
1585 
1586 		VGE_UNLOCK(sc);
1587 		(*ifp->if_input)(ifp, m);
1588 		VGE_LOCK(sc);
1589 		sc->vge_cdata.vge_head = NULL;
1590 		sc->vge_cdata.vge_tail = NULL;
1591 	}
1592 
1593 	if (prog > 0) {
1594 		sc->vge_cdata.vge_rx_prodidx = prod;
1595 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1596 		    sc->vge_cdata.vge_rx_ring_map,
1597 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1598 		/* Update residue counter. */
1599 		if (sc->vge_cdata.vge_rx_commit != 0) {
1600 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1601 			    sc->vge_cdata.vge_rx_commit);
1602 			sc->vge_cdata.vge_rx_commit = 0;
1603 		}
1604 	}
1605 	return (prog);
1606 }
1607 
1608 static void
1609 vge_txeof(struct vge_softc *sc)
1610 {
1611 	struct ifnet *ifp;
1612 	struct vge_tx_desc *cur_tx;
1613 	struct vge_txdesc *txd;
1614 	uint32_t txstat;
1615 	int cons, prod;
1616 
1617 	VGE_LOCK_ASSERT(sc);
1618 
1619 	ifp = sc->vge_ifp;
1620 
1621 	if (sc->vge_cdata.vge_tx_cnt == 0)
1622 		return;
1623 
1624 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1625 	    sc->vge_cdata.vge_tx_ring_map,
1626 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1627 
1628 	/*
1629 	 * Go through our tx list and free mbufs for those
1630 	 * frames that have been transmitted.
1631 	 */
1632 	cons = sc->vge_cdata.vge_tx_considx;
1633 	prod = sc->vge_cdata.vge_tx_prodidx;
1634 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1635 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1636 		txstat = le32toh(cur_tx->vge_sts);
1637 		if ((txstat & VGE_TDSTS_OWN) != 0)
1638 			break;
1639 		sc->vge_cdata.vge_tx_cnt--;
1640 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1641 
1642 		txd = &sc->vge_cdata.vge_txdesc[cons];
1643 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1644 		    BUS_DMASYNC_POSTWRITE);
1645 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1646 
1647 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1648 		    __func__));
1649 		m_freem(txd->tx_m);
1650 		txd->tx_m = NULL;
1651 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1652 	}
1653 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1654 	    sc->vge_cdata.vge_tx_ring_map,
1655 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1656 	sc->vge_cdata.vge_tx_considx = cons;
1657 	if (sc->vge_cdata.vge_tx_cnt == 0)
1658 		sc->vge_timer = 0;
1659 }
1660 
1661 static void
1662 vge_link_statchg(void *xsc)
1663 {
1664 	struct vge_softc *sc;
1665 	struct ifnet *ifp;
1666 	uint8_t physts;
1667 
1668 	sc = xsc;
1669 	ifp = sc->vge_ifp;
1670 	VGE_LOCK_ASSERT(sc);
1671 
1672 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1673 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1674 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1675 			sc->vge_flags &= ~VGE_FLAG_LINK;
1676 			if_link_state_change(sc->vge_ifp,
1677 			    LINK_STATE_DOWN);
1678 		} else {
1679 			sc->vge_flags |= VGE_FLAG_LINK;
1680 			if_link_state_change(sc->vge_ifp,
1681 			    LINK_STATE_UP);
1682 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1683 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1684 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1685 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1686 					CSR_WRITE_1(sc, VGE_CRS2,
1687 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1688 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1689 					CSR_WRITE_1(sc, VGE_CRS2,
1690 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1691 			}
1692 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1693 				vge_start_locked(ifp);
1694 		}
1695 	}
1696 	/*
1697 	 * Restart MII auto-polling because link state change interrupt
1698 	 * will disable it.
1699 	 */
1700 	vge_miipoll_start(sc);
1701 }
1702 
1703 #ifdef DEVICE_POLLING
1704 static int
1705 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1706 {
1707 	struct vge_softc *sc = ifp->if_softc;
1708 	int rx_npkts = 0;
1709 
1710 	VGE_LOCK(sc);
1711 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1712 		goto done;
1713 
1714 	rx_npkts = vge_rxeof(sc, count);
1715 	vge_txeof(sc);
1716 
1717 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1718 		vge_start_locked(ifp);
1719 
1720 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1721 		uint32_t       status;
1722 		status = CSR_READ_4(sc, VGE_ISR);
1723 		if (status == 0xFFFFFFFF)
1724 			goto done;
1725 		if (status)
1726 			CSR_WRITE_4(sc, VGE_ISR, status);
1727 
1728 		/*
1729 		 * XXX check behaviour on receiver stalls.
1730 		 */
1731 
1732 		if (status & VGE_ISR_TXDMA_STALL ||
1733 		    status & VGE_ISR_RXDMA_STALL) {
1734 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1735 			vge_init_locked(sc);
1736 		}
1737 
1738 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1739 			vge_rxeof(sc, count);
1740 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1741 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1742 		}
1743 	}
1744 done:
1745 	VGE_UNLOCK(sc);
1746 	return (rx_npkts);
1747 }
1748 #endif /* DEVICE_POLLING */
1749 
1750 static void
1751 vge_intr(void *arg)
1752 {
1753 	struct vge_softc *sc;
1754 	struct ifnet *ifp;
1755 	uint32_t status;
1756 
1757 	sc = arg;
1758 	VGE_LOCK(sc);
1759 
1760 	ifp = sc->vge_ifp;
1761 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1762 	    (ifp->if_flags & IFF_UP) == 0) {
1763 		VGE_UNLOCK(sc);
1764 		return;
1765 	}
1766 
1767 #ifdef DEVICE_POLLING
1768 	if  (ifp->if_capenable & IFCAP_POLLING) {
1769 		status = CSR_READ_4(sc, VGE_ISR);
1770 		CSR_WRITE_4(sc, VGE_ISR, status);
1771 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1772 			vge_link_statchg(sc);
1773 		VGE_UNLOCK(sc);
1774 		return;
1775 	}
1776 #endif
1777 
1778 	/* Disable interrupts */
1779 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1780 	status = CSR_READ_4(sc, VGE_ISR);
1781 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1782 	/* If the card has gone away the read returns 0xffff. */
1783 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1784 		goto done;
1785 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1786 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1787 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1788 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1789 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1790 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1791 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1792 		}
1793 
1794 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1795 			vge_txeof(sc);
1796 
1797 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1798 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1799 			vge_init_locked(sc);
1800 		}
1801 
1802 		if (status & VGE_ISR_LINKSTS)
1803 			vge_link_statchg(sc);
1804 	}
1805 done:
1806 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1807 		/* Re-enable interrupts */
1808 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1809 
1810 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1811 			vge_start_locked(ifp);
1812 	}
1813 	VGE_UNLOCK(sc);
1814 }
1815 
1816 static int
1817 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1818 {
1819 	struct vge_txdesc *txd;
1820 	struct vge_tx_frag *frag;
1821 	struct mbuf *m;
1822 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1823 	int error, i, nsegs, padlen;
1824 	uint32_t cflags;
1825 
1826 	VGE_LOCK_ASSERT(sc);
1827 
1828 	M_ASSERTPKTHDR((*m_head));
1829 
1830 	/* Argh. This chip does not autopad short frames. */
1831 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1832 		m = *m_head;
1833 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1834 		if (M_WRITABLE(m) == 0) {
1835 			/* Get a writable copy. */
1836 			m = m_dup(*m_head, M_NOWAIT);
1837 			m_freem(*m_head);
1838 			if (m == NULL) {
1839 				*m_head = NULL;
1840 				return (ENOBUFS);
1841 			}
1842 			*m_head = m;
1843 		}
1844 		if (M_TRAILINGSPACE(m) < padlen) {
1845 			m = m_defrag(m, M_NOWAIT);
1846 			if (m == NULL) {
1847 				m_freem(*m_head);
1848 				*m_head = NULL;
1849 				return (ENOBUFS);
1850 			}
1851 		}
1852 		/*
1853 		 * Manually pad short frames, and zero the pad space
1854 		 * to avoid leaking data.
1855 		 */
1856 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1857 		m->m_pkthdr.len += padlen;
1858 		m->m_len = m->m_pkthdr.len;
1859 		*m_head = m;
1860 	}
1861 
1862 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1863 
1864 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1865 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1866 	if (error == EFBIG) {
1867 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1868 		if (m == NULL) {
1869 			m_freem(*m_head);
1870 			*m_head = NULL;
1871 			return (ENOMEM);
1872 		}
1873 		*m_head = m;
1874 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1875 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1876 		if (error != 0) {
1877 			m_freem(*m_head);
1878 			*m_head = NULL;
1879 			return (error);
1880 		}
1881 	} else if (error != 0)
1882 		return (error);
1883 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1884 	    BUS_DMASYNC_PREWRITE);
1885 
1886 	m = *m_head;
1887 	cflags = 0;
1888 
1889 	/* Configure checksum offload. */
1890 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1891 		cflags |= VGE_TDCTL_IPCSUM;
1892 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1893 		cflags |= VGE_TDCTL_TCPCSUM;
1894 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1895 		cflags |= VGE_TDCTL_UDPCSUM;
1896 
1897 	/* Configure VLAN. */
1898 	if ((m->m_flags & M_VLANTAG) != 0)
1899 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1900 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1901 	/*
1902 	 * XXX
1903 	 * Velocity family seems to support TSO but no information
1904 	 * for MSS configuration is available. Also the number of
1905 	 * fragments supported by a descriptor is too small to hold
1906 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1907 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1908 	 * longer chain of buffers but no additional information is
1909 	 * available.
1910 	 *
1911 	 * When telling the chip how many segments there are, we
1912 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1913 	 * know why. This also means we can't use the last fragment
1914 	 * field of Tx descriptor.
1915 	 */
1916 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1917 	    VGE_TD_LS_NORM);
1918 	for (i = 0; i < nsegs; i++) {
1919 		frag = &txd->tx_desc->vge_frag[i];
1920 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1921 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1922 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1923 	}
1924 
1925 	sc->vge_cdata.vge_tx_cnt++;
1926 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1927 
1928 	/*
1929 	 * Finally request interrupt and give the first descriptor
1930 	 * ownership to hardware.
1931 	 */
1932 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1933 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1934 	txd->tx_m = m;
1935 
1936 	return (0);
1937 }
1938 
1939 /*
1940  * Main transmit routine.
1941  */
1942 
1943 static void
1944 vge_start(struct ifnet *ifp)
1945 {
1946 	struct vge_softc *sc;
1947 
1948 	sc = ifp->if_softc;
1949 	VGE_LOCK(sc);
1950 	vge_start_locked(ifp);
1951 	VGE_UNLOCK(sc);
1952 }
1953 
1954 static void
1955 vge_start_locked(struct ifnet *ifp)
1956 {
1957 	struct vge_softc *sc;
1958 	struct vge_txdesc *txd;
1959 	struct mbuf *m_head;
1960 	int enq, idx;
1961 
1962 	sc = ifp->if_softc;
1963 
1964 	VGE_LOCK_ASSERT(sc);
1965 
1966 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1967 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1968 	    IFF_DRV_RUNNING)
1969 		return;
1970 
1971 	idx = sc->vge_cdata.vge_tx_prodidx;
1972 	VGE_TX_DESC_DEC(idx);
1973 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1974 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1975 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1976 		if (m_head == NULL)
1977 			break;
1978 		/*
1979 		 * Pack the data into the transmit ring. If we
1980 		 * don't have room, set the OACTIVE flag and wait
1981 		 * for the NIC to drain the ring.
1982 		 */
1983 		if (vge_encap(sc, &m_head)) {
1984 			if (m_head == NULL)
1985 				break;
1986 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1987 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1988 			break;
1989 		}
1990 
1991 		txd = &sc->vge_cdata.vge_txdesc[idx];
1992 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1993 		VGE_TX_DESC_INC(idx);
1994 
1995 		enq++;
1996 		/*
1997 		 * If there's a BPF listener, bounce a copy of this frame
1998 		 * to him.
1999 		 */
2000 		ETHER_BPF_MTAP(ifp, m_head);
2001 	}
2002 
2003 	if (enq > 0) {
2004 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2005 		    sc->vge_cdata.vge_tx_ring_map,
2006 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2007 		/* Issue a transmit command. */
2008 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2009 		/*
2010 		 * Set a timeout in case the chip goes out to lunch.
2011 		 */
2012 		sc->vge_timer = 5;
2013 	}
2014 }
2015 
2016 static void
2017 vge_init(void *xsc)
2018 {
2019 	struct vge_softc *sc = xsc;
2020 
2021 	VGE_LOCK(sc);
2022 	vge_init_locked(sc);
2023 	VGE_UNLOCK(sc);
2024 }
2025 
2026 static void
2027 vge_init_locked(struct vge_softc *sc)
2028 {
2029 	struct ifnet *ifp = sc->vge_ifp;
2030 	int error, i;
2031 
2032 	VGE_LOCK_ASSERT(sc);
2033 
2034 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2035 		return;
2036 
2037 	/*
2038 	 * Cancel pending I/O and free all RX/TX buffers.
2039 	 */
2040 	vge_stop(sc);
2041 	vge_reset(sc);
2042 	vge_miipoll_start(sc);
2043 
2044 	/*
2045 	 * Initialize the RX and TX descriptors and mbufs.
2046 	 */
2047 
2048 	error = vge_rx_list_init(sc);
2049 	if (error != 0) {
2050                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2051                 return;
2052 	}
2053 	vge_tx_list_init(sc);
2054 	/* Clear MAC statistics. */
2055 	vge_stats_clear(sc);
2056 	/* Set our station address */
2057 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2058 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2059 
2060 	/*
2061 	 * Set receive FIFO threshold. Also allow transmission and
2062 	 * reception of VLAN tagged frames.
2063 	 */
2064 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2065 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2066 
2067 	/* Set DMA burst length */
2068 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2069 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2070 
2071 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2072 
2073 	/* Set collision backoff algorithm */
2074 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2075 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2076 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2077 
2078 	/* Disable LPSEL field in priority resolution */
2079 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2080 
2081 	/*
2082 	 * Load the addresses of the DMA queues into the chip.
2083 	 * Note that we only use one transmit queue.
2084 	 */
2085 
2086 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2087 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2088 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2089 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2090 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2091 
2092 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2093 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2094 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2095 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2096 
2097 	/* Configure interrupt moderation. */
2098 	vge_intr_holdoff(sc);
2099 
2100 	/* Enable and wake up the RX descriptor queue */
2101 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2102 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2103 
2104 	/* Enable the TX descriptor queue */
2105 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2106 
2107 	/* Init the cam filter. */
2108 	vge_cam_clear(sc);
2109 
2110 	/* Set up receiver filter. */
2111 	vge_rxfilter(sc);
2112 	vge_setvlan(sc);
2113 
2114 	/* Initialize pause timer. */
2115 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2116 	/*
2117 	 * Initialize flow control parameters.
2118 	 *  TX XON high threshold : 48
2119 	 *  TX pause low threshold : 24
2120 	 *  Disable hald-duplex flow control
2121 	 */
2122 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2123 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2124 
2125 	/* Enable jumbo frame reception (if desired) */
2126 
2127 	/* Start the MAC. */
2128 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2129 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2130 	CSR_WRITE_1(sc, VGE_CRS0,
2131 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2132 
2133 #ifdef DEVICE_POLLING
2134 	/*
2135 	 * Disable interrupts except link state change if we are polling.
2136 	 */
2137 	if (ifp->if_capenable & IFCAP_POLLING) {
2138 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2139 	} else	/* otherwise ... */
2140 #endif
2141 	{
2142 	/*
2143 	 * Enable interrupts.
2144 	 */
2145 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2146 	}
2147 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2148 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2149 
2150 	sc->vge_flags &= ~VGE_FLAG_LINK;
2151 	vge_ifmedia_upd_locked(sc);
2152 
2153 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2154 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2155 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2156 }
2157 
2158 /*
2159  * Set media options.
2160  */
2161 static int
2162 vge_ifmedia_upd(struct ifnet *ifp)
2163 {
2164 	struct vge_softc *sc;
2165 	int error;
2166 
2167 	sc = ifp->if_softc;
2168 	VGE_LOCK(sc);
2169 	error = vge_ifmedia_upd_locked(sc);
2170 	VGE_UNLOCK(sc);
2171 
2172 	return (error);
2173 }
2174 
2175 static int
2176 vge_ifmedia_upd_locked(struct vge_softc *sc)
2177 {
2178 	struct mii_data *mii;
2179 	struct mii_softc *miisc;
2180 	int error;
2181 
2182 	mii = device_get_softc(sc->vge_miibus);
2183 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2184 		PHY_RESET(miisc);
2185 	vge_setmedia(sc);
2186 	error = mii_mediachg(mii);
2187 
2188 	return (error);
2189 }
2190 
2191 /*
2192  * Report current media status.
2193  */
2194 static void
2195 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2196 {
2197 	struct vge_softc *sc;
2198 	struct mii_data *mii;
2199 
2200 	sc = ifp->if_softc;
2201 	mii = device_get_softc(sc->vge_miibus);
2202 
2203 	VGE_LOCK(sc);
2204 	if ((ifp->if_flags & IFF_UP) == 0) {
2205 		VGE_UNLOCK(sc);
2206 		return;
2207 	}
2208 	mii_pollstat(mii);
2209 	ifmr->ifm_active = mii->mii_media_active;
2210 	ifmr->ifm_status = mii->mii_media_status;
2211 	VGE_UNLOCK(sc);
2212 }
2213 
2214 static void
2215 vge_setmedia(struct vge_softc *sc)
2216 {
2217 	struct mii_data *mii;
2218 	struct ifmedia_entry *ife;
2219 
2220 	mii = device_get_softc(sc->vge_miibus);
2221 	ife = mii->mii_media.ifm_cur;
2222 
2223 	/*
2224 	 * If the user manually selects a media mode, we need to turn
2225 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2226 	 * user happens to choose a full duplex mode, we also need to
2227 	 * set the 'force full duplex' bit. This applies only to
2228 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2229 	 * mode is disabled, and in 1000baseT mode, full duplex is
2230 	 * always implied, so we turn on the forced mode bit but leave
2231 	 * the FDX bit cleared.
2232 	 */
2233 
2234 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2235 	case IFM_AUTO:
2236 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2237 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2238 		break;
2239 	case IFM_1000_T:
2240 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2241 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242 		break;
2243 	case IFM_100_TX:
2244 	case IFM_10_T:
2245 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2246 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2247 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2248 		} else {
2249 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2250 		}
2251 		break;
2252 	default:
2253 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2254 		    IFM_SUBTYPE(ife->ifm_media));
2255 		break;
2256 	}
2257 }
2258 
2259 static int
2260 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2261 {
2262 	struct vge_softc *sc = ifp->if_softc;
2263 	struct ifreq *ifr = (struct ifreq *) data;
2264 	struct mii_data *mii;
2265 	int error = 0, mask;
2266 
2267 	switch (command) {
2268 	case SIOCSIFMTU:
2269 		VGE_LOCK(sc);
2270 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2271 			error = EINVAL;
2272 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2273 			if (ifr->ifr_mtu > ETHERMTU &&
2274 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2275 				error = EINVAL;
2276 			else
2277 				ifp->if_mtu = ifr->ifr_mtu;
2278 		}
2279 		VGE_UNLOCK(sc);
2280 		break;
2281 	case SIOCSIFFLAGS:
2282 		VGE_LOCK(sc);
2283 		if ((ifp->if_flags & IFF_UP) != 0) {
2284 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2285 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2286 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2287 				vge_rxfilter(sc);
2288 			else
2289 				vge_init_locked(sc);
2290 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2291 			vge_stop(sc);
2292 		sc->vge_if_flags = ifp->if_flags;
2293 		VGE_UNLOCK(sc);
2294 		break;
2295 	case SIOCADDMULTI:
2296 	case SIOCDELMULTI:
2297 		VGE_LOCK(sc);
2298 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2299 			vge_rxfilter(sc);
2300 		VGE_UNLOCK(sc);
2301 		break;
2302 	case SIOCGIFMEDIA:
2303 	case SIOCSIFMEDIA:
2304 		mii = device_get_softc(sc->vge_miibus);
2305 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2306 		break;
2307 	case SIOCSIFCAP:
2308 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2309 #ifdef DEVICE_POLLING
2310 		if (mask & IFCAP_POLLING) {
2311 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2312 				error = ether_poll_register(vge_poll, ifp);
2313 				if (error)
2314 					return (error);
2315 				VGE_LOCK(sc);
2316 					/* Disable interrupts */
2317 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2318 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2319 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2320 				ifp->if_capenable |= IFCAP_POLLING;
2321 				VGE_UNLOCK(sc);
2322 			} else {
2323 				error = ether_poll_deregister(ifp);
2324 				/* Enable interrupts. */
2325 				VGE_LOCK(sc);
2326 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2327 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2328 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2329 				ifp->if_capenable &= ~IFCAP_POLLING;
2330 				VGE_UNLOCK(sc);
2331 			}
2332 		}
2333 #endif /* DEVICE_POLLING */
2334 		VGE_LOCK(sc);
2335 		if ((mask & IFCAP_TXCSUM) != 0 &&
2336 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2337 			ifp->if_capenable ^= IFCAP_TXCSUM;
2338 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2339 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2340 			else
2341 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2342 		}
2343 		if ((mask & IFCAP_RXCSUM) != 0 &&
2344 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2345 			ifp->if_capenable ^= IFCAP_RXCSUM;
2346 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2347 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2348 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2349 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2350 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2351 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2352 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2353 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2354 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2355 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2356 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2357 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2358 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2359 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2360 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2361 			vge_setvlan(sc);
2362 		}
2363 		VGE_UNLOCK(sc);
2364 		VLAN_CAPABILITIES(ifp);
2365 		break;
2366 	default:
2367 		error = ether_ioctl(ifp, command, data);
2368 		break;
2369 	}
2370 
2371 	return (error);
2372 }
2373 
2374 static void
2375 vge_watchdog(void *arg)
2376 {
2377 	struct vge_softc *sc;
2378 	struct ifnet *ifp;
2379 
2380 	sc = arg;
2381 	VGE_LOCK_ASSERT(sc);
2382 	vge_stats_update(sc);
2383 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2384 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2385 		return;
2386 
2387 	ifp = sc->vge_ifp;
2388 	if_printf(ifp, "watchdog timeout\n");
2389 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2390 
2391 	vge_txeof(sc);
2392 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2393 
2394 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2395 	vge_init_locked(sc);
2396 }
2397 
2398 /*
2399  * Stop the adapter and free any mbufs allocated to the
2400  * RX and TX lists.
2401  */
2402 static void
2403 vge_stop(struct vge_softc *sc)
2404 {
2405 	struct ifnet *ifp;
2406 
2407 	VGE_LOCK_ASSERT(sc);
2408 	ifp = sc->vge_ifp;
2409 	sc->vge_timer = 0;
2410 	callout_stop(&sc->vge_watchdog);
2411 
2412 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2413 
2414 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2415 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2416 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2417 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2418 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2419 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2420 
2421 	vge_stats_update(sc);
2422 	VGE_CHAIN_RESET(sc);
2423 	vge_txeof(sc);
2424 	vge_freebufs(sc);
2425 }
2426 
2427 /*
2428  * Device suspend routine.  Stop the interface and save some PCI
2429  * settings in case the BIOS doesn't restore them properly on
2430  * resume.
2431  */
2432 static int
2433 vge_suspend(device_t dev)
2434 {
2435 	struct vge_softc *sc;
2436 
2437 	sc = device_get_softc(dev);
2438 
2439 	VGE_LOCK(sc);
2440 	vge_stop(sc);
2441 	vge_setwol(sc);
2442 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2443 	VGE_UNLOCK(sc);
2444 
2445 	return (0);
2446 }
2447 
2448 /*
2449  * Device resume routine.  Restore some PCI settings in case the BIOS
2450  * doesn't, re-enable busmastering, and restart the interface if
2451  * appropriate.
2452  */
2453 static int
2454 vge_resume(device_t dev)
2455 {
2456 	struct vge_softc *sc;
2457 	struct ifnet *ifp;
2458 	uint16_t pmstat;
2459 
2460 	sc = device_get_softc(dev);
2461 	VGE_LOCK(sc);
2462 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2463 		/* Disable PME and clear PME status. */
2464 		pmstat = pci_read_config(sc->vge_dev,
2465 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2466 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2467 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2468 			pci_write_config(sc->vge_dev,
2469 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2470 		}
2471 	}
2472 	vge_clrwol(sc);
2473 	/* Restart MII auto-polling. */
2474 	vge_miipoll_start(sc);
2475 	ifp = sc->vge_ifp;
2476 	/* Reinitialize interface if necessary. */
2477 	if ((ifp->if_flags & IFF_UP) != 0) {
2478 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2479 		vge_init_locked(sc);
2480 	}
2481 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2482 	VGE_UNLOCK(sc);
2483 
2484 	return (0);
2485 }
2486 
2487 /*
2488  * Stop all chip I/O so that the kernel's probe routines don't
2489  * get confused by errant DMAs when rebooting.
2490  */
2491 static int
2492 vge_shutdown(device_t dev)
2493 {
2494 
2495 	return (vge_suspend(dev));
2496 }
2497 
2498 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2499 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2500 
2501 static void
2502 vge_sysctl_node(struct vge_softc *sc)
2503 {
2504 	struct sysctl_ctx_list *ctx;
2505 	struct sysctl_oid_list *child, *parent;
2506 	struct sysctl_oid *tree;
2507 	struct vge_hw_stats *stats;
2508 
2509 	stats = &sc->vge_stats;
2510 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2511 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2512 
2513 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2514 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2515 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2516 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2517 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2518 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2519 
2520 	/* Pull in device tunables. */
2521 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2522 	resource_int_value(device_get_name(sc->vge_dev),
2523 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2524 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2525 	resource_int_value(device_get_name(sc->vge_dev),
2526 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2527 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2528 	resource_int_value(device_get_name(sc->vge_dev),
2529 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2530 
2531 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2532 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2533 	parent = SYSCTL_CHILDREN(tree);
2534 
2535 	/* Rx statistics. */
2536 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2537 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2538 	child = SYSCTL_CHILDREN(tree);
2539 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2540 	    &stats->rx_frames, "frames");
2541 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2542 	    &stats->rx_good_frames, "Good frames");
2543 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2544 	    &stats->rx_fifo_oflows, "FIFO overflows");
2545 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2546 	    &stats->rx_runts, "Too short frames");
2547 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2548 	    &stats->rx_runts_errs, "Too short frames with errors");
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2550 	    &stats->rx_pkts_64, "64 bytes frames");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2552 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2554 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2555 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2556 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2558 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2559 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2560 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2561 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2562 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2563 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2564 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2565 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2566 	    &stats->rx_jumbos, "Jumbo frames");
2567 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2568 	    &stats->rx_crcerrs, "CRC errors");
2569 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2570 	    &stats->rx_pause_frames, "CRC errors");
2571 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2572 	    &stats->rx_alignerrs, "Alignment errors");
2573 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2574 	    &stats->rx_nobufs, "Frames with no buffer event");
2575 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2576 	    &stats->rx_symerrs, "Frames with symbol errors");
2577 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2578 	    &stats->rx_lenerrs, "Frames with length mismatched");
2579 
2580 	/* Tx statistics. */
2581 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2582 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2583 	child = SYSCTL_CHILDREN(tree);
2584 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2585 	    &stats->tx_good_frames, "Good frames");
2586 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2587 	    &stats->tx_pkts_64, "64 bytes frames");
2588 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2589 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2590 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2591 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2592 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2593 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2594 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2595 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2596 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2597 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2598 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2599 	    &stats->tx_jumbos, "Jumbo frames");
2600 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2601 	    &stats->tx_colls, "Collisions");
2602 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2603 	    &stats->tx_latecolls, "Late collisions");
2604 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2605 	    &stats->tx_pause, "Pause frames");
2606 #ifdef VGE_ENABLE_SQEERR
2607 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2608 	    &stats->tx_sqeerrs, "SQE errors");
2609 #endif
2610 	/* Clear MAC statistics. */
2611 	vge_stats_clear(sc);
2612 }
2613 
2614 #undef	VGE_SYSCTL_STAT_ADD32
2615 
2616 static void
2617 vge_stats_clear(struct vge_softc *sc)
2618 {
2619 	int i;
2620 
2621 	CSR_WRITE_1(sc, VGE_MIBCSR,
2622 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2623 	CSR_WRITE_1(sc, VGE_MIBCSR,
2624 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2625 	for (i = VGE_TIMEOUT; i > 0; i--) {
2626 		DELAY(1);
2627 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2628 			break;
2629 	}
2630 	if (i == 0)
2631 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2632 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2633 	    ~VGE_MIBCSR_FREEZE);
2634 }
2635 
2636 static void
2637 vge_stats_update(struct vge_softc *sc)
2638 {
2639 	struct vge_hw_stats *stats;
2640 	struct ifnet *ifp;
2641 	uint32_t mib[VGE_MIB_CNT], val;
2642 	int i;
2643 
2644 	VGE_LOCK_ASSERT(sc);
2645 
2646 	stats = &sc->vge_stats;
2647 	ifp = sc->vge_ifp;
2648 
2649 	CSR_WRITE_1(sc, VGE_MIBCSR,
2650 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2651 	for (i = VGE_TIMEOUT; i > 0; i--) {
2652 		DELAY(1);
2653 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2654 			break;
2655 	}
2656 	if (i == 0) {
2657 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2658 		vge_stats_clear(sc);
2659 		return;
2660 	}
2661 
2662 	bzero(mib, sizeof(mib));
2663 reset_idx:
2664 	/* Set MIB read index to 0. */
2665 	CSR_WRITE_1(sc, VGE_MIBCSR,
2666 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2667 	for (i = 0; i < VGE_MIB_CNT; i++) {
2668 		val = CSR_READ_4(sc, VGE_MIBDATA);
2669 		if (i != VGE_MIB_DATA_IDX(val)) {
2670 			/* Reading interrupted. */
2671 			goto reset_idx;
2672 		}
2673 		mib[i] = val & VGE_MIB_DATA_MASK;
2674 	}
2675 
2676 	/* Rx stats. */
2677 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2678 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2679 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2680 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2681 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2682 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2683 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2684 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2685 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2686 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2687 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2688 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2689 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2690 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2691 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2692 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2693 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2694 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2695 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2696 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2697 
2698 	/* Tx stats. */
2699 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2700 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2701 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2702 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2703 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2704 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2705 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2706 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2707 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2708 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2709 #ifdef VGE_ENABLE_SQEERR
2710 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2711 #endif
2712 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2713 
2714 	/* Update counters in ifnet. */
2715 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2716 
2717 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2718 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2719 
2720 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2721 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2722 
2723 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2724 
2725 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2726 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2727 	    mib[VGE_MIB_RX_RUNTS] +
2728 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2729 	    mib[VGE_MIB_RX_CRCERRS] +
2730 	    mib[VGE_MIB_RX_ALIGNERRS] +
2731 	    mib[VGE_MIB_RX_NOBUFS] +
2732 	    mib[VGE_MIB_RX_SYMERRS] +
2733 	    mib[VGE_MIB_RX_LENERRS]);
2734 }
2735 
2736 static void
2737 vge_intr_holdoff(struct vge_softc *sc)
2738 {
2739 	uint8_t intctl;
2740 
2741 	VGE_LOCK_ASSERT(sc);
2742 
2743 	/*
2744 	 * Set Tx interrupt supression threshold.
2745 	 * It's possible to use single-shot timer in VGE_CRS1 register
2746 	 * in Tx path such that driver can remove most of Tx completion
2747 	 * interrupts. However this requires additional access to
2748 	 * VGE_CRS1 register to reload the timer in addintion to
2749 	 * activating Tx kick command. Another downside is we don't know
2750 	 * what single-shot timer value should be used in advance so
2751 	 * reclaiming transmitted mbufs could be delayed a lot which in
2752 	 * turn slows down Tx operation.
2753 	 */
2754 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2755 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2756 
2757 	/* Set Rx interrupt suppresion threshold. */
2758 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2759 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2760 
2761 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2762 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2763 	intctl |= VGE_INTCTL_HC_RELOAD;
2764 	if (sc->vge_tx_coal_pkt <= 0)
2765 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2766 	else
2767 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2768 	if (sc->vge_rx_coal_pkt <= 0)
2769 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2770 	else
2771 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2772 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2773 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2774 	if (sc->vge_int_holdoff > 0) {
2775 		/* Set interrupt holdoff timer. */
2776 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2777 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2778 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2779 		/* Enable holdoff timer. */
2780 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2781 	}
2782 }
2783 
2784 static void
2785 vge_setlinkspeed(struct vge_softc *sc)
2786 {
2787 	struct mii_data *mii;
2788 	int aneg, i;
2789 
2790 	VGE_LOCK_ASSERT(sc);
2791 
2792 	mii = device_get_softc(sc->vge_miibus);
2793 	mii_pollstat(mii);
2794 	aneg = 0;
2795 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2796 	    (IFM_ACTIVE | IFM_AVALID)) {
2797 		switch IFM_SUBTYPE(mii->mii_media_active) {
2798 		case IFM_10_T:
2799 		case IFM_100_TX:
2800 			return;
2801 		case IFM_1000_T:
2802 			aneg++;
2803 		default:
2804 			break;
2805 		}
2806 	}
2807 	/* Clear forced MAC speed/duplex configuration. */
2808 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2809 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2810 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2811 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2812 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2813 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2814 	    BMCR_AUTOEN | BMCR_STARTNEG);
2815 	DELAY(1000);
2816 	if (aneg != 0) {
2817 		/* Poll link state until vge(4) get a 10/100 link. */
2818 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2819 			mii_pollstat(mii);
2820 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2821 			    == (IFM_ACTIVE | IFM_AVALID)) {
2822 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2823 				case IFM_10_T:
2824 				case IFM_100_TX:
2825 					return;
2826 				default:
2827 					break;
2828 				}
2829 			}
2830 			VGE_UNLOCK(sc);
2831 			pause("vgelnk", hz);
2832 			VGE_LOCK(sc);
2833 		}
2834 		if (i == MII_ANEGTICKS_GIGE)
2835 			device_printf(sc->vge_dev, "establishing link failed, "
2836 			    "WOL may not work!");
2837 	}
2838 	/*
2839 	 * No link, force MAC to have 100Mbps, full-duplex link.
2840 	 * This is the last resort and may/may not work.
2841 	 */
2842 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2843 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2844 }
2845 
2846 static void
2847 vge_setwol(struct vge_softc *sc)
2848 {
2849 	struct ifnet *ifp;
2850 	uint16_t pmstat;
2851 	uint8_t val;
2852 
2853 	VGE_LOCK_ASSERT(sc);
2854 
2855 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2856 		/* No PME capability, PHY power down. */
2857 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2858 		    BMCR_PDOWN);
2859 		vge_miipoll_stop(sc);
2860 		return;
2861 	}
2862 
2863 	ifp = sc->vge_ifp;
2864 
2865 	/* Clear WOL on pattern match. */
2866 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2867 	/* Disable WOL on magic/unicast packet. */
2868 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2869 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2870 	    VGE_WOLCFG_PMEOVR);
2871 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2872 		vge_setlinkspeed(sc);
2873 		val = 0;
2874 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2875 			val |= VGE_WOLCR1_UCAST;
2876 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2877 			val |= VGE_WOLCR1_MAGIC;
2878 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2879 		val = 0;
2880 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2881 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2882 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2883 		/* Disable MII auto-polling. */
2884 		vge_miipoll_stop(sc);
2885 	}
2886 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2887 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2888 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2889 
2890 	/* Clear WOL status on pattern match. */
2891 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2892 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2893 
2894 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2895 	val |= VGE_STICKHW_SWPTAG;
2896 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2897 	/* Put hardware into sleep. */
2898 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2899 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2900 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2901 	/* Request PME if WOL is requested. */
2902 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2903 	    PCIR_POWER_STATUS, 2);
2904 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2905 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2906 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2907 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2908 	    pmstat, 2);
2909 }
2910 
2911 static void
2912 vge_clrwol(struct vge_softc *sc)
2913 {
2914 	uint8_t val;
2915 
2916 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2917 	val &= ~VGE_STICKHW_SWPTAG;
2918 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2919 	/* Disable WOL and clear power state indicator. */
2920 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2921 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2922 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2923 
2924 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2925 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2926 
2927 	/* Clear WOL on pattern match. */
2928 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2929 	/* Disable WOL on magic/unicast packet. */
2930 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2931 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2932 	    VGE_WOLCFG_PMEOVR);
2933 	/* Clear WOL status on pattern match. */
2934 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2935 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2936 }
2937