xref: /freebsd/sys/dev/wpi/if_wpi.c (revision a0ee8cc6)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_done) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include "opt_wlan.h"
62 #include "opt_wpi.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/if_ether.h>
100 #include <netinet/ip.h>
101 
102 #include <net80211/ieee80211_var.h>
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_regdomain.h>
105 #include <net80211/ieee80211_ratectl.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 #include <dev/wpi/if_wpi_debug.h>
110 
111 struct wpi_ident {
112 	uint16_t	vendor;
113 	uint16_t	device;
114 	uint16_t	subdevice;
115 	const char	*name;
116 };
117 
118 static const struct wpi_ident wpi_ident_table[] = {
119 	/* The below entries support ABG regardless of the subid */
120 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
122 	/* The below entries only support BG */
123 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
127 	{ 0, 0, 0, NULL }
128 };
129 
130 static int	wpi_probe(device_t);
131 static int	wpi_attach(device_t);
132 static void	wpi_radiotap_attach(struct wpi_softc *);
133 static void	wpi_sysctlattach(struct wpi_softc *);
134 static void	wpi_init_beacon(struct wpi_vap *);
135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
136 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
137 		    const uint8_t [IEEE80211_ADDR_LEN],
138 		    const uint8_t [IEEE80211_ADDR_LEN]);
139 static void	wpi_vap_delete(struct ieee80211vap *);
140 static int	wpi_detach(device_t);
141 static int	wpi_shutdown(device_t);
142 static int	wpi_suspend(device_t);
143 static int	wpi_resume(device_t);
144 static int	wpi_nic_lock(struct wpi_softc *);
145 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
146 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
147 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	wpi_dma_contig_free(struct wpi_dma_info *);
150 static int	wpi_alloc_shared(struct wpi_softc *);
151 static void	wpi_free_shared(struct wpi_softc *);
152 static int	wpi_alloc_fwmem(struct wpi_softc *);
153 static void	wpi_free_fwmem(struct wpi_softc *);
154 static int	wpi_alloc_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring(struct wpi_softc *);
156 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
157 static void	wpi_reset_rx_ring(struct wpi_softc *);
158 static void	wpi_free_rx_ring(struct wpi_softc *);
159 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
160 		    uint8_t);
161 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
163 		    struct wpi_tx_ring *);
164 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166 static int	wpi_read_eeprom(struct wpi_softc *,
167 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
168 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
169 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
173 		    struct ieee80211_channel *);
174 static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
175 		    struct ieee80211_channel[]);
176 static int	wpi_setregdomain(struct ieee80211com *,
177 		    struct ieee80211_regdomain *, int,
178 		    struct ieee80211_channel[]);
179 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static void	wpi_node_free(struct ieee80211_node *);
183 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
184 		    const struct ieee80211_rx_stats *,
185 		    int, int);
186 static void	wpi_restore_node(void *, struct ieee80211_node *);
187 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
188 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	wpi_calib_timeout(void *);
190 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
193 		    struct wpi_rx_data *);
194 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_wakeup_intr(struct wpi_softc *);
198 #ifdef WPI_DEBUG
199 static void	wpi_debug_registers(struct wpi_softc *);
200 #endif
201 static void	wpi_fatal_intr(struct wpi_softc *);
202 static void	wpi_intr(void *);
203 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
204 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
205 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
206 		    struct ieee80211_node *);
207 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
208 		    struct ieee80211_node *,
209 		    const struct ieee80211_bpf_params *);
210 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
211 		    const struct ieee80211_bpf_params *);
212 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
213 static void	wpi_watchdog_rfkill(void *);
214 static void	wpi_scan_timeout(void *);
215 static void	wpi_tx_timeout(void *);
216 static void	wpi_parent(struct ieee80211com *);
217 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
218 		    int);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
221 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
222 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
223 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
224 static int	wpi_updateedca(struct ieee80211com *);
225 static void	wpi_set_promisc(struct wpi_softc *);
226 static void	wpi_update_promisc(struct ieee80211com *);
227 static void	wpi_update_mcast(struct ieee80211com *);
228 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
229 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
230 static void	wpi_power_calibration(struct wpi_softc *);
231 static int	wpi_set_txpower(struct wpi_softc *, int);
232 static int	wpi_get_power_index(struct wpi_softc *,
233 		    struct wpi_power_group *, uint8_t, int, int);
234 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
235 static int	wpi_send_btcoex(struct wpi_softc *);
236 static int	wpi_send_rxon(struct wpi_softc *, int, int);
237 static int	wpi_config(struct wpi_softc *);
238 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
239 		    struct ieee80211_channel *, uint8_t);
240 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
241 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
242 		    struct ieee80211_channel *);
243 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
244 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
245 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
246 static int	wpi_config_beacon(struct wpi_vap *);
247 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
248 static void	wpi_update_beacon(struct ieee80211vap *, int);
249 static void	wpi_newassoc(struct ieee80211_node *, int);
250 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
251 static int	wpi_load_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_set_global_keys(struct ieee80211_node *);
255 static int	wpi_del_key(struct ieee80211_node *,
256 		    const struct ieee80211_key *);
257 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
258 static int	wpi_process_key(struct ieee80211vap *,
259 		    const struct ieee80211_key *, int);
260 static int	wpi_key_set(struct ieee80211vap *,
261 		    const struct ieee80211_key *);
262 static int	wpi_key_delete(struct ieee80211vap *,
263 		    const struct ieee80211_key *);
264 static int	wpi_post_alive(struct wpi_softc *);
265 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
266 		    uint32_t);
267 static int	wpi_load_firmware(struct wpi_softc *);
268 static int	wpi_read_firmware(struct wpi_softc *);
269 static void	wpi_unload_firmware(struct wpi_softc *);
270 static int	wpi_clock_wait(struct wpi_softc *);
271 static int	wpi_apm_init(struct wpi_softc *);
272 static void	wpi_apm_stop_master(struct wpi_softc *);
273 static void	wpi_apm_stop(struct wpi_softc *);
274 static void	wpi_nic_config(struct wpi_softc *);
275 static int	wpi_hw_init(struct wpi_softc *);
276 static void	wpi_hw_stop(struct wpi_softc *);
277 static void	wpi_radio_on(void *, int);
278 static void	wpi_radio_off(void *, int);
279 static int	wpi_init(struct wpi_softc *);
280 static void	wpi_stop_locked(struct wpi_softc *);
281 static void	wpi_stop(struct wpi_softc *);
282 static void	wpi_scan_start(struct ieee80211com *);
283 static void	wpi_scan_end(struct ieee80211com *);
284 static void	wpi_set_channel(struct ieee80211com *);
285 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
286 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
287 static void	wpi_hw_reset(void *, int);
288 
289 static device_method_t wpi_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		wpi_probe),
292 	DEVMETHOD(device_attach,	wpi_attach),
293 	DEVMETHOD(device_detach,	wpi_detach),
294 	DEVMETHOD(device_shutdown,	wpi_shutdown),
295 	DEVMETHOD(device_suspend,	wpi_suspend),
296 	DEVMETHOD(device_resume,	wpi_resume),
297 
298 	DEVMETHOD_END
299 };
300 
301 static driver_t wpi_driver = {
302 	"wpi",
303 	wpi_methods,
304 	sizeof (struct wpi_softc)
305 };
306 static devclass_t wpi_devclass;
307 
308 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
309 
310 MODULE_VERSION(wpi, 1);
311 
312 MODULE_DEPEND(wpi, pci,  1, 1, 1);
313 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
314 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
315 
316 static int
317 wpi_probe(device_t dev)
318 {
319 	const struct wpi_ident *ident;
320 
321 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
322 		if (pci_get_vendor(dev) == ident->vendor &&
323 		    pci_get_device(dev) == ident->device) {
324 			device_set_desc(dev, ident->name);
325 			return (BUS_PROBE_DEFAULT);
326 		}
327 	}
328 	return ENXIO;
329 }
330 
331 static int
332 wpi_attach(device_t dev)
333 {
334 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
335 	struct ieee80211com *ic;
336 	uint8_t i;
337 	int error, rid;
338 #ifdef WPI_DEBUG
339 	int supportsa = 1;
340 	const struct wpi_ident *ident;
341 #endif
342 
343 	sc->sc_dev = dev;
344 
345 #ifdef WPI_DEBUG
346 	error = resource_int_value(device_get_name(sc->sc_dev),
347 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
348 	if (error != 0)
349 		sc->sc_debug = 0;
350 #else
351 	sc->sc_debug = 0;
352 #endif
353 
354 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
355 
356 	/*
357 	 * Get the offset of the PCI Express Capability Structure in PCI
358 	 * Configuration Space.
359 	 */
360 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
361 	if (error != 0) {
362 		device_printf(dev, "PCIe capability structure not found!\n");
363 		return error;
364 	}
365 
366 	/*
367 	 * Some card's only support 802.11b/g not a, check to see if
368 	 * this is one such card. A 0x0 in the subdevice table indicates
369 	 * the entire subdevice range is to be ignored.
370 	 */
371 #ifdef WPI_DEBUG
372 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
373 		if (ident->subdevice &&
374 		    pci_get_subdevice(dev) == ident->subdevice) {
375 		    supportsa = 0;
376 		    break;
377 		}
378 	}
379 #endif
380 
381 	/* Clear device-specific "PCI retry timeout" register (41h). */
382 	pci_write_config(dev, 0x41, 0, 1);
383 
384 	/* Enable bus-mastering. */
385 	pci_enable_busmaster(dev);
386 
387 	rid = PCIR_BAR(0);
388 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
389 	    RF_ACTIVE);
390 	if (sc->mem == NULL) {
391 		device_printf(dev, "can't map mem space\n");
392 		return ENOMEM;
393 	}
394 	sc->sc_st = rman_get_bustag(sc->mem);
395 	sc->sc_sh = rman_get_bushandle(sc->mem);
396 
397 	rid = 1;
398 	if (pci_alloc_msi(dev, &rid) == 0)
399 		rid = 1;
400 	else
401 		rid = 0;
402 	/* Install interrupt handler. */
403 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
404 	    (rid != 0 ? 0 : RF_SHAREABLE));
405 	if (sc->irq == NULL) {
406 		device_printf(dev, "can't map interrupt\n");
407 		error = ENOMEM;
408 		goto fail;
409 	}
410 
411 	WPI_LOCK_INIT(sc);
412 	WPI_TX_LOCK_INIT(sc);
413 	WPI_RXON_LOCK_INIT(sc);
414 	WPI_NT_LOCK_INIT(sc);
415 	WPI_TXQ_LOCK_INIT(sc);
416 	WPI_TXQ_STATE_LOCK_INIT(sc);
417 
418 	/* Allocate DMA memory for firmware transfers. */
419 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
420 		device_printf(dev,
421 		    "could not allocate memory for firmware, error %d\n",
422 		    error);
423 		goto fail;
424 	}
425 
426 	/* Allocate shared page. */
427 	if ((error = wpi_alloc_shared(sc)) != 0) {
428 		device_printf(dev, "could not allocate shared page\n");
429 		goto fail;
430 	}
431 
432 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
433 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
434 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
435 			device_printf(dev,
436 			    "could not allocate TX ring %d, error %d\n", i,
437 			    error);
438 			goto fail;
439 		}
440 	}
441 
442 	/* Allocate RX ring. */
443 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
444 		device_printf(dev, "could not allocate RX ring, error %d\n",
445 		    error);
446 		goto fail;
447 	}
448 
449 	/* Clear pending interrupts. */
450 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
451 
452 	ic = &sc->sc_ic;
453 	ic->ic_softc = sc;
454 	ic->ic_name = device_get_nameunit(dev);
455 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
456 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
457 
458 	/* Set device capabilities. */
459 	ic->ic_caps =
460 		  IEEE80211_C_STA		/* station mode supported */
461 		| IEEE80211_C_IBSS		/* IBSS mode supported */
462 		| IEEE80211_C_HOSTAP		/* Host access point mode */
463 		| IEEE80211_C_MONITOR		/* monitor mode supported */
464 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
465 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
466 		| IEEE80211_C_TXFRAG		/* handle tx frags */
467 		| IEEE80211_C_TXPMGT		/* tx power management */
468 		| IEEE80211_C_SHSLOT		/* short slot time supported */
469 		| IEEE80211_C_WPA		/* 802.11i */
470 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
471 		| IEEE80211_C_WME		/* 802.11e */
472 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
473 		;
474 
475 	ic->ic_cryptocaps =
476 		  IEEE80211_CRYPTO_AES_CCM;
477 
478 	/*
479 	 * Read in the eeprom and also setup the channels for
480 	 * net80211. We don't set the rates as net80211 does this for us
481 	 */
482 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
483 		device_printf(dev, "could not read EEPROM, error %d\n",
484 		    error);
485 		goto fail;
486 	}
487 
488 #ifdef WPI_DEBUG
489 	if (bootverbose) {
490 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
491 		    sc->domain);
492 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
493 		    sc->type > 1 ? 'B': '?');
494 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
495 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
496 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
497 		    supportsa ? "does" : "does not");
498 
499 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
500 		   check what sc->rev really represents - benjsc 20070615 */
501 	}
502 #endif
503 
504 	ieee80211_ifattach(ic);
505 	ic->ic_vap_create = wpi_vap_create;
506 	ic->ic_vap_delete = wpi_vap_delete;
507 	ic->ic_parent = wpi_parent;
508 	ic->ic_raw_xmit = wpi_raw_xmit;
509 	ic->ic_transmit = wpi_transmit;
510 	ic->ic_node_alloc = wpi_node_alloc;
511 	sc->sc_node_free = ic->ic_node_free;
512 	ic->ic_node_free = wpi_node_free;
513 	ic->ic_wme.wme_update = wpi_updateedca;
514 	ic->ic_update_promisc = wpi_update_promisc;
515 	ic->ic_update_mcast = wpi_update_mcast;
516 	ic->ic_newassoc = wpi_newassoc;
517 	ic->ic_scan_start = wpi_scan_start;
518 	ic->ic_scan_end = wpi_scan_end;
519 	ic->ic_set_channel = wpi_set_channel;
520 	ic->ic_scan_curchan = wpi_scan_curchan;
521 	ic->ic_scan_mindwell = wpi_scan_mindwell;
522 	ic->ic_getradiocaps = wpi_getradiocaps;
523 	ic->ic_setregdomain = wpi_setregdomain;
524 
525 	sc->sc_update_rx_ring = wpi_update_rx_ring;
526 	sc->sc_update_tx_ring = wpi_update_tx_ring;
527 
528 	wpi_radiotap_attach(sc);
529 
530 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
531 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
532 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
533 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
534 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
535 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
536 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
537 
538 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
539 	    taskqueue_thread_enqueue, &sc->sc_tq);
540 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
541 	if (error != 0) {
542 		device_printf(dev, "can't start threads, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	wpi_sysctlattach(sc);
547 
548 	/*
549 	 * Hook our interrupt after all initialization is complete.
550 	 */
551 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
552 	    NULL, wpi_intr, sc, &sc->sc_ih);
553 	if (error != 0) {
554 		device_printf(dev, "can't establish interrupt, error %d\n",
555 		    error);
556 		goto fail;
557 	}
558 
559 	if (bootverbose)
560 		ieee80211_announce(ic);
561 
562 #ifdef WPI_DEBUG
563 	if (sc->sc_debug & WPI_DEBUG_HW)
564 		ieee80211_announce_channels(ic);
565 #endif
566 
567 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
568 	return 0;
569 
570 fail:	wpi_detach(dev);
571 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
572 	return error;
573 }
574 
575 /*
576  * Attach the interface to 802.11 radiotap.
577  */
578 static void
579 wpi_radiotap_attach(struct wpi_softc *sc)
580 {
581 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
582 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
583 
584 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
585 	ieee80211_radiotap_attach(&sc->sc_ic,
586 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
587 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
588 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
589 }
590 
591 static void
592 wpi_sysctlattach(struct wpi_softc *sc)
593 {
594 #ifdef WPI_DEBUG
595 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
596 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
597 
598 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
599 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
600 		"control debugging printfs");
601 #endif
602 }
603 
604 static void
605 wpi_init_beacon(struct wpi_vap *wvp)
606 {
607 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
608 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
609 
610 	cmd->id = WPI_ID_BROADCAST;
611 	cmd->ofdm_mask = 0xff;
612 	cmd->cck_mask = 0x0f;
613 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
614 
615 	/*
616 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
617 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
618 	 */
619 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
620 
621 	bcn->code = WPI_CMD_SET_BEACON;
622 	bcn->ac = WPI_CMD_QUEUE_NUM;
623 	bcn->size = sizeof(struct wpi_cmd_beacon);
624 }
625 
626 static struct ieee80211vap *
627 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
628     enum ieee80211_opmode opmode, int flags,
629     const uint8_t bssid[IEEE80211_ADDR_LEN],
630     const uint8_t mac[IEEE80211_ADDR_LEN])
631 {
632 	struct wpi_vap *wvp;
633 	struct ieee80211vap *vap;
634 
635 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
636 		return NULL;
637 
638 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
639 	vap = &wvp->wv_vap;
640 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
641 
642 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
643 		WPI_VAP_LOCK_INIT(wvp);
644 		wpi_init_beacon(wvp);
645 	}
646 
647 	/* Override with driver methods. */
648 	vap->iv_key_set = wpi_key_set;
649 	vap->iv_key_delete = wpi_key_delete;
650 	if (opmode == IEEE80211_M_IBSS) {
651 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
652 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
653 	}
654 	wvp->wv_newstate = vap->iv_newstate;
655 	vap->iv_newstate = wpi_newstate;
656 	vap->iv_update_beacon = wpi_update_beacon;
657 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
658 
659 	ieee80211_ratectl_init(vap);
660 	/* Complete setup. */
661 	ieee80211_vap_attach(vap, ieee80211_media_change,
662 	    ieee80211_media_status, mac);
663 	ic->ic_opmode = opmode;
664 	return vap;
665 }
666 
667 static void
668 wpi_vap_delete(struct ieee80211vap *vap)
669 {
670 	struct wpi_vap *wvp = WPI_VAP(vap);
671 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
672 	enum ieee80211_opmode opmode = vap->iv_opmode;
673 
674 	ieee80211_ratectl_deinit(vap);
675 	ieee80211_vap_detach(vap);
676 
677 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
678 		if (bcn->m != NULL)
679 			m_freem(bcn->m);
680 
681 		WPI_VAP_LOCK_DESTROY(wvp);
682 	}
683 
684 	free(wvp, M_80211_VAP);
685 }
686 
687 static int
688 wpi_detach(device_t dev)
689 {
690 	struct wpi_softc *sc = device_get_softc(dev);
691 	struct ieee80211com *ic = &sc->sc_ic;
692 	uint8_t qid;
693 
694 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
695 
696 	if (ic->ic_vap_create == wpi_vap_create) {
697 		ieee80211_draintask(ic, &sc->sc_radioon_task);
698 
699 		wpi_stop(sc);
700 
701 		if (sc->sc_tq != NULL) {
702 			taskqueue_drain_all(sc->sc_tq);
703 			taskqueue_free(sc->sc_tq);
704 		}
705 
706 		callout_drain(&sc->watchdog_rfkill);
707 		callout_drain(&sc->tx_timeout);
708 		callout_drain(&sc->scan_timeout);
709 		callout_drain(&sc->calib_to);
710 		ieee80211_ifdetach(ic);
711 	}
712 
713 	/* Uninstall interrupt handler. */
714 	if (sc->irq != NULL) {
715 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
716 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
717 		    sc->irq);
718 		pci_release_msi(dev);
719 	}
720 
721 	if (sc->txq[0].data_dmat) {
722 		/* Free DMA resources. */
723 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
724 			wpi_free_tx_ring(sc, &sc->txq[qid]);
725 
726 		wpi_free_rx_ring(sc);
727 		wpi_free_shared(sc);
728 	}
729 
730 	if (sc->fw_dma.tag)
731 		wpi_free_fwmem(sc);
732 
733 	if (sc->mem != NULL)
734 		bus_release_resource(dev, SYS_RES_MEMORY,
735 		    rman_get_rid(sc->mem), sc->mem);
736 
737 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
738 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
739 	WPI_TXQ_LOCK_DESTROY(sc);
740 	WPI_NT_LOCK_DESTROY(sc);
741 	WPI_RXON_LOCK_DESTROY(sc);
742 	WPI_TX_LOCK_DESTROY(sc);
743 	WPI_LOCK_DESTROY(sc);
744 	return 0;
745 }
746 
747 static int
748 wpi_shutdown(device_t dev)
749 {
750 	struct wpi_softc *sc = device_get_softc(dev);
751 
752 	wpi_stop(sc);
753 	return 0;
754 }
755 
756 static int
757 wpi_suspend(device_t dev)
758 {
759 	struct wpi_softc *sc = device_get_softc(dev);
760 	struct ieee80211com *ic = &sc->sc_ic;
761 
762 	ieee80211_suspend_all(ic);
763 	return 0;
764 }
765 
766 static int
767 wpi_resume(device_t dev)
768 {
769 	struct wpi_softc *sc = device_get_softc(dev);
770 	struct ieee80211com *ic = &sc->sc_ic;
771 
772 	/* Clear device-specific "PCI retry timeout" register (41h). */
773 	pci_write_config(dev, 0x41, 0, 1);
774 
775 	ieee80211_resume_all(ic);
776 	return 0;
777 }
778 
779 /*
780  * Grab exclusive access to NIC memory.
781  */
782 static int
783 wpi_nic_lock(struct wpi_softc *sc)
784 {
785 	int ntries;
786 
787 	/* Request exclusive access to NIC. */
788 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
789 
790 	/* Spin until we actually get the lock. */
791 	for (ntries = 0; ntries < 1000; ntries++) {
792 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
793 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
794 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
795 			return 0;
796 		DELAY(10);
797 	}
798 
799 	device_printf(sc->sc_dev, "could not lock memory\n");
800 
801 	return ETIMEDOUT;
802 }
803 
804 /*
805  * Release lock on NIC memory.
806  */
807 static __inline void
808 wpi_nic_unlock(struct wpi_softc *sc)
809 {
810 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
811 }
812 
813 static __inline uint32_t
814 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
815 {
816 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
817 	WPI_BARRIER_READ_WRITE(sc);
818 	return WPI_READ(sc, WPI_PRPH_RDATA);
819 }
820 
821 static __inline void
822 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
823 {
824 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
825 	WPI_BARRIER_WRITE(sc);
826 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
827 }
828 
829 static __inline void
830 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
831 {
832 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
833 }
834 
835 static __inline void
836 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
837 {
838 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
839 }
840 
841 static __inline void
842 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
843     const uint32_t *data, uint32_t count)
844 {
845 	for (; count != 0; count--, data++, addr += 4)
846 		wpi_prph_write(sc, addr, *data);
847 }
848 
849 static __inline uint32_t
850 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
851 {
852 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
853 	WPI_BARRIER_READ_WRITE(sc);
854 	return WPI_READ(sc, WPI_MEM_RDATA);
855 }
856 
857 static __inline void
858 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
859     int count)
860 {
861 	for (; count > 0; count--, addr += 4)
862 		*data++ = wpi_mem_read(sc, addr);
863 }
864 
865 static int
866 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
867 {
868 	uint8_t *out = data;
869 	uint32_t val;
870 	int error, ntries;
871 
872 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
873 
874 	if ((error = wpi_nic_lock(sc)) != 0)
875 		return error;
876 
877 	for (; count > 0; count -= 2, addr++) {
878 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
879 		for (ntries = 0; ntries < 10; ntries++) {
880 			val = WPI_READ(sc, WPI_EEPROM);
881 			if (val & WPI_EEPROM_READ_VALID)
882 				break;
883 			DELAY(5);
884 		}
885 		if (ntries == 10) {
886 			device_printf(sc->sc_dev,
887 			    "timeout reading ROM at 0x%x\n", addr);
888 			return ETIMEDOUT;
889 		}
890 		*out++= val >> 16;
891 		if (count > 1)
892 			*out ++= val >> 24;
893 	}
894 
895 	wpi_nic_unlock(sc);
896 
897 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
898 
899 	return 0;
900 }
901 
902 static void
903 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
904 {
905 	if (error != 0)
906 		return;
907 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
908 	*(bus_addr_t *)arg = segs[0].ds_addr;
909 }
910 
911 /*
912  * Allocates a contiguous block of dma memory of the requested size and
913  * alignment.
914  */
915 static int
916 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
917     void **kvap, bus_size_t size, bus_size_t alignment)
918 {
919 	int error;
920 
921 	dma->tag = NULL;
922 	dma->size = size;
923 
924 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
925 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
926 	    1, size, 0, NULL, NULL, &dma->tag);
927 	if (error != 0)
928 		goto fail;
929 
930 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
931 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
932 	if (error != 0)
933 		goto fail;
934 
935 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
936 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
937 	if (error != 0)
938 		goto fail;
939 
940 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
941 
942 	if (kvap != NULL)
943 		*kvap = dma->vaddr;
944 
945 	return 0;
946 
947 fail:	wpi_dma_contig_free(dma);
948 	return error;
949 }
950 
951 static void
952 wpi_dma_contig_free(struct wpi_dma_info *dma)
953 {
954 	if (dma->vaddr != NULL) {
955 		bus_dmamap_sync(dma->tag, dma->map,
956 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
957 		bus_dmamap_unload(dma->tag, dma->map);
958 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
959 		dma->vaddr = NULL;
960 	}
961 	if (dma->tag != NULL) {
962 		bus_dma_tag_destroy(dma->tag);
963 		dma->tag = NULL;
964 	}
965 }
966 
967 /*
968  * Allocate a shared page between host and NIC.
969  */
970 static int
971 wpi_alloc_shared(struct wpi_softc *sc)
972 {
973 	/* Shared buffer must be aligned on a 4KB boundary. */
974 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
975 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
976 }
977 
978 static void
979 wpi_free_shared(struct wpi_softc *sc)
980 {
981 	wpi_dma_contig_free(&sc->shared_dma);
982 }
983 
984 /*
985  * Allocate DMA-safe memory for firmware transfer.
986  */
987 static int
988 wpi_alloc_fwmem(struct wpi_softc *sc)
989 {
990 	/* Must be aligned on a 16-byte boundary. */
991 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
992 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
993 }
994 
995 static void
996 wpi_free_fwmem(struct wpi_softc *sc)
997 {
998 	wpi_dma_contig_free(&sc->fw_dma);
999 }
1000 
1001 static int
1002 wpi_alloc_rx_ring(struct wpi_softc *sc)
1003 {
1004 	struct wpi_rx_ring *ring = &sc->rxq;
1005 	bus_size_t size;
1006 	int i, error;
1007 
1008 	ring->cur = 0;
1009 	ring->update = 0;
1010 
1011 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1012 
1013 	/* Allocate RX descriptors (16KB aligned.) */
1014 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1015 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1016 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1017 	if (error != 0) {
1018 		device_printf(sc->sc_dev,
1019 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1020 		    __func__, error);
1021 		goto fail;
1022 	}
1023 
1024 	/* Create RX buffer DMA tag. */
1025 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1026 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1027 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1028 	if (error != 0) {
1029 		device_printf(sc->sc_dev,
1030 		    "%s: could not create RX buf DMA tag, error %d\n",
1031 		    __func__, error);
1032 		goto fail;
1033 	}
1034 
1035 	/*
1036 	 * Allocate and map RX buffers.
1037 	 */
1038 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1039 		struct wpi_rx_data *data = &ring->data[i];
1040 		bus_addr_t paddr;
1041 
1042 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1043 		if (error != 0) {
1044 			device_printf(sc->sc_dev,
1045 			    "%s: could not create RX buf DMA map, error %d\n",
1046 			    __func__, error);
1047 			goto fail;
1048 		}
1049 
1050 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1051 		if (data->m == NULL) {
1052 			device_printf(sc->sc_dev,
1053 			    "%s: could not allocate RX mbuf\n", __func__);
1054 			error = ENOBUFS;
1055 			goto fail;
1056 		}
1057 
1058 		error = bus_dmamap_load(ring->data_dmat, data->map,
1059 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1060 		    &paddr, BUS_DMA_NOWAIT);
1061 		if (error != 0 && error != EFBIG) {
1062 			device_printf(sc->sc_dev,
1063 			    "%s: can't map mbuf (error %d)\n", __func__,
1064 			    error);
1065 			goto fail;
1066 		}
1067 
1068 		/* Set physical address of RX buffer. */
1069 		ring->desc[i] = htole32(paddr);
1070 	}
1071 
1072 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1073 	    BUS_DMASYNC_PREWRITE);
1074 
1075 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1076 
1077 	return 0;
1078 
1079 fail:	wpi_free_rx_ring(sc);
1080 
1081 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1082 
1083 	return error;
1084 }
1085 
1086 static void
1087 wpi_update_rx_ring(struct wpi_softc *sc)
1088 {
1089 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1090 }
1091 
1092 static void
1093 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1094 {
1095 	struct wpi_rx_ring *ring = &sc->rxq;
1096 
1097 	if (ring->update != 0) {
1098 		/* Wait for INT_WAKEUP event. */
1099 		return;
1100 	}
1101 
1102 	WPI_TXQ_LOCK(sc);
1103 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1104 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1105 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1106 		    __func__);
1107 		ring->update = 1;
1108 	} else {
1109 		wpi_update_rx_ring(sc);
1110 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1111 	}
1112 	WPI_TXQ_UNLOCK(sc);
1113 }
1114 
1115 static void
1116 wpi_reset_rx_ring(struct wpi_softc *sc)
1117 {
1118 	struct wpi_rx_ring *ring = &sc->rxq;
1119 	int ntries;
1120 
1121 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1122 
1123 	if (wpi_nic_lock(sc) == 0) {
1124 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1125 		for (ntries = 0; ntries < 1000; ntries++) {
1126 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1127 			    WPI_FH_RX_STATUS_IDLE)
1128 				break;
1129 			DELAY(10);
1130 		}
1131 		wpi_nic_unlock(sc);
1132 	}
1133 
1134 	ring->cur = 0;
1135 	ring->update = 0;
1136 }
1137 
1138 static void
1139 wpi_free_rx_ring(struct wpi_softc *sc)
1140 {
1141 	struct wpi_rx_ring *ring = &sc->rxq;
1142 	int i;
1143 
1144 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1145 
1146 	wpi_dma_contig_free(&ring->desc_dma);
1147 
1148 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1149 		struct wpi_rx_data *data = &ring->data[i];
1150 
1151 		if (data->m != NULL) {
1152 			bus_dmamap_sync(ring->data_dmat, data->map,
1153 			    BUS_DMASYNC_POSTREAD);
1154 			bus_dmamap_unload(ring->data_dmat, data->map);
1155 			m_freem(data->m);
1156 			data->m = NULL;
1157 		}
1158 		if (data->map != NULL)
1159 			bus_dmamap_destroy(ring->data_dmat, data->map);
1160 	}
1161 	if (ring->data_dmat != NULL) {
1162 		bus_dma_tag_destroy(ring->data_dmat);
1163 		ring->data_dmat = NULL;
1164 	}
1165 }
1166 
1167 static int
1168 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1169 {
1170 	bus_addr_t paddr;
1171 	bus_size_t size;
1172 	int i, error;
1173 
1174 	ring->qid = qid;
1175 	ring->queued = 0;
1176 	ring->cur = 0;
1177 	ring->pending = 0;
1178 	ring->update = 0;
1179 
1180 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1181 
1182 	/* Allocate TX descriptors (16KB aligned.) */
1183 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1184 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1185 	    size, WPI_RING_DMA_ALIGN);
1186 	if (error != 0) {
1187 		device_printf(sc->sc_dev,
1188 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1189 		    __func__, error);
1190 		goto fail;
1191 	}
1192 
1193 	/* Update shared area with ring physical address. */
1194 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1195 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1196 	    BUS_DMASYNC_PREWRITE);
1197 
1198 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1199 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1200 	    size, 4);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1209 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1210 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1211 	if (error != 0) {
1212 		device_printf(sc->sc_dev,
1213 		    "%s: could not create TX buf DMA tag, error %d\n",
1214 		    __func__, error);
1215 		goto fail;
1216 	}
1217 
1218 	paddr = ring->cmd_dma.paddr;
1219 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1220 		struct wpi_tx_data *data = &ring->data[i];
1221 
1222 		data->cmd_paddr = paddr;
1223 		paddr += sizeof (struct wpi_tx_cmd);
1224 
1225 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1226 		if (error != 0) {
1227 			device_printf(sc->sc_dev,
1228 			    "%s: could not create TX buf DMA map, error %d\n",
1229 			    __func__, error);
1230 			goto fail;
1231 		}
1232 	}
1233 
1234 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1235 
1236 	return 0;
1237 
1238 fail:	wpi_free_tx_ring(sc, ring);
1239 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1240 	return error;
1241 }
1242 
1243 static void
1244 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1245 {
1246 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1247 }
1248 
1249 static void
1250 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1251 {
1252 
1253 	if (ring->update != 0) {
1254 		/* Wait for INT_WAKEUP event. */
1255 		return;
1256 	}
1257 
1258 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1259 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1260 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1261 		    __func__, ring->qid);
1262 		ring->update = 1;
1263 	} else {
1264 		wpi_update_tx_ring(sc, ring);
1265 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1266 	}
1267 }
1268 
1269 static void
1270 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1271 {
1272 	int i;
1273 
1274 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1275 
1276 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1277 		struct wpi_tx_data *data = &ring->data[i];
1278 
1279 		if (data->m != NULL) {
1280 			bus_dmamap_sync(ring->data_dmat, data->map,
1281 			    BUS_DMASYNC_POSTWRITE);
1282 			bus_dmamap_unload(ring->data_dmat, data->map);
1283 			m_freem(data->m);
1284 			data->m = NULL;
1285 		}
1286 		if (data->ni != NULL) {
1287 			ieee80211_free_node(data->ni);
1288 			data->ni = NULL;
1289 		}
1290 	}
1291 	/* Clear TX descriptors. */
1292 	memset(ring->desc, 0, ring->desc_dma.size);
1293 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1294 	    BUS_DMASYNC_PREWRITE);
1295 	ring->queued = 0;
1296 	ring->cur = 0;
1297 	ring->pending = 0;
1298 	ring->update = 0;
1299 }
1300 
1301 static void
1302 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1303 {
1304 	int i;
1305 
1306 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1307 
1308 	wpi_dma_contig_free(&ring->desc_dma);
1309 	wpi_dma_contig_free(&ring->cmd_dma);
1310 
1311 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1312 		struct wpi_tx_data *data = &ring->data[i];
1313 
1314 		if (data->m != NULL) {
1315 			bus_dmamap_sync(ring->data_dmat, data->map,
1316 			    BUS_DMASYNC_POSTWRITE);
1317 			bus_dmamap_unload(ring->data_dmat, data->map);
1318 			m_freem(data->m);
1319 		}
1320 		if (data->map != NULL)
1321 			bus_dmamap_destroy(ring->data_dmat, data->map);
1322 	}
1323 	if (ring->data_dmat != NULL) {
1324 		bus_dma_tag_destroy(ring->data_dmat);
1325 		ring->data_dmat = NULL;
1326 	}
1327 }
1328 
1329 /*
1330  * Extract various information from EEPROM.
1331  */
1332 static int
1333 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1334 {
1335 #define WPI_CHK(res) do {		\
1336 	if ((error = res) != 0)		\
1337 		goto fail;		\
1338 } while (0)
1339 	uint8_t i;
1340 	int error;
1341 
1342 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1343 
1344 	/* Adapter has to be powered on for EEPROM access to work. */
1345 	if ((error = wpi_apm_init(sc)) != 0) {
1346 		device_printf(sc->sc_dev,
1347 		    "%s: could not power ON adapter, error %d\n", __func__,
1348 		    error);
1349 		return error;
1350 	}
1351 
1352 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1353 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1354 		error = EIO;
1355 		goto fail;
1356 	}
1357 	/* Clear HW ownership of EEPROM. */
1358 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1359 
1360 	/* Read the hardware capabilities, revision and SKU type. */
1361 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1362 	    sizeof(sc->cap)));
1363 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1364 	    sizeof(sc->rev)));
1365 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1366 	    sizeof(sc->type)));
1367 
1368 	sc->rev = le16toh(sc->rev);
1369 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1370 	    sc->rev, sc->type);
1371 
1372 	/* Read the regulatory domain (4 ASCII characters.) */
1373 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1374 	    sizeof(sc->domain)));
1375 
1376 	/* Read MAC address. */
1377 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1378 	    IEEE80211_ADDR_LEN));
1379 
1380 	/* Read the list of authorized channels. */
1381 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1382 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1383 
1384 	/* Read the list of TX power groups. */
1385 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1386 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1387 
1388 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1389 
1390 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1391 	    __func__);
1392 
1393 	return error;
1394 #undef WPI_CHK
1395 }
1396 
1397 /*
1398  * Translate EEPROM flags to net80211.
1399  */
1400 static uint32_t
1401 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1402 {
1403 	uint32_t nflags;
1404 
1405 	nflags = 0;
1406 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1407 		nflags |= IEEE80211_CHAN_PASSIVE;
1408 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1409 		nflags |= IEEE80211_CHAN_NOADHOC;
1410 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1411 		nflags |= IEEE80211_CHAN_DFS;
1412 		/* XXX apparently IBSS may still be marked */
1413 		nflags |= IEEE80211_CHAN_NOADHOC;
1414 	}
1415 
1416 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1417 	if (nflags & IEEE80211_CHAN_NOADHOC)
1418 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1419 
1420 	return nflags;
1421 }
1422 
1423 static void
1424 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1425     int *nchans, struct ieee80211_channel chans[])
1426 {
1427 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1428 	const struct wpi_chan_band *band = &wpi_bands[n];
1429 	struct ieee80211_channel *c;
1430 	uint32_t nflags;
1431 	uint8_t chan, i;
1432 
1433 	for (i = 0; i < band->nchan; i++) {
1434 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1435 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1436 			    "Channel Not Valid: %d, band %d\n",
1437 			     band->chan[i],n);
1438 			continue;
1439 		}
1440 
1441 		if (*nchans >= maxchans)
1442 			break;
1443 
1444 		chan = band->chan[i];
1445 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1446 
1447 		c = &chans[(*nchans)++];
1448 		c->ic_ieee = chan;
1449 		c->ic_maxregpower = channels[i].maxpwr;
1450 		c->ic_maxpower = 2*c->ic_maxregpower;
1451 
1452 		if (n == 0) {	/* 2GHz band */
1453 			c->ic_freq = ieee80211_ieee2mhz(chan,
1454 			    IEEE80211_CHAN_G);
1455 
1456 			/* G =>'s B is supported */
1457 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1458 
1459 			if (*nchans >= maxchans)
1460 				break;
1461 
1462 			c = &chans[(*nchans)++];
1463 			c[0] = c[-1];
1464 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1465 		} else {	/* 5GHz band */
1466 			c->ic_freq = ieee80211_ieee2mhz(chan,
1467 			    IEEE80211_CHAN_A);
1468 
1469 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1470 		}
1471 
1472 		/* Save maximum allowed TX power for this channel. */
1473 		sc->maxpwr[chan] = channels[i].maxpwr;
1474 
1475 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1476 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1477 		    " offset %d\n", chan, c->ic_freq,
1478 		    channels[i].flags, sc->maxpwr[chan],
1479 		    IEEE80211_IS_CHAN_PASSIVE(c), *nchans);
1480 	}
1481 }
1482 
1483 /**
1484  * Read the eeprom to find out what channels are valid for the given
1485  * band and update net80211 with what we find.
1486  */
1487 static int
1488 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1489 {
1490 	struct ieee80211com *ic = &sc->sc_ic;
1491 	const struct wpi_chan_band *band = &wpi_bands[n];
1492 	int error;
1493 
1494 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1495 
1496 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1497 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1498 	if (error != 0) {
1499 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1500 		return error;
1501 	}
1502 
1503 	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1504 	    ic->ic_channels);
1505 
1506 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1507 
1508 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1509 
1510 	return 0;
1511 }
1512 
1513 static struct wpi_eeprom_chan *
1514 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1515 {
1516 	int i, j;
1517 
1518 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1519 		for (i = 0; i < wpi_bands[j].nchan; i++)
1520 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1521 				return &sc->eeprom_channels[j][i];
1522 
1523 	return NULL;
1524 }
1525 
1526 static void
1527 wpi_getradiocaps(struct ieee80211com *ic,
1528     int maxchans, int *nchans, struct ieee80211_channel chans[])
1529 {
1530 	struct wpi_softc *sc = ic->ic_softc;
1531 	int i;
1532 
1533 	/* Parse the list of authorized channels. */
1534 	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1535 		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1536 }
1537 
1538 /*
1539  * Enforce flags read from EEPROM.
1540  */
1541 static int
1542 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1543     int nchan, struct ieee80211_channel chans[])
1544 {
1545 	struct wpi_softc *sc = ic->ic_softc;
1546 	int i;
1547 
1548 	for (i = 0; i < nchan; i++) {
1549 		struct ieee80211_channel *c = &chans[i];
1550 		struct wpi_eeprom_chan *channel;
1551 
1552 		channel = wpi_find_eeprom_channel(sc, c);
1553 		if (channel == NULL) {
1554 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1555 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1556 			return EINVAL;
1557 		}
1558 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static int
1565 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1566 {
1567 	struct wpi_power_group *group = &sc->groups[n];
1568 	struct wpi_eeprom_group rgroup;
1569 	int i, error;
1570 
1571 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1572 
1573 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1574 	    &rgroup, sizeof rgroup)) != 0) {
1575 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1576 		return error;
1577 	}
1578 
1579 	/* Save TX power group information. */
1580 	group->chan   = rgroup.chan;
1581 	group->maxpwr = rgroup.maxpwr;
1582 	/* Retrieve temperature at which the samples were taken. */
1583 	group->temp   = (int16_t)le16toh(rgroup.temp);
1584 
1585 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1586 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1587 	    group->maxpwr, group->temp);
1588 
1589 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1590 		group->samples[i].index = rgroup.samples[i].index;
1591 		group->samples[i].power = rgroup.samples[i].power;
1592 
1593 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1594 		    "\tsample %d: index=%d power=%d\n", i,
1595 		    group->samples[i].index, group->samples[i].power);
1596 	}
1597 
1598 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1599 
1600 	return 0;
1601 }
1602 
1603 static __inline uint8_t
1604 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1605 {
1606 	uint8_t newid = WPI_ID_IBSS_MIN;
1607 
1608 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1609 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1610 			sc->nodesmsk |= 1 << newid;
1611 			return newid;
1612 		}
1613 	}
1614 
1615 	return WPI_ID_UNDEFINED;
1616 }
1617 
1618 static __inline uint8_t
1619 wpi_add_node_entry_sta(struct wpi_softc *sc)
1620 {
1621 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1622 
1623 	return WPI_ID_BSS;
1624 }
1625 
1626 static __inline int
1627 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1628 {
1629 	if (id == WPI_ID_UNDEFINED)
1630 		return 0;
1631 
1632 	return (sc->nodesmsk >> id) & 1;
1633 }
1634 
1635 static __inline void
1636 wpi_clear_node_table(struct wpi_softc *sc)
1637 {
1638 	sc->nodesmsk = 0;
1639 }
1640 
1641 static __inline void
1642 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1643 {
1644 	sc->nodesmsk &= ~(1 << id);
1645 }
1646 
1647 static struct ieee80211_node *
1648 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1649 {
1650 	struct wpi_node *wn;
1651 
1652 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1653 	    M_NOWAIT | M_ZERO);
1654 
1655 	if (wn == NULL)
1656 		return NULL;
1657 
1658 	wn->id = WPI_ID_UNDEFINED;
1659 
1660 	return &wn->ni;
1661 }
1662 
1663 static void
1664 wpi_node_free(struct ieee80211_node *ni)
1665 {
1666 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1667 	struct wpi_node *wn = WPI_NODE(ni);
1668 
1669 	if (wn->id != WPI_ID_UNDEFINED) {
1670 		WPI_NT_LOCK(sc);
1671 		if (wpi_check_node_entry(sc, wn->id)) {
1672 			wpi_del_node_entry(sc, wn->id);
1673 			wpi_del_node(sc, ni);
1674 		}
1675 		WPI_NT_UNLOCK(sc);
1676 	}
1677 
1678 	sc->sc_node_free(ni);
1679 }
1680 
1681 static __inline int
1682 wpi_check_bss_filter(struct wpi_softc *sc)
1683 {
1684 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1685 }
1686 
1687 static void
1688 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1689     const struct ieee80211_rx_stats *rxs,
1690     int rssi, int nf)
1691 {
1692 	struct ieee80211vap *vap = ni->ni_vap;
1693 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1694 	struct wpi_vap *wvp = WPI_VAP(vap);
1695 	uint64_t ni_tstamp, rx_tstamp;
1696 
1697 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1698 
1699 	if (vap->iv_state == IEEE80211_S_RUN &&
1700 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1701 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1702 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1703 		rx_tstamp = le64toh(sc->rx_tstamp);
1704 
1705 		if (ni_tstamp >= rx_tstamp) {
1706 			DPRINTF(sc, WPI_DEBUG_STATE,
1707 			    "ibss merge, tsf %ju tstamp %ju\n",
1708 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1709 			(void) ieee80211_ibss_merge(ni);
1710 		}
1711 	}
1712 }
1713 
1714 static void
1715 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1716 {
1717 	struct wpi_softc *sc = arg;
1718 	struct wpi_node *wn = WPI_NODE(ni);
1719 	int error;
1720 
1721 	WPI_NT_LOCK(sc);
1722 	if (wn->id != WPI_ID_UNDEFINED) {
1723 		wn->id = WPI_ID_UNDEFINED;
1724 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1725 			device_printf(sc->sc_dev,
1726 			    "%s: could not add IBSS node, error %d\n",
1727 			    __func__, error);
1728 		}
1729 	}
1730 	WPI_NT_UNLOCK(sc);
1731 }
1732 
1733 static void
1734 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1735 {
1736 	struct ieee80211com *ic = &sc->sc_ic;
1737 
1738 	/* Set group keys once. */
1739 	WPI_NT_LOCK(sc);
1740 	wvp->wv_gtk = 0;
1741 	WPI_NT_UNLOCK(sc);
1742 
1743 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1744 	ieee80211_crypto_reload_keys(ic);
1745 }
1746 
1747 /**
1748  * Called by net80211 when ever there is a change to 80211 state machine
1749  */
1750 static int
1751 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1752 {
1753 	struct wpi_vap *wvp = WPI_VAP(vap);
1754 	struct ieee80211com *ic = vap->iv_ic;
1755 	struct wpi_softc *sc = ic->ic_softc;
1756 	int error = 0;
1757 
1758 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1759 
1760 	WPI_TXQ_LOCK(sc);
1761 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1762 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1763 		WPI_TXQ_UNLOCK(sc);
1764 
1765 		return ENXIO;
1766 	}
1767 	WPI_TXQ_UNLOCK(sc);
1768 
1769 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1770 		ieee80211_state_name[vap->iv_state],
1771 		ieee80211_state_name[nstate]);
1772 
1773 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1774 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1775 			device_printf(sc->sc_dev,
1776 			    "%s: could not set power saving level\n",
1777 			    __func__);
1778 			return error;
1779 		}
1780 
1781 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1782 	}
1783 
1784 	switch (nstate) {
1785 	case IEEE80211_S_SCAN:
1786 		WPI_RXON_LOCK(sc);
1787 		if (wpi_check_bss_filter(sc) != 0) {
1788 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1789 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1790 				device_printf(sc->sc_dev,
1791 				    "%s: could not send RXON\n", __func__);
1792 			}
1793 		}
1794 		WPI_RXON_UNLOCK(sc);
1795 		break;
1796 
1797 	case IEEE80211_S_ASSOC:
1798 		if (vap->iv_state != IEEE80211_S_RUN)
1799 			break;
1800 		/* FALLTHROUGH */
1801 	case IEEE80211_S_AUTH:
1802 		/*
1803 		 * NB: do not optimize AUTH -> AUTH state transmission -
1804 		 * this will break powersave with non-QoS AP!
1805 		 */
1806 
1807 		/*
1808 		 * The node must be registered in the firmware before auth.
1809 		 * Also the associd must be cleared on RUN -> ASSOC
1810 		 * transitions.
1811 		 */
1812 		if ((error = wpi_auth(sc, vap)) != 0) {
1813 			device_printf(sc->sc_dev,
1814 			    "%s: could not move to AUTH state, error %d\n",
1815 			    __func__, error);
1816 		}
1817 		break;
1818 
1819 	case IEEE80211_S_RUN:
1820 		/*
1821 		 * RUN -> RUN transition:
1822 		 * STA mode: Just restart the timers.
1823 		 * IBSS mode: Process IBSS merge.
1824 		 */
1825 		if (vap->iv_state == IEEE80211_S_RUN) {
1826 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1827 				WPI_RXON_LOCK(sc);
1828 				wpi_calib_timeout(sc);
1829 				WPI_RXON_UNLOCK(sc);
1830 				break;
1831 			} else {
1832 				/*
1833 				 * Drop the BSS_FILTER bit
1834 				 * (there is no another way to change bssid).
1835 				 */
1836 				WPI_RXON_LOCK(sc);
1837 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1838 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1839 					device_printf(sc->sc_dev,
1840 					    "%s: could not send RXON\n",
1841 					    __func__);
1842 				}
1843 				WPI_RXON_UNLOCK(sc);
1844 
1845 				/* Restore all what was lost. */
1846 				wpi_restore_node_table(sc, wvp);
1847 
1848 				/* XXX set conditionally? */
1849 				wpi_updateedca(ic);
1850 			}
1851 		}
1852 
1853 		/*
1854 		 * !RUN -> RUN requires setting the association id
1855 		 * which is done with a firmware cmd.  We also defer
1856 		 * starting the timers until that work is done.
1857 		 */
1858 		if ((error = wpi_run(sc, vap)) != 0) {
1859 			device_printf(sc->sc_dev,
1860 			    "%s: could not move to RUN state\n", __func__);
1861 		}
1862 		break;
1863 
1864 	default:
1865 		break;
1866 	}
1867 	if (error != 0) {
1868 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1869 		return error;
1870 	}
1871 
1872 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1873 
1874 	return wvp->wv_newstate(vap, nstate, arg);
1875 }
1876 
1877 static void
1878 wpi_calib_timeout(void *arg)
1879 {
1880 	struct wpi_softc *sc = arg;
1881 
1882 	if (wpi_check_bss_filter(sc) == 0)
1883 		return;
1884 
1885 	wpi_power_calibration(sc);
1886 
1887 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1888 }
1889 
1890 static __inline uint8_t
1891 rate2plcp(const uint8_t rate)
1892 {
1893 	switch (rate) {
1894 	case 12:	return 0xd;
1895 	case 18:	return 0xf;
1896 	case 24:	return 0x5;
1897 	case 36:	return 0x7;
1898 	case 48:	return 0x9;
1899 	case 72:	return 0xb;
1900 	case 96:	return 0x1;
1901 	case 108:	return 0x3;
1902 	case 2:		return 10;
1903 	case 4:		return 20;
1904 	case 11:	return 55;
1905 	case 22:	return 110;
1906 	default:	return 0;
1907 	}
1908 }
1909 
1910 static __inline uint8_t
1911 plcp2rate(const uint8_t plcp)
1912 {
1913 	switch (plcp) {
1914 	case 0xd:	return 12;
1915 	case 0xf:	return 18;
1916 	case 0x5:	return 24;
1917 	case 0x7:	return 36;
1918 	case 0x9:	return 48;
1919 	case 0xb:	return 72;
1920 	case 0x1:	return 96;
1921 	case 0x3:	return 108;
1922 	case 10:	return 2;
1923 	case 20:	return 4;
1924 	case 55:	return 11;
1925 	case 110:	return 22;
1926 	default:	return 0;
1927 	}
1928 }
1929 
1930 /* Quickly determine if a given rate is CCK or OFDM. */
1931 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1932 
1933 static void
1934 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1935     struct wpi_rx_data *data)
1936 {
1937 	struct ieee80211com *ic = &sc->sc_ic;
1938 	struct wpi_rx_ring *ring = &sc->rxq;
1939 	struct wpi_rx_stat *stat;
1940 	struct wpi_rx_head *head;
1941 	struct wpi_rx_tail *tail;
1942 	struct ieee80211_frame *wh;
1943 	struct ieee80211_node *ni;
1944 	struct mbuf *m, *m1;
1945 	bus_addr_t paddr;
1946 	uint32_t flags;
1947 	uint16_t len;
1948 	int error;
1949 
1950 	stat = (struct wpi_rx_stat *)(desc + 1);
1951 
1952 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1953 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1954 		goto fail1;
1955 	}
1956 
1957 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1958 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1959 	len = le16toh(head->len);
1960 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1961 	flags = le32toh(tail->flags);
1962 
1963 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1964 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1965 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1966 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1967 
1968 	/* Discard frames with a bad FCS early. */
1969 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1970 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1971 		    __func__, flags);
1972 		goto fail1;
1973 	}
1974 	/* Discard frames that are too short. */
1975 	if (len < sizeof (struct ieee80211_frame_ack)) {
1976 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1977 		    __func__, len);
1978 		goto fail1;
1979 	}
1980 
1981 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1982 	if (__predict_false(m1 == NULL)) {
1983 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1984 		    __func__);
1985 		goto fail1;
1986 	}
1987 	bus_dmamap_unload(ring->data_dmat, data->map);
1988 
1989 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1990 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1991 	if (__predict_false(error != 0 && error != EFBIG)) {
1992 		device_printf(sc->sc_dev,
1993 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1994 		m_freem(m1);
1995 
1996 		/* Try to reload the old mbuf. */
1997 		error = bus_dmamap_load(ring->data_dmat, data->map,
1998 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1999 		    &paddr, BUS_DMA_NOWAIT);
2000 		if (error != 0 && error != EFBIG) {
2001 			panic("%s: could not load old RX mbuf", __func__);
2002 		}
2003 		/* Physical address may have changed. */
2004 		ring->desc[ring->cur] = htole32(paddr);
2005 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2006 		    BUS_DMASYNC_PREWRITE);
2007 		goto fail1;
2008 	}
2009 
2010 	m = data->m;
2011 	data->m = m1;
2012 	/* Update RX descriptor. */
2013 	ring->desc[ring->cur] = htole32(paddr);
2014 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2015 	    BUS_DMASYNC_PREWRITE);
2016 
2017 	/* Finalize mbuf. */
2018 	m->m_data = (caddr_t)(head + 1);
2019 	m->m_pkthdr.len = m->m_len = len;
2020 
2021 	/* Grab a reference to the source node. */
2022 	wh = mtod(m, struct ieee80211_frame *);
2023 
2024 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2025 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2026 		/* Check whether decryption was successful or not. */
2027 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2028 			DPRINTF(sc, WPI_DEBUG_RECV,
2029 			    "CCMP decryption failed 0x%x\n", flags);
2030 			goto fail2;
2031 		}
2032 		m->m_flags |= M_WEP;
2033 	}
2034 
2035 	if (len >= sizeof(struct ieee80211_frame_min))
2036 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2037 	else
2038 		ni = NULL;
2039 
2040 	sc->rx_tstamp = tail->tstamp;
2041 
2042 	if (ieee80211_radiotap_active(ic)) {
2043 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2044 
2045 		tap->wr_flags = 0;
2046 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2047 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2048 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2049 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2050 		tap->wr_tsft = tail->tstamp;
2051 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2052 		tap->wr_rate = plcp2rate(head->plcp);
2053 	}
2054 
2055 	WPI_UNLOCK(sc);
2056 
2057 	/* Send the frame to the 802.11 layer. */
2058 	if (ni != NULL) {
2059 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2060 		/* Node is no longer needed. */
2061 		ieee80211_free_node(ni);
2062 	} else
2063 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2064 
2065 	WPI_LOCK(sc);
2066 
2067 	return;
2068 
2069 fail2:	m_freem(m);
2070 
2071 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2072 }
2073 
2074 static void
2075 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2076     struct wpi_rx_data *data)
2077 {
2078 	/* Ignore */
2079 }
2080 
2081 static void
2082 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2083 {
2084 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2085 	struct wpi_tx_data *data = &ring->data[desc->idx];
2086 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2087 	struct mbuf *m;
2088 	struct ieee80211_node *ni;
2089 	struct ieee80211vap *vap;
2090 	struct ieee80211com *ic;
2091 	uint32_t status = le32toh(stat->status);
2092 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2093 
2094 	KASSERT(data->ni != NULL, ("no node"));
2095 	KASSERT(data->m != NULL, ("no mbuf"));
2096 
2097 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2098 
2099 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2100 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2101 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2102 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2103 
2104 	/* Unmap and free mbuf. */
2105 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2106 	bus_dmamap_unload(ring->data_dmat, data->map);
2107 	m = data->m, data->m = NULL;
2108 	ni = data->ni, data->ni = NULL;
2109 	vap = ni->ni_vap;
2110 	ic = vap->iv_ic;
2111 
2112 	/*
2113 	 * Update rate control statistics for the node.
2114 	 */
2115 	if (status & WPI_TX_STATUS_FAIL) {
2116 		ieee80211_ratectl_tx_complete(vap, ni,
2117 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2118 	} else
2119 		ieee80211_ratectl_tx_complete(vap, ni,
2120 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2121 
2122 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2123 
2124 	WPI_TXQ_STATE_LOCK(sc);
2125 	if (--ring->queued > 0)
2126 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2127 	else
2128 		callout_stop(&sc->tx_timeout);
2129 	WPI_TXQ_STATE_UNLOCK(sc);
2130 
2131 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2132 }
2133 
2134 /*
2135  * Process a "command done" firmware notification.  This is where we wakeup
2136  * processes waiting for a synchronous command completion.
2137  */
2138 static void
2139 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2140 {
2141 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2142 	struct wpi_tx_data *data;
2143 	struct wpi_tx_cmd *cmd;
2144 
2145 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2146 				   "type %s len %d\n", desc->qid, desc->idx,
2147 				   desc->flags, wpi_cmd_str(desc->type),
2148 				   le32toh(desc->len));
2149 
2150 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2151 		return;	/* Not a command ack. */
2152 
2153 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2154 
2155 	data = &ring->data[desc->idx];
2156 	cmd = &ring->cmd[desc->idx];
2157 
2158 	/* If the command was mapped in an mbuf, free it. */
2159 	if (data->m != NULL) {
2160 		bus_dmamap_sync(ring->data_dmat, data->map,
2161 		    BUS_DMASYNC_POSTWRITE);
2162 		bus_dmamap_unload(ring->data_dmat, data->map);
2163 		m_freem(data->m);
2164 		data->m = NULL;
2165 	}
2166 
2167 	wakeup(cmd);
2168 
2169 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2170 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2171 
2172 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2173 		    BUS_DMASYNC_POSTREAD);
2174 
2175 		WPI_TXQ_LOCK(sc);
2176 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2177 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2178 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2179 		} else {
2180 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2181 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2182 		}
2183 		WPI_TXQ_UNLOCK(sc);
2184 	}
2185 }
2186 
2187 static void
2188 wpi_notif_intr(struct wpi_softc *sc)
2189 {
2190 	struct ieee80211com *ic = &sc->sc_ic;
2191 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2192 	uint32_t hw;
2193 
2194 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2195 	    BUS_DMASYNC_POSTREAD);
2196 
2197 	hw = le32toh(sc->shared->next) & 0xfff;
2198 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2199 
2200 	while (sc->rxq.cur != hw) {
2201 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2202 
2203 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2204 		struct wpi_rx_desc *desc;
2205 
2206 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2207 		    BUS_DMASYNC_POSTREAD);
2208 		desc = mtod(data->m, struct wpi_rx_desc *);
2209 
2210 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2211 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2212 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2213 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2214 
2215 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2216 			/* Reply to a command. */
2217 			wpi_cmd_done(sc, desc);
2218 		}
2219 
2220 		switch (desc->type) {
2221 		case WPI_RX_DONE:
2222 			/* An 802.11 frame has been received. */
2223 			wpi_rx_done(sc, desc, data);
2224 
2225 			if (__predict_false(sc->sc_running == 0)) {
2226 				/* wpi_stop() was called. */
2227 				return;
2228 			}
2229 
2230 			break;
2231 
2232 		case WPI_TX_DONE:
2233 			/* An 802.11 frame has been transmitted. */
2234 			wpi_tx_done(sc, desc);
2235 			break;
2236 
2237 		case WPI_RX_STATISTICS:
2238 		case WPI_BEACON_STATISTICS:
2239 			wpi_rx_statistics(sc, desc, data);
2240 			break;
2241 
2242 		case WPI_BEACON_MISSED:
2243 		{
2244 			struct wpi_beacon_missed *miss =
2245 			    (struct wpi_beacon_missed *)(desc + 1);
2246 			uint32_t expected, misses, received, threshold;
2247 
2248 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2249 			    BUS_DMASYNC_POSTREAD);
2250 
2251 			misses = le32toh(miss->consecutive);
2252 			expected = le32toh(miss->expected);
2253 			received = le32toh(miss->received);
2254 			threshold = MAX(2, vap->iv_bmissthreshold);
2255 
2256 			DPRINTF(sc, WPI_DEBUG_BMISS,
2257 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2258 			    __func__, misses, le32toh(miss->total), received,
2259 			    expected);
2260 
2261 			if (misses >= threshold ||
2262 			    (received == 0 && expected >= threshold)) {
2263 				WPI_RXON_LOCK(sc);
2264 				if (callout_pending(&sc->scan_timeout)) {
2265 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2266 					    0, 1);
2267 				}
2268 				WPI_RXON_UNLOCK(sc);
2269 				if (vap->iv_state == IEEE80211_S_RUN &&
2270 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2271 					ieee80211_beacon_miss(ic);
2272 			}
2273 
2274 			break;
2275 		}
2276 #ifdef WPI_DEBUG
2277 		case WPI_BEACON_SENT:
2278 		{
2279 			struct wpi_tx_stat *stat =
2280 			    (struct wpi_tx_stat *)(desc + 1);
2281 			uint64_t *tsf = (uint64_t *)(stat + 1);
2282 			uint32_t *mode = (uint32_t *)(tsf + 1);
2283 
2284 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2285 			    BUS_DMASYNC_POSTREAD);
2286 
2287 			DPRINTF(sc, WPI_DEBUG_BEACON,
2288 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2289 			    "duration %u, status %x, tsf %ju, mode %x\n",
2290 			    stat->rtsfailcnt, stat->ackfailcnt,
2291 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2292 			    le32toh(stat->status), le64toh(*tsf),
2293 			    le32toh(*mode));
2294 
2295 			break;
2296 		}
2297 #endif
2298 		case WPI_UC_READY:
2299 		{
2300 			struct wpi_ucode_info *uc =
2301 			    (struct wpi_ucode_info *)(desc + 1);
2302 
2303 			/* The microcontroller is ready. */
2304 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2305 			    BUS_DMASYNC_POSTREAD);
2306 			DPRINTF(sc, WPI_DEBUG_RESET,
2307 			    "microcode alive notification version=%d.%d "
2308 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2309 			    uc->subtype, le32toh(uc->valid));
2310 
2311 			if (le32toh(uc->valid) != 1) {
2312 				device_printf(sc->sc_dev,
2313 				    "microcontroller initialization failed\n");
2314 				wpi_stop_locked(sc);
2315 				return;
2316 			}
2317 			/* Save the address of the error log in SRAM. */
2318 			sc->errptr = le32toh(uc->errptr);
2319 			break;
2320 		}
2321 		case WPI_STATE_CHANGED:
2322 		{
2323 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2324 			    BUS_DMASYNC_POSTREAD);
2325 
2326 			uint32_t *status = (uint32_t *)(desc + 1);
2327 
2328 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2329 			    le32toh(*status));
2330 
2331 			if (le32toh(*status) & 1) {
2332 				WPI_NT_LOCK(sc);
2333 				wpi_clear_node_table(sc);
2334 				WPI_NT_UNLOCK(sc);
2335 				taskqueue_enqueue(sc->sc_tq,
2336 				    &sc->sc_radiooff_task);
2337 				return;
2338 			}
2339 			break;
2340 		}
2341 #ifdef WPI_DEBUG
2342 		case WPI_START_SCAN:
2343 		{
2344 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2345 			    BUS_DMASYNC_POSTREAD);
2346 
2347 			struct wpi_start_scan *scan =
2348 			    (struct wpi_start_scan *)(desc + 1);
2349 			DPRINTF(sc, WPI_DEBUG_SCAN,
2350 			    "%s: scanning channel %d status %x\n",
2351 			    __func__, scan->chan, le32toh(scan->status));
2352 
2353 			break;
2354 		}
2355 #endif
2356 		case WPI_STOP_SCAN:
2357 		{
2358 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2359 			    BUS_DMASYNC_POSTREAD);
2360 
2361 			struct wpi_stop_scan *scan =
2362 			    (struct wpi_stop_scan *)(desc + 1);
2363 
2364 			DPRINTF(sc, WPI_DEBUG_SCAN,
2365 			    "scan finished nchan=%d status=%d chan=%d\n",
2366 			    scan->nchan, scan->status, scan->chan);
2367 
2368 			WPI_RXON_LOCK(sc);
2369 			callout_stop(&sc->scan_timeout);
2370 			WPI_RXON_UNLOCK(sc);
2371 			if (scan->status == WPI_SCAN_ABORTED)
2372 				ieee80211_cancel_scan(vap);
2373 			else
2374 				ieee80211_scan_next(vap);
2375 			break;
2376 		}
2377 		}
2378 
2379 		if (sc->rxq.cur % 8 == 0) {
2380 			/* Tell the firmware what we have processed. */
2381 			sc->sc_update_rx_ring(sc);
2382 		}
2383 	}
2384 }
2385 
2386 /*
2387  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2388  * from power-down sleep mode.
2389  */
2390 static void
2391 wpi_wakeup_intr(struct wpi_softc *sc)
2392 {
2393 	int qid;
2394 
2395 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2396 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2397 
2398 	/* Wakeup RX and TX rings. */
2399 	if (sc->rxq.update) {
2400 		sc->rxq.update = 0;
2401 		wpi_update_rx_ring(sc);
2402 	}
2403 	WPI_TXQ_LOCK(sc);
2404 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2405 		struct wpi_tx_ring *ring = &sc->txq[qid];
2406 
2407 		if (ring->update) {
2408 			ring->update = 0;
2409 			wpi_update_tx_ring(sc, ring);
2410 		}
2411 	}
2412 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2413 	WPI_TXQ_UNLOCK(sc);
2414 }
2415 
2416 /*
2417  * This function prints firmware registers
2418  */
2419 #ifdef WPI_DEBUG
2420 static void
2421 wpi_debug_registers(struct wpi_softc *sc)
2422 {
2423 	size_t i;
2424 	static const uint32_t csr_tbl[] = {
2425 		WPI_HW_IF_CONFIG,
2426 		WPI_INT,
2427 		WPI_INT_MASK,
2428 		WPI_FH_INT,
2429 		WPI_GPIO_IN,
2430 		WPI_RESET,
2431 		WPI_GP_CNTRL,
2432 		WPI_EEPROM,
2433 		WPI_EEPROM_GP,
2434 		WPI_GIO,
2435 		WPI_UCODE_GP1,
2436 		WPI_UCODE_GP2,
2437 		WPI_GIO_CHICKEN,
2438 		WPI_ANA_PLL,
2439 		WPI_DBG_HPET_MEM,
2440 	};
2441 	static const uint32_t prph_tbl[] = {
2442 		WPI_APMG_CLK_CTRL,
2443 		WPI_APMG_PS,
2444 		WPI_APMG_PCI_STT,
2445 		WPI_APMG_RFKILL,
2446 	};
2447 
2448 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2449 
2450 	for (i = 0; i < nitems(csr_tbl); i++) {
2451 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2452 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2453 
2454 		if ((i + 1) % 2 == 0)
2455 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2456 	}
2457 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2458 
2459 	if (wpi_nic_lock(sc) == 0) {
2460 		for (i = 0; i < nitems(prph_tbl); i++) {
2461 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2462 			    wpi_get_prph_string(prph_tbl[i]),
2463 			    wpi_prph_read(sc, prph_tbl[i]));
2464 
2465 			if ((i + 1) % 2 == 0)
2466 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2467 		}
2468 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2469 		wpi_nic_unlock(sc);
2470 	} else {
2471 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2472 		    "Cannot access internal registers.\n");
2473 	}
2474 }
2475 #endif
2476 
2477 /*
2478  * Dump the error log of the firmware when a firmware panic occurs.  Although
2479  * we can't debug the firmware because it is neither open source nor free, it
2480  * can help us to identify certain classes of problems.
2481  */
2482 static void
2483 wpi_fatal_intr(struct wpi_softc *sc)
2484 {
2485 	struct wpi_fw_dump dump;
2486 	uint32_t i, offset, count;
2487 
2488 	/* Check that the error log address is valid. */
2489 	if (sc->errptr < WPI_FW_DATA_BASE ||
2490 	    sc->errptr + sizeof (dump) >
2491 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2492 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2493 		    sc->errptr);
2494 		return;
2495 	}
2496 	if (wpi_nic_lock(sc) != 0) {
2497 		printf("%s: could not read firmware error log\n", __func__);
2498 		return;
2499 	}
2500 	/* Read number of entries in the log. */
2501 	count = wpi_mem_read(sc, sc->errptr);
2502 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2503 		printf("%s: invalid count field (count = %u)\n", __func__,
2504 		    count);
2505 		wpi_nic_unlock(sc);
2506 		return;
2507 	}
2508 	/* Skip "count" field. */
2509 	offset = sc->errptr + sizeof (uint32_t);
2510 	printf("firmware error log (count = %u):\n", count);
2511 	for (i = 0; i < count; i++) {
2512 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2513 		    sizeof (dump) / sizeof (uint32_t));
2514 
2515 		printf("  error type = \"%s\" (0x%08X)\n",
2516 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2517 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2518 		    dump.desc);
2519 		printf("  error data      = 0x%08X\n",
2520 		    dump.data);
2521 		printf("  branch link     = 0x%08X%08X\n",
2522 		    dump.blink[0], dump.blink[1]);
2523 		printf("  interrupt link  = 0x%08X%08X\n",
2524 		    dump.ilink[0], dump.ilink[1]);
2525 		printf("  time            = %u\n", dump.time);
2526 
2527 		offset += sizeof (dump);
2528 	}
2529 	wpi_nic_unlock(sc);
2530 	/* Dump driver status (TX and RX rings) while we're here. */
2531 	printf("driver status:\n");
2532 	WPI_TXQ_LOCK(sc);
2533 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2534 		struct wpi_tx_ring *ring = &sc->txq[i];
2535 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2536 		    i, ring->qid, ring->cur, ring->queued);
2537 	}
2538 	WPI_TXQ_UNLOCK(sc);
2539 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2540 }
2541 
2542 static void
2543 wpi_intr(void *arg)
2544 {
2545 	struct wpi_softc *sc = arg;
2546 	uint32_t r1, r2;
2547 
2548 	WPI_LOCK(sc);
2549 
2550 	/* Disable interrupts. */
2551 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2552 
2553 	r1 = WPI_READ(sc, WPI_INT);
2554 
2555 	if (__predict_false(r1 == 0xffffffff ||
2556 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2557 		goto end;	/* Hardware gone! */
2558 
2559 	r2 = WPI_READ(sc, WPI_FH_INT);
2560 
2561 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2562 	    r1, r2);
2563 
2564 	if (r1 == 0 && r2 == 0)
2565 		goto done;	/* Interrupt not for us. */
2566 
2567 	/* Acknowledge interrupts. */
2568 	WPI_WRITE(sc, WPI_INT, r1);
2569 	WPI_WRITE(sc, WPI_FH_INT, r2);
2570 
2571 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2572 		device_printf(sc->sc_dev, "fatal firmware error\n");
2573 #ifdef WPI_DEBUG
2574 		wpi_debug_registers(sc);
2575 #endif
2576 		wpi_fatal_intr(sc);
2577 		DPRINTF(sc, WPI_DEBUG_HW,
2578 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2579 		    "(Hardware Error)");
2580 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2581 		goto end;
2582 	}
2583 
2584 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2585 	    (r2 & WPI_FH_INT_RX))
2586 		wpi_notif_intr(sc);
2587 
2588 	if (r1 & WPI_INT_ALIVE)
2589 		wakeup(sc);	/* Firmware is alive. */
2590 
2591 	if (r1 & WPI_INT_WAKEUP)
2592 		wpi_wakeup_intr(sc);
2593 
2594 done:
2595 	/* Re-enable interrupts. */
2596 	if (__predict_true(sc->sc_running))
2597 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2598 
2599 end:	WPI_UNLOCK(sc);
2600 }
2601 
2602 static void
2603 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2604 {
2605 	struct wpi_tx_ring *ring;
2606 	struct wpi_tx_data *data;
2607 	uint8_t cur;
2608 
2609 	WPI_TXQ_LOCK(sc);
2610 	ring = &sc->txq[ac];
2611 
2612 	while (ring->pending != 0) {
2613 		ring->pending--;
2614 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2615 		data = &ring->data[cur];
2616 
2617 		bus_dmamap_sync(ring->data_dmat, data->map,
2618 		    BUS_DMASYNC_POSTWRITE);
2619 		bus_dmamap_unload(ring->data_dmat, data->map);
2620 		m_freem(data->m);
2621 		data->m = NULL;
2622 
2623 		ieee80211_node_decref(data->ni);
2624 		data->ni = NULL;
2625 	}
2626 
2627 	WPI_TXQ_UNLOCK(sc);
2628 }
2629 
2630 static int
2631 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2632 {
2633 	struct ieee80211_frame *wh;
2634 	struct wpi_tx_cmd *cmd;
2635 	struct wpi_tx_data *data;
2636 	struct wpi_tx_desc *desc;
2637 	struct wpi_tx_ring *ring;
2638 	struct mbuf *m1;
2639 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2640 	uint8_t cur, pad;
2641 	uint16_t hdrlen;
2642 	int error, i, nsegs, totlen, frag;
2643 
2644 	WPI_TXQ_LOCK(sc);
2645 
2646 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2647 
2648 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2649 
2650 	if (__predict_false(sc->sc_running == 0)) {
2651 		/* wpi_stop() was called */
2652 		error = ENETDOWN;
2653 		goto end;
2654 	}
2655 
2656 	wh = mtod(buf->m, struct ieee80211_frame *);
2657 	hdrlen = ieee80211_anyhdrsize(wh);
2658 	totlen = buf->m->m_pkthdr.len;
2659 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2660 
2661 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2662 		error = EINVAL;
2663 		goto end;
2664 	}
2665 
2666 	if (hdrlen & 3) {
2667 		/* First segment length must be a multiple of 4. */
2668 		pad = 4 - (hdrlen & 3);
2669 	} else
2670 		pad = 0;
2671 
2672 	ring = &sc->txq[buf->ac];
2673 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2674 	desc = &ring->desc[cur];
2675 	data = &ring->data[cur];
2676 
2677 	/* Prepare TX firmware command. */
2678 	cmd = &ring->cmd[cur];
2679 	cmd->code = buf->code;
2680 	cmd->flags = 0;
2681 	cmd->qid = ring->qid;
2682 	cmd->idx = cur;
2683 
2684 	memcpy(cmd->data, buf->data, buf->size);
2685 
2686 	/* Save and trim IEEE802.11 header. */
2687 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2688 	m_adj(buf->m, hdrlen);
2689 
2690 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2691 	    segs, &nsegs, BUS_DMA_NOWAIT);
2692 	if (error != 0 && error != EFBIG) {
2693 		device_printf(sc->sc_dev,
2694 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2695 		goto end;
2696 	}
2697 	if (error != 0) {
2698 		/* Too many DMA segments, linearize mbuf. */
2699 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2700 		if (m1 == NULL) {
2701 			device_printf(sc->sc_dev,
2702 			    "%s: could not defrag mbuf\n", __func__);
2703 			error = ENOBUFS;
2704 			goto end;
2705 		}
2706 		buf->m = m1;
2707 
2708 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2709 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2710 		if (__predict_false(error != 0)) {
2711 			/* XXX fix this (applicable to the iwn(4) too) */
2712 			/*
2713 			 * NB: Do not return error;
2714 			 * original mbuf does not exist anymore.
2715 			 */
2716 			device_printf(sc->sc_dev,
2717 			    "%s: can't map mbuf (error %d)\n", __func__,
2718 			    error);
2719 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2720 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2721 				    IFCOUNTER_OERRORS, 1);
2722 				if (!frag)
2723 					ieee80211_free_node(buf->ni);
2724 			}
2725 			m_freem(buf->m);
2726 			error = 0;
2727 			goto end;
2728 		}
2729 	}
2730 
2731 	KASSERT(nsegs < WPI_MAX_SCATTER,
2732 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2733 	     nsegs, WPI_MAX_SCATTER));
2734 
2735 	data->m = buf->m;
2736 	data->ni = buf->ni;
2737 
2738 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2739 	    __func__, ring->qid, cur, totlen, nsegs);
2740 
2741 	/* Fill TX descriptor. */
2742 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2743 	/* First DMA segment is used by the TX command. */
2744 	desc->segs[0].addr = htole32(data->cmd_paddr);
2745 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2746 	/* Other DMA segments are for data payload. */
2747 	seg = &segs[0];
2748 	for (i = 1; i <= nsegs; i++) {
2749 		desc->segs[i].addr = htole32(seg->ds_addr);
2750 		desc->segs[i].len  = htole32(seg->ds_len);
2751 		seg++;
2752 	}
2753 
2754 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2755 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2756 	    BUS_DMASYNC_PREWRITE);
2757 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2758 	    BUS_DMASYNC_PREWRITE);
2759 
2760 	ring->pending += 1;
2761 
2762 	if (!frag) {
2763 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2764 			WPI_TXQ_STATE_LOCK(sc);
2765 			ring->queued += ring->pending;
2766 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2767 			    sc);
2768 			WPI_TXQ_STATE_UNLOCK(sc);
2769 		}
2770 
2771 		/* Kick TX ring. */
2772 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2773 		ring->pending = 0;
2774 		sc->sc_update_tx_ring(sc, ring);
2775 	} else
2776 		ieee80211_node_incref(data->ni);
2777 
2778 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2779 	    __func__);
2780 
2781 	WPI_TXQ_UNLOCK(sc);
2782 
2783 	return (error);
2784 }
2785 
2786 /*
2787  * Construct the data packet for a transmit buffer.
2788  */
2789 static int
2790 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2791 {
2792 	const struct ieee80211_txparam *tp;
2793 	struct ieee80211vap *vap = ni->ni_vap;
2794 	struct ieee80211com *ic = ni->ni_ic;
2795 	struct wpi_node *wn = WPI_NODE(ni);
2796 	struct ieee80211_channel *chan;
2797 	struct ieee80211_frame *wh;
2798 	struct ieee80211_key *k = NULL;
2799 	struct wpi_buf tx_data;
2800 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2801 	uint32_t flags;
2802 	uint16_t ac, qos;
2803 	uint8_t tid, type, rate;
2804 	int swcrypt, ismcast, totlen;
2805 
2806 	wh = mtod(m, struct ieee80211_frame *);
2807 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2808 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2809 	swcrypt = 1;
2810 
2811 	/* Select EDCA Access Category and TX ring for this frame. */
2812 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2813 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2814 		tid = qos & IEEE80211_QOS_TID;
2815 	} else {
2816 		qos = 0;
2817 		tid = 0;
2818 	}
2819 	ac = M_WME_GETAC(m);
2820 
2821 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2822 		ni->ni_chan : ic->ic_curchan;
2823 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2824 
2825 	/* Choose a TX rate index. */
2826 	if (type == IEEE80211_FC0_TYPE_MGT)
2827 		rate = tp->mgmtrate;
2828 	else if (ismcast)
2829 		rate = tp->mcastrate;
2830 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2831 		rate = tp->ucastrate;
2832 	else if (m->m_flags & M_EAPOL)
2833 		rate = tp->mgmtrate;
2834 	else {
2835 		/* XXX pass pktlen */
2836 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2837 		rate = ni->ni_txrate;
2838 	}
2839 
2840 	/* Encrypt the frame if need be. */
2841 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2842 		/* Retrieve key for TX. */
2843 		k = ieee80211_crypto_encap(ni, m);
2844 		if (k == NULL)
2845 			return (ENOBUFS);
2846 
2847 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2848 
2849 		/* 802.11 header may have moved. */
2850 		wh = mtod(m, struct ieee80211_frame *);
2851 	}
2852 	totlen = m->m_pkthdr.len;
2853 
2854 	if (ieee80211_radiotap_active_vap(vap)) {
2855 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2856 
2857 		tap->wt_flags = 0;
2858 		tap->wt_rate = rate;
2859 		if (k != NULL)
2860 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2861 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2862 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2863 
2864 		ieee80211_radiotap_tx(vap, m);
2865 	}
2866 
2867 	flags = 0;
2868 	if (!ismcast) {
2869 		/* Unicast frame, check if an ACK is expected. */
2870 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2871 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2872 			flags |= WPI_TX_NEED_ACK;
2873 	}
2874 
2875 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2876 		flags |= WPI_TX_AUTO_SEQ;
2877 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2878 		flags |= WPI_TX_MORE_FRAG;
2879 
2880 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2881 	if (!ismcast) {
2882 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2883 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2884 			flags |= WPI_TX_NEED_RTS;
2885 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2886 		    WPI_RATE_IS_OFDM(rate)) {
2887 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2888 				flags |= WPI_TX_NEED_CTS;
2889 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2890 				flags |= WPI_TX_NEED_RTS;
2891 		}
2892 
2893 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2894 			flags |= WPI_TX_FULL_TXOP;
2895 	}
2896 
2897 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2898 	if (type == IEEE80211_FC0_TYPE_MGT) {
2899 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2900 
2901 		/* Tell HW to set timestamp in probe responses. */
2902 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2903 			flags |= WPI_TX_INSERT_TSTAMP;
2904 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2905 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2906 			tx->timeout = htole16(3);
2907 		else
2908 			tx->timeout = htole16(2);
2909 	}
2910 
2911 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2912 		tx->id = WPI_ID_BROADCAST;
2913 	else {
2914 		if (wn->id == WPI_ID_UNDEFINED) {
2915 			device_printf(sc->sc_dev,
2916 			    "%s: undefined node id\n", __func__);
2917 			return (EINVAL);
2918 		}
2919 
2920 		tx->id = wn->id;
2921 	}
2922 
2923 	if (!swcrypt) {
2924 		switch (k->wk_cipher->ic_cipher) {
2925 		case IEEE80211_CIPHER_AES_CCM:
2926 			tx->security = WPI_CIPHER_CCMP;
2927 			break;
2928 
2929 		default:
2930 			break;
2931 		}
2932 
2933 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2934 	}
2935 
2936 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2937 		struct mbuf *next = m->m_nextpkt;
2938 
2939 		tx->lnext = htole16(next->m_pkthdr.len);
2940 		tx->fnext = htole32(tx->security |
2941 				    (flags & WPI_TX_NEED_ACK) |
2942 				    WPI_NEXT_STA_ID(tx->id));
2943 	}
2944 
2945 	tx->len = htole16(totlen);
2946 	tx->flags = htole32(flags);
2947 	tx->plcp = rate2plcp(rate);
2948 	tx->tid = tid;
2949 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2950 	tx->ofdm_mask = 0xff;
2951 	tx->cck_mask = 0x0f;
2952 	tx->rts_ntries = 7;
2953 	tx->data_ntries = tp->maxretry;
2954 
2955 	tx_data.ni = ni;
2956 	tx_data.m = m;
2957 	tx_data.size = sizeof(struct wpi_cmd_data);
2958 	tx_data.code = WPI_CMD_TX_DATA;
2959 	tx_data.ac = ac;
2960 
2961 	return wpi_cmd2(sc, &tx_data);
2962 }
2963 
2964 static int
2965 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2966     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2967 {
2968 	struct ieee80211vap *vap = ni->ni_vap;
2969 	struct ieee80211_key *k = NULL;
2970 	struct ieee80211_frame *wh;
2971 	struct wpi_buf tx_data;
2972 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2973 	uint32_t flags;
2974 	uint8_t ac, type, rate;
2975 	int swcrypt, totlen;
2976 
2977 	wh = mtod(m, struct ieee80211_frame *);
2978 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2979 	swcrypt = 1;
2980 
2981 	ac = params->ibp_pri & 3;
2982 
2983 	/* Choose a TX rate index. */
2984 	rate = params->ibp_rate0;
2985 
2986 	flags = 0;
2987 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2988 		flags |= WPI_TX_AUTO_SEQ;
2989 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2990 		flags |= WPI_TX_NEED_ACK;
2991 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2992 		flags |= WPI_TX_NEED_RTS;
2993 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2994 		flags |= WPI_TX_NEED_CTS;
2995 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2996 		flags |= WPI_TX_FULL_TXOP;
2997 
2998 	/* Encrypt the frame if need be. */
2999 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
3000 		/* Retrieve key for TX. */
3001 		k = ieee80211_crypto_encap(ni, m);
3002 		if (k == NULL)
3003 			return (ENOBUFS);
3004 
3005 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
3006 
3007 		/* 802.11 header may have moved. */
3008 		wh = mtod(m, struct ieee80211_frame *);
3009 	}
3010 	totlen = m->m_pkthdr.len;
3011 
3012 	if (ieee80211_radiotap_active_vap(vap)) {
3013 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3014 
3015 		tap->wt_flags = 0;
3016 		tap->wt_rate = rate;
3017 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3018 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3019 
3020 		ieee80211_radiotap_tx(vap, m);
3021 	}
3022 
3023 	memset(tx, 0, sizeof (struct wpi_cmd_data));
3024 	if (type == IEEE80211_FC0_TYPE_MGT) {
3025 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3026 
3027 		/* Tell HW to set timestamp in probe responses. */
3028 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3029 			flags |= WPI_TX_INSERT_TSTAMP;
3030 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3031 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3032 			tx->timeout = htole16(3);
3033 		else
3034 			tx->timeout = htole16(2);
3035 	}
3036 
3037 	if (!swcrypt) {
3038 		switch (k->wk_cipher->ic_cipher) {
3039 		case IEEE80211_CIPHER_AES_CCM:
3040 			tx->security = WPI_CIPHER_CCMP;
3041 			break;
3042 
3043 		default:
3044 			break;
3045 		}
3046 
3047 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3048 	}
3049 
3050 	tx->len = htole16(totlen);
3051 	tx->flags = htole32(flags);
3052 	tx->plcp = rate2plcp(rate);
3053 	tx->id = WPI_ID_BROADCAST;
3054 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3055 	tx->rts_ntries = params->ibp_try1;
3056 	tx->data_ntries = params->ibp_try0;
3057 
3058 	tx_data.ni = ni;
3059 	tx_data.m = m;
3060 	tx_data.size = sizeof(struct wpi_cmd_data);
3061 	tx_data.code = WPI_CMD_TX_DATA;
3062 	tx_data.ac = ac;
3063 
3064 	return wpi_cmd2(sc, &tx_data);
3065 }
3066 
3067 static __inline int
3068 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3069 {
3070 	struct wpi_tx_ring *ring = &sc->txq[ac];
3071 	int retval;
3072 
3073 	WPI_TXQ_STATE_LOCK(sc);
3074 	retval = WPI_TX_RING_HIMARK - ring->queued;
3075 	WPI_TXQ_STATE_UNLOCK(sc);
3076 
3077 	return retval;
3078 }
3079 
3080 static int
3081 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3082     const struct ieee80211_bpf_params *params)
3083 {
3084 	struct ieee80211com *ic = ni->ni_ic;
3085 	struct wpi_softc *sc = ic->ic_softc;
3086 	uint16_t ac;
3087 	int error = 0;
3088 
3089 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3090 
3091 	ac = M_WME_GETAC(m);
3092 
3093 	WPI_TX_LOCK(sc);
3094 
3095 	/* NB: no fragments here */
3096 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3097 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3098 		goto unlock;
3099 	}
3100 
3101 	if (params == NULL) {
3102 		/*
3103 		 * Legacy path; interpret frame contents to decide
3104 		 * precisely how to send the frame.
3105 		 */
3106 		error = wpi_tx_data(sc, m, ni);
3107 	} else {
3108 		/*
3109 		 * Caller supplied explicit parameters to use in
3110 		 * sending the frame.
3111 		 */
3112 		error = wpi_tx_data_raw(sc, m, ni, params);
3113 	}
3114 
3115 unlock:	WPI_TX_UNLOCK(sc);
3116 
3117 	if (error != 0) {
3118 		m_freem(m);
3119 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3120 
3121 		return error;
3122 	}
3123 
3124 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3125 
3126 	return 0;
3127 }
3128 
3129 static int
3130 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3131 {
3132 	struct wpi_softc *sc = ic->ic_softc;
3133 	struct ieee80211_node *ni;
3134 	struct mbuf *mnext;
3135 	uint16_t ac;
3136 	int error, nmbufs;
3137 
3138 	WPI_TX_LOCK(sc);
3139 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3140 
3141 	/* Check if interface is up & running. */
3142 	if (__predict_false(sc->sc_running == 0)) {
3143 		error = ENXIO;
3144 		goto unlock;
3145 	}
3146 
3147 	nmbufs = 1;
3148 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3149 		nmbufs++;
3150 
3151 	/* Check for available space. */
3152 	ac = M_WME_GETAC(m);
3153 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3154 		error = ENOBUFS;
3155 		goto unlock;
3156 	}
3157 
3158 	error = 0;
3159 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3160 	do {
3161 		mnext = m->m_nextpkt;
3162 		if (wpi_tx_data(sc, m, ni) != 0) {
3163 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3164 			    nmbufs);
3165 			wpi_free_txfrags(sc, ac);
3166 			ieee80211_free_mbuf(m);
3167 			ieee80211_free_node(ni);
3168 			break;
3169 		}
3170 	} while((m = mnext) != NULL);
3171 
3172 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3173 
3174 unlock:	WPI_TX_UNLOCK(sc);
3175 
3176 	return (error);
3177 }
3178 
3179 static void
3180 wpi_watchdog_rfkill(void *arg)
3181 {
3182 	struct wpi_softc *sc = arg;
3183 	struct ieee80211com *ic = &sc->sc_ic;
3184 
3185 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3186 
3187 	/* No need to lock firmware memory. */
3188 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3189 		/* Radio kill switch is still off. */
3190 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3191 		    sc);
3192 	} else
3193 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3194 }
3195 
3196 static void
3197 wpi_scan_timeout(void *arg)
3198 {
3199 	struct wpi_softc *sc = arg;
3200 	struct ieee80211com *ic = &sc->sc_ic;
3201 
3202 	ic_printf(ic, "scan timeout\n");
3203 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3204 }
3205 
3206 static void
3207 wpi_tx_timeout(void *arg)
3208 {
3209 	struct wpi_softc *sc = arg;
3210 	struct ieee80211com *ic = &sc->sc_ic;
3211 
3212 	ic_printf(ic, "device timeout\n");
3213 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3214 }
3215 
3216 static void
3217 wpi_parent(struct ieee80211com *ic)
3218 {
3219 	struct wpi_softc *sc = ic->ic_softc;
3220 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3221 
3222 	if (ic->ic_nrunning > 0) {
3223 		if (wpi_init(sc) == 0) {
3224 			ieee80211_notify_radio(ic, 1);
3225 			ieee80211_start_all(ic);
3226 		} else {
3227 			ieee80211_notify_radio(ic, 0);
3228 			ieee80211_stop(vap);
3229 		}
3230 	} else
3231 		wpi_stop(sc);
3232 }
3233 
3234 /*
3235  * Send a command to the firmware.
3236  */
3237 static int
3238 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3239     int async)
3240 {
3241 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3242 	struct wpi_tx_desc *desc;
3243 	struct wpi_tx_data *data;
3244 	struct wpi_tx_cmd *cmd;
3245 	struct mbuf *m;
3246 	bus_addr_t paddr;
3247 	uint16_t totlen;
3248 	int error;
3249 
3250 	WPI_TXQ_LOCK(sc);
3251 
3252 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3253 
3254 	if (__predict_false(sc->sc_running == 0)) {
3255 		/* wpi_stop() was called */
3256 		if (code == WPI_CMD_SCAN)
3257 			error = ENETDOWN;
3258 		else
3259 			error = 0;
3260 
3261 		goto fail;
3262 	}
3263 
3264 	if (async == 0)
3265 		WPI_LOCK_ASSERT(sc);
3266 
3267 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3268 	    __func__, wpi_cmd_str(code), size, async);
3269 
3270 	desc = &ring->desc[ring->cur];
3271 	data = &ring->data[ring->cur];
3272 	totlen = 4 + size;
3273 
3274 	if (size > sizeof cmd->data) {
3275 		/* Command is too large to fit in a descriptor. */
3276 		if (totlen > MCLBYTES) {
3277 			error = EINVAL;
3278 			goto fail;
3279 		}
3280 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3281 		if (m == NULL) {
3282 			error = ENOMEM;
3283 			goto fail;
3284 		}
3285 		cmd = mtod(m, struct wpi_tx_cmd *);
3286 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3287 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3288 		if (error != 0) {
3289 			m_freem(m);
3290 			goto fail;
3291 		}
3292 		data->m = m;
3293 	} else {
3294 		cmd = &ring->cmd[ring->cur];
3295 		paddr = data->cmd_paddr;
3296 	}
3297 
3298 	cmd->code = code;
3299 	cmd->flags = 0;
3300 	cmd->qid = ring->qid;
3301 	cmd->idx = ring->cur;
3302 	memcpy(cmd->data, buf, size);
3303 
3304 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3305 	desc->segs[0].addr = htole32(paddr);
3306 	desc->segs[0].len  = htole32(totlen);
3307 
3308 	if (size > sizeof cmd->data) {
3309 		bus_dmamap_sync(ring->data_dmat, data->map,
3310 		    BUS_DMASYNC_PREWRITE);
3311 	} else {
3312 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3313 		    BUS_DMASYNC_PREWRITE);
3314 	}
3315 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3316 	    BUS_DMASYNC_PREWRITE);
3317 
3318 	/* Kick command ring. */
3319 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3320 	sc->sc_update_tx_ring(sc, ring);
3321 
3322 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3323 
3324 	WPI_TXQ_UNLOCK(sc);
3325 
3326 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3327 
3328 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3329 
3330 	WPI_TXQ_UNLOCK(sc);
3331 
3332 	return error;
3333 }
3334 
3335 /*
3336  * Configure HW multi-rate retries.
3337  */
3338 static int
3339 wpi_mrr_setup(struct wpi_softc *sc)
3340 {
3341 	struct ieee80211com *ic = &sc->sc_ic;
3342 	struct wpi_mrr_setup mrr;
3343 	uint8_t i;
3344 	int error;
3345 
3346 	/* CCK rates (not used with 802.11a). */
3347 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3348 		mrr.rates[i].flags = 0;
3349 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3350 		/* Fallback to the immediate lower CCK rate (if any.) */
3351 		mrr.rates[i].next =
3352 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3353 		/* Try twice at this rate before falling back to "next". */
3354 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3355 	}
3356 	/* OFDM rates (not used with 802.11b). */
3357 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3358 		mrr.rates[i].flags = 0;
3359 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3360 		/* Fallback to the immediate lower rate (if any.) */
3361 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3362 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3363 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3364 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3365 		    i - 1;
3366 		/* Try twice at this rate before falling back to "next". */
3367 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3368 	}
3369 	/* Setup MRR for control frames. */
3370 	mrr.which = htole32(WPI_MRR_CTL);
3371 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3372 	if (error != 0) {
3373 		device_printf(sc->sc_dev,
3374 		    "could not setup MRR for control frames\n");
3375 		return error;
3376 	}
3377 	/* Setup MRR for data frames. */
3378 	mrr.which = htole32(WPI_MRR_DATA);
3379 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3380 	if (error != 0) {
3381 		device_printf(sc->sc_dev,
3382 		    "could not setup MRR for data frames\n");
3383 		return error;
3384 	}
3385 	return 0;
3386 }
3387 
3388 static int
3389 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3390 {
3391 	struct ieee80211com *ic = ni->ni_ic;
3392 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3393 	struct wpi_node *wn = WPI_NODE(ni);
3394 	struct wpi_node_info node;
3395 	int error;
3396 
3397 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3398 
3399 	if (wn->id == WPI_ID_UNDEFINED)
3400 		return EINVAL;
3401 
3402 	memset(&node, 0, sizeof node);
3403 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3404 	node.id = wn->id;
3405 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3406 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3407 	node.action = htole32(WPI_ACTION_SET_RATE);
3408 	node.antenna = WPI_ANTENNA_BOTH;
3409 
3410 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3411 	    wn->id, ether_sprintf(ni->ni_macaddr));
3412 
3413 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3414 	if (error != 0) {
3415 		device_printf(sc->sc_dev,
3416 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3417 		    error);
3418 		return error;
3419 	}
3420 
3421 	if (wvp->wv_gtk != 0) {
3422 		error = wpi_set_global_keys(ni);
3423 		if (error != 0) {
3424 			device_printf(sc->sc_dev,
3425 			    "%s: error while setting global keys\n", __func__);
3426 			return ENXIO;
3427 		}
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 /*
3434  * Broadcast node is used to send group-addressed and management frames.
3435  */
3436 static int
3437 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3438 {
3439 	struct ieee80211com *ic = &sc->sc_ic;
3440 	struct wpi_node_info node;
3441 
3442 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3443 
3444 	memset(&node, 0, sizeof node);
3445 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3446 	node.id = WPI_ID_BROADCAST;
3447 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3448 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3449 	node.action = htole32(WPI_ACTION_SET_RATE);
3450 	node.antenna = WPI_ANTENNA_BOTH;
3451 
3452 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3453 
3454 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3455 }
3456 
3457 static int
3458 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3459 {
3460 	struct wpi_node *wn = WPI_NODE(ni);
3461 	int error;
3462 
3463 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3464 
3465 	wn->id = wpi_add_node_entry_sta(sc);
3466 
3467 	if ((error = wpi_add_node(sc, ni)) != 0) {
3468 		wpi_del_node_entry(sc, wn->id);
3469 		wn->id = WPI_ID_UNDEFINED;
3470 		return error;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static int
3477 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3478 {
3479 	struct wpi_node *wn = WPI_NODE(ni);
3480 	int error;
3481 
3482 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3483 	    ("the node %d was added before", wn->id));
3484 
3485 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3486 
3487 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3488 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3489 		return ENOMEM;
3490 	}
3491 
3492 	if ((error = wpi_add_node(sc, ni)) != 0) {
3493 		wpi_del_node_entry(sc, wn->id);
3494 		wn->id = WPI_ID_UNDEFINED;
3495 		return error;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static void
3502 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3503 {
3504 	struct wpi_node *wn = WPI_NODE(ni);
3505 	struct wpi_cmd_del_node node;
3506 	int error;
3507 
3508 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3509 
3510 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3511 
3512 	memset(&node, 0, sizeof node);
3513 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3514 	node.count = 1;
3515 
3516 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3517 	    wn->id, ether_sprintf(ni->ni_macaddr));
3518 
3519 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3520 	if (error != 0) {
3521 		device_printf(sc->sc_dev,
3522 		    "%s: could not delete node %u, error %d\n", __func__,
3523 		    wn->id, error);
3524 	}
3525 }
3526 
3527 static int
3528 wpi_updateedca(struct ieee80211com *ic)
3529 {
3530 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3531 	struct wpi_softc *sc = ic->ic_softc;
3532 	struct wpi_edca_params cmd;
3533 	int aci, error;
3534 
3535 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3536 
3537 	memset(&cmd, 0, sizeof cmd);
3538 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3539 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3540 		const struct wmeParams *ac =
3541 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3542 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3543 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3544 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3545 		cmd.ac[aci].txoplimit =
3546 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3547 
3548 		DPRINTF(sc, WPI_DEBUG_EDCA,
3549 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3550 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3551 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3552 		    cmd.ac[aci].txoplimit);
3553 	}
3554 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3555 
3556 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3557 
3558 	return error;
3559 #undef WPI_EXP2
3560 }
3561 
3562 static void
3563 wpi_set_promisc(struct wpi_softc *sc)
3564 {
3565 	struct ieee80211com *ic = &sc->sc_ic;
3566 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3567 	uint32_t promisc_filter;
3568 
3569 	promisc_filter = WPI_FILTER_CTL;
3570 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3571 		promisc_filter |= WPI_FILTER_PROMISC;
3572 
3573 	if (ic->ic_promisc > 0)
3574 		sc->rxon.filter |= htole32(promisc_filter);
3575 	else
3576 		sc->rxon.filter &= ~htole32(promisc_filter);
3577 }
3578 
3579 static void
3580 wpi_update_promisc(struct ieee80211com *ic)
3581 {
3582 	struct wpi_softc *sc = ic->ic_softc;
3583 
3584 	WPI_LOCK(sc);
3585 	if (sc->sc_running == 0) {
3586 		WPI_UNLOCK(sc);
3587 		return;
3588 	}
3589 	WPI_UNLOCK(sc);
3590 
3591 	WPI_RXON_LOCK(sc);
3592 	wpi_set_promisc(sc);
3593 
3594 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3595 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3596 		    __func__);
3597 	}
3598 	WPI_RXON_UNLOCK(sc);
3599 }
3600 
3601 static void
3602 wpi_update_mcast(struct ieee80211com *ic)
3603 {
3604 	/* Ignore */
3605 }
3606 
3607 static void
3608 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3609 {
3610 	struct wpi_cmd_led led;
3611 
3612 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3613 
3614 	led.which = which;
3615 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3616 	led.off = off;
3617 	led.on = on;
3618 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3619 }
3620 
3621 static int
3622 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3623 {
3624 	struct wpi_cmd_timing cmd;
3625 	uint64_t val, mod;
3626 
3627 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3628 
3629 	memset(&cmd, 0, sizeof cmd);
3630 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3631 	cmd.bintval = htole16(ni->ni_intval);
3632 	cmd.lintval = htole16(10);
3633 
3634 	/* Compute remaining time until next beacon. */
3635 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3636 	mod = le64toh(cmd.tstamp) % val;
3637 	cmd.binitval = htole32((uint32_t)(val - mod));
3638 
3639 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3640 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3641 
3642 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3643 }
3644 
3645 /*
3646  * This function is called periodically (every 60 seconds) to adjust output
3647  * power to temperature changes.
3648  */
3649 static void
3650 wpi_power_calibration(struct wpi_softc *sc)
3651 {
3652 	int temp;
3653 
3654 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3655 
3656 	/* Update sensor data. */
3657 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3658 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3659 
3660 	/* Sanity-check read value. */
3661 	if (temp < -260 || temp > 25) {
3662 		/* This can't be correct, ignore. */
3663 		DPRINTF(sc, WPI_DEBUG_TEMP,
3664 		    "out-of-range temperature reported: %d\n", temp);
3665 		return;
3666 	}
3667 
3668 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3669 
3670 	/* Adjust Tx power if need be. */
3671 	if (abs(temp - sc->temp) <= 6)
3672 		return;
3673 
3674 	sc->temp = temp;
3675 
3676 	if (wpi_set_txpower(sc, 1) != 0) {
3677 		/* just warn, too bad for the automatic calibration... */
3678 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3679 	}
3680 }
3681 
3682 /*
3683  * Set TX power for current channel.
3684  */
3685 static int
3686 wpi_set_txpower(struct wpi_softc *sc, int async)
3687 {
3688 	struct wpi_power_group *group;
3689 	struct wpi_cmd_txpower cmd;
3690 	uint8_t chan;
3691 	int idx, is_chan_5ghz, i;
3692 
3693 	/* Retrieve current channel from last RXON. */
3694 	chan = sc->rxon.chan;
3695 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3696 
3697 	/* Find the TX power group to which this channel belongs. */
3698 	if (is_chan_5ghz) {
3699 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3700 			if (chan <= group->chan)
3701 				break;
3702 	} else
3703 		group = &sc->groups[0];
3704 
3705 	memset(&cmd, 0, sizeof cmd);
3706 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3707 	cmd.chan = htole16(chan);
3708 
3709 	/* Set TX power for all OFDM and CCK rates. */
3710 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3711 		/* Retrieve TX power for this channel/rate. */
3712 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3713 
3714 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3715 
3716 		if (is_chan_5ghz) {
3717 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3718 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3719 		} else {
3720 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3721 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3722 		}
3723 		DPRINTF(sc, WPI_DEBUG_TEMP,
3724 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3725 	}
3726 
3727 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3728 }
3729 
3730 /*
3731  * Determine Tx power index for a given channel/rate combination.
3732  * This takes into account the regulatory information from EEPROM and the
3733  * current temperature.
3734  */
3735 static int
3736 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3737     uint8_t chan, int is_chan_5ghz, int ridx)
3738 {
3739 /* Fixed-point arithmetic division using a n-bit fractional part. */
3740 #define fdivround(a, b, n)	\
3741 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3742 
3743 /* Linear interpolation. */
3744 #define interpolate(x, x1, y1, x2, y2, n)	\
3745 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3746 
3747 	struct wpi_power_sample *sample;
3748 	int pwr, idx;
3749 
3750 	/* Default TX power is group maximum TX power minus 3dB. */
3751 	pwr = group->maxpwr / 2;
3752 
3753 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3754 	switch (ridx) {
3755 	case WPI_RIDX_OFDM36:
3756 		pwr -= is_chan_5ghz ?  5 : 0;
3757 		break;
3758 	case WPI_RIDX_OFDM48:
3759 		pwr -= is_chan_5ghz ? 10 : 7;
3760 		break;
3761 	case WPI_RIDX_OFDM54:
3762 		pwr -= is_chan_5ghz ? 12 : 9;
3763 		break;
3764 	}
3765 
3766 	/* Never exceed the channel maximum allowed TX power. */
3767 	pwr = min(pwr, sc->maxpwr[chan]);
3768 
3769 	/* Retrieve TX power index into gain tables from samples. */
3770 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3771 		if (pwr > sample[1].power)
3772 			break;
3773 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3774 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3775 	    sample[1].power, sample[1].index, 19);
3776 
3777 	/*-
3778 	 * Adjust power index based on current temperature:
3779 	 * - if cooler than factory-calibrated: decrease output power
3780 	 * - if warmer than factory-calibrated: increase output power
3781 	 */
3782 	idx -= (sc->temp - group->temp) * 11 / 100;
3783 
3784 	/* Decrease TX power for CCK rates (-5dB). */
3785 	if (ridx >= WPI_RIDX_CCK1)
3786 		idx += 10;
3787 
3788 	/* Make sure idx stays in a valid range. */
3789 	if (idx < 0)
3790 		return 0;
3791 	if (idx > WPI_MAX_PWR_INDEX)
3792 		return WPI_MAX_PWR_INDEX;
3793 	return idx;
3794 
3795 #undef interpolate
3796 #undef fdivround
3797 }
3798 
3799 /*
3800  * Set STA mode power saving level (between 0 and 5).
3801  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3802  */
3803 static int
3804 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3805 {
3806 	struct wpi_pmgt_cmd cmd;
3807 	const struct wpi_pmgt *pmgt;
3808 	uint32_t max, reg;
3809 	uint8_t skip_dtim;
3810 	int i;
3811 
3812 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3813 	    "%s: dtim=%d, level=%d, async=%d\n",
3814 	    __func__, dtim, level, async);
3815 
3816 	/* Select which PS parameters to use. */
3817 	if (dtim <= 10)
3818 		pmgt = &wpi_pmgt[0][level];
3819 	else
3820 		pmgt = &wpi_pmgt[1][level];
3821 
3822 	memset(&cmd, 0, sizeof cmd);
3823 	if (level != 0)	/* not CAM */
3824 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3825 	/* Retrieve PCIe Active State Power Management (ASPM). */
3826 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3827 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3828 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3829 
3830 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3831 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3832 
3833 	if (dtim == 0) {
3834 		dtim = 1;
3835 		skip_dtim = 0;
3836 	} else
3837 		skip_dtim = pmgt->skip_dtim;
3838 
3839 	if (skip_dtim != 0) {
3840 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3841 		max = pmgt->intval[4];
3842 		if (max == (uint32_t)-1)
3843 			max = dtim * (skip_dtim + 1);
3844 		else if (max > dtim)
3845 			max = (max / dtim) * dtim;
3846 	} else
3847 		max = dtim;
3848 
3849 	for (i = 0; i < 5; i++)
3850 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3851 
3852 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3853 }
3854 
3855 static int
3856 wpi_send_btcoex(struct wpi_softc *sc)
3857 {
3858 	struct wpi_bluetooth cmd;
3859 
3860 	memset(&cmd, 0, sizeof cmd);
3861 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3862 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3863 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3864 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3865 	    __func__);
3866 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3867 }
3868 
3869 static int
3870 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3871 {
3872 	int error;
3873 
3874 	if (async)
3875 		WPI_RXON_LOCK_ASSERT(sc);
3876 
3877 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3878 		struct wpi_assoc rxon_assoc;
3879 
3880 		rxon_assoc.flags = sc->rxon.flags;
3881 		rxon_assoc.filter = sc->rxon.filter;
3882 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3883 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3884 		rxon_assoc.reserved = 0;
3885 
3886 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3887 		    sizeof (struct wpi_assoc), async);
3888 		if (error != 0) {
3889 			device_printf(sc->sc_dev,
3890 			    "RXON_ASSOC command failed, error %d\n", error);
3891 			return error;
3892 		}
3893 	} else {
3894 		if (async) {
3895 			WPI_NT_LOCK(sc);
3896 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3897 			    sizeof (struct wpi_rxon), async);
3898 			if (error == 0)
3899 				wpi_clear_node_table(sc);
3900 			WPI_NT_UNLOCK(sc);
3901 		} else {
3902 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3903 			    sizeof (struct wpi_rxon), async);
3904 			if (error == 0)
3905 				wpi_clear_node_table(sc);
3906 		}
3907 
3908 		if (error != 0) {
3909 			device_printf(sc->sc_dev,
3910 			    "RXON command failed, error %d\n", error);
3911 			return error;
3912 		}
3913 
3914 		/* Add broadcast node. */
3915 		error = wpi_add_broadcast_node(sc, async);
3916 		if (error != 0) {
3917 			device_printf(sc->sc_dev,
3918 			    "could not add broadcast node, error %d\n", error);
3919 			return error;
3920 		}
3921 	}
3922 
3923 	/* Configuration has changed, set Tx power accordingly. */
3924 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3925 		device_printf(sc->sc_dev,
3926 		    "%s: could not set TX power, error %d\n", __func__, error);
3927 		return error;
3928 	}
3929 
3930 	return 0;
3931 }
3932 
3933 /**
3934  * Configure the card to listen to a particular channel, this transisions the
3935  * card in to being able to receive frames from remote devices.
3936  */
3937 static int
3938 wpi_config(struct wpi_softc *sc)
3939 {
3940 	struct ieee80211com *ic = &sc->sc_ic;
3941 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3942 	struct ieee80211_channel *c = ic->ic_curchan;
3943 	int error;
3944 
3945 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3946 
3947 	/* Set power saving level to CAM during initialization. */
3948 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3949 		device_printf(sc->sc_dev,
3950 		    "%s: could not set power saving level\n", __func__);
3951 		return error;
3952 	}
3953 
3954 	/* Configure bluetooth coexistence. */
3955 	if ((error = wpi_send_btcoex(sc)) != 0) {
3956 		device_printf(sc->sc_dev,
3957 		    "could not configure bluetooth coexistence\n");
3958 		return error;
3959 	}
3960 
3961 	/* Configure adapter. */
3962 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3963 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3964 
3965 	/* Set default channel. */
3966 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3967 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3968 	if (IEEE80211_IS_CHAN_2GHZ(c))
3969 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3970 
3971 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3972 	switch (ic->ic_opmode) {
3973 	case IEEE80211_M_STA:
3974 		sc->rxon.mode = WPI_MODE_STA;
3975 		break;
3976 	case IEEE80211_M_IBSS:
3977 		sc->rxon.mode = WPI_MODE_IBSS;
3978 		sc->rxon.filter |= WPI_FILTER_BEACON;
3979 		break;
3980 	case IEEE80211_M_HOSTAP:
3981 		/* XXX workaround for beaconing */
3982 		sc->rxon.mode = WPI_MODE_IBSS;
3983 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3984 		break;
3985 	case IEEE80211_M_AHDEMO:
3986 		sc->rxon.mode = WPI_MODE_HOSTAP;
3987 		break;
3988 	case IEEE80211_M_MONITOR:
3989 		sc->rxon.mode = WPI_MODE_MONITOR;
3990 		break;
3991 	default:
3992 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3993 		    ic->ic_opmode);
3994 		return EINVAL;
3995 	}
3996 	sc->rxon.filter = htole32(sc->rxon.filter);
3997 	wpi_set_promisc(sc);
3998 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3999 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4000 
4001 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
4002 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4003 		    __func__);
4004 		return error;
4005 	}
4006 
4007 	/* Setup rate scalling. */
4008 	if ((error = wpi_mrr_setup(sc)) != 0) {
4009 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
4010 		    error);
4011 		return error;
4012 	}
4013 
4014 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4015 
4016 	return 0;
4017 }
4018 
4019 static uint16_t
4020 wpi_get_active_dwell_time(struct wpi_softc *sc,
4021     struct ieee80211_channel *c, uint8_t n_probes)
4022 {
4023 	/* No channel? Default to 2GHz settings. */
4024 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4025 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4026 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4027 	}
4028 
4029 	/* 5GHz dwell time. */
4030 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4031 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4032 }
4033 
4034 /*
4035  * Limit the total dwell time.
4036  *
4037  * Returns the dwell time in milliseconds.
4038  */
4039 static uint16_t
4040 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4041 {
4042 	struct ieee80211com *ic = &sc->sc_ic;
4043 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4044 	uint16_t bintval = 0;
4045 
4046 	/* bintval is in TU (1.024mS) */
4047 	if (vap != NULL)
4048 		bintval = vap->iv_bss->ni_intval;
4049 
4050 	/*
4051 	 * If it's non-zero, we should calculate the minimum of
4052 	 * it and the DWELL_BASE.
4053 	 *
4054 	 * XXX Yes, the math should take into account that bintval
4055 	 * is 1.024mS, not 1mS..
4056 	 */
4057 	if (bintval > 0) {
4058 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4059 		    bintval);
4060 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4061 	}
4062 
4063 	/* No association context? Default. */
4064 	return dwell_time;
4065 }
4066 
4067 static uint16_t
4068 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4069 {
4070 	uint16_t passive;
4071 
4072 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4073 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4074 	else
4075 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4076 
4077 	/* Clamp to the beacon interval if we're associated. */
4078 	return (wpi_limit_dwell(sc, passive));
4079 }
4080 
4081 static uint32_t
4082 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4083 {
4084 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4085 	uint32_t nbeacons = time / bintval;
4086 
4087 	if (mod > WPI_PAUSE_MAX_TIME)
4088 		mod = WPI_PAUSE_MAX_TIME;
4089 
4090 	return WPI_PAUSE_SCAN(nbeacons, mod);
4091 }
4092 
4093 /*
4094  * Send a scan request to the firmware.
4095  */
4096 static int
4097 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4098 {
4099 	struct ieee80211com *ic = &sc->sc_ic;
4100 	struct ieee80211_scan_state *ss = ic->ic_scan;
4101 	struct ieee80211vap *vap = ss->ss_vap;
4102 	struct wpi_scan_hdr *hdr;
4103 	struct wpi_cmd_data *tx;
4104 	struct wpi_scan_essid *essids;
4105 	struct wpi_scan_chan *chan;
4106 	struct ieee80211_frame *wh;
4107 	struct ieee80211_rateset *rs;
4108 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4109 	uint8_t *buf, *frm, i, nssid;
4110 	int bgscan, error;
4111 
4112 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4113 
4114 	/*
4115 	 * We are absolutely not allowed to send a scan command when another
4116 	 * scan command is pending.
4117 	 */
4118 	if (callout_pending(&sc->scan_timeout)) {
4119 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4120 		    __func__);
4121 		error = EAGAIN;
4122 		goto fail;
4123 	}
4124 
4125 	bgscan = wpi_check_bss_filter(sc);
4126 	bintval = vap->iv_bss->ni_intval;
4127 	if (bgscan != 0 &&
4128 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4129 		error = EOPNOTSUPP;
4130 		goto fail;
4131 	}
4132 
4133 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4134 	if (buf == NULL) {
4135 		device_printf(sc->sc_dev,
4136 		    "%s: could not allocate buffer for scan command\n",
4137 		    __func__);
4138 		error = ENOMEM;
4139 		goto fail;
4140 	}
4141 	hdr = (struct wpi_scan_hdr *)buf;
4142 
4143 	/*
4144 	 * Move to the next channel if no packets are received within 10 msecs
4145 	 * after sending the probe request.
4146 	 */
4147 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4148 	hdr->quiet_threshold = htole16(1);
4149 
4150 	if (bgscan != 0) {
4151 		/*
4152 		 * Max needs to be greater than active and passive and quiet!
4153 		 * It's also in microseconds!
4154 		 */
4155 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4156 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4157 		    bintval));
4158 	}
4159 
4160 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4161 
4162 	tx = (struct wpi_cmd_data *)(hdr + 1);
4163 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4164 	tx->id = WPI_ID_BROADCAST;
4165 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4166 
4167 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4168 		/* Send probe requests at 6Mbps. */
4169 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4170 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4171 	} else {
4172 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4173 		/* Send probe requests at 1Mbps. */
4174 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4175 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4176 	}
4177 
4178 	essids = (struct wpi_scan_essid *)(tx + 1);
4179 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4180 	for (i = 0; i < nssid; i++) {
4181 		essids[i].id = IEEE80211_ELEMID_SSID;
4182 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4183 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4184 #ifdef WPI_DEBUG
4185 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4186 			printf("Scanning Essid: ");
4187 			ieee80211_print_essid(essids[i].data, essids[i].len);
4188 			printf("\n");
4189 		}
4190 #endif
4191 	}
4192 
4193 	/*
4194 	 * Build a probe request frame.  Most of the following code is a
4195 	 * copy & paste of what is done in net80211.
4196 	 */
4197 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4198 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4199 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4200 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4201 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4202 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4203 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4204 
4205 	frm = (uint8_t *)(wh + 1);
4206 	frm = ieee80211_add_ssid(frm, NULL, 0);
4207 	frm = ieee80211_add_rates(frm, rs);
4208 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4209 		frm = ieee80211_add_xrates(frm, rs);
4210 
4211 	/* Set length of probe request. */
4212 	tx->len = htole16(frm - (uint8_t *)wh);
4213 
4214 	/*
4215 	 * Construct information about the channel that we
4216 	 * want to scan. The firmware expects this to be directly
4217 	 * after the scan probe request
4218 	 */
4219 	chan = (struct wpi_scan_chan *)frm;
4220 	chan->chan = ieee80211_chan2ieee(ic, c);
4221 	chan->flags = 0;
4222 	if (nssid) {
4223 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4224 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4225 	} else
4226 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4227 
4228 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4229 		chan->flags |= WPI_CHAN_ACTIVE;
4230 
4231 	/*
4232 	 * Calculate the active/passive dwell times.
4233 	 */
4234 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4235 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4236 
4237 	/* Make sure they're valid. */
4238 	if (dwell_active > dwell_passive)
4239 		dwell_active = dwell_passive;
4240 
4241 	chan->active = htole16(dwell_active);
4242 	chan->passive = htole16(dwell_passive);
4243 
4244 	chan->dsp_gain = 0x6e;  /* Default level */
4245 
4246 	if (IEEE80211_IS_CHAN_5GHZ(c))
4247 		chan->rf_gain = 0x3b;
4248 	else
4249 		chan->rf_gain = 0x28;
4250 
4251 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4252 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4253 
4254 	hdr->nchan++;
4255 
4256 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4257 		/* XXX Force probe request transmission. */
4258 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4259 
4260 		chan++;
4261 
4262 		/* Reduce unnecessary delay. */
4263 		chan->flags = 0;
4264 		chan->passive = chan->active = hdr->quiet_time;
4265 
4266 		hdr->nchan++;
4267 	}
4268 
4269 	chan++;
4270 
4271 	buflen = (uint8_t *)chan - buf;
4272 	hdr->len = htole16(buflen);
4273 
4274 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4275 	    hdr->nchan);
4276 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4277 	free(buf, M_DEVBUF);
4278 
4279 	if (error != 0)
4280 		goto fail;
4281 
4282 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4283 
4284 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4285 
4286 	return 0;
4287 
4288 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4289 
4290 	return error;
4291 }
4292 
4293 static int
4294 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4295 {
4296 	struct ieee80211com *ic = vap->iv_ic;
4297 	struct ieee80211_node *ni = vap->iv_bss;
4298 	struct ieee80211_channel *c = ni->ni_chan;
4299 	int error;
4300 
4301 	WPI_RXON_LOCK(sc);
4302 
4303 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4304 
4305 	/* Update adapter configuration. */
4306 	sc->rxon.associd = 0;
4307 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4308 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4309 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4310 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4311 	if (IEEE80211_IS_CHAN_2GHZ(c))
4312 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4313 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4314 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4315 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4316 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4317 	if (IEEE80211_IS_CHAN_A(c)) {
4318 		sc->rxon.cck_mask  = 0;
4319 		sc->rxon.ofdm_mask = 0x15;
4320 	} else if (IEEE80211_IS_CHAN_B(c)) {
4321 		sc->rxon.cck_mask  = 0x03;
4322 		sc->rxon.ofdm_mask = 0;
4323 	} else {
4324 		/* Assume 802.11b/g. */
4325 		sc->rxon.cck_mask  = 0x0f;
4326 		sc->rxon.ofdm_mask = 0x15;
4327 	}
4328 
4329 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4330 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4331 	    sc->rxon.ofdm_mask);
4332 
4333 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4334 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4335 		    __func__);
4336 	}
4337 
4338 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4339 
4340 	WPI_RXON_UNLOCK(sc);
4341 
4342 	return error;
4343 }
4344 
4345 static int
4346 wpi_config_beacon(struct wpi_vap *wvp)
4347 {
4348 	struct ieee80211vap *vap = &wvp->wv_vap;
4349 	struct ieee80211com *ic = vap->iv_ic;
4350 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4351 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4352 	struct wpi_softc *sc = ic->ic_softc;
4353 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4354 	struct ieee80211_tim_ie *tie;
4355 	struct mbuf *m;
4356 	uint8_t *ptr;
4357 	int error;
4358 
4359 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4360 
4361 	WPI_VAP_LOCK_ASSERT(wvp);
4362 
4363 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4364 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4365 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4366 
4367 	/* XXX seems to be unused */
4368 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4369 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4370 		ptr = mtod(bcn->m, uint8_t *);
4371 
4372 		cmd->tim = htole16(bo->bo_tim - ptr);
4373 		cmd->timsz = tie->tim_len;
4374 	}
4375 
4376 	/* Necessary for recursion in ieee80211_beacon_update(). */
4377 	m = bcn->m;
4378 	bcn->m = m_dup(m, M_NOWAIT);
4379 	if (bcn->m == NULL) {
4380 		device_printf(sc->sc_dev,
4381 		    "%s: could not copy beacon frame\n", __func__);
4382 		error = ENOMEM;
4383 		goto end;
4384 	}
4385 
4386 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4387 		device_printf(sc->sc_dev,
4388 		    "%s: could not update beacon frame, error %d", __func__,
4389 		    error);
4390 		m_freem(bcn->m);
4391 	}
4392 
4393 	/* Restore mbuf. */
4394 end:	bcn->m = m;
4395 
4396 	return error;
4397 }
4398 
4399 static int
4400 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4401 {
4402 	struct ieee80211vap *vap = ni->ni_vap;
4403 	struct wpi_vap *wvp = WPI_VAP(vap);
4404 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4405 	struct mbuf *m;
4406 	int error;
4407 
4408 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4409 
4410 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4411 		return EINVAL;
4412 
4413 	m = ieee80211_beacon_alloc(ni);
4414 	if (m == NULL) {
4415 		device_printf(sc->sc_dev,
4416 		    "%s: could not allocate beacon frame\n", __func__);
4417 		return ENOMEM;
4418 	}
4419 
4420 	WPI_VAP_LOCK(wvp);
4421 	if (bcn->m != NULL)
4422 		m_freem(bcn->m);
4423 
4424 	bcn->m = m;
4425 
4426 	error = wpi_config_beacon(wvp);
4427 	WPI_VAP_UNLOCK(wvp);
4428 
4429 	return error;
4430 }
4431 
4432 static void
4433 wpi_update_beacon(struct ieee80211vap *vap, int item)
4434 {
4435 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4436 	struct wpi_vap *wvp = WPI_VAP(vap);
4437 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4438 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4439 	struct ieee80211_node *ni = vap->iv_bss;
4440 	int mcast = 0;
4441 
4442 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4443 
4444 	WPI_VAP_LOCK(wvp);
4445 	if (bcn->m == NULL) {
4446 		bcn->m = ieee80211_beacon_alloc(ni);
4447 		if (bcn->m == NULL) {
4448 			device_printf(sc->sc_dev,
4449 			    "%s: could not allocate beacon frame\n", __func__);
4450 
4451 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4452 			    __func__);
4453 
4454 			WPI_VAP_UNLOCK(wvp);
4455 			return;
4456 		}
4457 	}
4458 	WPI_VAP_UNLOCK(wvp);
4459 
4460 	if (item == IEEE80211_BEACON_TIM)
4461 		mcast = 1;	/* TODO */
4462 
4463 	setbit(bo->bo_flags, item);
4464 	ieee80211_beacon_update(ni, bcn->m, mcast);
4465 
4466 	WPI_VAP_LOCK(wvp);
4467 	wpi_config_beacon(wvp);
4468 	WPI_VAP_UNLOCK(wvp);
4469 
4470 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4471 }
4472 
4473 static void
4474 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4475 {
4476 	struct ieee80211vap *vap = ni->ni_vap;
4477 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4478 	struct wpi_node *wn = WPI_NODE(ni);
4479 	int error;
4480 
4481 	WPI_NT_LOCK(sc);
4482 
4483 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4484 
4485 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4486 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4487 			device_printf(sc->sc_dev,
4488 			    "%s: could not add IBSS node, error %d\n",
4489 			    __func__, error);
4490 		}
4491 	}
4492 	WPI_NT_UNLOCK(sc);
4493 }
4494 
4495 static int
4496 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4497 {
4498 	struct ieee80211com *ic = vap->iv_ic;
4499 	struct ieee80211_node *ni = vap->iv_bss;
4500 	struct ieee80211_channel *c = ni->ni_chan;
4501 	int error;
4502 
4503 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4504 
4505 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4506 		/* Link LED blinks while monitoring. */
4507 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4508 		return 0;
4509 	}
4510 
4511 	/* XXX kernel panic workaround */
4512 	if (c == IEEE80211_CHAN_ANYC) {
4513 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4514 		    __func__);
4515 		return EINVAL;
4516 	}
4517 
4518 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4519 		device_printf(sc->sc_dev,
4520 		    "%s: could not set timing, error %d\n", __func__, error);
4521 		return error;
4522 	}
4523 
4524 	/* Update adapter configuration. */
4525 	WPI_RXON_LOCK(sc);
4526 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4527 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4528 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4529 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4530 	if (IEEE80211_IS_CHAN_2GHZ(c))
4531 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4532 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4533 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4534 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4535 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4536 	if (IEEE80211_IS_CHAN_A(c)) {
4537 		sc->rxon.cck_mask  = 0;
4538 		sc->rxon.ofdm_mask = 0x15;
4539 	} else if (IEEE80211_IS_CHAN_B(c)) {
4540 		sc->rxon.cck_mask  = 0x03;
4541 		sc->rxon.ofdm_mask = 0;
4542 	} else {
4543 		/* Assume 802.11b/g. */
4544 		sc->rxon.cck_mask  = 0x0f;
4545 		sc->rxon.ofdm_mask = 0x15;
4546 	}
4547 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4548 
4549 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4550 	    sc->rxon.chan, sc->rxon.flags);
4551 
4552 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4553 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4554 		    __func__);
4555 		return error;
4556 	}
4557 
4558 	/* Start periodic calibration timer. */
4559 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4560 
4561 	WPI_RXON_UNLOCK(sc);
4562 
4563 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4564 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4565 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4566 			device_printf(sc->sc_dev,
4567 			    "%s: could not setup beacon, error %d\n", __func__,
4568 			    error);
4569 			return error;
4570 		}
4571 	}
4572 
4573 	if (vap->iv_opmode == IEEE80211_M_STA) {
4574 		/* Add BSS node. */
4575 		WPI_NT_LOCK(sc);
4576 		error = wpi_add_sta_node(sc, ni);
4577 		WPI_NT_UNLOCK(sc);
4578 		if (error != 0) {
4579 			device_printf(sc->sc_dev,
4580 			    "%s: could not add BSS node, error %d\n", __func__,
4581 			    error);
4582 			return error;
4583 		}
4584 	}
4585 
4586 	/* Link LED always on while associated. */
4587 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4588 
4589 	/* Enable power-saving mode if requested by user. */
4590 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4591 	    vap->iv_opmode != IEEE80211_M_IBSS)
4592 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4593 
4594 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4595 
4596 	return 0;
4597 }
4598 
4599 static int
4600 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4601 {
4602 	const struct ieee80211_cipher *cip = k->wk_cipher;
4603 	struct ieee80211vap *vap = ni->ni_vap;
4604 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4605 	struct wpi_node *wn = WPI_NODE(ni);
4606 	struct wpi_node_info node;
4607 	uint16_t kflags;
4608 	int error;
4609 
4610 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4611 
4612 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4613 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4614 		    __func__);
4615 		return 0;
4616 	}
4617 
4618 	switch (cip->ic_cipher) {
4619 	case IEEE80211_CIPHER_AES_CCM:
4620 		kflags = WPI_KFLAG_CCMP;
4621 		break;
4622 
4623 	default:
4624 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4625 		    cip->ic_cipher);
4626 		return 0;
4627 	}
4628 
4629 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4630 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4631 		kflags |= WPI_KFLAG_MULTICAST;
4632 
4633 	memset(&node, 0, sizeof node);
4634 	node.id = wn->id;
4635 	node.control = WPI_NODE_UPDATE;
4636 	node.flags = WPI_FLAG_KEY_SET;
4637 	node.kflags = htole16(kflags);
4638 	memcpy(node.key, k->wk_key, k->wk_keylen);
4639 again:
4640 	DPRINTF(sc, WPI_DEBUG_KEY,
4641 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4642 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4643 	    node.id, ether_sprintf(ni->ni_macaddr));
4644 
4645 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4646 	if (error != 0) {
4647 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4648 		    error);
4649 		return !error;
4650 	}
4651 
4652 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4653 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4654 		kflags |= WPI_KFLAG_MULTICAST;
4655 		node.kflags = htole16(kflags);
4656 
4657 		goto again;
4658 	}
4659 
4660 	return 1;
4661 }
4662 
4663 static void
4664 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4665 {
4666 	const struct ieee80211_key *k = arg;
4667 	struct ieee80211vap *vap = ni->ni_vap;
4668 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4669 	struct wpi_node *wn = WPI_NODE(ni);
4670 	int error;
4671 
4672 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4673 		return;
4674 
4675 	WPI_NT_LOCK(sc);
4676 	error = wpi_load_key(ni, k);
4677 	WPI_NT_UNLOCK(sc);
4678 
4679 	if (error == 0) {
4680 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4681 		    __func__);
4682 	}
4683 }
4684 
4685 static int
4686 wpi_set_global_keys(struct ieee80211_node *ni)
4687 {
4688 	struct ieee80211vap *vap = ni->ni_vap;
4689 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4690 	int error = 1;
4691 
4692 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4693 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4694 			error = wpi_load_key(ni, wk);
4695 
4696 	return !error;
4697 }
4698 
4699 static int
4700 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4701 {
4702 	struct ieee80211vap *vap = ni->ni_vap;
4703 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4704 	struct wpi_node *wn = WPI_NODE(ni);
4705 	struct wpi_node_info node;
4706 	uint16_t kflags;
4707 	int error;
4708 
4709 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4710 
4711 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4712 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4713 		return 1;	/* Nothing to do. */
4714 	}
4715 
4716 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4717 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4718 		kflags |= WPI_KFLAG_MULTICAST;
4719 
4720 	memset(&node, 0, sizeof node);
4721 	node.id = wn->id;
4722 	node.control = WPI_NODE_UPDATE;
4723 	node.flags = WPI_FLAG_KEY_SET;
4724 	node.kflags = htole16(kflags);
4725 again:
4726 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4727 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4728 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4729 
4730 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4731 	if (error != 0) {
4732 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4733 		    error);
4734 		return !error;
4735 	}
4736 
4737 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4738 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4739 		kflags |= WPI_KFLAG_MULTICAST;
4740 		node.kflags = htole16(kflags);
4741 
4742 		goto again;
4743 	}
4744 
4745 	return 1;
4746 }
4747 
4748 static void
4749 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4750 {
4751 	const struct ieee80211_key *k = arg;
4752 	struct ieee80211vap *vap = ni->ni_vap;
4753 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4754 	struct wpi_node *wn = WPI_NODE(ni);
4755 	int error;
4756 
4757 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4758 		return;
4759 
4760 	WPI_NT_LOCK(sc);
4761 	error = wpi_del_key(ni, k);
4762 	WPI_NT_UNLOCK(sc);
4763 
4764 	if (error == 0) {
4765 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4766 		    __func__);
4767 	}
4768 }
4769 
4770 static int
4771 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4772     int set)
4773 {
4774 	struct ieee80211com *ic = vap->iv_ic;
4775 	struct wpi_softc *sc = ic->ic_softc;
4776 	struct wpi_vap *wvp = WPI_VAP(vap);
4777 	struct ieee80211_node *ni;
4778 	int error, ni_ref = 0;
4779 
4780 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4781 
4782 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4783 		/* Not for us. */
4784 		return 1;
4785 	}
4786 
4787 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4788 		/* XMIT keys are handled in wpi_tx_data(). */
4789 		return 1;
4790 	}
4791 
4792 	/* Handle group keys. */
4793 	if (&vap->iv_nw_keys[0] <= k &&
4794 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4795 		WPI_NT_LOCK(sc);
4796 		if (set)
4797 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4798 		else
4799 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4800 		WPI_NT_UNLOCK(sc);
4801 
4802 		if (vap->iv_state == IEEE80211_S_RUN) {
4803 			ieee80211_iterate_nodes(&ic->ic_sta,
4804 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4805 			    __DECONST(void *, k));
4806 		}
4807 
4808 		return 1;
4809 	}
4810 
4811 	switch (vap->iv_opmode) {
4812 	case IEEE80211_M_STA:
4813 		ni = vap->iv_bss;
4814 		break;
4815 
4816 	case IEEE80211_M_IBSS:
4817 	case IEEE80211_M_AHDEMO:
4818 	case IEEE80211_M_HOSTAP:
4819 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4820 		if (ni == NULL)
4821 			return 0;	/* should not happen */
4822 
4823 		ni_ref = 1;
4824 		break;
4825 
4826 	default:
4827 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4828 		    vap->iv_opmode);
4829 		return 0;
4830 	}
4831 
4832 	WPI_NT_LOCK(sc);
4833 	if (set)
4834 		error = wpi_load_key(ni, k);
4835 	else
4836 		error = wpi_del_key(ni, k);
4837 	WPI_NT_UNLOCK(sc);
4838 
4839 	if (ni_ref)
4840 		ieee80211_node_decref(ni);
4841 
4842 	return error;
4843 }
4844 
4845 static int
4846 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4847 {
4848 	return wpi_process_key(vap, k, 1);
4849 }
4850 
4851 static int
4852 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4853 {
4854 	return wpi_process_key(vap, k, 0);
4855 }
4856 
4857 /*
4858  * This function is called after the runtime firmware notifies us of its
4859  * readiness (called in a process context).
4860  */
4861 static int
4862 wpi_post_alive(struct wpi_softc *sc)
4863 {
4864 	int ntries, error;
4865 
4866 	/* Check (again) that the radio is not disabled. */
4867 	if ((error = wpi_nic_lock(sc)) != 0)
4868 		return error;
4869 
4870 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4871 
4872 	/* NB: Runtime firmware must be up and running. */
4873 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4874 		device_printf(sc->sc_dev,
4875 		    "RF switch: radio disabled (%s)\n", __func__);
4876 		wpi_nic_unlock(sc);
4877 		return EPERM;   /* :-) */
4878 	}
4879 	wpi_nic_unlock(sc);
4880 
4881 	/* Wait for thermal sensor to calibrate. */
4882 	for (ntries = 0; ntries < 1000; ntries++) {
4883 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4884 			break;
4885 		DELAY(10);
4886 	}
4887 
4888 	if (ntries == 1000) {
4889 		device_printf(sc->sc_dev,
4890 		    "timeout waiting for thermal sensor calibration\n");
4891 		return ETIMEDOUT;
4892 	}
4893 
4894 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4895 	return 0;
4896 }
4897 
4898 /*
4899  * The firmware boot code is small and is intended to be copied directly into
4900  * the NIC internal memory (no DMA transfer).
4901  */
4902 static int
4903 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4904 {
4905 	int error, ntries;
4906 
4907 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4908 
4909 	size /= sizeof (uint32_t);
4910 
4911 	if ((error = wpi_nic_lock(sc)) != 0)
4912 		return error;
4913 
4914 	/* Copy microcode image into NIC memory. */
4915 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4916 	    (const uint32_t *)ucode, size);
4917 
4918 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4919 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4920 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4921 
4922 	/* Start boot load now. */
4923 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4924 
4925 	/* Wait for transfer to complete. */
4926 	for (ntries = 0; ntries < 1000; ntries++) {
4927 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4928 		DPRINTF(sc, WPI_DEBUG_HW,
4929 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4930 		    WPI_FH_TX_STATUS_IDLE(6),
4931 		    status & WPI_FH_TX_STATUS_IDLE(6));
4932 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4933 			DPRINTF(sc, WPI_DEBUG_HW,
4934 			    "Status Match! - ntries = %d\n", ntries);
4935 			break;
4936 		}
4937 		DELAY(10);
4938 	}
4939 	if (ntries == 1000) {
4940 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4941 		    __func__);
4942 		wpi_nic_unlock(sc);
4943 		return ETIMEDOUT;
4944 	}
4945 
4946 	/* Enable boot after power up. */
4947 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4948 
4949 	wpi_nic_unlock(sc);
4950 	return 0;
4951 }
4952 
4953 static int
4954 wpi_load_firmware(struct wpi_softc *sc)
4955 {
4956 	struct wpi_fw_info *fw = &sc->fw;
4957 	struct wpi_dma_info *dma = &sc->fw_dma;
4958 	int error;
4959 
4960 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4961 
4962 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4963 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4964 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4965 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4966 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4967 
4968 	/* Tell adapter where to find initialization sections. */
4969 	if ((error = wpi_nic_lock(sc)) != 0)
4970 		return error;
4971 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4972 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4973 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4974 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4975 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4976 	wpi_nic_unlock(sc);
4977 
4978 	/* Load firmware boot code. */
4979 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4980 	if (error != 0) {
4981 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4982 		    __func__);
4983 		return error;
4984 	}
4985 
4986 	/* Now press "execute". */
4987 	WPI_WRITE(sc, WPI_RESET, 0);
4988 
4989 	/* Wait at most one second for first alive notification. */
4990 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4991 		device_printf(sc->sc_dev,
4992 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4993 		    __func__, error);
4994 		return error;
4995 	}
4996 
4997 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4998 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4999 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5000 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
5001 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5002 
5003 	/* Tell adapter where to find runtime sections. */
5004 	if ((error = wpi_nic_lock(sc)) != 0)
5005 		return error;
5006 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
5007 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5008 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5009 	    dma->paddr + WPI_FW_DATA_MAXSZ);
5010 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5011 	    WPI_FW_UPDATED | fw->main.textsz);
5012 	wpi_nic_unlock(sc);
5013 
5014 	return 0;
5015 }
5016 
5017 static int
5018 wpi_read_firmware(struct wpi_softc *sc)
5019 {
5020 	const struct firmware *fp;
5021 	struct wpi_fw_info *fw = &sc->fw;
5022 	const struct wpi_firmware_hdr *hdr;
5023 	int error;
5024 
5025 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5026 
5027 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5028 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5029 
5030 	WPI_UNLOCK(sc);
5031 	fp = firmware_get(WPI_FW_NAME);
5032 	WPI_LOCK(sc);
5033 
5034 	if (fp == NULL) {
5035 		device_printf(sc->sc_dev,
5036 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5037 		return EINVAL;
5038 	}
5039 
5040 	sc->fw_fp = fp;
5041 
5042 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5043 		device_printf(sc->sc_dev,
5044 		    "firmware file too short: %zu bytes\n", fp->datasize);
5045 		error = EINVAL;
5046 		goto fail;
5047 	}
5048 
5049 	fw->size = fp->datasize;
5050 	fw->data = (const uint8_t *)fp->data;
5051 
5052 	/* Extract firmware header information. */
5053 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5054 
5055 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5056 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5057 
5058 	fw->main.textsz = le32toh(hdr->rtextsz);
5059 	fw->main.datasz = le32toh(hdr->rdatasz);
5060 	fw->init.textsz = le32toh(hdr->itextsz);
5061 	fw->init.datasz = le32toh(hdr->idatasz);
5062 	fw->boot.textsz = le32toh(hdr->btextsz);
5063 	fw->boot.datasz = 0;
5064 
5065 	/* Sanity-check firmware header. */
5066 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5067 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5068 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5069 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5070 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5071 	    (fw->boot.textsz & 3) != 0) {
5072 		device_printf(sc->sc_dev, "invalid firmware header\n");
5073 		error = EINVAL;
5074 		goto fail;
5075 	}
5076 
5077 	/* Check that all firmware sections fit. */
5078 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5079 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5080 		device_printf(sc->sc_dev,
5081 		    "firmware file too short: %zu bytes\n", fw->size);
5082 		error = EINVAL;
5083 		goto fail;
5084 	}
5085 
5086 	/* Get pointers to firmware sections. */
5087 	fw->main.text = (const uint8_t *)(hdr + 1);
5088 	fw->main.data = fw->main.text + fw->main.textsz;
5089 	fw->init.text = fw->main.data + fw->main.datasz;
5090 	fw->init.data = fw->init.text + fw->init.textsz;
5091 	fw->boot.text = fw->init.data + fw->init.datasz;
5092 
5093 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5094 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5095 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5096 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5097 	    fw->main.textsz, fw->main.datasz,
5098 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5099 
5100 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5101 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5102 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5103 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5104 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5105 
5106 	return 0;
5107 
5108 fail:	wpi_unload_firmware(sc);
5109 	return error;
5110 }
5111 
5112 /**
5113  * Free the referenced firmware image
5114  */
5115 static void
5116 wpi_unload_firmware(struct wpi_softc *sc)
5117 {
5118 	if (sc->fw_fp != NULL) {
5119 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5120 		sc->fw_fp = NULL;
5121 	}
5122 }
5123 
5124 static int
5125 wpi_clock_wait(struct wpi_softc *sc)
5126 {
5127 	int ntries;
5128 
5129 	/* Set "initialization complete" bit. */
5130 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5131 
5132 	/* Wait for clock stabilization. */
5133 	for (ntries = 0; ntries < 2500; ntries++) {
5134 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5135 			return 0;
5136 		DELAY(100);
5137 	}
5138 	device_printf(sc->sc_dev,
5139 	    "%s: timeout waiting for clock stabilization\n", __func__);
5140 
5141 	return ETIMEDOUT;
5142 }
5143 
5144 static int
5145 wpi_apm_init(struct wpi_softc *sc)
5146 {
5147 	uint32_t reg;
5148 	int error;
5149 
5150 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5151 
5152 	/* Disable L0s exit timer (NMI bug workaround). */
5153 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5154 	/* Don't wait for ICH L0s (ICH bug workaround). */
5155 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5156 
5157 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5158 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5159 
5160 	/* Retrieve PCIe Active State Power Management (ASPM). */
5161 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5162 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5163 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5164 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5165 	else
5166 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5167 
5168 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5169 
5170 	/* Wait for clock stabilization before accessing prph. */
5171 	if ((error = wpi_clock_wait(sc)) != 0)
5172 		return error;
5173 
5174 	if ((error = wpi_nic_lock(sc)) != 0)
5175 		return error;
5176 	/* Cleanup. */
5177 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5178 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5179 
5180 	/* Enable DMA and BSM (Bootstrap State Machine). */
5181 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5182 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5183 	DELAY(20);
5184 	/* Disable L1-Active. */
5185 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5186 	wpi_nic_unlock(sc);
5187 
5188 	return 0;
5189 }
5190 
5191 static void
5192 wpi_apm_stop_master(struct wpi_softc *sc)
5193 {
5194 	int ntries;
5195 
5196 	/* Stop busmaster DMA activity. */
5197 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5198 
5199 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5200 	    WPI_GP_CNTRL_MAC_PS)
5201 		return; /* Already asleep. */
5202 
5203 	for (ntries = 0; ntries < 100; ntries++) {
5204 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5205 			return;
5206 		DELAY(10);
5207 	}
5208 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5209 	    __func__);
5210 }
5211 
5212 static void
5213 wpi_apm_stop(struct wpi_softc *sc)
5214 {
5215 	wpi_apm_stop_master(sc);
5216 
5217 	/* Reset the entire device. */
5218 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5219 	DELAY(10);
5220 	/* Clear "initialization complete" bit. */
5221 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5222 }
5223 
5224 static void
5225 wpi_nic_config(struct wpi_softc *sc)
5226 {
5227 	uint32_t rev;
5228 
5229 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5230 
5231 	/* voodoo from the Linux "driver".. */
5232 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5233 	if ((rev & 0xc0) == 0x40)
5234 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5235 	else if (!(rev & 0x80))
5236 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5237 
5238 	if (sc->cap == 0x80)
5239 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5240 
5241 	if ((sc->rev & 0xf0) == 0xd0)
5242 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5243 	else
5244 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5245 
5246 	if (sc->type > 1)
5247 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5248 }
5249 
5250 static int
5251 wpi_hw_init(struct wpi_softc *sc)
5252 {
5253 	uint8_t chnl;
5254 	int ntries, error;
5255 
5256 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5257 
5258 	/* Clear pending interrupts. */
5259 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5260 
5261 	if ((error = wpi_apm_init(sc)) != 0) {
5262 		device_printf(sc->sc_dev,
5263 		    "%s: could not power ON adapter, error %d\n", __func__,
5264 		    error);
5265 		return error;
5266 	}
5267 
5268 	/* Select VMAIN power source. */
5269 	if ((error = wpi_nic_lock(sc)) != 0)
5270 		return error;
5271 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5272 	wpi_nic_unlock(sc);
5273 	/* Spin until VMAIN gets selected. */
5274 	for (ntries = 0; ntries < 5000; ntries++) {
5275 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5276 			break;
5277 		DELAY(10);
5278 	}
5279 	if (ntries == 5000) {
5280 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5281 		return ETIMEDOUT;
5282 	}
5283 
5284 	/* Perform adapter initialization. */
5285 	wpi_nic_config(sc);
5286 
5287 	/* Initialize RX ring. */
5288 	if ((error = wpi_nic_lock(sc)) != 0)
5289 		return error;
5290 	/* Set physical address of RX ring. */
5291 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5292 	/* Set physical address of RX read pointer. */
5293 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5294 	    offsetof(struct wpi_shared, next));
5295 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5296 	/* Enable RX. */
5297 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5298 	    WPI_FH_RX_CONFIG_DMA_ENA |
5299 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5300 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5301 	    WPI_FH_RX_CONFIG_MAXFRAG |
5302 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5303 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5304 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5305 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5306 	wpi_nic_unlock(sc);
5307 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5308 
5309 	/* Initialize TX rings. */
5310 	if ((error = wpi_nic_lock(sc)) != 0)
5311 		return error;
5312 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5313 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5314 	/* Enable all 6 TX rings. */
5315 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5316 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5317 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5318 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5319 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5320 	/* Set physical address of TX rings. */
5321 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5322 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5323 
5324 	/* Enable all DMA channels. */
5325 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5326 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5327 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5328 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5329 	}
5330 	wpi_nic_unlock(sc);
5331 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5332 
5333 	/* Clear "radio off" and "commands blocked" bits. */
5334 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5335 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5336 
5337 	/* Clear pending interrupts. */
5338 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5339 	/* Enable interrupts. */
5340 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5341 
5342 	/* _Really_ make sure "radio off" bit is cleared! */
5343 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5344 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5345 
5346 	if ((error = wpi_load_firmware(sc)) != 0) {
5347 		device_printf(sc->sc_dev,
5348 		    "%s: could not load firmware, error %d\n", __func__,
5349 		    error);
5350 		return error;
5351 	}
5352 	/* Wait at most one second for firmware alive notification. */
5353 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5354 		device_printf(sc->sc_dev,
5355 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5356 		    __func__, error);
5357 		return error;
5358 	}
5359 
5360 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5361 
5362 	/* Do post-firmware initialization. */
5363 	return wpi_post_alive(sc);
5364 }
5365 
5366 static void
5367 wpi_hw_stop(struct wpi_softc *sc)
5368 {
5369 	uint8_t chnl, qid;
5370 	int ntries;
5371 
5372 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5373 
5374 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5375 		wpi_nic_lock(sc);
5376 
5377 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5378 
5379 	/* Disable interrupts. */
5380 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5381 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5382 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5383 
5384 	/* Make sure we no longer hold the NIC lock. */
5385 	wpi_nic_unlock(sc);
5386 
5387 	if (wpi_nic_lock(sc) == 0) {
5388 		/* Stop TX scheduler. */
5389 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5390 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5391 
5392 		/* Stop all DMA channels. */
5393 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5394 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5395 			for (ntries = 0; ntries < 200; ntries++) {
5396 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5397 				    WPI_FH_TX_STATUS_IDLE(chnl))
5398 					break;
5399 				DELAY(10);
5400 			}
5401 		}
5402 		wpi_nic_unlock(sc);
5403 	}
5404 
5405 	/* Stop RX ring. */
5406 	wpi_reset_rx_ring(sc);
5407 
5408 	/* Reset all TX rings. */
5409 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5410 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5411 
5412 	if (wpi_nic_lock(sc) == 0) {
5413 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5414 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5415 		wpi_nic_unlock(sc);
5416 	}
5417 	DELAY(5);
5418 	/* Power OFF adapter. */
5419 	wpi_apm_stop(sc);
5420 }
5421 
5422 static void
5423 wpi_radio_on(void *arg0, int pending)
5424 {
5425 	struct wpi_softc *sc = arg0;
5426 	struct ieee80211com *ic = &sc->sc_ic;
5427 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5428 
5429 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5430 
5431 	WPI_LOCK(sc);
5432 	callout_stop(&sc->watchdog_rfkill);
5433 	WPI_UNLOCK(sc);
5434 
5435 	if (vap != NULL)
5436 		ieee80211_init(vap);
5437 }
5438 
5439 static void
5440 wpi_radio_off(void *arg0, int pending)
5441 {
5442 	struct wpi_softc *sc = arg0;
5443 	struct ieee80211com *ic = &sc->sc_ic;
5444 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5445 
5446 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5447 
5448 	ieee80211_notify_radio(ic, 0);
5449 	wpi_stop(sc);
5450 	if (vap != NULL)
5451 		ieee80211_stop(vap);
5452 
5453 	WPI_LOCK(sc);
5454 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5455 	WPI_UNLOCK(sc);
5456 }
5457 
5458 static int
5459 wpi_init(struct wpi_softc *sc)
5460 {
5461 	int error = 0;
5462 
5463 	WPI_LOCK(sc);
5464 
5465 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5466 
5467 	if (sc->sc_running != 0)
5468 		goto end;
5469 
5470 	/* Check that the radio is not disabled by hardware switch. */
5471 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5472 		device_printf(sc->sc_dev,
5473 		    "RF switch: radio disabled (%s)\n", __func__);
5474 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5475 		    sc);
5476 		error = EINPROGRESS;
5477 		goto end;
5478 	}
5479 
5480 	/* Read firmware images from the filesystem. */
5481 	if ((error = wpi_read_firmware(sc)) != 0) {
5482 		device_printf(sc->sc_dev,
5483 		    "%s: could not read firmware, error %d\n", __func__,
5484 		    error);
5485 		goto end;
5486 	}
5487 
5488 	sc->sc_running = 1;
5489 
5490 	/* Initialize hardware and upload firmware. */
5491 	error = wpi_hw_init(sc);
5492 	wpi_unload_firmware(sc);
5493 	if (error != 0) {
5494 		device_printf(sc->sc_dev,
5495 		    "%s: could not initialize hardware, error %d\n", __func__,
5496 		    error);
5497 		goto fail;
5498 	}
5499 
5500 	/* Configure adapter now that it is ready. */
5501 	if ((error = wpi_config(sc)) != 0) {
5502 		device_printf(sc->sc_dev,
5503 		    "%s: could not configure device, error %d\n", __func__,
5504 		    error);
5505 		goto fail;
5506 	}
5507 
5508 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5509 
5510 	WPI_UNLOCK(sc);
5511 
5512 	return 0;
5513 
5514 fail:	wpi_stop_locked(sc);
5515 
5516 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5517 	WPI_UNLOCK(sc);
5518 
5519 	return error;
5520 }
5521 
5522 static void
5523 wpi_stop_locked(struct wpi_softc *sc)
5524 {
5525 
5526 	WPI_LOCK_ASSERT(sc);
5527 
5528 	if (sc->sc_running == 0)
5529 		return;
5530 
5531 	WPI_TX_LOCK(sc);
5532 	WPI_TXQ_LOCK(sc);
5533 	sc->sc_running = 0;
5534 	WPI_TXQ_UNLOCK(sc);
5535 	WPI_TX_UNLOCK(sc);
5536 
5537 	WPI_TXQ_STATE_LOCK(sc);
5538 	callout_stop(&sc->tx_timeout);
5539 	WPI_TXQ_STATE_UNLOCK(sc);
5540 
5541 	WPI_RXON_LOCK(sc);
5542 	callout_stop(&sc->scan_timeout);
5543 	callout_stop(&sc->calib_to);
5544 	WPI_RXON_UNLOCK(sc);
5545 
5546 	/* Power OFF hardware. */
5547 	wpi_hw_stop(sc);
5548 }
5549 
5550 static void
5551 wpi_stop(struct wpi_softc *sc)
5552 {
5553 	WPI_LOCK(sc);
5554 	wpi_stop_locked(sc);
5555 	WPI_UNLOCK(sc);
5556 }
5557 
5558 /*
5559  * Callback from net80211 to start a scan.
5560  */
5561 static void
5562 wpi_scan_start(struct ieee80211com *ic)
5563 {
5564 	struct wpi_softc *sc = ic->ic_softc;
5565 
5566 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5567 }
5568 
5569 /*
5570  * Callback from net80211 to terminate a scan.
5571  */
5572 static void
5573 wpi_scan_end(struct ieee80211com *ic)
5574 {
5575 	struct wpi_softc *sc = ic->ic_softc;
5576 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5577 
5578 	if (vap->iv_state == IEEE80211_S_RUN)
5579 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5580 }
5581 
5582 /**
5583  * Called by the net80211 framework to indicate to the driver
5584  * that the channel should be changed
5585  */
5586 static void
5587 wpi_set_channel(struct ieee80211com *ic)
5588 {
5589 	const struct ieee80211_channel *c = ic->ic_curchan;
5590 	struct wpi_softc *sc = ic->ic_softc;
5591 	int error;
5592 
5593 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5594 
5595 	WPI_LOCK(sc);
5596 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5597 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5598 	WPI_UNLOCK(sc);
5599 	WPI_TX_LOCK(sc);
5600 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5601 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5602 	WPI_TX_UNLOCK(sc);
5603 
5604 	/*
5605 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5606 	 * are already taken care of by their respective firmware commands.
5607 	 */
5608 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5609 		WPI_RXON_LOCK(sc);
5610 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5611 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5612 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5613 			    WPI_RXON_24GHZ);
5614 		} else {
5615 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5616 			    WPI_RXON_24GHZ);
5617 		}
5618 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5619 			device_printf(sc->sc_dev,
5620 			    "%s: error %d setting channel\n", __func__,
5621 			    error);
5622 		WPI_RXON_UNLOCK(sc);
5623 	}
5624 }
5625 
5626 /**
5627  * Called by net80211 to indicate that we need to scan the current
5628  * channel. The channel is previously be set via the wpi_set_channel
5629  * callback.
5630  */
5631 static void
5632 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5633 {
5634 	struct ieee80211vap *vap = ss->ss_vap;
5635 	struct ieee80211com *ic = vap->iv_ic;
5636 	struct wpi_softc *sc = ic->ic_softc;
5637 	int error;
5638 
5639 	WPI_RXON_LOCK(sc);
5640 	error = wpi_scan(sc, ic->ic_curchan);
5641 	WPI_RXON_UNLOCK(sc);
5642 	if (error != 0)
5643 		ieee80211_cancel_scan(vap);
5644 }
5645 
5646 /**
5647  * Called by the net80211 framework to indicate
5648  * the minimum dwell time has been met, terminate the scan.
5649  * We don't actually terminate the scan as the firmware will notify
5650  * us when it's finished and we have no way to interrupt it.
5651  */
5652 static void
5653 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5654 {
5655 	/* NB: don't try to abort scan; wait for firmware to finish */
5656 }
5657 
5658 static void
5659 wpi_hw_reset(void *arg, int pending)
5660 {
5661 	struct wpi_softc *sc = arg;
5662 	struct ieee80211com *ic = &sc->sc_ic;
5663 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5664 
5665 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5666 
5667 	ieee80211_notify_radio(ic, 0);
5668 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5669 		ieee80211_cancel_scan(vap);
5670 
5671 	wpi_stop(sc);
5672 	if (vap != NULL) {
5673 		ieee80211_stop(vap);
5674 		ieee80211_init(vap);
5675 	}
5676 }
5677