xref: /freebsd/sys/dev/xen/netfront/netfront.c (revision acc1a9ef)
1 /*-
2  * Copyright (c) 2004-2006 Kip Macy
3  * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/param.h>
35 #include <sys/sockio.h>
36 #include <sys/limits.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 #include <sys/taskqueue.h>
44 
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_ether.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_lro.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 
62 #include <sys/bus.h>
63 
64 #include <xen/xen-os.h>
65 #include <xen/hypervisor.h>
66 #include <xen/xen_intr.h>
67 #include <xen/gnttab.h>
68 #include <xen/interface/memory.h>
69 #include <xen/interface/io/netif.h>
70 #include <xen/xenbus/xenbusvar.h>
71 
72 #include "xenbus_if.h"
73 
74 /* Features supported by all backends.  TSO and LRO can be negotiated */
75 #define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
76 
77 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
78 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
79 
80 /*
81  * Should the driver do LRO on the RX end
82  *  this can be toggled on the fly, but the
83  *  interface must be reset (down/up) for it
84  *  to take effect.
85  */
86 static int xn_enable_lro = 1;
87 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
88 
89 /*
90  * Number of pairs of queues.
91  */
92 static unsigned long xn_num_queues = 4;
93 TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues);
94 
95 /**
96  * \brief The maximum allowed data fragments in a single transmit
97  *        request.
98  *
99  * This limit is imposed by the backend driver.  We assume here that
100  * we are dealing with a Linux driver domain and have set our limit
101  * to mirror the Linux MAX_SKB_FRAGS constant.
102  */
103 #define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
104 
105 #define RX_COPY_THRESHOLD 256
106 
107 #define net_ratelimit() 0
108 
109 struct netfront_rxq;
110 struct netfront_txq;
111 struct netfront_info;
112 struct netfront_rx_info;
113 
114 static void xn_txeof(struct netfront_txq *);
115 static void xn_rxeof(struct netfront_rxq *);
116 static void xn_alloc_rx_buffers(struct netfront_rxq *);
117 
118 static void xn_release_rx_bufs(struct netfront_rxq *);
119 static void xn_release_tx_bufs(struct netfront_txq *);
120 
121 static void xn_rxq_intr(void *);
122 static void xn_txq_intr(void *);
123 static int  xn_intr(void *);
124 static inline int xn_count_frags(struct mbuf *m);
125 static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *);
126 static int xn_ioctl(struct ifnet *, u_long, caddr_t);
127 static void xn_ifinit_locked(struct netfront_info *);
128 static void xn_ifinit(void *);
129 static void xn_stop(struct netfront_info *);
130 static void xn_query_features(struct netfront_info *np);
131 static int xn_configure_features(struct netfront_info *np);
132 static void netif_free(struct netfront_info *info);
133 static int netfront_detach(device_t dev);
134 
135 static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *);
136 static int xn_txq_mq_start(struct ifnet *, struct mbuf *);
137 
138 static int talk_to_backend(device_t dev, struct netfront_info *info);
139 static int create_netdev(device_t dev);
140 static void netif_disconnect_backend(struct netfront_info *info);
141 static int setup_device(device_t dev, struct netfront_info *info,
142     unsigned long);
143 static int xn_ifmedia_upd(struct ifnet *ifp);
144 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
145 
146 int xn_connect(struct netfront_info *);
147 
148 static int xn_get_responses(struct netfront_rxq *,
149     struct netfront_rx_info *, RING_IDX, RING_IDX *,
150     struct mbuf **);
151 
152 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
153 
154 #define INVALID_P2M_ENTRY (~0UL)
155 
156 struct xn_rx_stats
157 {
158 	u_long	rx_packets;	/* total packets received	*/
159 	u_long	rx_bytes;	/* total bytes received 	*/
160 	u_long	rx_errors;	/* bad packets received		*/
161 };
162 
163 struct xn_tx_stats
164 {
165 	u_long	tx_packets;	/* total packets transmitted	*/
166 	u_long	tx_bytes;	/* total bytes transmitted	*/
167 	u_long	tx_errors;	/* packet transmit problems	*/
168 };
169 
170 #define XN_QUEUE_NAME_LEN  8	/* xn{t,r}x_%u, allow for two digits */
171 struct netfront_rxq {
172 	struct netfront_info 	*info;
173 	u_int			id;
174 	char			name[XN_QUEUE_NAME_LEN];
175 	struct mtx		lock;
176 
177 	int			ring_ref;
178 	netif_rx_front_ring_t 	ring;
179 	xen_intr_handle_t	xen_intr_handle;
180 
181 	grant_ref_t 		gref_head;
182 	grant_ref_t 		grant_ref[NET_TX_RING_SIZE + 1];
183 
184 	struct mbuf		*mbufs[NET_RX_RING_SIZE + 1];
185 	struct mbufq		batch;		/* batch queue */
186 	int                     target;
187 
188 	xen_pfn_t		pfn_array[NET_RX_RING_SIZE];
189 
190 	struct lro_ctrl		lro;
191 
192 	struct taskqueue 	*tq;
193 	struct task		intrtask;
194 
195 	struct xn_rx_stats	stats;
196 };
197 
198 struct netfront_txq {
199 	struct netfront_info 	*info;
200 	u_int 			id;
201 	char			name[XN_QUEUE_NAME_LEN];
202 	struct mtx		lock;
203 
204 	int			ring_ref;
205 	netif_tx_front_ring_t	ring;
206 	xen_intr_handle_t 	xen_intr_handle;
207 
208 	grant_ref_t		gref_head;
209 	grant_ref_t		grant_ref[NET_TX_RING_SIZE + 1];
210 
211 	struct mbuf		*mbufs[NET_TX_RING_SIZE + 1];
212 	int			mbufs_cnt;
213 	struct buf_ring		*br;
214 
215 	struct taskqueue 	*tq;
216 	struct task       	intrtask;
217 	struct task       	defrtask;
218 
219 	bool			full;
220 
221 	struct xn_tx_stats	stats;
222 };
223 
224 struct netfront_info {
225 	struct ifnet 		*xn_ifp;
226 
227 	struct mtx   		sc_lock;
228 
229 	u_int  num_queues;
230 	struct netfront_rxq 	*rxq;
231 	struct netfront_txq 	*txq;
232 
233 	u_int			carrier;
234 	u_int			maxfrags;
235 
236 	/* Receive-ring batched refills. */
237 #define RX_MIN_TARGET 32
238 #define RX_MAX_TARGET NET_RX_RING_SIZE
239 	int			rx_min_target;
240 	int			rx_max_target;
241 
242 	device_t		xbdev;
243 	uint8_t			mac[ETHER_ADDR_LEN];
244 
245 	int			xn_if_flags;
246 
247 	struct ifmedia		sc_media;
248 
249 	bool			xn_resume;
250 };
251 
252 struct netfront_rx_info {
253 	struct netif_rx_response rx;
254 	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
255 };
256 
257 #define XN_RX_LOCK(_q)         mtx_lock(&(_q)->lock)
258 #define XN_RX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
259 
260 #define XN_TX_LOCK(_q)         mtx_lock(&(_q)->lock)
261 #define XN_TX_TRYLOCK(_q)      mtx_trylock(&(_q)->lock)
262 #define XN_TX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
263 
264 #define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
265 #define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
266 
267 #define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
268 #define XN_RX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
269 #define XN_TX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
270 
271 #define netfront_carrier_on(netif)	((netif)->carrier = 1)
272 #define netfront_carrier_off(netif)	((netif)->carrier = 0)
273 #define netfront_carrier_ok(netif)	((netif)->carrier)
274 
275 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
276 
277 static inline void
278 add_id_to_freelist(struct mbuf **list, uintptr_t id)
279 {
280 
281 	KASSERT(id != 0,
282 		("%s: the head item (0) must always be free.", __func__));
283 	list[id] = list[0];
284 	list[0]  = (struct mbuf *)id;
285 }
286 
287 static inline unsigned short
288 get_id_from_freelist(struct mbuf **list)
289 {
290 	uintptr_t id;
291 
292 	id = (uintptr_t)list[0];
293 	KASSERT(id != 0,
294 		("%s: the head item (0) must always remain free.", __func__));
295 	list[0] = list[id];
296 	return (id);
297 }
298 
299 static inline int
300 xn_rxidx(RING_IDX idx)
301 {
302 
303 	return idx & (NET_RX_RING_SIZE - 1);
304 }
305 
306 static inline struct mbuf *
307 xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri)
308 {
309 	int i;
310 	struct mbuf *m;
311 
312 	i = xn_rxidx(ri);
313 	m = rxq->mbufs[i];
314 	rxq->mbufs[i] = NULL;
315 	return (m);
316 }
317 
318 static inline grant_ref_t
319 xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri)
320 {
321 	int i = xn_rxidx(ri);
322 	grant_ref_t ref = rxq->grant_ref[i];
323 
324 	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
325 	rxq->grant_ref[i] = GRANT_REF_INVALID;
326 	return (ref);
327 }
328 
329 #define IPRINTK(fmt, args...) \
330     printf("[XEN] " fmt, ##args)
331 #ifdef INVARIANTS
332 #define WPRINTK(fmt, args...) \
333     printf("[XEN] " fmt, ##args)
334 #else
335 #define WPRINTK(fmt, args...)
336 #endif
337 #ifdef DEBUG
338 #define DPRINTK(fmt, args...) \
339     printf("[XEN] %s: " fmt, __func__, ##args)
340 #else
341 #define DPRINTK(fmt, args...)
342 #endif
343 
344 /**
345  * Read the 'mac' node at the given device's node in the store, and parse that
346  * as colon-separated octets, placing result the given mac array.  mac must be
347  * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
348  * Return 0 on success, or errno on error.
349  */
350 static int
351 xen_net_read_mac(device_t dev, uint8_t mac[])
352 {
353 	int error, i;
354 	char *s, *e, *macstr;
355 	const char *path;
356 
357 	path = xenbus_get_node(dev);
358 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
359 	if (error == ENOENT) {
360 		/*
361 		 * Deal with missing mac XenStore nodes on devices with
362 		 * HVM emulation (the 'ioemu' configuration attribute)
363 		 * enabled.
364 		 *
365 		 * The HVM emulator may execute in a stub device model
366 		 * domain which lacks the permission, only given to Dom0,
367 		 * to update the guest's XenStore tree.  For this reason,
368 		 * the HVM emulator doesn't even attempt to write the
369 		 * front-side mac node, even when operating in Dom0.
370 		 * However, there should always be a mac listed in the
371 		 * backend tree.  Fallback to this version if our query
372 		 * of the front side XenStore location doesn't find
373 		 * anything.
374 		 */
375 		path = xenbus_get_otherend_path(dev);
376 		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
377 	}
378 	if (error != 0) {
379 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
380 		return (error);
381 	}
382 
383 	s = macstr;
384 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
385 		mac[i] = strtoul(s, &e, 16);
386 		if (s == e || (e[0] != ':' && e[0] != 0)) {
387 			free(macstr, M_XENBUS);
388 			return (ENOENT);
389 		}
390 		s = &e[1];
391 	}
392 	free(macstr, M_XENBUS);
393 	return (0);
394 }
395 
396 /**
397  * Entry point to this code when a new device is created.  Allocate the basic
398  * structures and the ring buffers for communication with the backend, and
399  * inform the backend of the appropriate details for those.  Switch to
400  * Connected state.
401  */
402 static int
403 netfront_probe(device_t dev)
404 {
405 
406 	if (xen_hvm_domain() && xen_disable_pv_nics != 0)
407 		return (ENXIO);
408 
409 	if (!strcmp(xenbus_get_type(dev), "vif")) {
410 		device_set_desc(dev, "Virtual Network Interface");
411 		return (0);
412 	}
413 
414 	return (ENXIO);
415 }
416 
417 static int
418 netfront_attach(device_t dev)
419 {
420 	int err;
421 
422 	err = create_netdev(dev);
423 	if (err != 0) {
424 		xenbus_dev_fatal(dev, err, "creating netdev");
425 		return (err);
426 	}
427 
428 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
429 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
430 	    OID_AUTO, "enable_lro", CTLFLAG_RW,
431 	    &xn_enable_lro, 0, "Large Receive Offload");
432 
433 	SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev),
434 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
435 	    OID_AUTO, "num_queues", CTLFLAG_RD,
436 	    &xn_num_queues, "Number of pairs of queues");
437 
438 	return (0);
439 }
440 
441 static int
442 netfront_suspend(device_t dev)
443 {
444 	struct netfront_info *np = device_get_softc(dev);
445 	u_int i;
446 
447 	for (i = 0; i < np->num_queues; i++) {
448 		XN_RX_LOCK(&np->rxq[i]);
449 		XN_TX_LOCK(&np->txq[i]);
450 	}
451 	netfront_carrier_off(np);
452 	for (i = 0; i < np->num_queues; i++) {
453 		XN_RX_UNLOCK(&np->rxq[i]);
454 		XN_TX_UNLOCK(&np->txq[i]);
455 	}
456 	return (0);
457 }
458 
459 /**
460  * We are reconnecting to the backend, due to a suspend/resume, or a backend
461  * driver restart.  We tear down our netif structure and recreate it, but
462  * leave the device-layer structures intact so that this is transparent to the
463  * rest of the kernel.
464  */
465 static int
466 netfront_resume(device_t dev)
467 {
468 	struct netfront_info *info = device_get_softc(dev);
469 
470 	info->xn_resume = true;
471 	netif_disconnect_backend(info);
472 	return (0);
473 }
474 
475 static int
476 write_queue_xenstore_keys(device_t dev,
477     struct netfront_rxq *rxq,
478     struct netfront_txq *txq,
479     struct xs_transaction *xst, bool hierarchy)
480 {
481 	int err;
482 	const char *message;
483 	const char *node = xenbus_get_node(dev);
484 	char *path;
485 	size_t path_size;
486 
487 	KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids"));
488 	/* Split event channel support is not yet there. */
489 	KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle,
490 	    ("Split event channels are not supported"));
491 
492 	if (hierarchy) {
493 		path_size = strlen(node) + 10;
494 		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
495 		snprintf(path, path_size, "%s/queue-%u", node, rxq->id);
496 	} else {
497 		path_size = strlen(node) + 1;
498 		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
499 		snprintf(path, path_size, "%s", node);
500 	}
501 
502 	err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref);
503 	if (err != 0) {
504 		message = "writing tx ring-ref";
505 		goto error;
506 	}
507 	err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref);
508 	if (err != 0) {
509 		message = "writing rx ring-ref";
510 		goto error;
511 	}
512 	err = xs_printf(*xst, path, "event-channel", "%u",
513 	    xen_intr_port(rxq->xen_intr_handle));
514 	if (err != 0) {
515 		message = "writing event-channel";
516 		goto error;
517 	}
518 
519 	free(path, M_DEVBUF);
520 
521 	return (0);
522 
523 error:
524 	free(path, M_DEVBUF);
525 	xenbus_dev_fatal(dev, err, "%s", message);
526 
527 	return (err);
528 }
529 
530 /* Common code used when first setting up, and when resuming. */
531 static int
532 talk_to_backend(device_t dev, struct netfront_info *info)
533 {
534 	const char *message;
535 	struct xs_transaction xst;
536 	const char *node = xenbus_get_node(dev);
537 	int err;
538 	unsigned long num_queues, max_queues = 0;
539 	unsigned int i;
540 
541 	err = xen_net_read_mac(dev, info->mac);
542 	if (err != 0) {
543 		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
544 		goto out;
545 	}
546 
547 	err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev),
548 	    "multi-queue-max-queues", NULL, "%lu", &max_queues);
549 	if (err != 0)
550 		max_queues = 1;
551 	num_queues = xn_num_queues;
552 	if (num_queues > max_queues)
553 		num_queues = max_queues;
554 
555 	err = setup_device(dev, info, num_queues);
556 	if (err != 0)
557 		goto out;
558 
559  again:
560 	err = xs_transaction_start(&xst);
561 	if (err != 0) {
562 		xenbus_dev_fatal(dev, err, "starting transaction");
563 		goto free;
564 	}
565 
566 	if (info->num_queues == 1) {
567 		err = write_queue_xenstore_keys(dev, &info->rxq[0],
568 		    &info->txq[0], &xst, false);
569 		if (err != 0)
570 			goto abort_transaction_no_def_error;
571 	} else {
572 		err = xs_printf(xst, node, "multi-queue-num-queues",
573 		    "%u", info->num_queues);
574 		if (err != 0) {
575 			message = "writing multi-queue-num-queues";
576 			goto abort_transaction;
577 		}
578 
579 		for (i = 0; i < info->num_queues; i++) {
580 			err = write_queue_xenstore_keys(dev, &info->rxq[i],
581 			    &info->txq[i], &xst, true);
582 			if (err != 0)
583 				goto abort_transaction_no_def_error;
584 		}
585 	}
586 
587 	err = xs_printf(xst, node, "request-rx-copy", "%u", 1);
588 	if (err != 0) {
589 		message = "writing request-rx-copy";
590 		goto abort_transaction;
591 	}
592 	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
593 	if (err != 0) {
594 		message = "writing feature-rx-notify";
595 		goto abort_transaction;
596 	}
597 	err = xs_printf(xst, node, "feature-sg", "%d", 1);
598 	if (err != 0) {
599 		message = "writing feature-sg";
600 		goto abort_transaction;
601 	}
602 	err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
603 	if (err != 0) {
604 		message = "writing feature-gso-tcpv4";
605 		goto abort_transaction;
606 	}
607 
608 	err = xs_transaction_end(xst, 0);
609 	if (err != 0) {
610 		if (err == EAGAIN)
611 			goto again;
612 		xenbus_dev_fatal(dev, err, "completing transaction");
613 		goto free;
614 	}
615 
616 	return 0;
617 
618  abort_transaction:
619 	xenbus_dev_fatal(dev, err, "%s", message);
620  abort_transaction_no_def_error:
621 	xs_transaction_end(xst, 1);
622  free:
623 	netif_free(info);
624  out:
625 	return (err);
626 }
627 
628 static void
629 xn_rxq_tq_intr(void *xrxq, int pending)
630 {
631 	struct netfront_rxq *rxq = xrxq;
632 
633 	XN_RX_LOCK(rxq);
634 	xn_rxeof(rxq);
635 	XN_RX_UNLOCK(rxq);
636 }
637 
638 static void
639 xn_txq_start(struct netfront_txq *txq)
640 {
641 	struct netfront_info *np = txq->info;
642 	struct ifnet *ifp = np->xn_ifp;
643 
644 	XN_TX_LOCK_ASSERT(txq);
645 	if (!drbr_empty(ifp, txq->br))
646 		xn_txq_mq_start_locked(txq, NULL);
647 }
648 
649 static void
650 xn_txq_tq_intr(void *xtxq, int pending)
651 {
652 	struct netfront_txq *txq = xtxq;
653 
654 	XN_TX_LOCK(txq);
655 	if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring))
656 		xn_txeof(txq);
657 	xn_txq_start(txq);
658 	XN_TX_UNLOCK(txq);
659 }
660 
661 static void
662 xn_txq_tq_deferred(void *xtxq, int pending)
663 {
664 	struct netfront_txq *txq = xtxq;
665 
666 	XN_TX_LOCK(txq);
667 	xn_txq_start(txq);
668 	XN_TX_UNLOCK(txq);
669 }
670 
671 static void
672 disconnect_rxq(struct netfront_rxq *rxq)
673 {
674 
675 	xn_release_rx_bufs(rxq);
676 	gnttab_free_grant_references(rxq->gref_head);
677 	gnttab_end_foreign_access_ref(rxq->ring_ref);
678 	/*
679 	 * No split event channel support at the moment, handle will
680 	 * be unbound in tx. So no need to call xen_intr_unbind here,
681 	 * but we do want to reset the handler to 0.
682 	 */
683 	rxq->xen_intr_handle = 0;
684 }
685 
686 static void
687 destroy_rxq(struct netfront_rxq *rxq)
688 {
689 
690 	free(rxq->ring.sring, M_DEVBUF);
691 	taskqueue_drain_all(rxq->tq);
692 	taskqueue_free(rxq->tq);
693 }
694 
695 static void
696 destroy_rxqs(struct netfront_info *np)
697 {
698 	int i;
699 
700 	for (i = 0; i < np->num_queues; i++)
701 		destroy_rxq(&np->rxq[i]);
702 
703 	free(np->rxq, M_DEVBUF);
704 	np->rxq = NULL;
705 }
706 
707 static int
708 setup_rxqs(device_t dev, struct netfront_info *info,
709 	   unsigned long num_queues)
710 {
711 	int q, i;
712 	int error;
713 	netif_rx_sring_t *rxs;
714 	struct netfront_rxq *rxq;
715 
716 	info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues,
717 	    M_DEVBUF, M_WAITOK|M_ZERO);
718 
719 	for (q = 0; q < num_queues; q++) {
720 		rxq = &info->rxq[q];
721 
722 		rxq->id = q;
723 		rxq->info = info;
724 		rxq->target = RX_MIN_TARGET;
725 		rxq->ring_ref = GRANT_REF_INVALID;
726 		rxq->ring.sring = NULL;
727 		snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q);
728 		mtx_init(&rxq->lock, rxq->name, "netfront receive lock",
729 		    MTX_DEF);
730 
731 		for (i = 0; i <= NET_RX_RING_SIZE; i++) {
732 			rxq->mbufs[i] = NULL;
733 			rxq->grant_ref[i] = GRANT_REF_INVALID;
734 		}
735 
736 		mbufq_init(&rxq->batch, INT_MAX);
737 
738 		/* Start resources allocation */
739 
740 		if (gnttab_alloc_grant_references(RX_MAX_TARGET,
741 		    &rxq->gref_head) != 0) {
742 			device_printf(dev, "allocating rx gref");
743 			error = ENOMEM;
744 			goto fail;
745 		}
746 
747 		rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
748 		    M_WAITOK|M_ZERO);
749 		SHARED_RING_INIT(rxs);
750 		FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE);
751 
752 		error = xenbus_grant_ring(dev, virt_to_mfn(rxs),
753 		    &rxq->ring_ref);
754 		if (error != 0) {
755 			device_printf(dev, "granting rx ring page");
756 			goto fail_grant_ring;
757 		}
758 
759 		TASK_INIT(&rxq->intrtask, 0, xn_rxq_tq_intr, rxq);
760 		rxq->tq = taskqueue_create_fast(rxq->name, M_WAITOK,
761 		    taskqueue_thread_enqueue, &rxq->tq);
762 
763 		error = taskqueue_start_threads(&rxq->tq, 1, PI_NET,
764 		    "%s rxq %d", device_get_nameunit(dev), rxq->id);
765 		if (error != 0) {
766 			device_printf(dev, "failed to start rx taskq %d\n",
767 			    rxq->id);
768 			goto fail_start_thread;
769 		}
770 	}
771 
772 	return (0);
773 
774 fail_start_thread:
775 	gnttab_end_foreign_access_ref(rxq->ring_ref);
776 	taskqueue_drain_all(rxq->tq);
777 	taskqueue_free(rxq->tq);
778 fail_grant_ring:
779 	gnttab_free_grant_references(rxq->gref_head);
780 	free(rxq->ring.sring, M_DEVBUF);
781 fail:
782 	for (; q >= 0; q--) {
783 		disconnect_rxq(&info->rxq[q]);
784 		destroy_rxq(&info->rxq[q]);
785 	}
786 
787 	free(info->rxq, M_DEVBUF);
788 	return (error);
789 }
790 
791 static void
792 disconnect_txq(struct netfront_txq *txq)
793 {
794 
795 	xn_release_tx_bufs(txq);
796 	gnttab_free_grant_references(txq->gref_head);
797 	gnttab_end_foreign_access_ref(txq->ring_ref);
798 	xen_intr_unbind(&txq->xen_intr_handle);
799 }
800 
801 static void
802 destroy_txq(struct netfront_txq *txq)
803 {
804 
805 	free(txq->ring.sring, M_DEVBUF);
806 	buf_ring_free(txq->br, M_DEVBUF);
807 	taskqueue_drain_all(txq->tq);
808 	taskqueue_free(txq->tq);
809 }
810 
811 static void
812 destroy_txqs(struct netfront_info *np)
813 {
814 	int i;
815 
816 	for (i = 0; i < np->num_queues; i++)
817 		destroy_txq(&np->txq[i]);
818 
819 	free(np->txq, M_DEVBUF);
820 	np->txq = NULL;
821 }
822 
823 static int
824 setup_txqs(device_t dev, struct netfront_info *info,
825 	   unsigned long num_queues)
826 {
827 	int q, i;
828 	int error;
829 	netif_tx_sring_t *txs;
830 	struct netfront_txq *txq;
831 
832 	info->txq = malloc(sizeof(struct netfront_txq) * num_queues,
833 	    M_DEVBUF, M_WAITOK|M_ZERO);
834 
835 	for (q = 0; q < num_queues; q++) {
836 		txq = &info->txq[q];
837 
838 		txq->id = q;
839 		txq->info = info;
840 
841 		txq->ring_ref = GRANT_REF_INVALID;
842 		txq->ring.sring = NULL;
843 
844 		snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q);
845 
846 		mtx_init(&txq->lock, txq->name, "netfront transmit lock",
847 		    MTX_DEF);
848 
849 		for (i = 0; i <= NET_TX_RING_SIZE; i++) {
850 			txq->mbufs[i] = (void *) ((u_long) i+1);
851 			txq->grant_ref[i] = GRANT_REF_INVALID;
852 		}
853 		txq->mbufs[NET_TX_RING_SIZE] = (void *)0;
854 
855 		/* Start resources allocation. */
856 
857 		if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
858 		    &txq->gref_head) != 0) {
859 			device_printf(dev, "failed to allocate tx grant refs\n");
860 			error = ENOMEM;
861 			goto fail;
862 		}
863 
864 		txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
865 		    M_WAITOK|M_ZERO);
866 		SHARED_RING_INIT(txs);
867 		FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE);
868 
869 		error = xenbus_grant_ring(dev, virt_to_mfn(txs),
870 		    &txq->ring_ref);
871 		if (error != 0) {
872 			device_printf(dev, "failed to grant tx ring\n");
873 			goto fail_grant_ring;
874 		}
875 
876 		txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF,
877 		    M_WAITOK, &txq->lock);
878 		TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq);
879 		TASK_INIT(&txq->intrtask, 0, xn_txq_tq_intr, txq);
880 
881 		txq->tq = taskqueue_create_fast(txq->name, M_WAITOK,
882 		    taskqueue_thread_enqueue, &txq->tq);
883 
884 		error = taskqueue_start_threads(&txq->tq, 1, PI_NET,
885 		    "%s txq %d", device_get_nameunit(dev), txq->id);
886 		if (error != 0) {
887 			device_printf(dev, "failed to start tx taskq %d\n",
888 			    txq->id);
889 			goto fail_start_thread;
890 		}
891 
892 		error = xen_intr_alloc_and_bind_local_port(dev,
893 			    xenbus_get_otherend_id(dev), xn_intr, /* handler */ NULL,
894 			    &info->txq[q],
895 			    INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY,
896 			    &txq->xen_intr_handle);
897 
898 		if (error != 0) {
899 			device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n");
900 			goto fail_bind_port;
901 		}
902 	}
903 
904 	return (0);
905 
906 fail_bind_port:
907 	taskqueue_drain_all(txq->tq);
908 fail_start_thread:
909 	buf_ring_free(txq->br, M_DEVBUF);
910 	taskqueue_free(txq->tq);
911 	gnttab_end_foreign_access_ref(txq->ring_ref);
912 fail_grant_ring:
913 	gnttab_free_grant_references(txq->gref_head);
914 	free(txq->ring.sring, M_DEVBUF);
915 fail:
916 	for (; q >= 0; q--) {
917 		disconnect_txq(&info->txq[q]);
918 		destroy_txq(&info->txq[q]);
919 	}
920 
921 	free(info->txq, M_DEVBUF);
922 	return (error);
923 }
924 
925 static int
926 setup_device(device_t dev, struct netfront_info *info,
927     unsigned long num_queues)
928 {
929 	int error;
930 	int q;
931 
932 	if (info->txq)
933 		destroy_txqs(info);
934 
935 	if (info->rxq)
936 		destroy_rxqs(info);
937 
938 	info->num_queues = 0;
939 
940 	error = setup_rxqs(dev, info, num_queues);
941 	if (error != 0)
942 		goto out;
943 	error = setup_txqs(dev, info, num_queues);
944 	if (error != 0)
945 		goto out;
946 
947 	info->num_queues = num_queues;
948 
949 	/* No split event channel at the moment. */
950 	for (q = 0; q < num_queues; q++)
951 		info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle;
952 
953 	return (0);
954 
955 out:
956 	KASSERT(error != 0, ("Error path taken without providing an error code"));
957 	return (error);
958 }
959 
960 #ifdef INET
961 /**
962  * If this interface has an ipv4 address, send an arp for it. This
963  * helps to get the network going again after migrating hosts.
964  */
965 static void
966 netfront_send_fake_arp(device_t dev, struct netfront_info *info)
967 {
968 	struct ifnet *ifp;
969 	struct ifaddr *ifa;
970 
971 	ifp = info->xn_ifp;
972 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
973 		if (ifa->ifa_addr->sa_family == AF_INET) {
974 			arp_ifinit(ifp, ifa);
975 		}
976 	}
977 }
978 #endif
979 
980 /**
981  * Callback received when the backend's state changes.
982  */
983 static void
984 netfront_backend_changed(device_t dev, XenbusState newstate)
985 {
986 	struct netfront_info *sc = device_get_softc(dev);
987 
988 	DPRINTK("newstate=%d\n", newstate);
989 
990 	switch (newstate) {
991 	case XenbusStateInitialising:
992 	case XenbusStateInitialised:
993 	case XenbusStateUnknown:
994 	case XenbusStateClosed:
995 	case XenbusStateReconfigured:
996 	case XenbusStateReconfiguring:
997 		break;
998 	case XenbusStateInitWait:
999 		if (xenbus_get_state(dev) != XenbusStateInitialising)
1000 			break;
1001 		if (xn_connect(sc) != 0)
1002 			break;
1003 		xenbus_set_state(dev, XenbusStateConnected);
1004 		break;
1005 	case XenbusStateClosing:
1006 		xenbus_set_state(dev, XenbusStateClosed);
1007 		break;
1008 	case XenbusStateConnected:
1009 #ifdef INET
1010 		netfront_send_fake_arp(dev, sc);
1011 #endif
1012 		break;
1013 	}
1014 }
1015 
1016 /**
1017  * \brief Verify that there is sufficient space in the Tx ring
1018  *        buffer for a maximally sized request to be enqueued.
1019  *
1020  * A transmit request requires a transmit descriptor for each packet
1021  * fragment, plus up to 2 entries for "options" (e.g. TSO).
1022  */
1023 static inline int
1024 xn_tx_slot_available(struct netfront_txq *txq)
1025 {
1026 
1027 	return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2));
1028 }
1029 
1030 static void
1031 xn_release_tx_bufs(struct netfront_txq *txq)
1032 {
1033 	int i;
1034 
1035 	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
1036 		struct mbuf *m;
1037 
1038 		m = txq->mbufs[i];
1039 
1040 		/*
1041 		 * We assume that no kernel addresses are
1042 		 * less than NET_TX_RING_SIZE.  Any entry
1043 		 * in the table that is below this number
1044 		 * must be an index from free-list tracking.
1045 		 */
1046 		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
1047 			continue;
1048 		gnttab_end_foreign_access_ref(txq->grant_ref[i]);
1049 		gnttab_release_grant_reference(&txq->gref_head,
1050 		    txq->grant_ref[i]);
1051 		txq->grant_ref[i] = GRANT_REF_INVALID;
1052 		add_id_to_freelist(txq->mbufs, i);
1053 		txq->mbufs_cnt--;
1054 		if (txq->mbufs_cnt < 0) {
1055 			panic("%s: tx_chain_cnt must be >= 0", __func__);
1056 		}
1057 		m_free(m);
1058 	}
1059 }
1060 
1061 static void
1062 xn_alloc_rx_buffers(struct netfront_rxq *rxq)
1063 {
1064 	struct netfront_info *np = rxq->info;
1065 	int otherend_id = xenbus_get_otherend_id(np->xbdev);
1066 	unsigned short id;
1067 	struct mbuf *m_new;
1068 	int i, batch_target, notify;
1069 	RING_IDX req_prod;
1070 	grant_ref_t ref;
1071 	netif_rx_request_t *req;
1072 	vm_offset_t vaddr;
1073 	u_long pfn;
1074 
1075 	req_prod = rxq->ring.req_prod_pvt;
1076 
1077 	if (__predict_false(np->carrier == 0))
1078 		return;
1079 
1080 	/*
1081 	 * Allocate mbufs greedily, even though we batch updates to the
1082 	 * receive ring. This creates a less bursty demand on the memory
1083 	 * allocator, and so should reduce the chance of failed allocation
1084 	 * requests both for ourself and for other kernel subsystems.
1085 	 *
1086 	 * Here we attempt to maintain rx_target buffers in flight, counting
1087 	 * buffers that we have yet to process in the receive ring.
1088 	 */
1089 	batch_target = rxq->target - (req_prod - rxq->ring.rsp_cons);
1090 	for (i = mbufq_len(&rxq->batch); i < batch_target; i++) {
1091 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1092 		if (m_new == NULL) {
1093 			if (i != 0)
1094 				goto refill;
1095 			/* XXX set timer */
1096 			break;
1097 		}
1098 		m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE;
1099 
1100 		/* queue the mbufs allocated */
1101 		mbufq_enqueue(&rxq->batch, m_new);
1102 	}
1103 
1104 	/*
1105 	 * If we've allocated at least half of our target number of entries,
1106 	 * submit them to the backend - we have enough to make the overhead
1107 	 * of submission worthwhile.  Otherwise wait for more mbufs and
1108 	 * request entries to become available.
1109 	 */
1110 	if (i < (rxq->target/2)) {
1111 		if (req_prod > rxq->ring.sring->req_prod)
1112 			goto push;
1113 		return;
1114 	}
1115 
1116 	/*
1117 	 * Double floating fill target if we risked having the backend
1118 	 * run out of empty buffers for receive traffic.  We define "running
1119 	 * low" as having less than a fourth of our target buffers free
1120 	 * at the time we refilled the queue.
1121 	 */
1122 	if ((req_prod - rxq->ring.sring->rsp_prod) < (rxq->target / 4)) {
1123 		rxq->target *= 2;
1124 		if (rxq->target > np->rx_max_target)
1125 			rxq->target = np->rx_max_target;
1126 	}
1127 
1128 refill:
1129 	for (i = 0; ; i++) {
1130 		if ((m_new = mbufq_dequeue(&rxq->batch)) == NULL)
1131 			break;
1132 
1133 		m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)(
1134 				vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT);
1135 
1136 		id = xn_rxidx(req_prod + i);
1137 
1138 		KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain"));
1139 		rxq->mbufs[id] = m_new;
1140 
1141 		ref = gnttab_claim_grant_reference(&rxq->gref_head);
1142 		KASSERT(ref != GNTTAB_LIST_END,
1143 			("reserved grant references exhuasted"));
1144 		rxq->grant_ref[id] = ref;
1145 
1146 		vaddr = mtod(m_new, vm_offset_t);
1147 		pfn = vtophys(vaddr) >> PAGE_SHIFT;
1148 		req = RING_GET_REQUEST(&rxq->ring, req_prod + i);
1149 
1150 		gnttab_grant_foreign_access_ref(ref, otherend_id, pfn, 0);
1151 		req->id = id;
1152 		req->gref = ref;
1153 
1154 		rxq->pfn_array[i] =
1155 		    vtophys(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT;
1156 	}
1157 
1158 	KASSERT(i, ("no mbufs processed")); /* should have returned earlier */
1159 	KASSERT(mbufq_len(&rxq->batch) == 0, ("not all mbufs processed"));
1160 	/*
1161 	 * We may have allocated buffers which have entries outstanding
1162 	 * in the page * update queue -- make sure we flush those first!
1163 	 */
1164 	wmb();
1165 
1166 	/* Above is a suitable barrier to ensure backend will see requests. */
1167 	rxq->ring.req_prod_pvt = req_prod + i;
1168 push:
1169 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify);
1170 	if (notify)
1171 		xen_intr_signal(rxq->xen_intr_handle);
1172 }
1173 
1174 static void
1175 xn_release_rx_bufs(struct netfront_rxq *rxq)
1176 {
1177 	int i,  ref;
1178 	struct mbuf *m;
1179 
1180 	for (i = 0; i < NET_RX_RING_SIZE; i++) {
1181 		m = rxq->mbufs[i];
1182 
1183 		if (m == NULL)
1184 			continue;
1185 
1186 		ref = rxq->grant_ref[i];
1187 		if (ref == GRANT_REF_INVALID)
1188 			continue;
1189 
1190 		gnttab_end_foreign_access_ref(ref);
1191 		gnttab_release_grant_reference(&rxq->gref_head, ref);
1192 		rxq->mbufs[i] = NULL;
1193 		rxq->grant_ref[i] = GRANT_REF_INVALID;
1194 		m_freem(m);
1195 	}
1196 }
1197 
1198 static void
1199 xn_rxeof(struct netfront_rxq *rxq)
1200 {
1201 	struct ifnet *ifp;
1202 	struct netfront_info *np = rxq->info;
1203 #if (defined(INET) || defined(INET6))
1204 	struct lro_ctrl *lro = &rxq->lro;
1205 	struct lro_entry *queued;
1206 #endif
1207 	struct netfront_rx_info rinfo;
1208 	struct netif_rx_response *rx = &rinfo.rx;
1209 	struct netif_extra_info *extras = rinfo.extras;
1210 	RING_IDX i, rp;
1211 	struct mbuf *m;
1212 	struct mbufq mbufq_rxq, mbufq_errq;
1213 	int err, work_to_do;
1214 
1215 	do {
1216 		XN_RX_LOCK_ASSERT(rxq);
1217 		if (!netfront_carrier_ok(np))
1218 			return;
1219 
1220 		/* XXX: there should be some sane limit. */
1221 		mbufq_init(&mbufq_errq, INT_MAX);
1222 		mbufq_init(&mbufq_rxq, INT_MAX);
1223 
1224 		ifp = np->xn_ifp;
1225 
1226 		rp = rxq->ring.sring->rsp_prod;
1227 		rmb();	/* Ensure we see queued responses up to 'rp'. */
1228 
1229 		i = rxq->ring.rsp_cons;
1230 		while ((i != rp)) {
1231 			memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx));
1232 			memset(extras, 0, sizeof(rinfo.extras));
1233 
1234 			m = NULL;
1235 			err = xn_get_responses(rxq, &rinfo, rp, &i, &m);
1236 
1237 			if (__predict_false(err)) {
1238 				if (m)
1239 					(void )mbufq_enqueue(&mbufq_errq, m);
1240 				rxq->stats.rx_errors++;
1241 				continue;
1242 			}
1243 
1244 			m->m_pkthdr.rcvif = ifp;
1245 			if ( rx->flags & NETRXF_data_validated ) {
1246 				/* Tell the stack the checksums are okay */
1247 				/*
1248 				 * XXX this isn't necessarily the case - need to add
1249 				 * check
1250 				 */
1251 
1252 				m->m_pkthdr.csum_flags |=
1253 					(CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID
1254 					    | CSUM_PSEUDO_HDR);
1255 				m->m_pkthdr.csum_data = 0xffff;
1256 			}
1257 
1258 			rxq->stats.rx_packets++;
1259 			rxq->stats.rx_bytes += m->m_pkthdr.len;
1260 
1261 			(void )mbufq_enqueue(&mbufq_rxq, m);
1262 			rxq->ring.rsp_cons = i;
1263 		}
1264 
1265 		mbufq_drain(&mbufq_errq);
1266 
1267 		/*
1268 		 * Process all the mbufs after the remapping is complete.
1269 		 * Break the mbuf chain first though.
1270 		 */
1271 		while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) {
1272 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1273 
1274 			/* XXX: Do we really need to drop the rx lock? */
1275 			XN_RX_UNLOCK(rxq);
1276 #if (defined(INET) || defined(INET6))
1277 			/* Use LRO if possible */
1278 			if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1279 			    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1280 				/*
1281 				 * If LRO fails, pass up to the stack
1282 				 * directly.
1283 				 */
1284 				(*ifp->if_input)(ifp, m);
1285 			}
1286 #else
1287 			(*ifp->if_input)(ifp, m);
1288 #endif
1289 
1290 			XN_RX_LOCK(rxq);
1291 		}
1292 
1293 		rxq->ring.rsp_cons = i;
1294 
1295 #if (defined(INET) || defined(INET6))
1296 		/*
1297 		 * Flush any outstanding LRO work
1298 		 */
1299 		while (!SLIST_EMPTY(&lro->lro_active)) {
1300 			queued = SLIST_FIRST(&lro->lro_active);
1301 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1302 			tcp_lro_flush(lro, queued);
1303 		}
1304 #endif
1305 
1306 		xn_alloc_rx_buffers(rxq);
1307 
1308 		RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do);
1309 	} while (work_to_do);
1310 }
1311 
1312 static void
1313 xn_txeof(struct netfront_txq *txq)
1314 {
1315 	RING_IDX i, prod;
1316 	unsigned short id;
1317 	struct ifnet *ifp;
1318 	netif_tx_response_t *txr;
1319 	struct mbuf *m;
1320 	struct netfront_info *np = txq->info;
1321 
1322 	XN_TX_LOCK_ASSERT(txq);
1323 
1324 	if (!netfront_carrier_ok(np))
1325 		return;
1326 
1327 	ifp = np->xn_ifp;
1328 
1329 	do {
1330 		prod = txq->ring.sring->rsp_prod;
1331 		rmb(); /* Ensure we see responses up to 'rp'. */
1332 
1333 		for (i = txq->ring.rsp_cons; i != prod; i++) {
1334 			txr = RING_GET_RESPONSE(&txq->ring, i);
1335 			if (txr->status == NETIF_RSP_NULL)
1336 				continue;
1337 
1338 			if (txr->status != NETIF_RSP_OKAY) {
1339 				printf("%s: WARNING: response is %d!\n",
1340 				       __func__, txr->status);
1341 			}
1342 			id = txr->id;
1343 			m = txq->mbufs[id];
1344 			KASSERT(m != NULL, ("mbuf not found in chain"));
1345 			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1346 				("mbuf already on the free list, but we're "
1347 				"trying to free it again!"));
1348 			M_ASSERTVALID(m);
1349 
1350 			/*
1351 			 * Increment packet count if this is the last
1352 			 * mbuf of the chain.
1353 			 */
1354 			if (!m->m_next)
1355 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1356 			if (__predict_false(gnttab_query_foreign_access(
1357 			    txq->grant_ref[id]) != 0)) {
1358 				panic("%s: grant id %u still in use by the "
1359 				    "backend", __func__, id);
1360 			}
1361 			gnttab_end_foreign_access_ref(txq->grant_ref[id]);
1362 			gnttab_release_grant_reference(
1363 				&txq->gref_head, txq->grant_ref[id]);
1364 			txq->grant_ref[id] = GRANT_REF_INVALID;
1365 
1366 			txq->mbufs[id] = NULL;
1367 			add_id_to_freelist(txq->mbufs, id);
1368 			txq->mbufs_cnt--;
1369 			m_free(m);
1370 			/* Only mark the txq active if we've freed up at least one slot to try */
1371 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1372 		}
1373 		txq->ring.rsp_cons = prod;
1374 
1375 		/*
1376 		 * Set a new event, then check for race with update of
1377 		 * tx_cons. Note that it is essential to schedule a
1378 		 * callback, no matter how few buffers are pending. Even if
1379 		 * there is space in the transmit ring, higher layers may
1380 		 * be blocked because too much data is outstanding: in such
1381 		 * cases notification from Xen is likely to be the only kick
1382 		 * that we'll get.
1383 		 */
1384 		txq->ring.sring->rsp_event =
1385 		    prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1;
1386 
1387 		mb();
1388 	} while (prod != txq->ring.sring->rsp_prod);
1389 
1390 	if (txq->full &&
1391 	    ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1392 		txq->full = false;
1393 		taskqueue_enqueue(txq->tq, &txq->intrtask);
1394 	}
1395 }
1396 
1397 
1398 static void
1399 xn_rxq_intr(void *xrxq)
1400 {
1401 	struct netfront_rxq *rxq = xrxq;
1402 
1403 	taskqueue_enqueue(rxq->tq, &rxq->intrtask);
1404 }
1405 
1406 static void
1407 xn_txq_intr(void *xtxq)
1408 {
1409 	struct netfront_txq *txq = xtxq;
1410 
1411 	taskqueue_enqueue(txq->tq, &txq->intrtask);
1412 }
1413 
1414 static int
1415 xn_intr(void *xsc)
1416 {
1417 	struct netfront_txq *txq = xsc;
1418 	struct netfront_info *np = txq->info;
1419 	struct netfront_rxq *rxq = &np->rxq[txq->id];
1420 
1421 	/* kick both tx and rx */
1422 	xn_rxq_intr(rxq);
1423 	xn_txq_intr(txq);
1424 
1425 	return (FILTER_HANDLED);
1426 }
1427 
1428 static void
1429 xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m,
1430     grant_ref_t ref)
1431 {
1432 	int new = xn_rxidx(rxq->ring.req_prod_pvt);
1433 
1434 	KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL"));
1435 	rxq->mbufs[new] = m;
1436 	rxq->grant_ref[new] = ref;
1437 	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new;
1438 	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref;
1439 	rxq->ring.req_prod_pvt++;
1440 }
1441 
1442 static int
1443 xn_get_extras(struct netfront_rxq *rxq,
1444     struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1445 {
1446 	struct netif_extra_info *extra;
1447 
1448 	int err = 0;
1449 
1450 	do {
1451 		struct mbuf *m;
1452 		grant_ref_t ref;
1453 
1454 		if (__predict_false(*cons + 1 == rp)) {
1455 			err = EINVAL;
1456 			break;
1457 		}
1458 
1459 		extra = (struct netif_extra_info *)
1460 		RING_GET_RESPONSE(&rxq->ring, ++(*cons));
1461 
1462 		if (__predict_false(!extra->type ||
1463 			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1464 			err = EINVAL;
1465 		} else {
1466 			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1467 		}
1468 
1469 		m = xn_get_rx_mbuf(rxq, *cons);
1470 		ref = xn_get_rx_ref(rxq,  *cons);
1471 		xn_move_rx_slot(rxq, m, ref);
1472 	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1473 
1474 	return err;
1475 }
1476 
1477 static int
1478 xn_get_responses(struct netfront_rxq *rxq,
1479     struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1480     struct mbuf  **list)
1481 {
1482 	struct netif_rx_response *rx = &rinfo->rx;
1483 	struct netif_extra_info *extras = rinfo->extras;
1484 	struct mbuf *m, *m0, *m_prev;
1485 	grant_ref_t ref = xn_get_rx_ref(rxq, *cons);
1486 	RING_IDX ref_cons = *cons;
1487 	int frags = 1;
1488 	int err = 0;
1489 	u_long ret;
1490 
1491 	m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons);
1492 
1493 	if (rx->flags & NETRXF_extra_info) {
1494 		err = xn_get_extras(rxq, extras, rp, cons);
1495 	}
1496 
1497 	if (m0 != NULL) {
1498 		m0->m_pkthdr.len = 0;
1499 		m0->m_next = NULL;
1500 	}
1501 
1502 	for (;;) {
1503 #if 0
1504 		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1505 			rx->status, rx->offset, frags);
1506 #endif
1507 		if (__predict_false(rx->status < 0 ||
1508 			rx->offset + rx->status > PAGE_SIZE)) {
1509 
1510 			xn_move_rx_slot(rxq, m, ref);
1511 			if (m0 == m)
1512 				m0 = NULL;
1513 			m = NULL;
1514 			err = EINVAL;
1515 			goto next_skip_queue;
1516 		}
1517 
1518 		/*
1519 		 * This definitely indicates a bug, either in this driver or in
1520 		 * the backend driver. In future this should flag the bad
1521 		 * situation to the system controller to reboot the backed.
1522 		 */
1523 		if (ref == GRANT_REF_INVALID) {
1524 			printf("%s: Bad rx response id %d.\n", __func__, rx->id);
1525 			err = EINVAL;
1526 			goto next;
1527 		}
1528 
1529 		ret = gnttab_end_foreign_access_ref(ref);
1530 		KASSERT(ret, ("Unable to end access to grant references"));
1531 
1532 		gnttab_release_grant_reference(&rxq->gref_head, ref);
1533 
1534 next:
1535 		if (m == NULL)
1536 			break;
1537 
1538 		m->m_len = rx->status;
1539 		m->m_data += rx->offset;
1540 		m0->m_pkthdr.len += rx->status;
1541 
1542 next_skip_queue:
1543 		if (!(rx->flags & NETRXF_more_data))
1544 			break;
1545 
1546 		if (*cons + frags == rp) {
1547 			if (net_ratelimit())
1548 				WPRINTK("Need more frags\n");
1549 			err = ENOENT;
1550 			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1551 			       __func__, *cons, frags, rp);
1552 			break;
1553 		}
1554 		/*
1555 		 * Note that m can be NULL, if rx->status < 0 or if
1556 		 * rx->offset + rx->status > PAGE_SIZE above.
1557 		 */
1558 		m_prev = m;
1559 
1560 		rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags);
1561 		m = xn_get_rx_mbuf(rxq, *cons + frags);
1562 
1563 		/*
1564 		 * m_prev == NULL can happen if rx->status < 0 or if
1565 		 * rx->offset + * rx->status > PAGE_SIZE above.
1566 		 */
1567 		if (m_prev != NULL)
1568 			m_prev->m_next = m;
1569 
1570 		/*
1571 		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1572 		 * rx->status > PAGE_SIZE above.
1573 		 */
1574 		if (m0 == NULL)
1575 			m0 = m;
1576 		m->m_next = NULL;
1577 		ref = xn_get_rx_ref(rxq, *cons + frags);
1578 		ref_cons = *cons + frags;
1579 		frags++;
1580 	}
1581 	*list = m0;
1582 	*cons += frags;
1583 
1584 	return (err);
1585 }
1586 
1587 /**
1588  * \brief Count the number of fragments in an mbuf chain.
1589  *
1590  * Surprisingly, there isn't an M* macro for this.
1591  */
1592 static inline int
1593 xn_count_frags(struct mbuf *m)
1594 {
1595 	int nfrags;
1596 
1597 	for (nfrags = 0; m != NULL; m = m->m_next)
1598 		nfrags++;
1599 
1600 	return (nfrags);
1601 }
1602 
1603 /**
1604  * Given an mbuf chain, make sure we have enough room and then push
1605  * it onto the transmit ring.
1606  */
1607 static int
1608 xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head)
1609 {
1610 	struct mbuf *m;
1611 	struct netfront_info *np = txq->info;
1612 	struct ifnet *ifp = np->xn_ifp;
1613 	u_int nfrags;
1614 	int otherend_id;
1615 
1616 	/**
1617 	 * Defragment the mbuf if necessary.
1618 	 */
1619 	nfrags = xn_count_frags(m_head);
1620 
1621 	/*
1622 	 * Check to see whether this request is longer than netback
1623 	 * can handle, and try to defrag it.
1624 	 */
1625 	/**
1626 	 * It is a bit lame, but the netback driver in Linux can't
1627 	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1628 	 * the Linux network stack.
1629 	 */
1630 	if (nfrags > np->maxfrags) {
1631 		m = m_defrag(m_head, M_NOWAIT);
1632 		if (!m) {
1633 			/*
1634 			 * Defrag failed, so free the mbuf and
1635 			 * therefore drop the packet.
1636 			 */
1637 			m_freem(m_head);
1638 			return (EMSGSIZE);
1639 		}
1640 		m_head = m;
1641 	}
1642 
1643 	/* Determine how many fragments now exist */
1644 	nfrags = xn_count_frags(m_head);
1645 
1646 	/*
1647 	 * Check to see whether the defragmented packet has too many
1648 	 * segments for the Linux netback driver.
1649 	 */
1650 	/**
1651 	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1652 	 * of mbufs longer than Linux can handle.  Make sure we don't
1653 	 * pass a too-long chain over to the other side by dropping the
1654 	 * packet.  It doesn't look like there is currently a way to
1655 	 * tell the TCP stack to generate a shorter chain of packets.
1656 	 */
1657 	if (nfrags > MAX_TX_REQ_FRAGS) {
1658 #ifdef DEBUG
1659 		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1660 		       "won't be able to handle it, dropping\n",
1661 		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1662 #endif
1663 		m_freem(m_head);
1664 		return (EMSGSIZE);
1665 	}
1666 
1667 	/*
1668 	 * This check should be redundant.  We've already verified that we
1669 	 * have enough slots in the ring to handle a packet of maximum
1670 	 * size, and that our packet is less than the maximum size.  Keep
1671 	 * it in here as an assert for now just to make certain that
1672 	 * chain_cnt is accurate.
1673 	 */
1674 	KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE,
1675 		("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1676 		 "(%d)!", __func__, (int) txq->mbufs_cnt,
1677                     (int) nfrags, (int) NET_TX_RING_SIZE));
1678 
1679 	/*
1680 	 * Start packing the mbufs in this chain into
1681 	 * the fragment pointers. Stop when we run out
1682 	 * of fragments or hit the end of the mbuf chain.
1683 	 */
1684 	m = m_head;
1685 	otherend_id = xenbus_get_otherend_id(np->xbdev);
1686 	for (m = m_head; m; m = m->m_next) {
1687 		netif_tx_request_t *tx;
1688 		uintptr_t id;
1689 		grant_ref_t ref;
1690 		u_long mfn; /* XXX Wrong type? */
1691 
1692 		tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt);
1693 		id = get_id_from_freelist(txq->mbufs);
1694 		if (id == 0)
1695 			panic("%s: was allocated the freelist head!\n",
1696 			    __func__);
1697 		txq->mbufs_cnt++;
1698 		if (txq->mbufs_cnt > NET_TX_RING_SIZE)
1699 			panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
1700 			    __func__);
1701 		txq->mbufs[id] = m;
1702 		tx->id = id;
1703 		ref = gnttab_claim_grant_reference(&txq->gref_head);
1704 		KASSERT((short)ref >= 0, ("Negative ref"));
1705 		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1706 		gnttab_grant_foreign_access_ref(ref, otherend_id,
1707 		    mfn, GNTMAP_readonly);
1708 		tx->gref = txq->grant_ref[id] = ref;
1709 		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1710 		tx->flags = 0;
1711 		if (m == m_head) {
1712 			/*
1713 			 * The first fragment has the entire packet
1714 			 * size, subsequent fragments have just the
1715 			 * fragment size. The backend works out the
1716 			 * true size of the first fragment by
1717 			 * subtracting the sizes of the other
1718 			 * fragments.
1719 			 */
1720 			tx->size = m->m_pkthdr.len;
1721 
1722 			/*
1723 			 * The first fragment contains the checksum flags
1724 			 * and is optionally followed by extra data for
1725 			 * TSO etc.
1726 			 */
1727 			/**
1728 			 * CSUM_TSO requires checksum offloading.
1729 			 * Some versions of FreeBSD fail to
1730 			 * set CSUM_TCP in the CSUM_TSO case,
1731 			 * so we have to test for CSUM_TSO
1732 			 * explicitly.
1733 			 */
1734 			if (m->m_pkthdr.csum_flags
1735 			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1736 				tx->flags |= (NETTXF_csum_blank
1737 				    | NETTXF_data_validated);
1738 			}
1739 			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1740 				struct netif_extra_info *gso =
1741 					(struct netif_extra_info *)
1742 					RING_GET_REQUEST(&txq->ring,
1743 							 ++txq->ring.req_prod_pvt);
1744 
1745 				tx->flags |= NETTXF_extra_info;
1746 
1747 				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1748 				gso->u.gso.type =
1749 					XEN_NETIF_GSO_TYPE_TCPV4;
1750 				gso->u.gso.pad = 0;
1751 				gso->u.gso.features = 0;
1752 
1753 				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1754 				gso->flags = 0;
1755 			}
1756 		} else {
1757 			tx->size = m->m_len;
1758 		}
1759 		if (m->m_next)
1760 			tx->flags |= NETTXF_more_data;
1761 
1762 		txq->ring.req_prod_pvt++;
1763 	}
1764 	BPF_MTAP(ifp, m_head);
1765 
1766 	xn_txeof(txq);
1767 
1768 	txq->stats.tx_bytes += m_head->m_pkthdr.len;
1769 	txq->stats.tx_packets++;
1770 
1771 	return (0);
1772 }
1773 
1774 /* equivalent of network_open() in Linux */
1775 static void
1776 xn_ifinit_locked(struct netfront_info *np)
1777 {
1778 	struct ifnet *ifp;
1779 	int i;
1780 	struct netfront_rxq *rxq;
1781 
1782 	XN_LOCK_ASSERT(np);
1783 
1784 	ifp = np->xn_ifp;
1785 
1786 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1787 		return;
1788 
1789 	xn_stop(np);
1790 
1791 	for (i = 0; i < np->num_queues; i++) {
1792 		rxq = &np->rxq[i];
1793 		xn_alloc_rx_buffers(rxq);
1794 		rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1;
1795 	}
1796 
1797 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1798 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1799 	if_link_state_change(ifp, LINK_STATE_UP);
1800 }
1801 
1802 static void
1803 xn_ifinit(void *xsc)
1804 {
1805 	struct netfront_info *sc = xsc;
1806 
1807 	XN_LOCK(sc);
1808 	xn_ifinit_locked(sc);
1809 	XN_UNLOCK(sc);
1810 }
1811 
1812 static int
1813 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1814 {
1815 	struct netfront_info *sc = ifp->if_softc;
1816 	struct ifreq *ifr = (struct ifreq *) data;
1817 #ifdef INET
1818 	struct ifaddr *ifa = (struct ifaddr *)data;
1819 #endif
1820 
1821 	int mask, error = 0;
1822 	switch(cmd) {
1823 	case SIOCSIFADDR:
1824 #ifdef INET
1825 		XN_LOCK(sc);
1826 		if (ifa->ifa_addr->sa_family == AF_INET) {
1827 			ifp->if_flags |= IFF_UP;
1828 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1829 				xn_ifinit_locked(sc);
1830 			arp_ifinit(ifp, ifa);
1831 			XN_UNLOCK(sc);
1832 		} else {
1833 			XN_UNLOCK(sc);
1834 #endif
1835 			error = ether_ioctl(ifp, cmd, data);
1836 #ifdef INET
1837 		}
1838 #endif
1839 		break;
1840 	case SIOCSIFMTU:
1841 		ifp->if_mtu = ifr->ifr_mtu;
1842 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1843 		xn_ifinit(sc);
1844 		break;
1845 	case SIOCSIFFLAGS:
1846 		XN_LOCK(sc);
1847 		if (ifp->if_flags & IFF_UP) {
1848 			/*
1849 			 * If only the state of the PROMISC flag changed,
1850 			 * then just use the 'set promisc mode' command
1851 			 * instead of reinitializing the entire NIC. Doing
1852 			 * a full re-init means reloading the firmware and
1853 			 * waiting for it to start up, which may take a
1854 			 * second or two.
1855 			 */
1856 			xn_ifinit_locked(sc);
1857 		} else {
1858 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1859 				xn_stop(sc);
1860 			}
1861 		}
1862 		sc->xn_if_flags = ifp->if_flags;
1863 		XN_UNLOCK(sc);
1864 		break;
1865 	case SIOCSIFCAP:
1866 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1867 		if (mask & IFCAP_TXCSUM) {
1868 			if (IFCAP_TXCSUM & ifp->if_capenable) {
1869 				ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4);
1870 				ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP
1871 				    | CSUM_IP | CSUM_TSO);
1872 			} else {
1873 				ifp->if_capenable |= IFCAP_TXCSUM;
1874 				ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP
1875 				    | CSUM_IP);
1876 			}
1877 		}
1878 		if (mask & IFCAP_RXCSUM) {
1879 			ifp->if_capenable ^= IFCAP_RXCSUM;
1880 		}
1881 		if (mask & IFCAP_TSO4) {
1882 			if (IFCAP_TSO4 & ifp->if_capenable) {
1883 				ifp->if_capenable &= ~IFCAP_TSO4;
1884 				ifp->if_hwassist &= ~CSUM_TSO;
1885 			} else if (IFCAP_TXCSUM & ifp->if_capenable) {
1886 				ifp->if_capenable |= IFCAP_TSO4;
1887 				ifp->if_hwassist |= CSUM_TSO;
1888 			} else {
1889 				IPRINTK("Xen requires tx checksum offload"
1890 				    " be enabled to use TSO\n");
1891 				error = EINVAL;
1892 			}
1893 		}
1894 		if (mask & IFCAP_LRO) {
1895 			ifp->if_capenable ^= IFCAP_LRO;
1896 
1897 		}
1898 		break;
1899 	case SIOCADDMULTI:
1900 	case SIOCDELMULTI:
1901 		break;
1902 	case SIOCSIFMEDIA:
1903 	case SIOCGIFMEDIA:
1904 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1905 		break;
1906 	default:
1907 		error = ether_ioctl(ifp, cmd, data);
1908 	}
1909 
1910 	return (error);
1911 }
1912 
1913 static void
1914 xn_stop(struct netfront_info *sc)
1915 {
1916 	struct ifnet *ifp;
1917 
1918 	XN_LOCK_ASSERT(sc);
1919 
1920 	ifp = sc->xn_ifp;
1921 
1922 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1923 	if_link_state_change(ifp, LINK_STATE_DOWN);
1924 }
1925 
1926 static void
1927 xn_rebuild_rx_bufs(struct netfront_rxq *rxq)
1928 {
1929 	int requeue_idx, i;
1930 	grant_ref_t ref;
1931 	netif_rx_request_t *req;
1932 
1933 	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1934 		struct mbuf *m;
1935 		u_long pfn;
1936 
1937 		if (rxq->mbufs[i] == NULL)
1938 			continue;
1939 
1940 		m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i);
1941 		ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i);
1942 
1943 		req = RING_GET_REQUEST(&rxq->ring, requeue_idx);
1944 		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1945 
1946 		gnttab_grant_foreign_access_ref(ref,
1947 		    xenbus_get_otherend_id(rxq->info->xbdev),
1948 		    pfn, 0);
1949 
1950 		req->gref = ref;
1951 		req->id   = requeue_idx;
1952 
1953 		requeue_idx++;
1954 	}
1955 
1956 	rxq->ring.req_prod_pvt = requeue_idx;
1957 }
1958 
1959 /* START of Xenolinux helper functions adapted to FreeBSD */
1960 int
1961 xn_connect(struct netfront_info *np)
1962 {
1963 	int i, error;
1964 	u_int feature_rx_copy;
1965 	struct netfront_rxq *rxq;
1966 	struct netfront_txq *txq;
1967 
1968 	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1969 	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1970 	if (error != 0)
1971 		feature_rx_copy = 0;
1972 
1973 	/* We only support rx copy. */
1974 	if (!feature_rx_copy)
1975 		return (EPROTONOSUPPORT);
1976 
1977 	/* Recovery procedure: */
1978 	error = talk_to_backend(np->xbdev, np);
1979 	if (error != 0)
1980 		return (error);
1981 
1982 	/* Step 1: Reinitialise variables. */
1983 	xn_query_features(np);
1984 	xn_configure_features(np);
1985 
1986 	/* Step 2: Release TX buffer */
1987 	for (i = 0; i < np->num_queues; i++) {
1988 		txq = &np->txq[i];
1989 		xn_release_tx_bufs(txq);
1990 	}
1991 
1992 	/* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */
1993 	for (i = 0; i < np->num_queues; i++) {
1994 		rxq = &np->rxq[i];
1995 		xn_rebuild_rx_bufs(rxq);
1996 	}
1997 
1998 	/* Step 4: All public and private state should now be sane.  Get
1999 	 * ready to start sending and receiving packets and give the driver
2000 	 * domain a kick because we've probably just requeued some
2001 	 * packets.
2002 	 */
2003 	netfront_carrier_on(np);
2004 	for (i = 0; i < np->num_queues; i++) {
2005 		txq = &np->txq[i];
2006 		xen_intr_signal(txq->xen_intr_handle);
2007 		XN_TX_LOCK(txq);
2008 		xn_txeof(txq);
2009 		XN_TX_UNLOCK(txq);
2010 		xn_alloc_rx_buffers(rxq);
2011 	}
2012 
2013 	return (0);
2014 }
2015 
2016 static void
2017 xn_query_features(struct netfront_info *np)
2018 {
2019 	int val;
2020 
2021 	device_printf(np->xbdev, "backend features:");
2022 
2023 	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2024 		"feature-sg", NULL, "%d", &val) < 0)
2025 		val = 0;
2026 
2027 	np->maxfrags = 1;
2028 	if (val) {
2029 		np->maxfrags = MAX_TX_REQ_FRAGS;
2030 		printf(" feature-sg");
2031 	}
2032 
2033 	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2034 		"feature-gso-tcpv4", NULL, "%d", &val) < 0)
2035 		val = 0;
2036 
2037 	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2038 	if (val) {
2039 		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2040 		printf(" feature-gso-tcp4");
2041 	}
2042 
2043 	printf("\n");
2044 }
2045 
2046 static int
2047 xn_configure_features(struct netfront_info *np)
2048 {
2049 	int err, cap_enabled;
2050 #if (defined(INET) || defined(INET6))
2051 	int i;
2052 #endif
2053 
2054 	err = 0;
2055 
2056 	if (np->xn_resume &&
2057 	    ((np->xn_ifp->if_capenable & np->xn_ifp->if_capabilities)
2058 	    == np->xn_ifp->if_capenable)) {
2059 		/* Current options are available, no need to do anything. */
2060 		return (0);
2061 	}
2062 
2063 	/* Try to preserve as many options as possible. */
2064 	if (np->xn_resume)
2065 		cap_enabled = np->xn_ifp->if_capenable;
2066 	else
2067 		cap_enabled = UINT_MAX;
2068 
2069 #if (defined(INET) || defined(INET6))
2070 	for (i = 0; i < np->num_queues; i++)
2071 		if ((np->xn_ifp->if_capenable & IFCAP_LRO) ==
2072 		    (cap_enabled & IFCAP_LRO))
2073 			tcp_lro_free(&np->rxq[i].lro);
2074 #endif
2075     	np->xn_ifp->if_capenable =
2076 	    np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4) & cap_enabled;
2077 	np->xn_ifp->if_hwassist &= ~CSUM_TSO;
2078 #if (defined(INET) || defined(INET6))
2079 	for (i = 0; i < np->num_queues; i++) {
2080 		if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) ==
2081 		    (cap_enabled & IFCAP_LRO)) {
2082 			err = tcp_lro_init(&np->rxq[i].lro);
2083 			if (err != 0) {
2084 				device_printf(np->xbdev, "LRO initialization failed\n");
2085 			} else {
2086 				np->rxq[i].lro.ifp = np->xn_ifp;
2087 				np->xn_ifp->if_capenable |= IFCAP_LRO;
2088 			}
2089 		}
2090 	}
2091 	if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) ==
2092 	    (cap_enabled & IFCAP_TSO4)) {
2093 		np->xn_ifp->if_capenable |= IFCAP_TSO4;
2094 		np->xn_ifp->if_hwassist |= CSUM_TSO;
2095 	}
2096 #endif
2097 	return (err);
2098 }
2099 
2100 static int
2101 xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m)
2102 {
2103 	struct netfront_info *np;
2104 	struct ifnet *ifp;
2105 	struct buf_ring *br;
2106 	int error, notify;
2107 
2108 	np = txq->info;
2109 	br = txq->br;
2110 	ifp = np->xn_ifp;
2111 	error = 0;
2112 
2113 	XN_TX_LOCK_ASSERT(txq);
2114 
2115 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2116 	    !netfront_carrier_ok(np)) {
2117 		if (m != NULL)
2118 			error = drbr_enqueue(ifp, br, m);
2119 		return (error);
2120 	}
2121 
2122 	if (m != NULL) {
2123 		error = drbr_enqueue(ifp, br, m);
2124 		if (error != 0)
2125 			return (error);
2126 	}
2127 
2128 	while ((m = drbr_peek(ifp, br)) != NULL) {
2129 		if (!xn_tx_slot_available(txq)) {
2130 			drbr_putback(ifp, br, m);
2131 			break;
2132 		}
2133 
2134 		error = xn_assemble_tx_request(txq, m);
2135 		/* xn_assemble_tx_request always consumes the mbuf*/
2136 		if (error != 0) {
2137 			drbr_advance(ifp, br);
2138 			break;
2139 		}
2140 
2141 		RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify);
2142 		if (notify)
2143 			xen_intr_signal(txq->xen_intr_handle);
2144 
2145 		drbr_advance(ifp, br);
2146 	}
2147 
2148 	if (RING_FULL(&txq->ring))
2149 		txq->full = true;
2150 
2151 	return (0);
2152 }
2153 
2154 static int
2155 xn_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
2156 {
2157 	struct netfront_info *np;
2158 	struct netfront_txq *txq;
2159 	int i, npairs, error;
2160 
2161 	np = ifp->if_softc;
2162 	npairs = np->num_queues;
2163 
2164 	/* check if flowid is set */
2165 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2166 		i = m->m_pkthdr.flowid % npairs;
2167 	else
2168 		i = curcpu % npairs;
2169 
2170 	txq = &np->txq[i];
2171 
2172 	if (XN_TX_TRYLOCK(txq) != 0) {
2173 		error = xn_txq_mq_start_locked(txq, m);
2174 		XN_TX_UNLOCK(txq);
2175 	} else {
2176 		error = drbr_enqueue(ifp, txq->br, m);
2177 		taskqueue_enqueue(txq->tq, &txq->defrtask);
2178 	}
2179 
2180 	return (error);
2181 }
2182 
2183 static void
2184 xn_qflush(struct ifnet *ifp)
2185 {
2186 	struct netfront_info *np;
2187 	struct netfront_txq *txq;
2188 	struct mbuf *m;
2189 	int i;
2190 
2191 	np = ifp->if_softc;
2192 
2193 	for (i = 0; i < np->num_queues; i++) {
2194 		txq = &np->txq[i];
2195 
2196 		XN_TX_LOCK(txq);
2197 		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
2198 			m_freem(m);
2199 		XN_TX_UNLOCK(txq);
2200 	}
2201 
2202 	if_qflush(ifp);
2203 }
2204 
2205 /**
2206  * Create a network device.
2207  * @param dev  Newbus device representing this virtual NIC.
2208  */
2209 int
2210 create_netdev(device_t dev)
2211 {
2212 	struct netfront_info *np;
2213 	int err;
2214 	struct ifnet *ifp;
2215 
2216 	np = device_get_softc(dev);
2217 
2218 	np->xbdev         = dev;
2219 
2220 	mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF);
2221 
2222 	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2223 	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2224 	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2225 
2226 	np->rx_min_target = RX_MIN_TARGET;
2227 	np->rx_max_target = RX_MAX_TARGET;
2228 
2229 	err = xen_net_read_mac(dev, np->mac);
2230 	if (err != 0)
2231 		goto error;
2232 
2233 	/* Set up ifnet structure */
2234 	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2235     	ifp->if_softc = np;
2236     	if_initname(ifp, "xn",  device_get_unit(dev));
2237     	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2238     	ifp->if_ioctl = xn_ioctl;
2239 
2240 	ifp->if_transmit = xn_txq_mq_start;
2241 	ifp->if_qflush = xn_qflush;
2242 
2243     	ifp->if_init = xn_ifinit;
2244 
2245     	ifp->if_hwassist = XN_CSUM_FEATURES;
2246     	ifp->if_capabilities = IFCAP_HWCSUM;
2247 	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2248 	ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS;
2249 	ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
2250 
2251     	ether_ifattach(ifp, np->mac);
2252 	netfront_carrier_off(np);
2253 
2254 	return (0);
2255 
2256 error:
2257 	KASSERT(err != 0, ("Error path with no error code specified"));
2258 	return (err);
2259 }
2260 
2261 static int
2262 netfront_detach(device_t dev)
2263 {
2264 	struct netfront_info *info = device_get_softc(dev);
2265 
2266 	DPRINTK("%s\n", xenbus_get_node(dev));
2267 
2268 	netif_free(info);
2269 
2270 	return 0;
2271 }
2272 
2273 static void
2274 netif_free(struct netfront_info *np)
2275 {
2276 
2277 	XN_LOCK(np);
2278 	xn_stop(np);
2279 	XN_UNLOCK(np);
2280 	netif_disconnect_backend(np);
2281 	free(np->rxq, M_DEVBUF);
2282 	free(np->txq, M_DEVBUF);
2283 	ether_ifdetach(np->xn_ifp);
2284 	if_free(np->xn_ifp);
2285 	np->xn_ifp = NULL;
2286 	ifmedia_removeall(&np->sc_media);
2287 }
2288 
2289 static void
2290 netif_disconnect_backend(struct netfront_info *np)
2291 {
2292 	u_int i;
2293 
2294 	for (i = 0; i < np->num_queues; i++) {
2295 		XN_RX_LOCK(&np->rxq[i]);
2296 		XN_TX_LOCK(&np->txq[i]);
2297 	}
2298 	netfront_carrier_off(np);
2299 	for (i = 0; i < np->num_queues; i++) {
2300 		XN_RX_UNLOCK(&np->rxq[i]);
2301 		XN_TX_UNLOCK(&np->txq[i]);
2302 	}
2303 
2304 	for (i = 0; i < np->num_queues; i++) {
2305 		disconnect_rxq(&np->rxq[i]);
2306 		disconnect_txq(&np->txq[i]);
2307 	}
2308 }
2309 
2310 static int
2311 xn_ifmedia_upd(struct ifnet *ifp)
2312 {
2313 
2314 	return (0);
2315 }
2316 
2317 static void
2318 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2319 {
2320 
2321 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2322 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2323 }
2324 
2325 /* ** Driver registration ** */
2326 static device_method_t netfront_methods[] = {
2327 	/* Device interface */
2328 	DEVMETHOD(device_probe,         netfront_probe),
2329 	DEVMETHOD(device_attach,        netfront_attach),
2330 	DEVMETHOD(device_detach,        netfront_detach),
2331 	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2332 	DEVMETHOD(device_suspend,       netfront_suspend),
2333 	DEVMETHOD(device_resume,        netfront_resume),
2334 
2335 	/* Xenbus interface */
2336 	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2337 
2338 	DEVMETHOD_END
2339 };
2340 
2341 static driver_t netfront_driver = {
2342 	"xn",
2343 	netfront_methods,
2344 	sizeof(struct netfront_info),
2345 };
2346 devclass_t netfront_devclass;
2347 
2348 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL,
2349     NULL);
2350