xref: /freebsd/sys/geom/raid/g_raid.c (revision 076ad2f8)
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50 
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52 
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
57     &g_raid_enable, 0, "Enable on-disk metadata taste");
58 u_int g_raid_aggressive_spare = 0;
59 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
60     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
61 u_int g_raid_debug = 0;
62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
63     "Debug level");
64 int g_raid_read_err_thresh = 10;
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
66     &g_raid_read_err_thresh, 0,
67     "Number of read errors equated to disk failure");
68 u_int g_raid_start_timeout = 30;
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
70     &g_raid_start_timeout, 0,
71     "Time to wait for all array components");
72 static u_int g_raid_clean_time = 5;
73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
74     &g_raid_clean_time, 0, "Mark volume as clean when idling");
75 static u_int g_raid_disconnect_on_failure = 1;
76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
77     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
78 static u_int g_raid_name_format = 0;
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
80     &g_raid_name_format, 0, "Providers name format.");
81 static u_int g_raid_idle_threshold = 1000000;
82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
83     &g_raid_idle_threshold, 1000000,
84     "Time in microseconds to consider a volume idle.");
85 
86 #define	MSLEEP(rv, ident, mtx, priority, wmesg, timeout)	do {	\
87 	G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));		\
88 	rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));	\
89 	G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));		\
90 } while (0)
91 
92 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
93     LIST_HEAD_INITIALIZER(g_raid_md_classes);
94 
95 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
96     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
97 
98 LIST_HEAD(, g_raid_volume) g_raid_volumes =
99     LIST_HEAD_INITIALIZER(g_raid_volumes);
100 
101 static eventhandler_tag g_raid_post_sync = NULL;
102 static int g_raid_started = 0;
103 static int g_raid_shutdown = 0;
104 
105 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
106     struct g_geom *gp);
107 static g_taste_t g_raid_taste;
108 static void g_raid_init(struct g_class *mp);
109 static void g_raid_fini(struct g_class *mp);
110 
111 struct g_class g_raid_class = {
112 	.name = G_RAID_CLASS_NAME,
113 	.version = G_VERSION,
114 	.ctlreq = g_raid_ctl,
115 	.taste = g_raid_taste,
116 	.destroy_geom = g_raid_destroy_geom,
117 	.init = g_raid_init,
118 	.fini = g_raid_fini
119 };
120 
121 static void g_raid_destroy_provider(struct g_raid_volume *vol);
122 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
123 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
124 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
125 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
126 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
127     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
128 static void g_raid_start(struct bio *bp);
129 static void g_raid_start_request(struct bio *bp);
130 static void g_raid_disk_done(struct bio *bp);
131 static void g_raid_poll(struct g_raid_softc *sc);
132 
133 static const char *
134 g_raid_node_event2str(int event)
135 {
136 
137 	switch (event) {
138 	case G_RAID_NODE_E_WAKE:
139 		return ("WAKE");
140 	case G_RAID_NODE_E_START:
141 		return ("START");
142 	default:
143 		return ("INVALID");
144 	}
145 }
146 
147 const char *
148 g_raid_disk_state2str(int state)
149 {
150 
151 	switch (state) {
152 	case G_RAID_DISK_S_NONE:
153 		return ("NONE");
154 	case G_RAID_DISK_S_OFFLINE:
155 		return ("OFFLINE");
156 	case G_RAID_DISK_S_DISABLED:
157 		return ("DISABLED");
158 	case G_RAID_DISK_S_FAILED:
159 		return ("FAILED");
160 	case G_RAID_DISK_S_STALE_FAILED:
161 		return ("STALE_FAILED");
162 	case G_RAID_DISK_S_SPARE:
163 		return ("SPARE");
164 	case G_RAID_DISK_S_STALE:
165 		return ("STALE");
166 	case G_RAID_DISK_S_ACTIVE:
167 		return ("ACTIVE");
168 	default:
169 		return ("INVALID");
170 	}
171 }
172 
173 static const char *
174 g_raid_disk_event2str(int event)
175 {
176 
177 	switch (event) {
178 	case G_RAID_DISK_E_DISCONNECTED:
179 		return ("DISCONNECTED");
180 	default:
181 		return ("INVALID");
182 	}
183 }
184 
185 const char *
186 g_raid_subdisk_state2str(int state)
187 {
188 
189 	switch (state) {
190 	case G_RAID_SUBDISK_S_NONE:
191 		return ("NONE");
192 	case G_RAID_SUBDISK_S_FAILED:
193 		return ("FAILED");
194 	case G_RAID_SUBDISK_S_NEW:
195 		return ("NEW");
196 	case G_RAID_SUBDISK_S_REBUILD:
197 		return ("REBUILD");
198 	case G_RAID_SUBDISK_S_UNINITIALIZED:
199 		return ("UNINITIALIZED");
200 	case G_RAID_SUBDISK_S_STALE:
201 		return ("STALE");
202 	case G_RAID_SUBDISK_S_RESYNC:
203 		return ("RESYNC");
204 	case G_RAID_SUBDISK_S_ACTIVE:
205 		return ("ACTIVE");
206 	default:
207 		return ("INVALID");
208 	}
209 }
210 
211 static const char *
212 g_raid_subdisk_event2str(int event)
213 {
214 
215 	switch (event) {
216 	case G_RAID_SUBDISK_E_NEW:
217 		return ("NEW");
218 	case G_RAID_SUBDISK_E_FAILED:
219 		return ("FAILED");
220 	case G_RAID_SUBDISK_E_DISCONNECTED:
221 		return ("DISCONNECTED");
222 	default:
223 		return ("INVALID");
224 	}
225 }
226 
227 const char *
228 g_raid_volume_state2str(int state)
229 {
230 
231 	switch (state) {
232 	case G_RAID_VOLUME_S_STARTING:
233 		return ("STARTING");
234 	case G_RAID_VOLUME_S_BROKEN:
235 		return ("BROKEN");
236 	case G_RAID_VOLUME_S_DEGRADED:
237 		return ("DEGRADED");
238 	case G_RAID_VOLUME_S_SUBOPTIMAL:
239 		return ("SUBOPTIMAL");
240 	case G_RAID_VOLUME_S_OPTIMAL:
241 		return ("OPTIMAL");
242 	case G_RAID_VOLUME_S_UNSUPPORTED:
243 		return ("UNSUPPORTED");
244 	case G_RAID_VOLUME_S_STOPPED:
245 		return ("STOPPED");
246 	default:
247 		return ("INVALID");
248 	}
249 }
250 
251 static const char *
252 g_raid_volume_event2str(int event)
253 {
254 
255 	switch (event) {
256 	case G_RAID_VOLUME_E_UP:
257 		return ("UP");
258 	case G_RAID_VOLUME_E_DOWN:
259 		return ("DOWN");
260 	case G_RAID_VOLUME_E_START:
261 		return ("START");
262 	case G_RAID_VOLUME_E_STARTMD:
263 		return ("STARTMD");
264 	default:
265 		return ("INVALID");
266 	}
267 }
268 
269 const char *
270 g_raid_volume_level2str(int level, int qual)
271 {
272 
273 	switch (level) {
274 	case G_RAID_VOLUME_RL_RAID0:
275 		return ("RAID0");
276 	case G_RAID_VOLUME_RL_RAID1:
277 		return ("RAID1");
278 	case G_RAID_VOLUME_RL_RAID3:
279 		if (qual == G_RAID_VOLUME_RLQ_R3P0)
280 			return ("RAID3-P0");
281 		if (qual == G_RAID_VOLUME_RLQ_R3PN)
282 			return ("RAID3-PN");
283 		return ("RAID3");
284 	case G_RAID_VOLUME_RL_RAID4:
285 		if (qual == G_RAID_VOLUME_RLQ_R4P0)
286 			return ("RAID4-P0");
287 		if (qual == G_RAID_VOLUME_RLQ_R4PN)
288 			return ("RAID4-PN");
289 		return ("RAID4");
290 	case G_RAID_VOLUME_RL_RAID5:
291 		if (qual == G_RAID_VOLUME_RLQ_R5RA)
292 			return ("RAID5-RA");
293 		if (qual == G_RAID_VOLUME_RLQ_R5RS)
294 			return ("RAID5-RS");
295 		if (qual == G_RAID_VOLUME_RLQ_R5LA)
296 			return ("RAID5-LA");
297 		if (qual == G_RAID_VOLUME_RLQ_R5LS)
298 			return ("RAID5-LS");
299 		return ("RAID5");
300 	case G_RAID_VOLUME_RL_RAID6:
301 		if (qual == G_RAID_VOLUME_RLQ_R6RA)
302 			return ("RAID6-RA");
303 		if (qual == G_RAID_VOLUME_RLQ_R6RS)
304 			return ("RAID6-RS");
305 		if (qual == G_RAID_VOLUME_RLQ_R6LA)
306 			return ("RAID6-LA");
307 		if (qual == G_RAID_VOLUME_RLQ_R6LS)
308 			return ("RAID6-LS");
309 		return ("RAID6");
310 	case G_RAID_VOLUME_RL_RAIDMDF:
311 		if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
312 			return ("RAIDMDF-RA");
313 		if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
314 			return ("RAIDMDF-RS");
315 		if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
316 			return ("RAIDMDF-LA");
317 		if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
318 			return ("RAIDMDF-LS");
319 		return ("RAIDMDF");
320 	case G_RAID_VOLUME_RL_RAID1E:
321 		if (qual == G_RAID_VOLUME_RLQ_R1EA)
322 			return ("RAID1E-A");
323 		if (qual == G_RAID_VOLUME_RLQ_R1EO)
324 			return ("RAID1E-O");
325 		return ("RAID1E");
326 	case G_RAID_VOLUME_RL_SINGLE:
327 		return ("SINGLE");
328 	case G_RAID_VOLUME_RL_CONCAT:
329 		return ("CONCAT");
330 	case G_RAID_VOLUME_RL_RAID5E:
331 		if (qual == G_RAID_VOLUME_RLQ_R5ERA)
332 			return ("RAID5E-RA");
333 		if (qual == G_RAID_VOLUME_RLQ_R5ERS)
334 			return ("RAID5E-RS");
335 		if (qual == G_RAID_VOLUME_RLQ_R5ELA)
336 			return ("RAID5E-LA");
337 		if (qual == G_RAID_VOLUME_RLQ_R5ELS)
338 			return ("RAID5E-LS");
339 		return ("RAID5E");
340 	case G_RAID_VOLUME_RL_RAID5EE:
341 		if (qual == G_RAID_VOLUME_RLQ_R5EERA)
342 			return ("RAID5EE-RA");
343 		if (qual == G_RAID_VOLUME_RLQ_R5EERS)
344 			return ("RAID5EE-RS");
345 		if (qual == G_RAID_VOLUME_RLQ_R5EELA)
346 			return ("RAID5EE-LA");
347 		if (qual == G_RAID_VOLUME_RLQ_R5EELS)
348 			return ("RAID5EE-LS");
349 		return ("RAID5EE");
350 	case G_RAID_VOLUME_RL_RAID5R:
351 		if (qual == G_RAID_VOLUME_RLQ_R5RRA)
352 			return ("RAID5R-RA");
353 		if (qual == G_RAID_VOLUME_RLQ_R5RRS)
354 			return ("RAID5R-RS");
355 		if (qual == G_RAID_VOLUME_RLQ_R5RLA)
356 			return ("RAID5R-LA");
357 		if (qual == G_RAID_VOLUME_RLQ_R5RLS)
358 			return ("RAID5R-LS");
359 		return ("RAID5E");
360 	default:
361 		return ("UNKNOWN");
362 	}
363 }
364 
365 int
366 g_raid_volume_str2level(const char *str, int *level, int *qual)
367 {
368 
369 	*level = G_RAID_VOLUME_RL_UNKNOWN;
370 	*qual = G_RAID_VOLUME_RLQ_NONE;
371 	if (strcasecmp(str, "RAID0") == 0)
372 		*level = G_RAID_VOLUME_RL_RAID0;
373 	else if (strcasecmp(str, "RAID1") == 0)
374 		*level = G_RAID_VOLUME_RL_RAID1;
375 	else if (strcasecmp(str, "RAID3-P0") == 0) {
376 		*level = G_RAID_VOLUME_RL_RAID3;
377 		*qual = G_RAID_VOLUME_RLQ_R3P0;
378 	} else if (strcasecmp(str, "RAID3-PN") == 0 ||
379 		   strcasecmp(str, "RAID3") == 0) {
380 		*level = G_RAID_VOLUME_RL_RAID3;
381 		*qual = G_RAID_VOLUME_RLQ_R3PN;
382 	} else if (strcasecmp(str, "RAID4-P0") == 0) {
383 		*level = G_RAID_VOLUME_RL_RAID4;
384 		*qual = G_RAID_VOLUME_RLQ_R4P0;
385 	} else if (strcasecmp(str, "RAID4-PN") == 0 ||
386 		   strcasecmp(str, "RAID4") == 0) {
387 		*level = G_RAID_VOLUME_RL_RAID4;
388 		*qual = G_RAID_VOLUME_RLQ_R4PN;
389 	} else if (strcasecmp(str, "RAID5-RA") == 0) {
390 		*level = G_RAID_VOLUME_RL_RAID5;
391 		*qual = G_RAID_VOLUME_RLQ_R5RA;
392 	} else if (strcasecmp(str, "RAID5-RS") == 0) {
393 		*level = G_RAID_VOLUME_RL_RAID5;
394 		*qual = G_RAID_VOLUME_RLQ_R5RS;
395 	} else if (strcasecmp(str, "RAID5") == 0 ||
396 		   strcasecmp(str, "RAID5-LA") == 0) {
397 		*level = G_RAID_VOLUME_RL_RAID5;
398 		*qual = G_RAID_VOLUME_RLQ_R5LA;
399 	} else if (strcasecmp(str, "RAID5-LS") == 0) {
400 		*level = G_RAID_VOLUME_RL_RAID5;
401 		*qual = G_RAID_VOLUME_RLQ_R5LS;
402 	} else if (strcasecmp(str, "RAID6-RA") == 0) {
403 		*level = G_RAID_VOLUME_RL_RAID6;
404 		*qual = G_RAID_VOLUME_RLQ_R6RA;
405 	} else if (strcasecmp(str, "RAID6-RS") == 0) {
406 		*level = G_RAID_VOLUME_RL_RAID6;
407 		*qual = G_RAID_VOLUME_RLQ_R6RS;
408 	} else if (strcasecmp(str, "RAID6") == 0 ||
409 		   strcasecmp(str, "RAID6-LA") == 0) {
410 		*level = G_RAID_VOLUME_RL_RAID6;
411 		*qual = G_RAID_VOLUME_RLQ_R6LA;
412 	} else if (strcasecmp(str, "RAID6-LS") == 0) {
413 		*level = G_RAID_VOLUME_RL_RAID6;
414 		*qual = G_RAID_VOLUME_RLQ_R6LS;
415 	} else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
416 		*level = G_RAID_VOLUME_RL_RAIDMDF;
417 		*qual = G_RAID_VOLUME_RLQ_RMDFRA;
418 	} else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
419 		*level = G_RAID_VOLUME_RL_RAIDMDF;
420 		*qual = G_RAID_VOLUME_RLQ_RMDFRS;
421 	} else if (strcasecmp(str, "RAIDMDF") == 0 ||
422 		   strcasecmp(str, "RAIDMDF-LA") == 0) {
423 		*level = G_RAID_VOLUME_RL_RAIDMDF;
424 		*qual = G_RAID_VOLUME_RLQ_RMDFLA;
425 	} else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
426 		*level = G_RAID_VOLUME_RL_RAIDMDF;
427 		*qual = G_RAID_VOLUME_RLQ_RMDFLS;
428 	} else if (strcasecmp(str, "RAID10") == 0 ||
429 		   strcasecmp(str, "RAID1E") == 0 ||
430 		   strcasecmp(str, "RAID1E-A") == 0) {
431 		*level = G_RAID_VOLUME_RL_RAID1E;
432 		*qual = G_RAID_VOLUME_RLQ_R1EA;
433 	} else if (strcasecmp(str, "RAID1E-O") == 0) {
434 		*level = G_RAID_VOLUME_RL_RAID1E;
435 		*qual = G_RAID_VOLUME_RLQ_R1EO;
436 	} else if (strcasecmp(str, "SINGLE") == 0)
437 		*level = G_RAID_VOLUME_RL_SINGLE;
438 	else if (strcasecmp(str, "CONCAT") == 0)
439 		*level = G_RAID_VOLUME_RL_CONCAT;
440 	else if (strcasecmp(str, "RAID5E-RA") == 0) {
441 		*level = G_RAID_VOLUME_RL_RAID5E;
442 		*qual = G_RAID_VOLUME_RLQ_R5ERA;
443 	} else if (strcasecmp(str, "RAID5E-RS") == 0) {
444 		*level = G_RAID_VOLUME_RL_RAID5E;
445 		*qual = G_RAID_VOLUME_RLQ_R5ERS;
446 	} else if (strcasecmp(str, "RAID5E") == 0 ||
447 		   strcasecmp(str, "RAID5E-LA") == 0) {
448 		*level = G_RAID_VOLUME_RL_RAID5E;
449 		*qual = G_RAID_VOLUME_RLQ_R5ELA;
450 	} else if (strcasecmp(str, "RAID5E-LS") == 0) {
451 		*level = G_RAID_VOLUME_RL_RAID5E;
452 		*qual = G_RAID_VOLUME_RLQ_R5ELS;
453 	} else if (strcasecmp(str, "RAID5EE-RA") == 0) {
454 		*level = G_RAID_VOLUME_RL_RAID5EE;
455 		*qual = G_RAID_VOLUME_RLQ_R5EERA;
456 	} else if (strcasecmp(str, "RAID5EE-RS") == 0) {
457 		*level = G_RAID_VOLUME_RL_RAID5EE;
458 		*qual = G_RAID_VOLUME_RLQ_R5EERS;
459 	} else if (strcasecmp(str, "RAID5EE") == 0 ||
460 		   strcasecmp(str, "RAID5EE-LA") == 0) {
461 		*level = G_RAID_VOLUME_RL_RAID5EE;
462 		*qual = G_RAID_VOLUME_RLQ_R5EELA;
463 	} else if (strcasecmp(str, "RAID5EE-LS") == 0) {
464 		*level = G_RAID_VOLUME_RL_RAID5EE;
465 		*qual = G_RAID_VOLUME_RLQ_R5EELS;
466 	} else if (strcasecmp(str, "RAID5R-RA") == 0) {
467 		*level = G_RAID_VOLUME_RL_RAID5R;
468 		*qual = G_RAID_VOLUME_RLQ_R5RRA;
469 	} else if (strcasecmp(str, "RAID5R-RS") == 0) {
470 		*level = G_RAID_VOLUME_RL_RAID5R;
471 		*qual = G_RAID_VOLUME_RLQ_R5RRS;
472 	} else if (strcasecmp(str, "RAID5R") == 0 ||
473 		   strcasecmp(str, "RAID5R-LA") == 0) {
474 		*level = G_RAID_VOLUME_RL_RAID5R;
475 		*qual = G_RAID_VOLUME_RLQ_R5RLA;
476 	} else if (strcasecmp(str, "RAID5R-LS") == 0) {
477 		*level = G_RAID_VOLUME_RL_RAID5R;
478 		*qual = G_RAID_VOLUME_RLQ_R5RLS;
479 	} else
480 		return (-1);
481 	return (0);
482 }
483 
484 const char *
485 g_raid_get_diskname(struct g_raid_disk *disk)
486 {
487 
488 	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
489 		return ("[unknown]");
490 	return (disk->d_consumer->provider->name);
491 }
492 
493 void
494 g_raid_get_disk_info(struct g_raid_disk *disk)
495 {
496 	struct g_consumer *cp = disk->d_consumer;
497 	int error, len;
498 
499 	/* Read kernel dumping information. */
500 	disk->d_kd.offset = 0;
501 	disk->d_kd.length = OFF_MAX;
502 	len = sizeof(disk->d_kd);
503 	error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
504 	if (error)
505 		disk->d_kd.di.dumper = NULL;
506 	if (disk->d_kd.di.dumper == NULL)
507 		G_RAID_DEBUG1(2, disk->d_softc,
508 		    "Dumping not supported by %s: %d.",
509 		    cp->provider->name, error);
510 
511 	/* Read BIO_DELETE support. */
512 	error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
513 	if (error)
514 		disk->d_candelete = 0;
515 	if (!disk->d_candelete)
516 		G_RAID_DEBUG1(2, disk->d_softc,
517 		    "BIO_DELETE not supported by %s: %d.",
518 		    cp->provider->name, error);
519 }
520 
521 void
522 g_raid_report_disk_state(struct g_raid_disk *disk)
523 {
524 	struct g_raid_subdisk *sd;
525 	int len, state;
526 	uint32_t s;
527 
528 	if (disk->d_consumer == NULL)
529 		return;
530 	if (disk->d_state == G_RAID_DISK_S_DISABLED) {
531 		s = G_STATE_ACTIVE; /* XXX */
532 	} else if (disk->d_state == G_RAID_DISK_S_FAILED ||
533 	    disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
534 		s = G_STATE_FAILED;
535 	} else {
536 		state = G_RAID_SUBDISK_S_ACTIVE;
537 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
538 			if (sd->sd_state < state)
539 				state = sd->sd_state;
540 		}
541 		if (state == G_RAID_SUBDISK_S_FAILED)
542 			s = G_STATE_FAILED;
543 		else if (state == G_RAID_SUBDISK_S_NEW ||
544 		    state == G_RAID_SUBDISK_S_REBUILD)
545 			s = G_STATE_REBUILD;
546 		else if (state == G_RAID_SUBDISK_S_STALE ||
547 		    state == G_RAID_SUBDISK_S_RESYNC)
548 			s = G_STATE_RESYNC;
549 		else
550 			s = G_STATE_ACTIVE;
551 	}
552 	len = sizeof(s);
553 	g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
554 	G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
555 	    g_raid_get_diskname(disk), s);
556 }
557 
558 void
559 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
560 {
561 
562 	G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
563 	    g_raid_get_diskname(disk),
564 	    g_raid_disk_state2str(disk->d_state),
565 	    g_raid_disk_state2str(state));
566 	disk->d_state = state;
567 	g_raid_report_disk_state(disk);
568 }
569 
570 void
571 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
572 {
573 
574 	G_RAID_DEBUG1(0, sd->sd_softc,
575 	    "Subdisk %s:%d-%s state changed from %s to %s.",
576 	    sd->sd_volume->v_name, sd->sd_pos,
577 	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
578 	    g_raid_subdisk_state2str(sd->sd_state),
579 	    g_raid_subdisk_state2str(state));
580 	sd->sd_state = state;
581 	if (sd->sd_disk)
582 		g_raid_report_disk_state(sd->sd_disk);
583 }
584 
585 void
586 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
587 {
588 
589 	G_RAID_DEBUG1(0, vol->v_softc,
590 	    "Volume %s state changed from %s to %s.",
591 	    vol->v_name,
592 	    g_raid_volume_state2str(vol->v_state),
593 	    g_raid_volume_state2str(state));
594 	vol->v_state = state;
595 }
596 
597 /*
598  * --- Events handling functions ---
599  * Events in geom_raid are used to maintain subdisks and volumes status
600  * from one thread to simplify locking.
601  */
602 static void
603 g_raid_event_free(struct g_raid_event *ep)
604 {
605 
606 	free(ep, M_RAID);
607 }
608 
609 int
610 g_raid_event_send(void *arg, int event, int flags)
611 {
612 	struct g_raid_softc *sc;
613 	struct g_raid_event *ep;
614 	int error;
615 
616 	if ((flags & G_RAID_EVENT_VOLUME) != 0) {
617 		sc = ((struct g_raid_volume *)arg)->v_softc;
618 	} else if ((flags & G_RAID_EVENT_DISK) != 0) {
619 		sc = ((struct g_raid_disk *)arg)->d_softc;
620 	} else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
621 		sc = ((struct g_raid_subdisk *)arg)->sd_softc;
622 	} else {
623 		sc = arg;
624 	}
625 	ep = malloc(sizeof(*ep), M_RAID,
626 	    sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
627 	if (ep == NULL)
628 		return (ENOMEM);
629 	ep->e_tgt = arg;
630 	ep->e_event = event;
631 	ep->e_flags = flags;
632 	ep->e_error = 0;
633 	G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
634 	mtx_lock(&sc->sc_queue_mtx);
635 	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
636 	mtx_unlock(&sc->sc_queue_mtx);
637 	wakeup(sc);
638 
639 	if ((flags & G_RAID_EVENT_WAIT) == 0)
640 		return (0);
641 
642 	sx_assert(&sc->sc_lock, SX_XLOCKED);
643 	G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
644 	sx_xunlock(&sc->sc_lock);
645 	while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
646 		mtx_lock(&sc->sc_queue_mtx);
647 		MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
648 		    hz * 5);
649 	}
650 	error = ep->e_error;
651 	g_raid_event_free(ep);
652 	sx_xlock(&sc->sc_lock);
653 	return (error);
654 }
655 
656 static void
657 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
658 {
659 	struct g_raid_event *ep, *tmpep;
660 
661 	sx_assert(&sc->sc_lock, SX_XLOCKED);
662 
663 	mtx_lock(&sc->sc_queue_mtx);
664 	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
665 		if (ep->e_tgt != tgt)
666 			continue;
667 		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
668 		if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
669 			g_raid_event_free(ep);
670 		else {
671 			ep->e_error = ECANCELED;
672 			wakeup(ep);
673 		}
674 	}
675 	mtx_unlock(&sc->sc_queue_mtx);
676 }
677 
678 static int
679 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
680 {
681 	struct g_raid_event *ep;
682 	int	res = 0;
683 
684 	sx_assert(&sc->sc_lock, SX_XLOCKED);
685 
686 	mtx_lock(&sc->sc_queue_mtx);
687 	TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
688 		if (ep->e_tgt != tgt)
689 			continue;
690 		res = 1;
691 		break;
692 	}
693 	mtx_unlock(&sc->sc_queue_mtx);
694 	return (res);
695 }
696 
697 /*
698  * Return the number of disks in given state.
699  * If state is equal to -1, count all connected disks.
700  */
701 u_int
702 g_raid_ndisks(struct g_raid_softc *sc, int state)
703 {
704 	struct g_raid_disk *disk;
705 	u_int n;
706 
707 	sx_assert(&sc->sc_lock, SX_LOCKED);
708 
709 	n = 0;
710 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
711 		if (disk->d_state == state || state == -1)
712 			n++;
713 	}
714 	return (n);
715 }
716 
717 /*
718  * Return the number of subdisks in given state.
719  * If state is equal to -1, count all connected disks.
720  */
721 u_int
722 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
723 {
724 	struct g_raid_subdisk *subdisk;
725 	struct g_raid_softc *sc;
726 	u_int i, n ;
727 
728 	sc = vol->v_softc;
729 	sx_assert(&sc->sc_lock, SX_LOCKED);
730 
731 	n = 0;
732 	for (i = 0; i < vol->v_disks_count; i++) {
733 		subdisk = &vol->v_subdisks[i];
734 		if ((state == -1 &&
735 		     subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
736 		    subdisk->sd_state == state)
737 			n++;
738 	}
739 	return (n);
740 }
741 
742 /*
743  * Return the first subdisk in given state.
744  * If state is equal to -1, then the first connected disks.
745  */
746 struct g_raid_subdisk *
747 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
748 {
749 	struct g_raid_subdisk *sd;
750 	struct g_raid_softc *sc;
751 	u_int i;
752 
753 	sc = vol->v_softc;
754 	sx_assert(&sc->sc_lock, SX_LOCKED);
755 
756 	for (i = 0; i < vol->v_disks_count; i++) {
757 		sd = &vol->v_subdisks[i];
758 		if ((state == -1 &&
759 		     sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
760 		    sd->sd_state == state)
761 			return (sd);
762 	}
763 	return (NULL);
764 }
765 
766 struct g_consumer *
767 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
768 {
769 	struct g_consumer *cp;
770 	struct g_provider *pp;
771 
772 	g_topology_assert();
773 
774 	if (strncmp(name, "/dev/", 5) == 0)
775 		name += 5;
776 	pp = g_provider_by_name(name);
777 	if (pp == NULL)
778 		return (NULL);
779 	cp = g_new_consumer(sc->sc_geom);
780 	cp->flags |= G_CF_DIRECT_RECEIVE;
781 	if (g_attach(cp, pp) != 0) {
782 		g_destroy_consumer(cp);
783 		return (NULL);
784 	}
785 	if (g_access(cp, 1, 1, 1) != 0) {
786 		g_detach(cp);
787 		g_destroy_consumer(cp);
788 		return (NULL);
789 	}
790 	return (cp);
791 }
792 
793 static u_int
794 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
795 {
796 	struct bio *bp;
797 	u_int nreqs = 0;
798 
799 	mtx_lock(&sc->sc_queue_mtx);
800 	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
801 		if (bp->bio_from == cp)
802 			nreqs++;
803 	}
804 	mtx_unlock(&sc->sc_queue_mtx);
805 	return (nreqs);
806 }
807 
808 u_int
809 g_raid_nopens(struct g_raid_softc *sc)
810 {
811 	struct g_raid_volume *vol;
812 	u_int opens;
813 
814 	opens = 0;
815 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
816 		if (vol->v_provider_open != 0)
817 			opens++;
818 	}
819 	return (opens);
820 }
821 
822 static int
823 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
824 {
825 
826 	if (cp->index > 0) {
827 		G_RAID_DEBUG1(2, sc,
828 		    "I/O requests for %s exist, can't destroy it now.",
829 		    cp->provider->name);
830 		return (1);
831 	}
832 	if (g_raid_nrequests(sc, cp) > 0) {
833 		G_RAID_DEBUG1(2, sc,
834 		    "I/O requests for %s in queue, can't destroy it now.",
835 		    cp->provider->name);
836 		return (1);
837 	}
838 	return (0);
839 }
840 
841 static void
842 g_raid_destroy_consumer(void *arg, int flags __unused)
843 {
844 	struct g_consumer *cp;
845 
846 	g_topology_assert();
847 
848 	cp = arg;
849 	G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
850 	g_detach(cp);
851 	g_destroy_consumer(cp);
852 }
853 
854 void
855 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
856 {
857 	struct g_provider *pp;
858 	int retaste_wait;
859 
860 	g_topology_assert_not();
861 
862 	g_topology_lock();
863 	cp->private = NULL;
864 	if (g_raid_consumer_is_busy(sc, cp))
865 		goto out;
866 	pp = cp->provider;
867 	retaste_wait = 0;
868 	if (cp->acw == 1) {
869 		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
870 			retaste_wait = 1;
871 	}
872 	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
873 		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
874 	if (retaste_wait) {
875 		/*
876 		 * After retaste event was send (inside g_access()), we can send
877 		 * event to detach and destroy consumer.
878 		 * A class, which has consumer to the given provider connected
879 		 * will not receive retaste event for the provider.
880 		 * This is the way how I ignore retaste events when I close
881 		 * consumers opened for write: I detach and destroy consumer
882 		 * after retaste event is sent.
883 		 */
884 		g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
885 		goto out;
886 	}
887 	G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
888 	g_detach(cp);
889 	g_destroy_consumer(cp);
890 out:
891 	g_topology_unlock();
892 }
893 
894 static void
895 g_raid_orphan(struct g_consumer *cp)
896 {
897 	struct g_raid_disk *disk;
898 
899 	g_topology_assert();
900 
901 	disk = cp->private;
902 	if (disk == NULL)
903 		return;
904 	g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
905 	    G_RAID_EVENT_DISK);
906 }
907 
908 static void
909 g_raid_clean(struct g_raid_volume *vol, int acw)
910 {
911 	struct g_raid_softc *sc;
912 	int timeout;
913 
914 	sc = vol->v_softc;
915 	g_topology_assert_not();
916 	sx_assert(&sc->sc_lock, SX_XLOCKED);
917 
918 //	if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
919 //		return;
920 	if (!vol->v_dirty)
921 		return;
922 	if (vol->v_writes > 0)
923 		return;
924 	if (acw > 0 || (acw == -1 &&
925 	    vol->v_provider != NULL && vol->v_provider->acw > 0)) {
926 		timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
927 		if (!g_raid_shutdown && timeout > 0)
928 			return;
929 	}
930 	vol->v_dirty = 0;
931 	G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
932 	    vol->v_name);
933 	g_raid_write_metadata(sc, vol, NULL, NULL);
934 }
935 
936 static void
937 g_raid_dirty(struct g_raid_volume *vol)
938 {
939 	struct g_raid_softc *sc;
940 
941 	sc = vol->v_softc;
942 	g_topology_assert_not();
943 	sx_assert(&sc->sc_lock, SX_XLOCKED);
944 
945 //	if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
946 //		return;
947 	vol->v_dirty = 1;
948 	G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
949 	    vol->v_name);
950 	g_raid_write_metadata(sc, vol, NULL, NULL);
951 }
952 
953 void
954 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
955 {
956 	struct g_raid_softc *sc;
957 	struct g_raid_volume *vol;
958 	struct g_raid_subdisk *sd;
959 	struct bio_queue_head queue;
960 	struct bio *cbp;
961 	int i;
962 
963 	vol = tr->tro_volume;
964 	sc = vol->v_softc;
965 
966 	/*
967 	 * Allocate all bios before sending any request, so we can return
968 	 * ENOMEM in nice and clean way.
969 	 */
970 	bioq_init(&queue);
971 	for (i = 0; i < vol->v_disks_count; i++) {
972 		sd = &vol->v_subdisks[i];
973 		if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
974 		    sd->sd_state == G_RAID_SUBDISK_S_FAILED)
975 			continue;
976 		cbp = g_clone_bio(bp);
977 		if (cbp == NULL)
978 			goto failure;
979 		cbp->bio_caller1 = sd;
980 		bioq_insert_tail(&queue, cbp);
981 	}
982 	while ((cbp = bioq_takefirst(&queue)) != NULL) {
983 		sd = cbp->bio_caller1;
984 		cbp->bio_caller1 = NULL;
985 		g_raid_subdisk_iostart(sd, cbp);
986 	}
987 	return;
988 failure:
989 	while ((cbp = bioq_takefirst(&queue)) != NULL)
990 		g_destroy_bio(cbp);
991 	if (bp->bio_error == 0)
992 		bp->bio_error = ENOMEM;
993 	g_raid_iodone(bp, bp->bio_error);
994 }
995 
996 static void
997 g_raid_tr_kerneldump_common_done(struct bio *bp)
998 {
999 
1000 	bp->bio_flags |= BIO_DONE;
1001 }
1002 
1003 int
1004 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1005     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1006 {
1007 	struct g_raid_softc *sc;
1008 	struct g_raid_volume *vol;
1009 	struct bio bp;
1010 
1011 	vol = tr->tro_volume;
1012 	sc = vol->v_softc;
1013 
1014 	g_reset_bio(&bp);
1015 	bp.bio_cmd = BIO_WRITE;
1016 	bp.bio_done = g_raid_tr_kerneldump_common_done;
1017 	bp.bio_attribute = NULL;
1018 	bp.bio_offset = offset;
1019 	bp.bio_length = length;
1020 	bp.bio_data = virtual;
1021 	bp.bio_to = vol->v_provider;
1022 
1023 	g_raid_start(&bp);
1024 	while (!(bp.bio_flags & BIO_DONE)) {
1025 		G_RAID_DEBUG1(4, sc, "Poll...");
1026 		g_raid_poll(sc);
1027 		DELAY(10);
1028 	}
1029 
1030 	return (bp.bio_error != 0 ? EIO : 0);
1031 }
1032 
1033 static int
1034 g_raid_dump(void *arg,
1035     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1036 {
1037 	struct g_raid_volume *vol;
1038 	int error;
1039 
1040 	vol = (struct g_raid_volume *)arg;
1041 	G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1042 	    (long long unsigned)offset, (long long unsigned)length);
1043 
1044 	error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1045 	    virtual, physical, offset, length);
1046 	return (error);
1047 }
1048 
1049 static void
1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1051 {
1052 	struct g_kerneldump *gkd;
1053 	struct g_provider *pp;
1054 	struct g_raid_volume *vol;
1055 
1056 	gkd = (struct g_kerneldump*)bp->bio_data;
1057 	pp = bp->bio_to;
1058 	vol = pp->private;
1059 	g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1060 		pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1061 	gkd->di.dumper = g_raid_dump;
1062 	gkd->di.priv = vol;
1063 	gkd->di.blocksize = vol->v_sectorsize;
1064 	gkd->di.maxiosize = DFLTPHYS;
1065 	gkd->di.mediaoffset = gkd->offset;
1066 	if ((gkd->offset + gkd->length) > vol->v_mediasize)
1067 		gkd->length = vol->v_mediasize - gkd->offset;
1068 	gkd->di.mediasize = gkd->length;
1069 	g_io_deliver(bp, 0);
1070 }
1071 
1072 static void
1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1074 {
1075 	struct g_provider *pp;
1076 	struct g_raid_volume *vol;
1077 	struct g_raid_subdisk *sd;
1078 	int *val;
1079 	int i;
1080 
1081 	val = (int *)bp->bio_data;
1082 	pp = bp->bio_to;
1083 	vol = pp->private;
1084 	*val = 0;
1085 	for (i = 0; i < vol->v_disks_count; i++) {
1086 		sd = &vol->v_subdisks[i];
1087 		if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1088 			continue;
1089 		if (sd->sd_disk->d_candelete) {
1090 			*val = 1;
1091 			break;
1092 		}
1093 	}
1094 	g_io_deliver(bp, 0);
1095 }
1096 
1097 static void
1098 g_raid_start(struct bio *bp)
1099 {
1100 	struct g_raid_softc *sc;
1101 
1102 	sc = bp->bio_to->geom->softc;
1103 	/*
1104 	 * If sc == NULL or there are no valid disks, provider's error
1105 	 * should be set and g_raid_start() should not be called at all.
1106 	 */
1107 //	KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1108 //	    ("Provider's error should be set (error=%d)(mirror=%s).",
1109 //	    bp->bio_to->error, bp->bio_to->name));
1110 	G_RAID_LOGREQ(3, bp, "Request received.");
1111 
1112 	switch (bp->bio_cmd) {
1113 	case BIO_READ:
1114 	case BIO_WRITE:
1115 	case BIO_DELETE:
1116 	case BIO_FLUSH:
1117 		break;
1118 	case BIO_GETATTR:
1119 		if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1120 			g_raid_candelete(sc, bp);
1121 		else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1122 			g_raid_kerneldump(sc, bp);
1123 		else
1124 			g_io_deliver(bp, EOPNOTSUPP);
1125 		return;
1126 	default:
1127 		g_io_deliver(bp, EOPNOTSUPP);
1128 		return;
1129 	}
1130 	mtx_lock(&sc->sc_queue_mtx);
1131 	bioq_insert_tail(&sc->sc_queue, bp);
1132 	mtx_unlock(&sc->sc_queue_mtx);
1133 	if (!dumping) {
1134 		G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1135 		wakeup(sc);
1136 	}
1137 }
1138 
1139 static int
1140 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1141 {
1142 	/*
1143 	 * 5 cases:
1144 	 * (1) bp entirely below NO
1145 	 * (2) bp entirely above NO
1146 	 * (3) bp start below, but end in range YES
1147 	 * (4) bp entirely within YES
1148 	 * (5) bp starts within, ends above YES
1149 	 *
1150 	 * lock range 10-19 (offset 10 length 10)
1151 	 * (1) 1-5: first if kicks it out
1152 	 * (2) 30-35: second if kicks it out
1153 	 * (3) 5-15: passes both ifs
1154 	 * (4) 12-14: passes both ifs
1155 	 * (5) 19-20: passes both
1156 	 */
1157 	off_t lend = lstart + len - 1;
1158 	off_t bstart = bp->bio_offset;
1159 	off_t bend = bp->bio_offset + bp->bio_length - 1;
1160 
1161 	if (bend < lstart)
1162 		return (0);
1163 	if (lend < bstart)
1164 		return (0);
1165 	return (1);
1166 }
1167 
1168 static int
1169 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1170 {
1171 	struct g_raid_lock *lp;
1172 
1173 	sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1174 
1175 	LIST_FOREACH(lp, &vol->v_locks, l_next) {
1176 		if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1177 			return (1);
1178 	}
1179 	return (0);
1180 }
1181 
1182 static void
1183 g_raid_start_request(struct bio *bp)
1184 {
1185 	struct g_raid_softc *sc;
1186 	struct g_raid_volume *vol;
1187 
1188 	sc = bp->bio_to->geom->softc;
1189 	sx_assert(&sc->sc_lock, SX_LOCKED);
1190 	vol = bp->bio_to->private;
1191 
1192 	/*
1193 	 * Check to see if this item is in a locked range.  If so,
1194 	 * queue it to our locked queue and return.  We'll requeue
1195 	 * it when the range is unlocked.  Internal I/O for the
1196 	 * rebuild/rescan/recovery process is excluded from this
1197 	 * check so we can actually do the recovery.
1198 	 */
1199 	if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1200 	    g_raid_is_in_locked_range(vol, bp)) {
1201 		G_RAID_LOGREQ(3, bp, "Defer request.");
1202 		bioq_insert_tail(&vol->v_locked, bp);
1203 		return;
1204 	}
1205 
1206 	/*
1207 	 * If we're actually going to do the write/delete, then
1208 	 * update the idle stats for the volume.
1209 	 */
1210 	if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1211 		if (!vol->v_dirty)
1212 			g_raid_dirty(vol);
1213 		vol->v_writes++;
1214 	}
1215 
1216 	/*
1217 	 * Put request onto inflight queue, so we can check if new
1218 	 * synchronization requests don't collide with it.  Then tell
1219 	 * the transformation layer to start the I/O.
1220 	 */
1221 	bioq_insert_tail(&vol->v_inflight, bp);
1222 	G_RAID_LOGREQ(4, bp, "Request started");
1223 	G_RAID_TR_IOSTART(vol->v_tr, bp);
1224 }
1225 
1226 static void
1227 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1228 {
1229 	off_t off, len;
1230 	struct bio *nbp;
1231 	struct g_raid_lock *lp;
1232 
1233 	vol->v_pending_lock = 0;
1234 	LIST_FOREACH(lp, &vol->v_locks, l_next) {
1235 		if (lp->l_pending) {
1236 			off = lp->l_offset;
1237 			len = lp->l_length;
1238 			lp->l_pending = 0;
1239 			TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1240 				if (g_raid_bio_overlaps(nbp, off, len))
1241 					lp->l_pending++;
1242 			}
1243 			if (lp->l_pending) {
1244 				vol->v_pending_lock = 1;
1245 				G_RAID_DEBUG1(4, vol->v_softc,
1246 				    "Deferred lock(%jd, %jd) has %d pending",
1247 				    (intmax_t)off, (intmax_t)(off + len),
1248 				    lp->l_pending);
1249 				continue;
1250 			}
1251 			G_RAID_DEBUG1(4, vol->v_softc,
1252 			    "Deferred lock of %jd to %jd completed",
1253 			    (intmax_t)off, (intmax_t)(off + len));
1254 			G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1255 		}
1256 	}
1257 }
1258 
1259 void
1260 g_raid_iodone(struct bio *bp, int error)
1261 {
1262 	struct g_raid_softc *sc;
1263 	struct g_raid_volume *vol;
1264 
1265 	sc = bp->bio_to->geom->softc;
1266 	sx_assert(&sc->sc_lock, SX_LOCKED);
1267 	vol = bp->bio_to->private;
1268 	G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1269 
1270 	/* Update stats if we done write/delete. */
1271 	if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1272 		vol->v_writes--;
1273 		vol->v_last_write = time_uptime;
1274 	}
1275 
1276 	bioq_remove(&vol->v_inflight, bp);
1277 	if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1278 		g_raid_finish_with_locked_ranges(vol, bp);
1279 	getmicrouptime(&vol->v_last_done);
1280 	g_io_deliver(bp, error);
1281 }
1282 
1283 int
1284 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1285     struct bio *ignore, void *argp)
1286 {
1287 	struct g_raid_softc *sc;
1288 	struct g_raid_lock *lp;
1289 	struct bio *bp;
1290 
1291 	sc = vol->v_softc;
1292 	lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1293 	LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1294 	lp->l_offset = off;
1295 	lp->l_length = len;
1296 	lp->l_callback_arg = argp;
1297 
1298 	lp->l_pending = 0;
1299 	TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1300 		if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1301 			lp->l_pending++;
1302 	}
1303 
1304 	/*
1305 	 * If there are any writes that are pending, we return EBUSY.  All
1306 	 * callers will have to wait until all pending writes clear.
1307 	 */
1308 	if (lp->l_pending > 0) {
1309 		vol->v_pending_lock = 1;
1310 		G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1311 		    (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1312 		return (EBUSY);
1313 	}
1314 	G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1315 	    (intmax_t)off, (intmax_t)(off+len));
1316 	G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1317 	return (0);
1318 }
1319 
1320 int
1321 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1322 {
1323 	struct g_raid_lock *lp;
1324 	struct g_raid_softc *sc;
1325 	struct bio *bp;
1326 
1327 	sc = vol->v_softc;
1328 	LIST_FOREACH(lp, &vol->v_locks, l_next) {
1329 		if (lp->l_offset == off && lp->l_length == len) {
1330 			LIST_REMOVE(lp, l_next);
1331 			/* XXX
1332 			 * Right now we just put them all back on the queue
1333 			 * and hope for the best.  We hope this because any
1334 			 * locked ranges will go right back on this list
1335 			 * when the worker thread runs.
1336 			 * XXX
1337 			 */
1338 			G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1339 			    (intmax_t)lp->l_offset,
1340 			    (intmax_t)(lp->l_offset+lp->l_length));
1341 			mtx_lock(&sc->sc_queue_mtx);
1342 			while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1343 				bioq_insert_tail(&sc->sc_queue, bp);
1344 			mtx_unlock(&sc->sc_queue_mtx);
1345 			free(lp, M_RAID);
1346 			return (0);
1347 		}
1348 	}
1349 	return (EINVAL);
1350 }
1351 
1352 void
1353 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1354 {
1355 	struct g_consumer *cp;
1356 	struct g_raid_disk *disk, *tdisk;
1357 
1358 	bp->bio_caller1 = sd;
1359 
1360 	/*
1361 	 * Make sure that the disk is present. Generally it is a task of
1362 	 * transformation layers to not send requests to absent disks, but
1363 	 * it is better to be safe and report situation then sorry.
1364 	 */
1365 	if (sd->sd_disk == NULL) {
1366 		G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1367 nodisk:
1368 		bp->bio_from = NULL;
1369 		bp->bio_to = NULL;
1370 		bp->bio_error = ENXIO;
1371 		g_raid_disk_done(bp);
1372 		return;
1373 	}
1374 	disk = sd->sd_disk;
1375 	if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1376 	    disk->d_state != G_RAID_DISK_S_FAILED) {
1377 		G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1378 		    "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1379 		goto nodisk;
1380 	}
1381 
1382 	cp = disk->d_consumer;
1383 	bp->bio_from = cp;
1384 	bp->bio_to = cp->provider;
1385 	cp->index++;
1386 
1387 	/* Update average disks load. */
1388 	TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1389 		if (tdisk->d_consumer == NULL)
1390 			tdisk->d_load = 0;
1391 		else
1392 			tdisk->d_load = (tdisk->d_consumer->index *
1393 			    G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1394 	}
1395 
1396 	disk->d_last_offset = bp->bio_offset + bp->bio_length;
1397 	if (dumping) {
1398 		G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1399 		if (bp->bio_cmd == BIO_WRITE) {
1400 			bp->bio_error = g_raid_subdisk_kerneldump(sd,
1401 			    bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1402 		} else
1403 			bp->bio_error = EOPNOTSUPP;
1404 		g_raid_disk_done(bp);
1405 	} else {
1406 		bp->bio_done = g_raid_disk_done;
1407 		bp->bio_offset += sd->sd_offset;
1408 		G_RAID_LOGREQ(3, bp, "Sending request.");
1409 		g_io_request(bp, cp);
1410 	}
1411 }
1412 
1413 int
1414 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1415     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1416 {
1417 
1418 	if (sd->sd_disk == NULL)
1419 		return (ENXIO);
1420 	if (sd->sd_disk->d_kd.di.dumper == NULL)
1421 		return (EOPNOTSUPP);
1422 	return (dump_write(&sd->sd_disk->d_kd.di,
1423 	    virtual, physical,
1424 	    sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1425 	    length));
1426 }
1427 
1428 static void
1429 g_raid_disk_done(struct bio *bp)
1430 {
1431 	struct g_raid_softc *sc;
1432 	struct g_raid_subdisk *sd;
1433 
1434 	sd = bp->bio_caller1;
1435 	sc = sd->sd_softc;
1436 	mtx_lock(&sc->sc_queue_mtx);
1437 	bioq_insert_tail(&sc->sc_queue, bp);
1438 	mtx_unlock(&sc->sc_queue_mtx);
1439 	if (!dumping)
1440 		wakeup(sc);
1441 }
1442 
1443 static void
1444 g_raid_disk_done_request(struct bio *bp)
1445 {
1446 	struct g_raid_softc *sc;
1447 	struct g_raid_disk *disk;
1448 	struct g_raid_subdisk *sd;
1449 	struct g_raid_volume *vol;
1450 
1451 	g_topology_assert_not();
1452 
1453 	G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1454 	sd = bp->bio_caller1;
1455 	sc = sd->sd_softc;
1456 	vol = sd->sd_volume;
1457 	if (bp->bio_from != NULL) {
1458 		bp->bio_from->index--;
1459 		disk = bp->bio_from->private;
1460 		if (disk == NULL)
1461 			g_raid_kill_consumer(sc, bp->bio_from);
1462 	}
1463 	bp->bio_offset -= sd->sd_offset;
1464 
1465 	G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1466 }
1467 
1468 static void
1469 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1470 {
1471 
1472 	if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1473 		ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1474 	else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1475 		ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1476 	else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1477 		ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1478 	else
1479 		ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1480 	if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1481 		KASSERT(ep->e_error == 0,
1482 		    ("Error cannot be handled."));
1483 		g_raid_event_free(ep);
1484 	} else {
1485 		ep->e_flags |= G_RAID_EVENT_DONE;
1486 		G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1487 		mtx_lock(&sc->sc_queue_mtx);
1488 		wakeup(ep);
1489 		mtx_unlock(&sc->sc_queue_mtx);
1490 	}
1491 }
1492 
1493 /*
1494  * Worker thread.
1495  */
1496 static void
1497 g_raid_worker(void *arg)
1498 {
1499 	struct g_raid_softc *sc;
1500 	struct g_raid_event *ep;
1501 	struct g_raid_volume *vol;
1502 	struct bio *bp;
1503 	struct timeval now, t;
1504 	int timeout, rv;
1505 
1506 	sc = arg;
1507 	thread_lock(curthread);
1508 	sched_prio(curthread, PRIBIO);
1509 	thread_unlock(curthread);
1510 
1511 	sx_xlock(&sc->sc_lock);
1512 	for (;;) {
1513 		mtx_lock(&sc->sc_queue_mtx);
1514 		/*
1515 		 * First take a look at events.
1516 		 * This is important to handle events before any I/O requests.
1517 		 */
1518 		bp = NULL;
1519 		vol = NULL;
1520 		rv = 0;
1521 		ep = TAILQ_FIRST(&sc->sc_events);
1522 		if (ep != NULL)
1523 			TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1524 		else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1525 			;
1526 		else {
1527 			getmicrouptime(&now);
1528 			t = now;
1529 			TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1530 				if (bioq_first(&vol->v_inflight) == NULL &&
1531 				    vol->v_tr &&
1532 				    timevalcmp(&vol->v_last_done, &t, < ))
1533 					t = vol->v_last_done;
1534 			}
1535 			timevalsub(&t, &now);
1536 			timeout = g_raid_idle_threshold +
1537 			    t.tv_sec * 1000000 + t.tv_usec;
1538 			if (timeout > 0) {
1539 				/*
1540 				 * Two steps to avoid overflows at HZ=1000
1541 				 * and idle timeouts > 2.1s.  Some rounding
1542 				 * errors can occur, but they are < 1tick,
1543 				 * which is deemed to be close enough for
1544 				 * this purpose.
1545 				 */
1546 				int micpertic = 1000000 / hz;
1547 				timeout = (timeout + micpertic - 1) / micpertic;
1548 				sx_xunlock(&sc->sc_lock);
1549 				MSLEEP(rv, sc, &sc->sc_queue_mtx,
1550 				    PRIBIO | PDROP, "-", timeout);
1551 				sx_xlock(&sc->sc_lock);
1552 				goto process;
1553 			} else
1554 				rv = EWOULDBLOCK;
1555 		}
1556 		mtx_unlock(&sc->sc_queue_mtx);
1557 process:
1558 		if (ep != NULL) {
1559 			g_raid_handle_event(sc, ep);
1560 		} else if (bp != NULL) {
1561 			if (bp->bio_to != NULL &&
1562 			    bp->bio_to->geom == sc->sc_geom)
1563 				g_raid_start_request(bp);
1564 			else
1565 				g_raid_disk_done_request(bp);
1566 		} else if (rv == EWOULDBLOCK) {
1567 			TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1568 				g_raid_clean(vol, -1);
1569 				if (bioq_first(&vol->v_inflight) == NULL &&
1570 				    vol->v_tr) {
1571 					t.tv_sec = g_raid_idle_threshold / 1000000;
1572 					t.tv_usec = g_raid_idle_threshold % 1000000;
1573 					timevaladd(&t, &vol->v_last_done);
1574 					getmicrouptime(&now);
1575 					if (timevalcmp(&t, &now, <= )) {
1576 						G_RAID_TR_IDLE(vol->v_tr);
1577 						vol->v_last_done = now;
1578 					}
1579 				}
1580 			}
1581 		}
1582 		if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1583 			g_raid_destroy_node(sc, 1);	/* May not return. */
1584 	}
1585 }
1586 
1587 static void
1588 g_raid_poll(struct g_raid_softc *sc)
1589 {
1590 	struct g_raid_event *ep;
1591 	struct bio *bp;
1592 
1593 	sx_xlock(&sc->sc_lock);
1594 	mtx_lock(&sc->sc_queue_mtx);
1595 	/*
1596 	 * First take a look at events.
1597 	 * This is important to handle events before any I/O requests.
1598 	 */
1599 	ep = TAILQ_FIRST(&sc->sc_events);
1600 	if (ep != NULL) {
1601 		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1602 		mtx_unlock(&sc->sc_queue_mtx);
1603 		g_raid_handle_event(sc, ep);
1604 		goto out;
1605 	}
1606 	bp = bioq_takefirst(&sc->sc_queue);
1607 	if (bp != NULL) {
1608 		mtx_unlock(&sc->sc_queue_mtx);
1609 		if (bp->bio_from == NULL ||
1610 		    bp->bio_from->geom != sc->sc_geom)
1611 			g_raid_start_request(bp);
1612 		else
1613 			g_raid_disk_done_request(bp);
1614 	}
1615 out:
1616 	sx_xunlock(&sc->sc_lock);
1617 }
1618 
1619 static void
1620 g_raid_launch_provider(struct g_raid_volume *vol)
1621 {
1622 	struct g_raid_disk *disk;
1623 	struct g_raid_subdisk *sd;
1624 	struct g_raid_softc *sc;
1625 	struct g_provider *pp;
1626 	char name[G_RAID_MAX_VOLUMENAME];
1627 	off_t off;
1628 	int i;
1629 
1630 	sc = vol->v_softc;
1631 	sx_assert(&sc->sc_lock, SX_LOCKED);
1632 
1633 	g_topology_lock();
1634 	/* Try to name provider with volume name. */
1635 	snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1636 	if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1637 	    g_provider_by_name(name) != NULL) {
1638 		/* Otherwise use sequential volume number. */
1639 		snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1640 	}
1641 
1642 	pp = g_new_providerf(sc->sc_geom, "%s", name);
1643 	pp->flags |= G_PF_DIRECT_RECEIVE;
1644 	if (vol->v_tr->tro_class->trc_accept_unmapped) {
1645 		pp->flags |= G_PF_ACCEPT_UNMAPPED;
1646 		for (i = 0; i < vol->v_disks_count; i++) {
1647 			sd = &vol->v_subdisks[i];
1648 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1649 				continue;
1650 			if ((sd->sd_disk->d_consumer->provider->flags &
1651 			    G_PF_ACCEPT_UNMAPPED) == 0)
1652 				pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1653 		}
1654 	}
1655 	pp->private = vol;
1656 	pp->mediasize = vol->v_mediasize;
1657 	pp->sectorsize = vol->v_sectorsize;
1658 	pp->stripesize = 0;
1659 	pp->stripeoffset = 0;
1660 	if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1661 	    vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1662 	    vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1663 	    vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1664 		if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1665 		    disk->d_consumer != NULL &&
1666 		    disk->d_consumer->provider != NULL) {
1667 			pp->stripesize = disk->d_consumer->provider->stripesize;
1668 			off = disk->d_consumer->provider->stripeoffset;
1669 			pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1670 			if (off > 0)
1671 				pp->stripeoffset %= off;
1672 		}
1673 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1674 			pp->stripesize *= (vol->v_disks_count - 1);
1675 			pp->stripeoffset *= (vol->v_disks_count - 1);
1676 		}
1677 	} else
1678 		pp->stripesize = vol->v_strip_size;
1679 	vol->v_provider = pp;
1680 	g_error_provider(pp, 0);
1681 	g_topology_unlock();
1682 	G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1683 	    pp->name, vol->v_name);
1684 }
1685 
1686 static void
1687 g_raid_destroy_provider(struct g_raid_volume *vol)
1688 {
1689 	struct g_raid_softc *sc;
1690 	struct g_provider *pp;
1691 	struct bio *bp, *tmp;
1692 
1693 	g_topology_assert_not();
1694 	sc = vol->v_softc;
1695 	pp = vol->v_provider;
1696 	KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1697 
1698 	g_topology_lock();
1699 	g_error_provider(pp, ENXIO);
1700 	mtx_lock(&sc->sc_queue_mtx);
1701 	TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1702 		if (bp->bio_to != pp)
1703 			continue;
1704 		bioq_remove(&sc->sc_queue, bp);
1705 		g_io_deliver(bp, ENXIO);
1706 	}
1707 	mtx_unlock(&sc->sc_queue_mtx);
1708 	G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1709 	    pp->name, vol->v_name);
1710 	g_wither_provider(pp, ENXIO);
1711 	g_topology_unlock();
1712 	vol->v_provider = NULL;
1713 }
1714 
1715 /*
1716  * Update device state.
1717  */
1718 static int
1719 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1720 {
1721 	struct g_raid_softc *sc;
1722 
1723 	sc = vol->v_softc;
1724 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1725 
1726 	G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1727 	    g_raid_volume_event2str(event),
1728 	    vol->v_name);
1729 	switch (event) {
1730 	case G_RAID_VOLUME_E_DOWN:
1731 		if (vol->v_provider != NULL)
1732 			g_raid_destroy_provider(vol);
1733 		break;
1734 	case G_RAID_VOLUME_E_UP:
1735 		if (vol->v_provider == NULL)
1736 			g_raid_launch_provider(vol);
1737 		break;
1738 	case G_RAID_VOLUME_E_START:
1739 		if (vol->v_tr)
1740 			G_RAID_TR_START(vol->v_tr);
1741 		return (0);
1742 	default:
1743 		if (sc->sc_md)
1744 			G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1745 		return (0);
1746 	}
1747 
1748 	/* Manage root mount release. */
1749 	if (vol->v_starting) {
1750 		vol->v_starting = 0;
1751 		G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1752 		root_mount_rel(vol->v_rootmount);
1753 		vol->v_rootmount = NULL;
1754 	}
1755 	if (vol->v_stopping && vol->v_provider_open == 0)
1756 		g_raid_destroy_volume(vol);
1757 	return (0);
1758 }
1759 
1760 /*
1761  * Update subdisk state.
1762  */
1763 static int
1764 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1765 {
1766 	struct g_raid_softc *sc;
1767 	struct g_raid_volume *vol;
1768 
1769 	sc = sd->sd_softc;
1770 	vol = sd->sd_volume;
1771 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1772 
1773 	G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1774 	    g_raid_subdisk_event2str(event),
1775 	    vol->v_name, sd->sd_pos,
1776 	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1777 	if (vol->v_tr)
1778 		G_RAID_TR_EVENT(vol->v_tr, sd, event);
1779 
1780 	return (0);
1781 }
1782 
1783 /*
1784  * Update disk state.
1785  */
1786 static int
1787 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1788 {
1789 	struct g_raid_softc *sc;
1790 
1791 	sc = disk->d_softc;
1792 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1793 
1794 	G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1795 	    g_raid_disk_event2str(event),
1796 	    g_raid_get_diskname(disk));
1797 
1798 	if (sc->sc_md)
1799 		G_RAID_MD_EVENT(sc->sc_md, disk, event);
1800 	return (0);
1801 }
1802 
1803 /*
1804  * Node event.
1805  */
1806 static int
1807 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1808 {
1809 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1810 
1811 	G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1812 	    g_raid_node_event2str(event));
1813 
1814 	if (event == G_RAID_NODE_E_WAKE)
1815 		return (0);
1816 	if (sc->sc_md)
1817 		G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1818 	return (0);
1819 }
1820 
1821 static int
1822 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1823 {
1824 	struct g_raid_volume *vol;
1825 	struct g_raid_softc *sc;
1826 	int dcw, opens, error = 0;
1827 
1828 	g_topology_assert();
1829 	sc = pp->geom->softc;
1830 	vol = pp->private;
1831 	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1832 	KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1833 
1834 	G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1835 	    acr, acw, ace);
1836 	dcw = pp->acw + acw;
1837 
1838 	g_topology_unlock();
1839 	sx_xlock(&sc->sc_lock);
1840 	/* Deny new opens while dying. */
1841 	if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1842 		error = ENXIO;
1843 		goto out;
1844 	}
1845 	/* Deny write opens for read-only volumes. */
1846 	if (vol->v_read_only && acw > 0) {
1847 		error = EROFS;
1848 		goto out;
1849 	}
1850 	if (dcw == 0)
1851 		g_raid_clean(vol, dcw);
1852 	vol->v_provider_open += acr + acw + ace;
1853 	/* Handle delayed node destruction. */
1854 	if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1855 	    vol->v_provider_open == 0) {
1856 		/* Count open volumes. */
1857 		opens = g_raid_nopens(sc);
1858 		if (opens == 0) {
1859 			sc->sc_stopping = G_RAID_DESTROY_HARD;
1860 			/* Wake up worker to make it selfdestruct. */
1861 			g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1862 		}
1863 	}
1864 	/* Handle open volume destruction. */
1865 	if (vol->v_stopping && vol->v_provider_open == 0)
1866 		g_raid_destroy_volume(vol);
1867 out:
1868 	sx_xunlock(&sc->sc_lock);
1869 	g_topology_lock();
1870 	return (error);
1871 }
1872 
1873 struct g_raid_softc *
1874 g_raid_create_node(struct g_class *mp,
1875     const char *name, struct g_raid_md_object *md)
1876 {
1877 	struct g_raid_softc *sc;
1878 	struct g_geom *gp;
1879 	int error;
1880 
1881 	g_topology_assert();
1882 	G_RAID_DEBUG(1, "Creating array %s.", name);
1883 
1884 	gp = g_new_geomf(mp, "%s", name);
1885 	sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1886 	gp->start = g_raid_start;
1887 	gp->orphan = g_raid_orphan;
1888 	gp->access = g_raid_access;
1889 	gp->dumpconf = g_raid_dumpconf;
1890 
1891 	sc->sc_md = md;
1892 	sc->sc_geom = gp;
1893 	sc->sc_flags = 0;
1894 	TAILQ_INIT(&sc->sc_volumes);
1895 	TAILQ_INIT(&sc->sc_disks);
1896 	sx_init(&sc->sc_lock, "graid:lock");
1897 	mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1898 	TAILQ_INIT(&sc->sc_events);
1899 	bioq_init(&sc->sc_queue);
1900 	gp->softc = sc;
1901 	error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1902 	    "g_raid %s", name);
1903 	if (error != 0) {
1904 		G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1905 		mtx_destroy(&sc->sc_queue_mtx);
1906 		sx_destroy(&sc->sc_lock);
1907 		g_destroy_geom(sc->sc_geom);
1908 		free(sc, M_RAID);
1909 		return (NULL);
1910 	}
1911 
1912 	G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1913 	return (sc);
1914 }
1915 
1916 struct g_raid_volume *
1917 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1918 {
1919 	struct g_raid_volume	*vol, *vol1;
1920 	int i;
1921 
1922 	G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1923 	vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1924 	vol->v_softc = sc;
1925 	strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1926 	vol->v_state = G_RAID_VOLUME_S_STARTING;
1927 	vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1928 	vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1929 	vol->v_rotate_parity = 1;
1930 	bioq_init(&vol->v_inflight);
1931 	bioq_init(&vol->v_locked);
1932 	LIST_INIT(&vol->v_locks);
1933 	for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1934 		vol->v_subdisks[i].sd_softc = sc;
1935 		vol->v_subdisks[i].sd_volume = vol;
1936 		vol->v_subdisks[i].sd_pos = i;
1937 		vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1938 	}
1939 
1940 	/* Find free ID for this volume. */
1941 	g_topology_lock();
1942 	vol1 = vol;
1943 	if (id >= 0) {
1944 		LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1945 			if (vol1->v_global_id == id)
1946 				break;
1947 		}
1948 	}
1949 	if (vol1 != NULL) {
1950 		for (id = 0; ; id++) {
1951 			LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1952 				if (vol1->v_global_id == id)
1953 					break;
1954 			}
1955 			if (vol1 == NULL)
1956 				break;
1957 		}
1958 	}
1959 	vol->v_global_id = id;
1960 	LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1961 	g_topology_unlock();
1962 
1963 	/* Delay root mounting. */
1964 	vol->v_rootmount = root_mount_hold("GRAID");
1965 	G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1966 	vol->v_starting = 1;
1967 	TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1968 	return (vol);
1969 }
1970 
1971 struct g_raid_disk *
1972 g_raid_create_disk(struct g_raid_softc *sc)
1973 {
1974 	struct g_raid_disk	*disk;
1975 
1976 	G_RAID_DEBUG1(1, sc, "Creating disk.");
1977 	disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1978 	disk->d_softc = sc;
1979 	disk->d_state = G_RAID_DISK_S_NONE;
1980 	TAILQ_INIT(&disk->d_subdisks);
1981 	TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1982 	return (disk);
1983 }
1984 
1985 int g_raid_start_volume(struct g_raid_volume *vol)
1986 {
1987 	struct g_raid_tr_class *class;
1988 	struct g_raid_tr_object *obj;
1989 	int status;
1990 
1991 	G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1992 	LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1993 		if (!class->trc_enable)
1994 			continue;
1995 		G_RAID_DEBUG1(2, vol->v_softc,
1996 		    "Tasting volume %s for %s transformation.",
1997 		    vol->v_name, class->name);
1998 		obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1999 		    M_WAITOK);
2000 		obj->tro_class = class;
2001 		obj->tro_volume = vol;
2002 		status = G_RAID_TR_TASTE(obj, vol);
2003 		if (status != G_RAID_TR_TASTE_FAIL)
2004 			break;
2005 		kobj_delete((kobj_t)obj, M_RAID);
2006 	}
2007 	if (class == NULL) {
2008 		G_RAID_DEBUG1(0, vol->v_softc,
2009 		    "No transformation module found for %s.",
2010 		    vol->v_name);
2011 		vol->v_tr = NULL;
2012 		g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2013 		g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2014 		    G_RAID_EVENT_VOLUME);
2015 		return (-1);
2016 	}
2017 	G_RAID_DEBUG1(2, vol->v_softc,
2018 	    "Transformation module %s chosen for %s.",
2019 	    class->name, vol->v_name);
2020 	vol->v_tr = obj;
2021 	return (0);
2022 }
2023 
2024 int
2025 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2026 {
2027 	struct g_raid_volume *vol, *tmpv;
2028 	struct g_raid_disk *disk, *tmpd;
2029 	int error = 0;
2030 
2031 	sc->sc_stopping = G_RAID_DESTROY_HARD;
2032 	TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2033 		if (g_raid_destroy_volume(vol))
2034 			error = EBUSY;
2035 	}
2036 	if (error)
2037 		return (error);
2038 	TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2039 		if (g_raid_destroy_disk(disk))
2040 			error = EBUSY;
2041 	}
2042 	if (error)
2043 		return (error);
2044 	if (sc->sc_md) {
2045 		G_RAID_MD_FREE(sc->sc_md);
2046 		kobj_delete((kobj_t)sc->sc_md, M_RAID);
2047 		sc->sc_md = NULL;
2048 	}
2049 	if (sc->sc_geom != NULL) {
2050 		G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2051 		g_topology_lock();
2052 		sc->sc_geom->softc = NULL;
2053 		g_wither_geom(sc->sc_geom, ENXIO);
2054 		g_topology_unlock();
2055 		sc->sc_geom = NULL;
2056 	} else
2057 		G_RAID_DEBUG(1, "Array destroyed.");
2058 	if (worker) {
2059 		g_raid_event_cancel(sc, sc);
2060 		mtx_destroy(&sc->sc_queue_mtx);
2061 		sx_xunlock(&sc->sc_lock);
2062 		sx_destroy(&sc->sc_lock);
2063 		wakeup(&sc->sc_stopping);
2064 		free(sc, M_RAID);
2065 		curthread->td_pflags &= ~TDP_GEOM;
2066 		G_RAID_DEBUG(1, "Thread exiting.");
2067 		kproc_exit(0);
2068 	} else {
2069 		/* Wake up worker to make it selfdestruct. */
2070 		g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2071 	}
2072 	return (0);
2073 }
2074 
2075 int
2076 g_raid_destroy_volume(struct g_raid_volume *vol)
2077 {
2078 	struct g_raid_softc *sc;
2079 	struct g_raid_disk *disk;
2080 	int i;
2081 
2082 	sc = vol->v_softc;
2083 	G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2084 	vol->v_stopping = 1;
2085 	if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2086 		if (vol->v_tr) {
2087 			G_RAID_TR_STOP(vol->v_tr);
2088 			return (EBUSY);
2089 		} else
2090 			vol->v_state = G_RAID_VOLUME_S_STOPPED;
2091 	}
2092 	if (g_raid_event_check(sc, vol) != 0)
2093 		return (EBUSY);
2094 	if (vol->v_provider != NULL)
2095 		return (EBUSY);
2096 	if (vol->v_provider_open != 0)
2097 		return (EBUSY);
2098 	if (vol->v_tr) {
2099 		G_RAID_TR_FREE(vol->v_tr);
2100 		kobj_delete((kobj_t)vol->v_tr, M_RAID);
2101 		vol->v_tr = NULL;
2102 	}
2103 	if (vol->v_rootmount)
2104 		root_mount_rel(vol->v_rootmount);
2105 	g_topology_lock();
2106 	LIST_REMOVE(vol, v_global_next);
2107 	g_topology_unlock();
2108 	TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2109 	for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2110 		g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2111 		disk = vol->v_subdisks[i].sd_disk;
2112 		if (disk == NULL)
2113 			continue;
2114 		TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2115 	}
2116 	G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2117 	if (sc->sc_md)
2118 		G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2119 	g_raid_event_cancel(sc, vol);
2120 	free(vol, M_RAID);
2121 	if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2122 		/* Wake up worker to let it selfdestruct. */
2123 		g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2124 	}
2125 	return (0);
2126 }
2127 
2128 int
2129 g_raid_destroy_disk(struct g_raid_disk *disk)
2130 {
2131 	struct g_raid_softc *sc;
2132 	struct g_raid_subdisk *sd, *tmp;
2133 
2134 	sc = disk->d_softc;
2135 	G_RAID_DEBUG1(2, sc, "Destroying disk.");
2136 	if (disk->d_consumer) {
2137 		g_raid_kill_consumer(sc, disk->d_consumer);
2138 		disk->d_consumer = NULL;
2139 	}
2140 	TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2141 		g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2142 		g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2143 		    G_RAID_EVENT_SUBDISK);
2144 		TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2145 		sd->sd_disk = NULL;
2146 	}
2147 	TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2148 	if (sc->sc_md)
2149 		G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2150 	g_raid_event_cancel(sc, disk);
2151 	free(disk, M_RAID);
2152 	return (0);
2153 }
2154 
2155 int
2156 g_raid_destroy(struct g_raid_softc *sc, int how)
2157 {
2158 	int error, opens;
2159 
2160 	g_topology_assert_not();
2161 	if (sc == NULL)
2162 		return (ENXIO);
2163 	sx_assert(&sc->sc_lock, SX_XLOCKED);
2164 
2165 	/* Count open volumes. */
2166 	opens = g_raid_nopens(sc);
2167 
2168 	/* React on some opened volumes. */
2169 	if (opens > 0) {
2170 		switch (how) {
2171 		case G_RAID_DESTROY_SOFT:
2172 			G_RAID_DEBUG1(1, sc,
2173 			    "%d volumes are still open.",
2174 			    opens);
2175 			sx_xunlock(&sc->sc_lock);
2176 			return (EBUSY);
2177 		case G_RAID_DESTROY_DELAYED:
2178 			G_RAID_DEBUG1(1, sc,
2179 			    "Array will be destroyed on last close.");
2180 			sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2181 			sx_xunlock(&sc->sc_lock);
2182 			return (EBUSY);
2183 		case G_RAID_DESTROY_HARD:
2184 			G_RAID_DEBUG1(1, sc,
2185 			    "%d volumes are still open.",
2186 			    opens);
2187 		}
2188 	}
2189 
2190 	/* Mark node for destruction. */
2191 	sc->sc_stopping = G_RAID_DESTROY_HARD;
2192 	/* Wake up worker to let it selfdestruct. */
2193 	g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2194 	/* Sleep until node destroyed. */
2195 	error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2196 	    PRIBIO | PDROP, "r:destroy", hz * 3);
2197 	return (error == EWOULDBLOCK ? EBUSY : 0);
2198 }
2199 
2200 static void
2201 g_raid_taste_orphan(struct g_consumer *cp)
2202 {
2203 
2204 	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2205 	    cp->provider->name));
2206 }
2207 
2208 static struct g_geom *
2209 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2210 {
2211 	struct g_consumer *cp;
2212 	struct g_geom *gp, *geom;
2213 	struct g_raid_md_class *class;
2214 	struct g_raid_md_object *obj;
2215 	int status;
2216 
2217 	g_topology_assert();
2218 	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2219 	if (!g_raid_enable)
2220 		return (NULL);
2221 	G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2222 
2223 	geom = NULL;
2224 	status = G_RAID_MD_TASTE_FAIL;
2225 	gp = g_new_geomf(mp, "raid:taste");
2226 	/*
2227 	 * This orphan function should be never called.
2228 	 */
2229 	gp->orphan = g_raid_taste_orphan;
2230 	cp = g_new_consumer(gp);
2231 	cp->flags |= G_CF_DIRECT_RECEIVE;
2232 	g_attach(cp, pp);
2233 	if (g_access(cp, 1, 0, 0) != 0)
2234 		goto ofail;
2235 
2236 	LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2237 		if (!class->mdc_enable)
2238 			continue;
2239 		G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2240 		    pp->name, class->name);
2241 		obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2242 		    M_WAITOK);
2243 		obj->mdo_class = class;
2244 		status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2245 		if (status != G_RAID_MD_TASTE_NEW)
2246 			kobj_delete((kobj_t)obj, M_RAID);
2247 		if (status != G_RAID_MD_TASTE_FAIL)
2248 			break;
2249 	}
2250 
2251 	if (status == G_RAID_MD_TASTE_FAIL)
2252 		(void)g_access(cp, -1, 0, 0);
2253 ofail:
2254 	g_detach(cp);
2255 	g_destroy_consumer(cp);
2256 	g_destroy_geom(gp);
2257 	G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2258 	return (geom);
2259 }
2260 
2261 int
2262 g_raid_create_node_format(const char *format, struct gctl_req *req,
2263     struct g_geom **gp)
2264 {
2265 	struct g_raid_md_class *class;
2266 	struct g_raid_md_object *obj;
2267 	int status;
2268 
2269 	G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2270 	LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2271 		if (strcasecmp(class->name, format) == 0)
2272 			break;
2273 	}
2274 	if (class == NULL) {
2275 		G_RAID_DEBUG(1, "No support for %s metadata.", format);
2276 		return (G_RAID_MD_TASTE_FAIL);
2277 	}
2278 	obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2279 	    M_WAITOK);
2280 	obj->mdo_class = class;
2281 	status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2282 	if (status != G_RAID_MD_TASTE_NEW)
2283 		kobj_delete((kobj_t)obj, M_RAID);
2284 	return (status);
2285 }
2286 
2287 static int
2288 g_raid_destroy_geom(struct gctl_req *req __unused,
2289     struct g_class *mp __unused, struct g_geom *gp)
2290 {
2291 	struct g_raid_softc *sc;
2292 	int error;
2293 
2294 	g_topology_unlock();
2295 	sc = gp->softc;
2296 	sx_xlock(&sc->sc_lock);
2297 	g_cancel_event(sc);
2298 	error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2299 	g_topology_lock();
2300 	return (error);
2301 }
2302 
2303 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2304     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2305 {
2306 
2307 	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2308 		return;
2309 	if (sc->sc_md)
2310 		G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2311 }
2312 
2313 void g_raid_fail_disk(struct g_raid_softc *sc,
2314     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2315 {
2316 
2317 	if (disk == NULL)
2318 		disk = sd->sd_disk;
2319 	if (disk == NULL) {
2320 		G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2321 		return;
2322 	}
2323 	if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2324 		G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2325 		    "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2326 		return;
2327 	}
2328 	if (sc->sc_md)
2329 		G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2330 }
2331 
2332 static void
2333 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2334     struct g_consumer *cp, struct g_provider *pp)
2335 {
2336 	struct g_raid_softc *sc;
2337 	struct g_raid_volume *vol;
2338 	struct g_raid_subdisk *sd;
2339 	struct g_raid_disk *disk;
2340 	int i, s;
2341 
2342 	g_topology_assert();
2343 
2344 	sc = gp->softc;
2345 	if (sc == NULL)
2346 		return;
2347 	if (pp != NULL) {
2348 		vol = pp->private;
2349 		g_topology_unlock();
2350 		sx_xlock(&sc->sc_lock);
2351 		sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2352 		    sc->sc_md->mdo_class->name,
2353 		    g_raid_volume_level2str(vol->v_raid_level,
2354 		    vol->v_raid_level_qualifier));
2355 		sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2356 		    vol->v_name);
2357 		sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2358 		    g_raid_volume_level2str(vol->v_raid_level,
2359 		    vol->v_raid_level_qualifier));
2360 		sbuf_printf(sb,
2361 		    "%s<Transformation>%s</Transformation>\n", indent,
2362 		    vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2363 		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2364 		    vol->v_disks_count);
2365 		sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2366 		    vol->v_strip_size);
2367 		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2368 		    g_raid_volume_state2str(vol->v_state));
2369 		sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2370 		    vol->v_dirty ? "Yes" : "No");
2371 		sbuf_printf(sb, "%s<Subdisks>", indent);
2372 		for (i = 0; i < vol->v_disks_count; i++) {
2373 			sd = &vol->v_subdisks[i];
2374 			if (sd->sd_disk != NULL &&
2375 			    sd->sd_disk->d_consumer != NULL) {
2376 				sbuf_printf(sb, "%s ",
2377 				    g_raid_get_diskname(sd->sd_disk));
2378 			} else {
2379 				sbuf_printf(sb, "NONE ");
2380 			}
2381 			sbuf_printf(sb, "(%s",
2382 			    g_raid_subdisk_state2str(sd->sd_state));
2383 			if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2384 			    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2385 				sbuf_printf(sb, " %d%%",
2386 				    (int)(sd->sd_rebuild_pos * 100 /
2387 				     sd->sd_size));
2388 			}
2389 			sbuf_printf(sb, ")");
2390 			if (i + 1 < vol->v_disks_count)
2391 				sbuf_printf(sb, ", ");
2392 		}
2393 		sbuf_printf(sb, "</Subdisks>\n");
2394 		sx_xunlock(&sc->sc_lock);
2395 		g_topology_lock();
2396 	} else if (cp != NULL) {
2397 		disk = cp->private;
2398 		if (disk == NULL)
2399 			return;
2400 		g_topology_unlock();
2401 		sx_xlock(&sc->sc_lock);
2402 		sbuf_printf(sb, "%s<State>%s", indent,
2403 		    g_raid_disk_state2str(disk->d_state));
2404 		if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2405 			sbuf_printf(sb, " (");
2406 			TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2407 				sbuf_printf(sb, "%s",
2408 				    g_raid_subdisk_state2str(sd->sd_state));
2409 				if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2410 				    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2411 					sbuf_printf(sb, " %d%%",
2412 					    (int)(sd->sd_rebuild_pos * 100 /
2413 					     sd->sd_size));
2414 				}
2415 				if (TAILQ_NEXT(sd, sd_next))
2416 					sbuf_printf(sb, ", ");
2417 			}
2418 			sbuf_printf(sb, ")");
2419 		}
2420 		sbuf_printf(sb, "</State>\n");
2421 		sbuf_printf(sb, "%s<Subdisks>", indent);
2422 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2423 			sbuf_printf(sb, "r%d(%s):%d@%ju",
2424 			    sd->sd_volume->v_global_id,
2425 			    sd->sd_volume->v_name,
2426 			    sd->sd_pos, sd->sd_offset);
2427 			if (TAILQ_NEXT(sd, sd_next))
2428 				sbuf_printf(sb, ", ");
2429 		}
2430 		sbuf_printf(sb, "</Subdisks>\n");
2431 		sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2432 		    disk->d_read_errs);
2433 		sx_xunlock(&sc->sc_lock);
2434 		g_topology_lock();
2435 	} else {
2436 		g_topology_unlock();
2437 		sx_xlock(&sc->sc_lock);
2438 		if (sc->sc_md) {
2439 			sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2440 			    sc->sc_md->mdo_class->name);
2441 		}
2442 		if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2443 			s = 0xff;
2444 			TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2445 				if (vol->v_state < s)
2446 					s = vol->v_state;
2447 			}
2448 			sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2449 			    g_raid_volume_state2str(s));
2450 		}
2451 		sx_xunlock(&sc->sc_lock);
2452 		g_topology_lock();
2453 	}
2454 }
2455 
2456 static void
2457 g_raid_shutdown_post_sync(void *arg, int howto)
2458 {
2459 	struct g_class *mp;
2460 	struct g_geom *gp, *gp2;
2461 	struct g_raid_softc *sc;
2462 	struct g_raid_volume *vol;
2463 
2464 	mp = arg;
2465 	g_topology_lock();
2466 	g_raid_shutdown = 1;
2467 	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2468 		if ((sc = gp->softc) == NULL)
2469 			continue;
2470 		g_topology_unlock();
2471 		sx_xlock(&sc->sc_lock);
2472 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2473 			g_raid_clean(vol, -1);
2474 		g_cancel_event(sc);
2475 		g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2476 		g_topology_lock();
2477 	}
2478 	g_topology_unlock();
2479 }
2480 
2481 static void
2482 g_raid_init(struct g_class *mp)
2483 {
2484 
2485 	g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2486 	    g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2487 	if (g_raid_post_sync == NULL)
2488 		G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2489 	g_raid_started = 1;
2490 }
2491 
2492 static void
2493 g_raid_fini(struct g_class *mp)
2494 {
2495 
2496 	if (g_raid_post_sync != NULL)
2497 		EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2498 	g_raid_started = 0;
2499 }
2500 
2501 int
2502 g_raid_md_modevent(module_t mod, int type, void *arg)
2503 {
2504 	struct g_raid_md_class *class, *c, *nc;
2505 	int error;
2506 
2507 	error = 0;
2508 	class = arg;
2509 	switch (type) {
2510 	case MOD_LOAD:
2511 		c = LIST_FIRST(&g_raid_md_classes);
2512 		if (c == NULL || c->mdc_priority > class->mdc_priority)
2513 			LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2514 		else {
2515 			while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2516 			    nc->mdc_priority < class->mdc_priority)
2517 				c = nc;
2518 			LIST_INSERT_AFTER(c, class, mdc_list);
2519 		}
2520 		if (g_raid_started)
2521 			g_retaste(&g_raid_class);
2522 		break;
2523 	case MOD_UNLOAD:
2524 		LIST_REMOVE(class, mdc_list);
2525 		break;
2526 	default:
2527 		error = EOPNOTSUPP;
2528 		break;
2529 	}
2530 
2531 	return (error);
2532 }
2533 
2534 int
2535 g_raid_tr_modevent(module_t mod, int type, void *arg)
2536 {
2537 	struct g_raid_tr_class *class, *c, *nc;
2538 	int error;
2539 
2540 	error = 0;
2541 	class = arg;
2542 	switch (type) {
2543 	case MOD_LOAD:
2544 		c = LIST_FIRST(&g_raid_tr_classes);
2545 		if (c == NULL || c->trc_priority > class->trc_priority)
2546 			LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2547 		else {
2548 			while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2549 			    nc->trc_priority < class->trc_priority)
2550 				c = nc;
2551 			LIST_INSERT_AFTER(c, class, trc_list);
2552 		}
2553 		break;
2554 	case MOD_UNLOAD:
2555 		LIST_REMOVE(class, trc_list);
2556 		break;
2557 	default:
2558 		error = EOPNOTSUPP;
2559 		break;
2560 	}
2561 
2562 	return (error);
2563 }
2564 
2565 /*
2566  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2567  * to reduce module priority, allowing submodules to register them first.
2568  */
2569 static moduledata_t g_raid_mod = {
2570 	"g_raid",
2571 	g_modevent,
2572 	&g_raid_class
2573 };
2574 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2575 MODULE_VERSION(geom_raid, 0);
2576