xref: /freebsd/sys/i386/i386/machdep.c (revision 4f52dfbb)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2018 The FreeBSD Foundation
5  * Copyright (c) 1992 Terrence R. Lambert.
6  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Portions of this software were developed by A. Joseph Koshy under
13  * sponsorship from the FreeBSD Foundation and Google, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_apic.h"
50 #include "opt_atpic.h"
51 #include "opt_cpu.h"
52 #include "opt_ddb.h"
53 #include "opt_inet.h"
54 #include "opt_isa.h"
55 #include "opt_kstack_pages.h"
56 #include "opt_maxmem.h"
57 #include "opt_mp_watchdog.h"
58 #include "opt_perfmon.h"
59 #include "opt_platform.h"
60 
61 #include <sys/param.h>
62 #include <sys/proc.h>
63 #include <sys/systm.h>
64 #include <sys/bio.h>
65 #include <sys/buf.h>
66 #include <sys/bus.h>
67 #include <sys/callout.h>
68 #include <sys/cons.h>
69 #include <sys/cpu.h>
70 #include <sys/eventhandler.h>
71 #include <sys/exec.h>
72 #include <sys/imgact.h>
73 #include <sys/kdb.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/memrange.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/pcpu.h>
83 #include <sys/ptrace.h>
84 #include <sys/reboot.h>
85 #include <sys/rwlock.h>
86 #include <sys/sched.h>
87 #include <sys/signalvar.h>
88 #include <sys/smp.h>
89 #include <sys/syscallsubr.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysent.h>
92 #include <sys/sysproto.h>
93 #include <sys/ucontext.h>
94 #include <sys/vmmeter.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_kern.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_param.h>
104 
105 #ifdef DDB
106 #ifndef KDB
107 #error KDB must be enabled in order for DDB to work!
108 #endif
109 #include <ddb/ddb.h>
110 #include <ddb/db_sym.h>
111 #endif
112 
113 #include <isa/rtc.h>
114 
115 #include <net/netisr.h>
116 
117 #include <machine/bootinfo.h>
118 #include <machine/clock.h>
119 #include <machine/cpu.h>
120 #include <machine/cputypes.h>
121 #include <machine/intr_machdep.h>
122 #include <x86/mca.h>
123 #include <machine/md_var.h>
124 #include <machine/metadata.h>
125 #include <machine/mp_watchdog.h>
126 #include <machine/pc/bios.h>
127 #include <machine/pcb.h>
128 #include <machine/pcb_ext.h>
129 #include <machine/proc.h>
130 #include <machine/reg.h>
131 #include <machine/sigframe.h>
132 #include <machine/specialreg.h>
133 #include <machine/sysarch.h>
134 #include <machine/trap.h>
135 #include <machine/vm86.h>
136 #include <x86/init.h>
137 #ifdef PERFMON
138 #include <machine/perfmon.h>
139 #endif
140 #ifdef SMP
141 #include <machine/smp.h>
142 #endif
143 #ifdef FDT
144 #include <x86/fdt.h>
145 #endif
146 
147 #ifdef DEV_APIC
148 #include <x86/apicvar.h>
149 #endif
150 
151 #ifdef DEV_ISA
152 #include <x86/isa/icu.h>
153 #endif
154 
155 /* Sanity check for __curthread() */
156 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
157 
158 register_t init386(int first);
159 void dblfault_handler(void);
160 
161 static void cpu_startup(void *);
162 static void fpstate_drop(struct thread *td);
163 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
164     char *xfpusave, size_t xfpusave_len);
165 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
166     char *xfpustate, size_t xfpustate_len);
167 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
168 
169 /* Intel ICH registers */
170 #define ICH_PMBASE	0x400
171 #define ICH_SMI_EN	ICH_PMBASE + 0x30
172 
173 int	_udatasel, _ucodesel;
174 u_int	basemem;
175 
176 int cold = 1;
177 
178 #ifdef COMPAT_43
179 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
180 #endif
181 #ifdef COMPAT_FREEBSD4
182 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
183 #endif
184 
185 long Maxmem = 0;
186 long realmem = 0;
187 
188 #ifdef PAE
189 FEATURE(pae, "Physical Address Extensions");
190 #endif
191 
192 /*
193  * The number of PHYSMAP entries must be one less than the number of
194  * PHYSSEG entries because the PHYSMAP entry that spans the largest
195  * physical address that is accessible by ISA DMA is split into two
196  * PHYSSEG entries.
197  */
198 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
199 
200 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
201 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
202 
203 /* must be 2 less so 0 0 can signal end of chunks */
204 #define	PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
205 #define	DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
206 
207 struct kva_md_info kmi;
208 
209 static struct trapframe proc0_tf;
210 struct pcpu __pcpu[MAXCPU];
211 
212 struct mtx icu_lock;
213 
214 struct mem_range_softc mem_range_softc;
215 
216 extern char start_exceptions[], end_exceptions[];
217 
218 extern struct sysentvec elf32_freebsd_sysvec;
219 
220 /* Default init_ops implementation. */
221 struct init_ops init_ops = {
222 	.early_clock_source_init =	i8254_init,
223 	.early_delay =			i8254_delay,
224 #ifdef DEV_APIC
225 	.msi_init =			msi_init,
226 #endif
227 };
228 
229 static void
230 cpu_startup(dummy)
231 	void *dummy;
232 {
233 	uintmax_t memsize;
234 	char *sysenv;
235 
236 	/*
237 	 * On MacBooks, we need to disallow the legacy USB circuit to
238 	 * generate an SMI# because this can cause several problems,
239 	 * namely: incorrect CPU frequency detection and failure to
240 	 * start the APs.
241 	 * We do this by disabling a bit in the SMI_EN (SMI Control and
242 	 * Enable register) of the Intel ICH LPC Interface Bridge.
243 	 */
244 	sysenv = kern_getenv("smbios.system.product");
245 	if (sysenv != NULL) {
246 		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
247 		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
248 		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
249 		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
250 		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
251 		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
252 		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
253 		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
254 			if (bootverbose)
255 				printf("Disabling LEGACY_USB_EN bit on "
256 				    "Intel ICH.\n");
257 			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
258 		}
259 		freeenv(sysenv);
260 	}
261 
262 	/*
263 	 * Good {morning,afternoon,evening,night}.
264 	 */
265 	startrtclock();
266 	printcpuinfo();
267 	panicifcpuunsupported();
268 #ifdef PERFMON
269 	perfmon_init();
270 #endif
271 
272 	/*
273 	 * Display physical memory if SMBIOS reports reasonable amount.
274 	 */
275 	memsize = 0;
276 	sysenv = kern_getenv("smbios.memory.enabled");
277 	if (sysenv != NULL) {
278 		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
279 		freeenv(sysenv);
280 	}
281 	if (memsize < ptoa((uintmax_t)vm_free_count()))
282 		memsize = ptoa((uintmax_t)Maxmem);
283 	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
284 	realmem = atop(memsize);
285 
286 	/*
287 	 * Display any holes after the first chunk of extended memory.
288 	 */
289 	if (bootverbose) {
290 		int indx;
291 
292 		printf("Physical memory chunk(s):\n");
293 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
294 			vm_paddr_t size;
295 
296 			size = phys_avail[indx + 1] - phys_avail[indx];
297 			printf(
298 			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
299 			    (uintmax_t)phys_avail[indx],
300 			    (uintmax_t)phys_avail[indx + 1] - 1,
301 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
302 		}
303 	}
304 
305 	vm_ksubmap_init(&kmi);
306 
307 	printf("avail memory = %ju (%ju MB)\n",
308 	    ptoa((uintmax_t)vm_free_count()),
309 	    ptoa((uintmax_t)vm_free_count()) / 1048576);
310 
311 	/*
312 	 * Set up buffers, so they can be used to read disk labels.
313 	 */
314 	bufinit();
315 	vm_pager_bufferinit();
316 	cpu_setregs();
317 }
318 
319 /*
320  * Send an interrupt to process.
321  *
322  * Stack is set up to allow sigcode stored
323  * at top to call routine, followed by call
324  * to sigreturn routine below.  After sigreturn
325  * resets the signal mask, the stack, and the
326  * frame pointer, it returns to the user
327  * specified pc, psl.
328  */
329 #ifdef COMPAT_43
330 static void
331 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
332 {
333 	struct osigframe sf, *fp;
334 	struct proc *p;
335 	struct thread *td;
336 	struct sigacts *psp;
337 	struct trapframe *regs;
338 	int sig;
339 	int oonstack;
340 
341 	td = curthread;
342 	p = td->td_proc;
343 	PROC_LOCK_ASSERT(p, MA_OWNED);
344 	sig = ksi->ksi_signo;
345 	psp = p->p_sigacts;
346 	mtx_assert(&psp->ps_mtx, MA_OWNED);
347 	regs = td->td_frame;
348 	oonstack = sigonstack(regs->tf_esp);
349 
350 	/* Allocate space for the signal handler context. */
351 	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
352 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
353 		fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
354 		    td->td_sigstk.ss_size - sizeof(struct osigframe));
355 #if defined(COMPAT_43)
356 		td->td_sigstk.ss_flags |= SS_ONSTACK;
357 #endif
358 	} else
359 		fp = (struct osigframe *)regs->tf_esp - 1;
360 
361 	/* Build the argument list for the signal handler. */
362 	sf.sf_signum = sig;
363 	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
364 	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
365 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
366 		/* Signal handler installed with SA_SIGINFO. */
367 		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
368 		sf.sf_siginfo.si_signo = sig;
369 		sf.sf_siginfo.si_code = ksi->ksi_code;
370 		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
371 		sf.sf_addr = 0;
372 	} else {
373 		/* Old FreeBSD-style arguments. */
374 		sf.sf_arg2 = ksi->ksi_code;
375 		sf.sf_addr = (register_t)ksi->ksi_addr;
376 		sf.sf_ahu.sf_handler = catcher;
377 	}
378 	mtx_unlock(&psp->ps_mtx);
379 	PROC_UNLOCK(p);
380 
381 	/* Save most if not all of trap frame. */
382 	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
383 	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
384 	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
385 	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
386 	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
387 	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
388 	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
389 	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
390 	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
391 	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
392 	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
393 	sf.sf_siginfo.si_sc.sc_gs = rgs();
394 	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
395 
396 	/* Build the signal context to be used by osigreturn(). */
397 	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
398 	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
399 	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
400 	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
401 	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
402 	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
403 	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
404 	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
405 
406 	/*
407 	 * If we're a vm86 process, we want to save the segment registers.
408 	 * We also change eflags to be our emulated eflags, not the actual
409 	 * eflags.
410 	 */
411 	if (regs->tf_eflags & PSL_VM) {
412 		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
413 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
414 		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
415 
416 		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
417 		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
418 		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
419 		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
420 
421 		if (vm86->vm86_has_vme == 0)
422 			sf.sf_siginfo.si_sc.sc_ps =
423 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
424 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
425 
426 		/* See sendsig() for comments. */
427 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
428 	}
429 
430 	/*
431 	 * Copy the sigframe out to the user's stack.
432 	 */
433 	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
434 		PROC_LOCK(p);
435 		sigexit(td, SIGILL);
436 	}
437 
438 	regs->tf_esp = (int)fp;
439 	if (p->p_sysent->sv_sigcode_base != 0) {
440 		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
441 		    szosigcode;
442 	} else {
443 		/* a.out sysentvec does not use shared page */
444 		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
445 	}
446 	regs->tf_eflags &= ~(PSL_T | PSL_D);
447 	regs->tf_cs = _ucodesel;
448 	regs->tf_ds = _udatasel;
449 	regs->tf_es = _udatasel;
450 	regs->tf_fs = _udatasel;
451 	load_gs(_udatasel);
452 	regs->tf_ss = _udatasel;
453 	PROC_LOCK(p);
454 	mtx_lock(&psp->ps_mtx);
455 }
456 #endif /* COMPAT_43 */
457 
458 #ifdef COMPAT_FREEBSD4
459 static void
460 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
461 {
462 	struct sigframe4 sf, *sfp;
463 	struct proc *p;
464 	struct thread *td;
465 	struct sigacts *psp;
466 	struct trapframe *regs;
467 	int sig;
468 	int oonstack;
469 
470 	td = curthread;
471 	p = td->td_proc;
472 	PROC_LOCK_ASSERT(p, MA_OWNED);
473 	sig = ksi->ksi_signo;
474 	psp = p->p_sigacts;
475 	mtx_assert(&psp->ps_mtx, MA_OWNED);
476 	regs = td->td_frame;
477 	oonstack = sigonstack(regs->tf_esp);
478 
479 	/* Save user context. */
480 	bzero(&sf, sizeof(sf));
481 	sf.sf_uc.uc_sigmask = *mask;
482 	sf.sf_uc.uc_stack = td->td_sigstk;
483 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
484 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
485 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
486 	sf.sf_uc.uc_mcontext.mc_gs = rgs();
487 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
488 	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
489 	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
490 	bzero(sf.sf_uc.uc_mcontext.__spare__,
491 	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
492 	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
493 
494 	/* Allocate space for the signal handler context. */
495 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
496 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
497 		sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
498 		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
499 #if defined(COMPAT_43)
500 		td->td_sigstk.ss_flags |= SS_ONSTACK;
501 #endif
502 	} else
503 		sfp = (struct sigframe4 *)regs->tf_esp - 1;
504 
505 	/* Build the argument list for the signal handler. */
506 	sf.sf_signum = sig;
507 	sf.sf_ucontext = (register_t)&sfp->sf_uc;
508 	bzero(&sf.sf_si, sizeof(sf.sf_si));
509 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
510 		/* Signal handler installed with SA_SIGINFO. */
511 		sf.sf_siginfo = (register_t)&sfp->sf_si;
512 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
513 
514 		/* Fill in POSIX parts */
515 		sf.sf_si.si_signo = sig;
516 		sf.sf_si.si_code = ksi->ksi_code;
517 		sf.sf_si.si_addr = ksi->ksi_addr;
518 	} else {
519 		/* Old FreeBSD-style arguments. */
520 		sf.sf_siginfo = ksi->ksi_code;
521 		sf.sf_addr = (register_t)ksi->ksi_addr;
522 		sf.sf_ahu.sf_handler = catcher;
523 	}
524 	mtx_unlock(&psp->ps_mtx);
525 	PROC_UNLOCK(p);
526 
527 	/*
528 	 * If we're a vm86 process, we want to save the segment registers.
529 	 * We also change eflags to be our emulated eflags, not the actual
530 	 * eflags.
531 	 */
532 	if (regs->tf_eflags & PSL_VM) {
533 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
534 		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
535 
536 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
537 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
538 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
539 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
540 
541 		if (vm86->vm86_has_vme == 0)
542 			sf.sf_uc.uc_mcontext.mc_eflags =
543 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
544 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
545 
546 		/*
547 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
548 		 * syscalls made by the signal handler.  This just avoids
549 		 * wasting time for our lazy fixup of such faults.  PSL_NT
550 		 * does nothing in vm86 mode, but vm86 programs can set it
551 		 * almost legitimately in probes for old cpu types.
552 		 */
553 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
554 	}
555 
556 	/*
557 	 * Copy the sigframe out to the user's stack.
558 	 */
559 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
560 		PROC_LOCK(p);
561 		sigexit(td, SIGILL);
562 	}
563 
564 	regs->tf_esp = (int)sfp;
565 	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
566 	    szfreebsd4_sigcode;
567 	regs->tf_eflags &= ~(PSL_T | PSL_D);
568 	regs->tf_cs = _ucodesel;
569 	regs->tf_ds = _udatasel;
570 	regs->tf_es = _udatasel;
571 	regs->tf_fs = _udatasel;
572 	regs->tf_ss = _udatasel;
573 	PROC_LOCK(p);
574 	mtx_lock(&psp->ps_mtx);
575 }
576 #endif	/* COMPAT_FREEBSD4 */
577 
578 void
579 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
580 {
581 	struct sigframe sf, *sfp;
582 	struct proc *p;
583 	struct thread *td;
584 	struct sigacts *psp;
585 	char *sp;
586 	struct trapframe *regs;
587 	struct segment_descriptor *sdp;
588 	char *xfpusave;
589 	size_t xfpusave_len;
590 	int sig;
591 	int oonstack;
592 
593 	td = curthread;
594 	p = td->td_proc;
595 	PROC_LOCK_ASSERT(p, MA_OWNED);
596 	sig = ksi->ksi_signo;
597 	psp = p->p_sigacts;
598 	mtx_assert(&psp->ps_mtx, MA_OWNED);
599 #ifdef COMPAT_FREEBSD4
600 	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
601 		freebsd4_sendsig(catcher, ksi, mask);
602 		return;
603 	}
604 #endif
605 #ifdef COMPAT_43
606 	if (SIGISMEMBER(psp->ps_osigset, sig)) {
607 		osendsig(catcher, ksi, mask);
608 		return;
609 	}
610 #endif
611 	regs = td->td_frame;
612 	oonstack = sigonstack(regs->tf_esp);
613 
614 	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
615 		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
616 		xfpusave = __builtin_alloca(xfpusave_len);
617 	} else {
618 		xfpusave_len = 0;
619 		xfpusave = NULL;
620 	}
621 
622 	/* Save user context. */
623 	bzero(&sf, sizeof(sf));
624 	sf.sf_uc.uc_sigmask = *mask;
625 	sf.sf_uc.uc_stack = td->td_sigstk;
626 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
627 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
628 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
629 	sf.sf_uc.uc_mcontext.mc_gs = rgs();
630 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
631 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
632 	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
633 	fpstate_drop(td);
634 	/*
635 	 * Unconditionally fill the fsbase and gsbase into the mcontext.
636 	 */
637 	sdp = &td->td_pcb->pcb_fsd;
638 	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
639 	    sdp->sd_lobase;
640 	sdp = &td->td_pcb->pcb_gsd;
641 	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
642 	    sdp->sd_lobase;
643 	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
644 	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
645 	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
646 
647 	/* Allocate space for the signal handler context. */
648 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
649 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
650 		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
651 #if defined(COMPAT_43)
652 		td->td_sigstk.ss_flags |= SS_ONSTACK;
653 #endif
654 	} else
655 		sp = (char *)regs->tf_esp - 128;
656 	if (xfpusave != NULL) {
657 		sp -= xfpusave_len;
658 		sp = (char *)((unsigned int)sp & ~0x3F);
659 		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
660 	}
661 	sp -= sizeof(struct sigframe);
662 
663 	/* Align to 16 bytes. */
664 	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
665 
666 	/* Build the argument list for the signal handler. */
667 	sf.sf_signum = sig;
668 	sf.sf_ucontext = (register_t)&sfp->sf_uc;
669 	bzero(&sf.sf_si, sizeof(sf.sf_si));
670 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
671 		/* Signal handler installed with SA_SIGINFO. */
672 		sf.sf_siginfo = (register_t)&sfp->sf_si;
673 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
674 
675 		/* Fill in POSIX parts */
676 		sf.sf_si = ksi->ksi_info;
677 		sf.sf_si.si_signo = sig; /* maybe a translated signal */
678 	} else {
679 		/* Old FreeBSD-style arguments. */
680 		sf.sf_siginfo = ksi->ksi_code;
681 		sf.sf_addr = (register_t)ksi->ksi_addr;
682 		sf.sf_ahu.sf_handler = catcher;
683 	}
684 	mtx_unlock(&psp->ps_mtx);
685 	PROC_UNLOCK(p);
686 
687 	/*
688 	 * If we're a vm86 process, we want to save the segment registers.
689 	 * We also change eflags to be our emulated eflags, not the actual
690 	 * eflags.
691 	 */
692 	if (regs->tf_eflags & PSL_VM) {
693 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
694 		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
695 
696 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
697 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
698 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
699 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
700 
701 		if (vm86->vm86_has_vme == 0)
702 			sf.sf_uc.uc_mcontext.mc_eflags =
703 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
704 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
705 
706 		/*
707 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
708 		 * syscalls made by the signal handler.  This just avoids
709 		 * wasting time for our lazy fixup of such faults.  PSL_NT
710 		 * does nothing in vm86 mode, but vm86 programs can set it
711 		 * almost legitimately in probes for old cpu types.
712 		 */
713 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
714 	}
715 
716 	/*
717 	 * Copy the sigframe out to the user's stack.
718 	 */
719 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
720 	    (xfpusave != NULL && copyout(xfpusave,
721 	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
722 	    != 0)) {
723 		PROC_LOCK(p);
724 		sigexit(td, SIGILL);
725 	}
726 
727 	regs->tf_esp = (int)sfp;
728 	regs->tf_eip = p->p_sysent->sv_sigcode_base;
729 	if (regs->tf_eip == 0)
730 		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
731 	regs->tf_eflags &= ~(PSL_T | PSL_D);
732 	regs->tf_cs = _ucodesel;
733 	regs->tf_ds = _udatasel;
734 	regs->tf_es = _udatasel;
735 	regs->tf_fs = _udatasel;
736 	regs->tf_ss = _udatasel;
737 	PROC_LOCK(p);
738 	mtx_lock(&psp->ps_mtx);
739 }
740 
741 /*
742  * System call to cleanup state after a signal
743  * has been taken.  Reset signal mask and
744  * stack state from context left by sendsig (above).
745  * Return to previous pc and psl as specified by
746  * context left by sendsig. Check carefully to
747  * make sure that the user has not modified the
748  * state to gain improper privileges.
749  *
750  * MPSAFE
751  */
752 #ifdef COMPAT_43
753 int
754 osigreturn(td, uap)
755 	struct thread *td;
756 	struct osigreturn_args /* {
757 		struct osigcontext *sigcntxp;
758 	} */ *uap;
759 {
760 	struct osigcontext sc;
761 	struct trapframe *regs;
762 	struct osigcontext *scp;
763 	int eflags, error;
764 	ksiginfo_t ksi;
765 
766 	regs = td->td_frame;
767 	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
768 	if (error != 0)
769 		return (error);
770 	scp = &sc;
771 	eflags = scp->sc_ps;
772 	if (eflags & PSL_VM) {
773 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
774 		struct vm86_kernel *vm86;
775 
776 		/*
777 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
778 		 * set up the vm86 area, and we can't enter vm86 mode.
779 		 */
780 		if (td->td_pcb->pcb_ext == 0)
781 			return (EINVAL);
782 		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
783 		if (vm86->vm86_inited == 0)
784 			return (EINVAL);
785 
786 		/* Go back to user mode if both flags are set. */
787 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
788 			ksiginfo_init_trap(&ksi);
789 			ksi.ksi_signo = SIGBUS;
790 			ksi.ksi_code = BUS_OBJERR;
791 			ksi.ksi_addr = (void *)regs->tf_eip;
792 			trapsignal(td, &ksi);
793 		}
794 
795 		if (vm86->vm86_has_vme) {
796 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
797 			    (eflags & VME_USERCHANGE) | PSL_VM;
798 		} else {
799 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
800 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
801 			    (eflags & VM_USERCHANGE) | PSL_VM;
802 		}
803 		tf->tf_vm86_ds = scp->sc_ds;
804 		tf->tf_vm86_es = scp->sc_es;
805 		tf->tf_vm86_fs = scp->sc_fs;
806 		tf->tf_vm86_gs = scp->sc_gs;
807 		tf->tf_ds = _udatasel;
808 		tf->tf_es = _udatasel;
809 		tf->tf_fs = _udatasel;
810 	} else {
811 		/*
812 		 * Don't allow users to change privileged or reserved flags.
813 		 */
814 		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
815 	    		return (EINVAL);
816 		}
817 
818 		/*
819 		 * Don't allow users to load a valid privileged %cs.  Let the
820 		 * hardware check for invalid selectors, excess privilege in
821 		 * other selectors, invalid %eip's and invalid %esp's.
822 		 */
823 		if (!CS_SECURE(scp->sc_cs)) {
824 			ksiginfo_init_trap(&ksi);
825 			ksi.ksi_signo = SIGBUS;
826 			ksi.ksi_code = BUS_OBJERR;
827 			ksi.ksi_trapno = T_PROTFLT;
828 			ksi.ksi_addr = (void *)regs->tf_eip;
829 			trapsignal(td, &ksi);
830 			return (EINVAL);
831 		}
832 		regs->tf_ds = scp->sc_ds;
833 		regs->tf_es = scp->sc_es;
834 		regs->tf_fs = scp->sc_fs;
835 	}
836 
837 	/* Restore remaining registers. */
838 	regs->tf_eax = scp->sc_eax;
839 	regs->tf_ebx = scp->sc_ebx;
840 	regs->tf_ecx = scp->sc_ecx;
841 	regs->tf_edx = scp->sc_edx;
842 	regs->tf_esi = scp->sc_esi;
843 	regs->tf_edi = scp->sc_edi;
844 	regs->tf_cs = scp->sc_cs;
845 	regs->tf_ss = scp->sc_ss;
846 	regs->tf_isp = scp->sc_isp;
847 	regs->tf_ebp = scp->sc_fp;
848 	regs->tf_esp = scp->sc_sp;
849 	regs->tf_eip = scp->sc_pc;
850 	regs->tf_eflags = eflags;
851 
852 #if defined(COMPAT_43)
853 	if (scp->sc_onstack & 1)
854 		td->td_sigstk.ss_flags |= SS_ONSTACK;
855 	else
856 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
857 #endif
858 	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
859 	    SIGPROCMASK_OLD);
860 	return (EJUSTRETURN);
861 }
862 #endif /* COMPAT_43 */
863 
864 #ifdef COMPAT_FREEBSD4
865 /*
866  * MPSAFE
867  */
868 int
869 freebsd4_sigreturn(td, uap)
870 	struct thread *td;
871 	struct freebsd4_sigreturn_args /* {
872 		const ucontext4 *sigcntxp;
873 	} */ *uap;
874 {
875 	struct ucontext4 uc;
876 	struct trapframe *regs;
877 	struct ucontext4 *ucp;
878 	int cs, eflags, error;
879 	ksiginfo_t ksi;
880 
881 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
882 	if (error != 0)
883 		return (error);
884 	ucp = &uc;
885 	regs = td->td_frame;
886 	eflags = ucp->uc_mcontext.mc_eflags;
887 	if (eflags & PSL_VM) {
888 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
889 		struct vm86_kernel *vm86;
890 
891 		/*
892 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
893 		 * set up the vm86 area, and we can't enter vm86 mode.
894 		 */
895 		if (td->td_pcb->pcb_ext == 0)
896 			return (EINVAL);
897 		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
898 		if (vm86->vm86_inited == 0)
899 			return (EINVAL);
900 
901 		/* Go back to user mode if both flags are set. */
902 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
903 			ksiginfo_init_trap(&ksi);
904 			ksi.ksi_signo = SIGBUS;
905 			ksi.ksi_code = BUS_OBJERR;
906 			ksi.ksi_addr = (void *)regs->tf_eip;
907 			trapsignal(td, &ksi);
908 		}
909 		if (vm86->vm86_has_vme) {
910 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
911 			    (eflags & VME_USERCHANGE) | PSL_VM;
912 		} else {
913 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
914 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
915 			    (eflags & VM_USERCHANGE) | PSL_VM;
916 		}
917 		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
918 		tf->tf_eflags = eflags;
919 		tf->tf_vm86_ds = tf->tf_ds;
920 		tf->tf_vm86_es = tf->tf_es;
921 		tf->tf_vm86_fs = tf->tf_fs;
922 		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
923 		tf->tf_ds = _udatasel;
924 		tf->tf_es = _udatasel;
925 		tf->tf_fs = _udatasel;
926 	} else {
927 		/*
928 		 * Don't allow users to change privileged or reserved flags.
929 		 */
930 		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
931 			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
932 			    td->td_proc->p_pid, td->td_name, eflags);
933 	    		return (EINVAL);
934 		}
935 
936 		/*
937 		 * Don't allow users to load a valid privileged %cs.  Let the
938 		 * hardware check for invalid selectors, excess privilege in
939 		 * other selectors, invalid %eip's and invalid %esp's.
940 		 */
941 		cs = ucp->uc_mcontext.mc_cs;
942 		if (!CS_SECURE(cs)) {
943 			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
944 			    td->td_proc->p_pid, td->td_name, cs);
945 			ksiginfo_init_trap(&ksi);
946 			ksi.ksi_signo = SIGBUS;
947 			ksi.ksi_code = BUS_OBJERR;
948 			ksi.ksi_trapno = T_PROTFLT;
949 			ksi.ksi_addr = (void *)regs->tf_eip;
950 			trapsignal(td, &ksi);
951 			return (EINVAL);
952 		}
953 
954 		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
955 	}
956 
957 #if defined(COMPAT_43)
958 	if (ucp->uc_mcontext.mc_onstack & 1)
959 		td->td_sigstk.ss_flags |= SS_ONSTACK;
960 	else
961 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
962 #endif
963 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
964 	return (EJUSTRETURN);
965 }
966 #endif	/* COMPAT_FREEBSD4 */
967 
968 /*
969  * MPSAFE
970  */
971 int
972 sys_sigreturn(td, uap)
973 	struct thread *td;
974 	struct sigreturn_args /* {
975 		const struct __ucontext *sigcntxp;
976 	} */ *uap;
977 {
978 	ucontext_t uc;
979 	struct proc *p;
980 	struct trapframe *regs;
981 	ucontext_t *ucp;
982 	char *xfpustate;
983 	size_t xfpustate_len;
984 	int cs, eflags, error, ret;
985 	ksiginfo_t ksi;
986 
987 	p = td->td_proc;
988 
989 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
990 	if (error != 0)
991 		return (error);
992 	ucp = &uc;
993 	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
994 		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
995 		    td->td_name, ucp->uc_mcontext.mc_flags);
996 		return (EINVAL);
997 	}
998 	regs = td->td_frame;
999 	eflags = ucp->uc_mcontext.mc_eflags;
1000 	if (eflags & PSL_VM) {
1001 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1002 		struct vm86_kernel *vm86;
1003 
1004 		/*
1005 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1006 		 * set up the vm86 area, and we can't enter vm86 mode.
1007 		 */
1008 		if (td->td_pcb->pcb_ext == 0)
1009 			return (EINVAL);
1010 		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1011 		if (vm86->vm86_inited == 0)
1012 			return (EINVAL);
1013 
1014 		/* Go back to user mode if both flags are set. */
1015 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1016 			ksiginfo_init_trap(&ksi);
1017 			ksi.ksi_signo = SIGBUS;
1018 			ksi.ksi_code = BUS_OBJERR;
1019 			ksi.ksi_addr = (void *)regs->tf_eip;
1020 			trapsignal(td, &ksi);
1021 		}
1022 
1023 		if (vm86->vm86_has_vme) {
1024 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1025 			    (eflags & VME_USERCHANGE) | PSL_VM;
1026 		} else {
1027 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1028 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1029 			    (eflags & VM_USERCHANGE) | PSL_VM;
1030 		}
1031 		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1032 		tf->tf_eflags = eflags;
1033 		tf->tf_vm86_ds = tf->tf_ds;
1034 		tf->tf_vm86_es = tf->tf_es;
1035 		tf->tf_vm86_fs = tf->tf_fs;
1036 		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1037 		tf->tf_ds = _udatasel;
1038 		tf->tf_es = _udatasel;
1039 		tf->tf_fs = _udatasel;
1040 	} else {
1041 		/*
1042 		 * Don't allow users to change privileged or reserved flags.
1043 		 */
1044 		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1045 			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1046 			    td->td_proc->p_pid, td->td_name, eflags);
1047 	    		return (EINVAL);
1048 		}
1049 
1050 		/*
1051 		 * Don't allow users to load a valid privileged %cs.  Let the
1052 		 * hardware check for invalid selectors, excess privilege in
1053 		 * other selectors, invalid %eip's and invalid %esp's.
1054 		 */
1055 		cs = ucp->uc_mcontext.mc_cs;
1056 		if (!CS_SECURE(cs)) {
1057 			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1058 			    td->td_proc->p_pid, td->td_name, cs);
1059 			ksiginfo_init_trap(&ksi);
1060 			ksi.ksi_signo = SIGBUS;
1061 			ksi.ksi_code = BUS_OBJERR;
1062 			ksi.ksi_trapno = T_PROTFLT;
1063 			ksi.ksi_addr = (void *)regs->tf_eip;
1064 			trapsignal(td, &ksi);
1065 			return (EINVAL);
1066 		}
1067 
1068 		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1069 			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1070 			if (xfpustate_len > cpu_max_ext_state_size -
1071 			    sizeof(union savefpu)) {
1072 				uprintf(
1073 			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1074 				    p->p_pid, td->td_name, xfpustate_len);
1075 				return (EINVAL);
1076 			}
1077 			xfpustate = __builtin_alloca(xfpustate_len);
1078 			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1079 			    xfpustate, xfpustate_len);
1080 			if (error != 0) {
1081 				uprintf(
1082 	"pid %d (%s): sigreturn copying xfpustate failed\n",
1083 				    p->p_pid, td->td_name);
1084 				return (error);
1085 			}
1086 		} else {
1087 			xfpustate = NULL;
1088 			xfpustate_len = 0;
1089 		}
1090 		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1091 		    xfpustate_len);
1092 		if (ret != 0)
1093 			return (ret);
1094 		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1095 	}
1096 
1097 #if defined(COMPAT_43)
1098 	if (ucp->uc_mcontext.mc_onstack & 1)
1099 		td->td_sigstk.ss_flags |= SS_ONSTACK;
1100 	else
1101 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1102 #endif
1103 
1104 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1105 	return (EJUSTRETURN);
1106 }
1107 
1108 #ifdef COMPAT_43
1109 static void
1110 setup_priv_lcall_gate(struct proc *p)
1111 {
1112 	struct i386_ldt_args uap;
1113 	union descriptor desc;
1114 	u_int lcall_addr;
1115 
1116 	bzero(&uap, sizeof(uap));
1117 	uap.start = 0;
1118 	uap.num = 1;
1119 	lcall_addr = p->p_sysent->sv_psstrings - sz_lcall_tramp;
1120 	bzero(&desc, sizeof(desc));
1121 	desc.sd.sd_type = SDT_MEMERA;
1122 	desc.sd.sd_dpl = SEL_UPL;
1123 	desc.sd.sd_p = 1;
1124 	desc.sd.sd_def32 = 1;
1125 	desc.sd.sd_gran = 1;
1126 	desc.sd.sd_lolimit = 0xffff;
1127 	desc.sd.sd_hilimit = 0xf;
1128 	desc.sd.sd_lobase = lcall_addr;
1129 	desc.sd.sd_hibase = lcall_addr >> 24;
1130 	i386_set_ldt(curthread, &uap, &desc);
1131 }
1132 #endif
1133 
1134 /*
1135  * Reset registers to default values on exec.
1136  */
1137 void
1138 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1139 {
1140 	struct trapframe *regs;
1141 	struct pcb *pcb;
1142 	register_t saved_eflags;
1143 
1144 	regs = td->td_frame;
1145 	pcb = td->td_pcb;
1146 
1147 	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1148 	pcb->pcb_gs = _udatasel;
1149 	load_gs(_udatasel);
1150 
1151 	mtx_lock_spin(&dt_lock);
1152 	if (td->td_proc->p_md.md_ldt != NULL)
1153 		user_ldt_free(td);
1154 	else
1155 		mtx_unlock_spin(&dt_lock);
1156 
1157 #ifdef COMPAT_43
1158 	if (td->td_proc->p_sysent->sv_psstrings !=
1159 	    elf32_freebsd_sysvec.sv_psstrings)
1160 		setup_priv_lcall_gate(td->td_proc);
1161 #endif
1162 
1163 	/*
1164 	 * Reset the fs and gs bases.  The values from the old address
1165 	 * space do not make sense for the new program.  In particular,
1166 	 * gsbase might be the TLS base for the old program but the new
1167 	 * program has no TLS now.
1168 	 */
1169 	set_fsbase(td, 0);
1170 	set_gsbase(td, 0);
1171 
1172 	/* Make sure edx is 0x0 on entry. Linux binaries depend on it. */
1173 	saved_eflags = regs->tf_eflags & PSL_T;
1174 	bzero((char *)regs, sizeof(struct trapframe));
1175 	regs->tf_eip = imgp->entry_addr;
1176 	regs->tf_esp = stack;
1177 	regs->tf_eflags = PSL_USER | saved_eflags;
1178 	regs->tf_ss = _udatasel;
1179 	regs->tf_ds = _udatasel;
1180 	regs->tf_es = _udatasel;
1181 	regs->tf_fs = _udatasel;
1182 	regs->tf_cs = _ucodesel;
1183 
1184 	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1185 	regs->tf_ebx = imgp->ps_strings;
1186 
1187         /*
1188          * Reset the hardware debug registers if they were in use.
1189          * They won't have any meaning for the newly exec'd process.
1190          */
1191         if (pcb->pcb_flags & PCB_DBREGS) {
1192                 pcb->pcb_dr0 = 0;
1193                 pcb->pcb_dr1 = 0;
1194                 pcb->pcb_dr2 = 0;
1195                 pcb->pcb_dr3 = 0;
1196                 pcb->pcb_dr6 = 0;
1197                 pcb->pcb_dr7 = 0;
1198                 if (pcb == curpcb) {
1199 		        /*
1200 			 * Clear the debug registers on the running
1201 			 * CPU, otherwise they will end up affecting
1202 			 * the next process we switch to.
1203 			 */
1204 		        reset_dbregs();
1205                 }
1206 		pcb->pcb_flags &= ~PCB_DBREGS;
1207         }
1208 
1209 	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1210 
1211 	/*
1212 	 * Drop the FP state if we hold it, so that the process gets a
1213 	 * clean FP state if it uses the FPU again.
1214 	 */
1215 	fpstate_drop(td);
1216 }
1217 
1218 void
1219 cpu_setregs(void)
1220 {
1221 	unsigned int cr0;
1222 
1223 	cr0 = rcr0();
1224 
1225 	/*
1226 	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1227 	 *
1228 	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1229 	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1230 	 * bit to control the trap, because setting the CR0_EM bit does
1231 	 * not cause WAIT instructions to trap.  It's important to trap
1232 	 * WAIT instructions - otherwise the "wait" variants of no-wait
1233 	 * control instructions would degenerate to the "no-wait" variants
1234 	 * after FP context switches but work correctly otherwise.  It's
1235 	 * particularly important to trap WAITs when there is no NPX -
1236 	 * otherwise the "wait" variants would always degenerate.
1237 	 *
1238 	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1239 	 * Setting it should fail or do nothing on lesser processors.
1240 	 */
1241 	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1242 	load_cr0(cr0);
1243 	load_gs(_udatasel);
1244 }
1245 
1246 u_long bootdev;		/* not a struct cdev *- encoding is different */
1247 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1248 	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1249 
1250 static char bootmethod[16] = "BIOS";
1251 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1252     "System firmware boot method");
1253 
1254 /*
1255  * Initialize 386 and configure to run kernel
1256  */
1257 
1258 /*
1259  * Initialize segments & interrupt table
1260  */
1261 
1262 int _default_ldt;
1263 
1264 struct mtx dt_lock;			/* lock for GDT and LDT */
1265 
1266 union descriptor gdt0[NGDT];	/* initial global descriptor table */
1267 union descriptor *gdt = gdt0;	/* global descriptor table */
1268 
1269 union descriptor *ldt;		/* local descriptor table */
1270 
1271 static struct gate_descriptor idt0[NIDT];
1272 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1273 
1274 static struct i386tss *dblfault_tss;
1275 static char *dblfault_stack;
1276 
1277 static struct i386tss common_tss0;
1278 
1279 vm_offset_t proc0kstack;
1280 
1281 /*
1282  * software prototypes -- in more palatable form.
1283  *
1284  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1285  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1286  */
1287 struct soft_segment_descriptor gdt_segs[] = {
1288 /* GNULL_SEL	0 Null Descriptor */
1289 {	.ssd_base = 0x0,
1290 	.ssd_limit = 0x0,
1291 	.ssd_type = 0,
1292 	.ssd_dpl = SEL_KPL,
1293 	.ssd_p = 0,
1294 	.ssd_xx = 0, .ssd_xx1 = 0,
1295 	.ssd_def32 = 0,
1296 	.ssd_gran = 0		},
1297 /* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1298 {	.ssd_base = 0x0,
1299 	.ssd_limit = 0xfffff,
1300 	.ssd_type = SDT_MEMRWA,
1301 	.ssd_dpl = SEL_KPL,
1302 	.ssd_p = 1,
1303 	.ssd_xx = 0, .ssd_xx1 = 0,
1304 	.ssd_def32 = 1,
1305 	.ssd_gran = 1		},
1306 /* GUFS_SEL	2 %fs Descriptor for user */
1307 {	.ssd_base = 0x0,
1308 	.ssd_limit = 0xfffff,
1309 	.ssd_type = SDT_MEMRWA,
1310 	.ssd_dpl = SEL_UPL,
1311 	.ssd_p = 1,
1312 	.ssd_xx = 0, .ssd_xx1 = 0,
1313 	.ssd_def32 = 1,
1314 	.ssd_gran = 1		},
1315 /* GUGS_SEL	3 %gs Descriptor for user */
1316 {	.ssd_base = 0x0,
1317 	.ssd_limit = 0xfffff,
1318 	.ssd_type = SDT_MEMRWA,
1319 	.ssd_dpl = SEL_UPL,
1320 	.ssd_p = 1,
1321 	.ssd_xx = 0, .ssd_xx1 = 0,
1322 	.ssd_def32 = 1,
1323 	.ssd_gran = 1		},
1324 /* GCODE_SEL	4 Code Descriptor for kernel */
1325 {	.ssd_base = 0x0,
1326 	.ssd_limit = 0xfffff,
1327 	.ssd_type = SDT_MEMERA,
1328 	.ssd_dpl = SEL_KPL,
1329 	.ssd_p = 1,
1330 	.ssd_xx = 0, .ssd_xx1 = 0,
1331 	.ssd_def32 = 1,
1332 	.ssd_gran = 1		},
1333 /* GDATA_SEL	5 Data Descriptor for kernel */
1334 {	.ssd_base = 0x0,
1335 	.ssd_limit = 0xfffff,
1336 	.ssd_type = SDT_MEMRWA,
1337 	.ssd_dpl = SEL_KPL,
1338 	.ssd_p = 1,
1339 	.ssd_xx = 0, .ssd_xx1 = 0,
1340 	.ssd_def32 = 1,
1341 	.ssd_gran = 1		},
1342 /* GUCODE_SEL	6 Code Descriptor for user */
1343 {	.ssd_base = 0x0,
1344 	.ssd_limit = 0xfffff,
1345 	.ssd_type = SDT_MEMERA,
1346 	.ssd_dpl = SEL_UPL,
1347 	.ssd_p = 1,
1348 	.ssd_xx = 0, .ssd_xx1 = 0,
1349 	.ssd_def32 = 1,
1350 	.ssd_gran = 1		},
1351 /* GUDATA_SEL	7 Data Descriptor for user */
1352 {	.ssd_base = 0x0,
1353 	.ssd_limit = 0xfffff,
1354 	.ssd_type = SDT_MEMRWA,
1355 	.ssd_dpl = SEL_UPL,
1356 	.ssd_p = 1,
1357 	.ssd_xx = 0, .ssd_xx1 = 0,
1358 	.ssd_def32 = 1,
1359 	.ssd_gran = 1		},
1360 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1361 {	.ssd_base = 0x400,
1362 	.ssd_limit = 0xfffff,
1363 	.ssd_type = SDT_MEMRWA,
1364 	.ssd_dpl = SEL_KPL,
1365 	.ssd_p = 1,
1366 	.ssd_xx = 0, .ssd_xx1 = 0,
1367 	.ssd_def32 = 1,
1368 	.ssd_gran = 1		},
1369 /* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1370 {
1371 	.ssd_base = 0x0,
1372 	.ssd_limit = sizeof(struct i386tss)-1,
1373 	.ssd_type = SDT_SYS386TSS,
1374 	.ssd_dpl = 0,
1375 	.ssd_p = 1,
1376 	.ssd_xx = 0, .ssd_xx1 = 0,
1377 	.ssd_def32 = 0,
1378 	.ssd_gran = 0		},
1379 /* GLDT_SEL	10 LDT Descriptor */
1380 {	.ssd_base = 0,
1381 	.ssd_limit = sizeof(union descriptor) * NLDT - 1,
1382 	.ssd_type = SDT_SYSLDT,
1383 	.ssd_dpl = SEL_UPL,
1384 	.ssd_p = 1,
1385 	.ssd_xx = 0, .ssd_xx1 = 0,
1386 	.ssd_def32 = 0,
1387 	.ssd_gran = 0		},
1388 /* GUSERLDT_SEL	11 User LDT Descriptor per process */
1389 {	.ssd_base = 0,
1390 	.ssd_limit = (512 * sizeof(union descriptor)-1),
1391 	.ssd_type = SDT_SYSLDT,
1392 	.ssd_dpl = 0,
1393 	.ssd_p = 1,
1394 	.ssd_xx = 0, .ssd_xx1 = 0,
1395 	.ssd_def32 = 0,
1396 	.ssd_gran = 0		},
1397 /* GPANIC_SEL	12 Panic Tss Descriptor */
1398 {	.ssd_base = 0,
1399 	.ssd_limit = sizeof(struct i386tss)-1,
1400 	.ssd_type = SDT_SYS386TSS,
1401 	.ssd_dpl = 0,
1402 	.ssd_p = 1,
1403 	.ssd_xx = 0, .ssd_xx1 = 0,
1404 	.ssd_def32 = 0,
1405 	.ssd_gran = 0		},
1406 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1407 {	.ssd_base = 0,
1408 	.ssd_limit = 0xfffff,
1409 	.ssd_type = SDT_MEMERA,
1410 	.ssd_dpl = 0,
1411 	.ssd_p = 1,
1412 	.ssd_xx = 0, .ssd_xx1 = 0,
1413 	.ssd_def32 = 0,
1414 	.ssd_gran = 1		},
1415 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1416 {	.ssd_base = 0,
1417 	.ssd_limit = 0xfffff,
1418 	.ssd_type = SDT_MEMERA,
1419 	.ssd_dpl = 0,
1420 	.ssd_p = 1,
1421 	.ssd_xx = 0, .ssd_xx1 = 0,
1422 	.ssd_def32 = 0,
1423 	.ssd_gran = 1		},
1424 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1425 {	.ssd_base = 0,
1426 	.ssd_limit = 0xfffff,
1427 	.ssd_type = SDT_MEMRWA,
1428 	.ssd_dpl = 0,
1429 	.ssd_p = 1,
1430 	.ssd_xx = 0, .ssd_xx1 = 0,
1431 	.ssd_def32 = 1,
1432 	.ssd_gran = 1		},
1433 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1434 {	.ssd_base = 0,
1435 	.ssd_limit = 0xfffff,
1436 	.ssd_type = SDT_MEMRWA,
1437 	.ssd_dpl = 0,
1438 	.ssd_p = 1,
1439 	.ssd_xx = 0, .ssd_xx1 = 0,
1440 	.ssd_def32 = 0,
1441 	.ssd_gran = 1		},
1442 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1443 {	.ssd_base = 0,
1444 	.ssd_limit = 0xfffff,
1445 	.ssd_type = SDT_MEMRWA,
1446 	.ssd_dpl = 0,
1447 	.ssd_p = 1,
1448 	.ssd_xx = 0, .ssd_xx1 = 0,
1449 	.ssd_def32 = 0,
1450 	.ssd_gran = 1		},
1451 /* GNDIS_SEL	18 NDIS Descriptor */
1452 {	.ssd_base = 0x0,
1453 	.ssd_limit = 0x0,
1454 	.ssd_type = 0,
1455 	.ssd_dpl = 0,
1456 	.ssd_p = 0,
1457 	.ssd_xx = 0, .ssd_xx1 = 0,
1458 	.ssd_def32 = 0,
1459 	.ssd_gran = 0		},
1460 };
1461 
1462 static struct soft_segment_descriptor ldt_segs[] = {
1463 	/* Null Descriptor - overwritten by call gate */
1464 {	.ssd_base = 0x0,
1465 	.ssd_limit = 0x0,
1466 	.ssd_type = 0,
1467 	.ssd_dpl = 0,
1468 	.ssd_p = 0,
1469 	.ssd_xx = 0, .ssd_xx1 = 0,
1470 	.ssd_def32 = 0,
1471 	.ssd_gran = 0		},
1472 	/* Null Descriptor - overwritten by call gate */
1473 {	.ssd_base = 0x0,
1474 	.ssd_limit = 0x0,
1475 	.ssd_type = 0,
1476 	.ssd_dpl = 0,
1477 	.ssd_p = 0,
1478 	.ssd_xx = 0, .ssd_xx1 = 0,
1479 	.ssd_def32 = 0,
1480 	.ssd_gran = 0		},
1481 	/* Null Descriptor - overwritten by call gate */
1482 {	.ssd_base = 0x0,
1483 	.ssd_limit = 0x0,
1484 	.ssd_type = 0,
1485 	.ssd_dpl = 0,
1486 	.ssd_p = 0,
1487 	.ssd_xx = 0, .ssd_xx1 = 0,
1488 	.ssd_def32 = 0,
1489 	.ssd_gran = 0		},
1490 	/* Code Descriptor for user */
1491 {	.ssd_base = 0x0,
1492 	.ssd_limit = 0xfffff,
1493 	.ssd_type = SDT_MEMERA,
1494 	.ssd_dpl = SEL_UPL,
1495 	.ssd_p = 1,
1496 	.ssd_xx = 0, .ssd_xx1 = 0,
1497 	.ssd_def32 = 1,
1498 	.ssd_gran = 1		},
1499 	/* Null Descriptor - overwritten by call gate */
1500 {	.ssd_base = 0x0,
1501 	.ssd_limit = 0x0,
1502 	.ssd_type = 0,
1503 	.ssd_dpl = 0,
1504 	.ssd_p = 0,
1505 	.ssd_xx = 0, .ssd_xx1 = 0,
1506 	.ssd_def32 = 0,
1507 	.ssd_gran = 0		},
1508 	/* Data Descriptor for user */
1509 {	.ssd_base = 0x0,
1510 	.ssd_limit = 0xfffff,
1511 	.ssd_type = SDT_MEMRWA,
1512 	.ssd_dpl = SEL_UPL,
1513 	.ssd_p = 1,
1514 	.ssd_xx = 0, .ssd_xx1 = 0,
1515 	.ssd_def32 = 1,
1516 	.ssd_gran = 1		},
1517 };
1518 
1519 uintptr_t setidt_disp;
1520 
1521 void
1522 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1523 {
1524 	uintptr_t off;
1525 
1526 	off = func != NULL ? (uintptr_t)func + setidt_disp : 0;
1527 	setidt_nodisp(idx, off, typ, dpl, selec);
1528 }
1529 
1530 void
1531 setidt_nodisp(int idx, uintptr_t off, int typ, int dpl, int selec)
1532 {
1533 	struct gate_descriptor *ip;
1534 
1535 	ip = idt + idx;
1536 	ip->gd_looffset = off;
1537 	ip->gd_selector = selec;
1538 	ip->gd_stkcpy = 0;
1539 	ip->gd_xx = 0;
1540 	ip->gd_type = typ;
1541 	ip->gd_dpl = dpl;
1542 	ip->gd_p = 1;
1543 	ip->gd_hioffset = ((u_int)off) >> 16 ;
1544 }
1545 
1546 extern inthand_t
1547 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1548 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1549 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1550 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1551 	IDTVEC(xmm),
1552 #ifdef KDTRACE_HOOKS
1553 	IDTVEC(dtrace_ret),
1554 #endif
1555 #ifdef XENHVM
1556 	IDTVEC(xen_intr_upcall),
1557 #endif
1558 	IDTVEC(int0x80_syscall);
1559 
1560 #ifdef DDB
1561 /*
1562  * Display the index and function name of any IDT entries that don't use
1563  * the default 'rsvd' entry point.
1564  */
1565 DB_SHOW_COMMAND(idt, db_show_idt)
1566 {
1567 	struct gate_descriptor *ip;
1568 	int idx;
1569 	uintptr_t func, func_trm;
1570 	bool trm;
1571 
1572 	ip = idt;
1573 	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1574 		if (ip->gd_type == SDT_SYSTASKGT) {
1575 			db_printf("%3d\t<TASK>\n", idx);
1576 		} else {
1577 			func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1578 			if (func >= PMAP_TRM_MIN_ADDRESS) {
1579 				func_trm = func;
1580 				func -= setidt_disp;
1581 				trm = true;
1582 			} else
1583 				trm = false;
1584 			if (func != (uintptr_t)&IDTVEC(rsvd)) {
1585 				db_printf("%3d\t", idx);
1586 				db_printsym(func, DB_STGY_PROC);
1587 				if (trm)
1588 					db_printf(" (trampoline %#x)",
1589 					    func_trm);
1590 				db_printf("\n");
1591 			}
1592 		}
1593 		ip++;
1594 	}
1595 }
1596 
1597 /* Show privileged registers. */
1598 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1599 {
1600 	uint64_t idtr, gdtr;
1601 
1602 	idtr = ridt();
1603 	db_printf("idtr\t0x%08x/%04x\n",
1604 	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1605 	gdtr = rgdt();
1606 	db_printf("gdtr\t0x%08x/%04x\n",
1607 	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1608 	db_printf("ldtr\t0x%04x\n", rldt());
1609 	db_printf("tr\t0x%04x\n", rtr());
1610 	db_printf("cr0\t0x%08x\n", rcr0());
1611 	db_printf("cr2\t0x%08x\n", rcr2());
1612 	db_printf("cr3\t0x%08x\n", rcr3());
1613 	db_printf("cr4\t0x%08x\n", rcr4());
1614 	if (rcr4() & CR4_XSAVE)
1615 		db_printf("xcr0\t0x%016llx\n", rxcr(0));
1616 	if (amd_feature & (AMDID_NX | AMDID_LM))
1617 		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
1618 	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
1619 		db_printf("FEATURES_CTL\t0x%016llx\n",
1620 		    rdmsr(MSR_IA32_FEATURE_CONTROL));
1621 	if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
1622 	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6)
1623 		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
1624 	if (cpu_feature & CPUID_PAT)
1625 		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
1626 }
1627 
1628 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
1629 {
1630 
1631 	db_printf("dr0\t0x%08x\n", rdr0());
1632 	db_printf("dr1\t0x%08x\n", rdr1());
1633 	db_printf("dr2\t0x%08x\n", rdr2());
1634 	db_printf("dr3\t0x%08x\n", rdr3());
1635 	db_printf("dr6\t0x%08x\n", rdr6());
1636 	db_printf("dr7\t0x%08x\n", rdr7());
1637 }
1638 
1639 DB_SHOW_COMMAND(frame, db_show_frame)
1640 {
1641 	struct trapframe *frame;
1642 
1643 	frame = have_addr ? (struct trapframe *)addr : curthread->td_frame;
1644 	printf("ss %#x esp %#x efl %#x cs %#x eip %#x\n",
1645 	    frame->tf_ss, frame->tf_esp, frame->tf_eflags, frame->tf_cs,
1646 	    frame->tf_eip);
1647 	printf("err %#x trapno %d\n", frame->tf_err, frame->tf_trapno);
1648 	printf("ds %#x es %#x fs %#x\n",
1649 	    frame->tf_ds, frame->tf_es, frame->tf_fs);
1650 	printf("eax %#x ecx %#x edx %#x ebx %#x\n",
1651 	    frame->tf_eax, frame->tf_ecx, frame->tf_edx, frame->tf_ebx);
1652 	printf("ebp %#x esi %#x edi %#x\n",
1653 	    frame->tf_ebp, frame->tf_esi, frame->tf_edi);
1654 
1655 }
1656 #endif
1657 
1658 void
1659 sdtossd(sd, ssd)
1660 	struct segment_descriptor *sd;
1661 	struct soft_segment_descriptor *ssd;
1662 {
1663 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1664 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1665 	ssd->ssd_type  = sd->sd_type;
1666 	ssd->ssd_dpl   = sd->sd_dpl;
1667 	ssd->ssd_p     = sd->sd_p;
1668 	ssd->ssd_def32 = sd->sd_def32;
1669 	ssd->ssd_gran  = sd->sd_gran;
1670 }
1671 
1672 static int
1673 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1674     int *physmap_idxp)
1675 {
1676 	int i, insert_idx, physmap_idx;
1677 
1678 	physmap_idx = *physmap_idxp;
1679 
1680 	if (length == 0)
1681 		return (1);
1682 
1683 #ifndef PAE
1684 	if (base > 0xffffffff) {
1685 		printf("%uK of memory above 4GB ignored\n",
1686 		    (u_int)(length / 1024));
1687 		return (1);
1688 	}
1689 #endif
1690 
1691 	/*
1692 	 * Find insertion point while checking for overlap.  Start off by
1693 	 * assuming the new entry will be added to the end.
1694 	 */
1695 	insert_idx = physmap_idx + 2;
1696 	for (i = 0; i <= physmap_idx; i += 2) {
1697 		if (base < physmap[i + 1]) {
1698 			if (base + length <= physmap[i]) {
1699 				insert_idx = i;
1700 				break;
1701 			}
1702 			if (boothowto & RB_VERBOSE)
1703 				printf(
1704 		    "Overlapping memory regions, ignoring second region\n");
1705 			return (1);
1706 		}
1707 	}
1708 
1709 	/* See if we can prepend to the next entry. */
1710 	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1711 		physmap[insert_idx] = base;
1712 		return (1);
1713 	}
1714 
1715 	/* See if we can append to the previous entry. */
1716 	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1717 		physmap[insert_idx - 1] += length;
1718 		return (1);
1719 	}
1720 
1721 	physmap_idx += 2;
1722 	*physmap_idxp = physmap_idx;
1723 	if (physmap_idx == PHYSMAP_SIZE) {
1724 		printf(
1725 		"Too many segments in the physical address map, giving up\n");
1726 		return (0);
1727 	}
1728 
1729 	/*
1730 	 * Move the last 'N' entries down to make room for the new
1731 	 * entry if needed.
1732 	 */
1733 	for (i = physmap_idx; i > insert_idx; i -= 2) {
1734 		physmap[i] = physmap[i - 2];
1735 		physmap[i + 1] = physmap[i - 1];
1736 	}
1737 
1738 	/* Insert the new entry. */
1739 	physmap[insert_idx] = base;
1740 	physmap[insert_idx + 1] = base + length;
1741 	return (1);
1742 }
1743 
1744 static int
1745 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1746 {
1747 	if (boothowto & RB_VERBOSE)
1748 		printf("SMAP type=%02x base=%016llx len=%016llx\n",
1749 		    smap->type, smap->base, smap->length);
1750 
1751 	if (smap->type != SMAP_TYPE_MEMORY)
1752 		return (1);
1753 
1754 	return (add_physmap_entry(smap->base, smap->length, physmap,
1755 	    physmap_idxp));
1756 }
1757 
1758 static void
1759 add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1760     int *physmap_idxp)
1761 {
1762 	struct bios_smap *smap, *smapend;
1763 	u_int32_t smapsize;
1764 	/*
1765 	 * Memory map from INT 15:E820.
1766 	 *
1767 	 * subr_module.c says:
1768 	 * "Consumer may safely assume that size value precedes data."
1769 	 * ie: an int32_t immediately precedes SMAP.
1770 	 */
1771 	smapsize = *((u_int32_t *)smapbase - 1);
1772 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1773 
1774 	for (smap = smapbase; smap < smapend; smap++)
1775 		if (!add_smap_entry(smap, physmap, physmap_idxp))
1776 			break;
1777 }
1778 
1779 static void
1780 basemem_setup(void)
1781 {
1782 	pt_entry_t *pte;
1783 	int i;
1784 
1785 	if (basemem > 640) {
1786 		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1787 			basemem);
1788 		basemem = 640;
1789 	}
1790 
1791 	/*
1792 	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
1793 	 * the vm86 page table so that vm86 can scribble on them using
1794 	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
1795 	 * page 0, at least as initialized here?
1796 	 */
1797 	pte = (pt_entry_t *)vm86paddr;
1798 	for (i = basemem / 4; i < 160; i++)
1799 		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1800 }
1801 
1802 /*
1803  * Populate the (physmap) array with base/bound pairs describing the
1804  * available physical memory in the system, then test this memory and
1805  * build the phys_avail array describing the actually-available memory.
1806  *
1807  * If we cannot accurately determine the physical memory map, then use
1808  * value from the 0xE801 call, and failing that, the RTC.
1809  *
1810  * Total memory size may be set by the kernel environment variable
1811  * hw.physmem or the compile-time define MAXMEM.
1812  *
1813  * XXX first should be vm_paddr_t.
1814  */
1815 static void
1816 getmemsize(int first)
1817 {
1818 	int has_smap, off, physmap_idx, pa_indx, da_indx;
1819 	u_long memtest;
1820 	vm_paddr_t physmap[PHYSMAP_SIZE];
1821 	pt_entry_t *pte;
1822 	quad_t dcons_addr, dcons_size, physmem_tunable;
1823 	int hasbrokenint12, i, res;
1824 	u_int extmem;
1825 	struct vm86frame vmf;
1826 	struct vm86context vmc;
1827 	vm_paddr_t pa;
1828 	struct bios_smap *smap, *smapbase;
1829 	caddr_t kmdp;
1830 
1831 	has_smap = 0;
1832 	bzero(&vmf, sizeof(vmf));
1833 	bzero(physmap, sizeof(physmap));
1834 	basemem = 0;
1835 
1836 	/*
1837 	 * Check if the loader supplied an SMAP memory map.  If so,
1838 	 * use that and do not make any VM86 calls.
1839 	 */
1840 	physmap_idx = 0;
1841 	kmdp = preload_search_by_type("elf kernel");
1842 	if (kmdp == NULL)
1843 		kmdp = preload_search_by_type("elf32 kernel");
1844 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1845 	    MODINFO_METADATA | MODINFOMD_SMAP);
1846 	if (smapbase != NULL) {
1847 		add_smap_entries(smapbase, physmap, &physmap_idx);
1848 		has_smap = 1;
1849 		goto have_smap;
1850 	}
1851 
1852 	/*
1853 	 * Some newer BIOSes have a broken INT 12H implementation
1854 	 * which causes a kernel panic immediately.  In this case, we
1855 	 * need use the SMAP to determine the base memory size.
1856 	 */
1857 	hasbrokenint12 = 0;
1858 	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1859 	if (hasbrokenint12 == 0) {
1860 		/* Use INT12 to determine base memory size. */
1861 		vm86_intcall(0x12, &vmf);
1862 		basemem = vmf.vmf_ax;
1863 		basemem_setup();
1864 	}
1865 
1866 	/*
1867 	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
1868 	 * the kernel page table so we can use it as a buffer.  The
1869 	 * kernel will unmap this page later.
1870 	 */
1871 	vmc.npages = 0;
1872 	smap = (void *)vm86_addpage(&vmc, 1, PMAP_MAP_LOW + ptoa(1));
1873 	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1874 	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
1875 
1876 	vmf.vmf_ebx = 0;
1877 	do {
1878 		vmf.vmf_eax = 0xE820;
1879 		vmf.vmf_edx = SMAP_SIG;
1880 		vmf.vmf_ecx = sizeof(struct bios_smap);
1881 		i = vm86_datacall(0x15, &vmf, &vmc);
1882 		if (i || vmf.vmf_eax != SMAP_SIG)
1883 			break;
1884 		has_smap = 1;
1885 		if (!add_smap_entry(smap, physmap, &physmap_idx))
1886 			break;
1887 	} while (vmf.vmf_ebx != 0);
1888 
1889 have_smap:
1890 	/*
1891 	 * If we didn't fetch the "base memory" size from INT12,
1892 	 * figure it out from the SMAP (or just guess).
1893 	 */
1894 	if (basemem == 0) {
1895 		for (i = 0; i <= physmap_idx; i += 2) {
1896 			if (physmap[i] == 0x00000000) {
1897 				basemem = physmap[i + 1] / 1024;
1898 				break;
1899 			}
1900 		}
1901 
1902 		/* XXX: If we couldn't find basemem from SMAP, just guess. */
1903 		if (basemem == 0)
1904 			basemem = 640;
1905 		basemem_setup();
1906 	}
1907 
1908 	if (physmap[1] != 0)
1909 		goto physmap_done;
1910 
1911 	/*
1912 	 * If we failed to find an SMAP, figure out the extended
1913 	 * memory size.  We will then build a simple memory map with
1914 	 * two segments, one for "base memory" and the second for
1915 	 * "extended memory".  Note that "extended memory" starts at a
1916 	 * physical address of 1MB and that both basemem and extmem
1917 	 * are in units of 1KB.
1918 	 *
1919 	 * First, try to fetch the extended memory size via INT 15:E801.
1920 	 */
1921 	vmf.vmf_ax = 0xE801;
1922 	if (vm86_intcall(0x15, &vmf) == 0) {
1923 		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1924 	} else {
1925 		/*
1926 		 * If INT15:E801 fails, this is our last ditch effort
1927 		 * to determine the extended memory size.  Currently
1928 		 * we prefer the RTC value over INT15:88.
1929 		 */
1930 #if 0
1931 		vmf.vmf_ah = 0x88;
1932 		vm86_intcall(0x15, &vmf);
1933 		extmem = vmf.vmf_ax;
1934 #else
1935 		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1936 #endif
1937 	}
1938 
1939 	/*
1940 	 * Special hack for chipsets that still remap the 384k hole when
1941 	 * there's 16MB of memory - this really confuses people that
1942 	 * are trying to use bus mastering ISA controllers with the
1943 	 * "16MB limit"; they only have 16MB, but the remapping puts
1944 	 * them beyond the limit.
1945 	 *
1946 	 * If extended memory is between 15-16MB (16-17MB phys address range),
1947 	 *	chop it to 15MB.
1948 	 */
1949 	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1950 		extmem = 15 * 1024;
1951 
1952 	physmap[0] = 0;
1953 	physmap[1] = basemem * 1024;
1954 	physmap_idx = 2;
1955 	physmap[physmap_idx] = 0x100000;
1956 	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1957 
1958 physmap_done:
1959 	/*
1960 	 * Now, physmap contains a map of physical memory.
1961 	 */
1962 
1963 #ifdef SMP
1964 	/* make hole for AP bootstrap code */
1965 	alloc_ap_trampoline(physmap, &physmap_idx);
1966 #endif
1967 
1968 	/*
1969 	 * Maxmem isn't the "maximum memory", it's one larger than the
1970 	 * highest page of the physical address space.  It should be
1971 	 * called something like "Maxphyspage".  We may adjust this
1972 	 * based on ``hw.physmem'' and the results of the memory test.
1973 	 *
1974 	 * This is especially confusing when it is much larger than the
1975 	 * memory size and is displayed as "realmem".
1976 	 */
1977 	Maxmem = atop(physmap[physmap_idx + 1]);
1978 
1979 #ifdef MAXMEM
1980 	Maxmem = MAXMEM / 4;
1981 #endif
1982 
1983 	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
1984 		Maxmem = atop(physmem_tunable);
1985 
1986 	/*
1987 	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
1988 	 * the amount of memory in the system.
1989 	 */
1990 	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
1991 		Maxmem = atop(physmap[physmap_idx + 1]);
1992 
1993 	/*
1994 	 * By default enable the memory test on real hardware, and disable
1995 	 * it if we appear to be running in a VM.  This avoids touching all
1996 	 * pages unnecessarily, which doesn't matter on real hardware but is
1997 	 * bad for shared VM hosts.  Use a general name so that
1998 	 * one could eventually do more with the code than just disable it.
1999 	 */
2000 	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2001 	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2002 
2003 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2004 	    (boothowto & RB_VERBOSE))
2005 		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2006 
2007 	/*
2008 	 * If Maxmem has been increased beyond what the system has detected,
2009 	 * extend the last memory segment to the new limit.
2010 	 */
2011 	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2012 		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2013 
2014 	/* call pmap initialization to make new kernel address space */
2015 	pmap_bootstrap(first);
2016 
2017 	/*
2018 	 * Size up each available chunk of physical memory.
2019 	 */
2020 	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2021 	pa_indx = 0;
2022 	da_indx = 1;
2023 	phys_avail[pa_indx++] = physmap[0];
2024 	phys_avail[pa_indx] = physmap[0];
2025 	dump_avail[da_indx] = physmap[0];
2026 	pte = CMAP3;
2027 
2028 	/*
2029 	 * Get dcons buffer address
2030 	 */
2031 	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2032 	    getenv_quad("dcons.size", &dcons_size) == 0)
2033 		dcons_addr = 0;
2034 
2035 	/*
2036 	 * physmap is in bytes, so when converting to page boundaries,
2037 	 * round up the start address and round down the end address.
2038 	 */
2039 	for (i = 0; i <= physmap_idx; i += 2) {
2040 		vm_paddr_t end;
2041 
2042 		end = ptoa((vm_paddr_t)Maxmem);
2043 		if (physmap[i + 1] < end)
2044 			end = trunc_page(physmap[i + 1]);
2045 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2046 			int tmp, page_bad, full;
2047 			int *ptr = (int *)CADDR3;
2048 
2049 			full = FALSE;
2050 			/*
2051 			 * block out kernel memory as not available.
2052 			 */
2053 			if (pa >= KERNLOAD && pa < first)
2054 				goto do_dump_avail;
2055 
2056 			/*
2057 			 * block out dcons buffer
2058 			 */
2059 			if (dcons_addr > 0
2060 			    && pa >= trunc_page(dcons_addr)
2061 			    && pa < dcons_addr + dcons_size)
2062 				goto do_dump_avail;
2063 
2064 			page_bad = FALSE;
2065 			if (memtest == 0)
2066 				goto skip_memtest;
2067 
2068 			/*
2069 			 * map page into kernel: valid, read/write,non-cacheable
2070 			 */
2071 			*pte = pa | PG_V | PG_RW | PG_N;
2072 			invltlb();
2073 
2074 			tmp = *(int *)ptr;
2075 			/*
2076 			 * Test for alternating 1's and 0's
2077 			 */
2078 			*(volatile int *)ptr = 0xaaaaaaaa;
2079 			if (*(volatile int *)ptr != 0xaaaaaaaa)
2080 				page_bad = TRUE;
2081 			/*
2082 			 * Test for alternating 0's and 1's
2083 			 */
2084 			*(volatile int *)ptr = 0x55555555;
2085 			if (*(volatile int *)ptr != 0x55555555)
2086 				page_bad = TRUE;
2087 			/*
2088 			 * Test for all 1's
2089 			 */
2090 			*(volatile int *)ptr = 0xffffffff;
2091 			if (*(volatile int *)ptr != 0xffffffff)
2092 				page_bad = TRUE;
2093 			/*
2094 			 * Test for all 0's
2095 			 */
2096 			*(volatile int *)ptr = 0x0;
2097 			if (*(volatile int *)ptr != 0x0)
2098 				page_bad = TRUE;
2099 			/*
2100 			 * Restore original value.
2101 			 */
2102 			*(int *)ptr = tmp;
2103 
2104 skip_memtest:
2105 			/*
2106 			 * Adjust array of valid/good pages.
2107 			 */
2108 			if (page_bad == TRUE)
2109 				continue;
2110 			/*
2111 			 * If this good page is a continuation of the
2112 			 * previous set of good pages, then just increase
2113 			 * the end pointer. Otherwise start a new chunk.
2114 			 * Note that "end" points one higher than end,
2115 			 * making the range >= start and < end.
2116 			 * If we're also doing a speculative memory
2117 			 * test and we at or past the end, bump up Maxmem
2118 			 * so that we keep going. The first bad page
2119 			 * will terminate the loop.
2120 			 */
2121 			if (phys_avail[pa_indx] == pa) {
2122 				phys_avail[pa_indx] += PAGE_SIZE;
2123 			} else {
2124 				pa_indx++;
2125 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2126 					printf(
2127 		"Too many holes in the physical address space, giving up\n");
2128 					pa_indx--;
2129 					full = TRUE;
2130 					goto do_dump_avail;
2131 				}
2132 				phys_avail[pa_indx++] = pa;	/* start */
2133 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2134 			}
2135 			physmem++;
2136 do_dump_avail:
2137 			if (dump_avail[da_indx] == pa) {
2138 				dump_avail[da_indx] += PAGE_SIZE;
2139 			} else {
2140 				da_indx++;
2141 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2142 					da_indx--;
2143 					goto do_next;
2144 				}
2145 				dump_avail[da_indx++] = pa;	/* start */
2146 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2147 			}
2148 do_next:
2149 			if (full)
2150 				break;
2151 		}
2152 	}
2153 	*pte = 0;
2154 	invltlb();
2155 
2156 	/*
2157 	 * XXX
2158 	 * The last chunk must contain at least one page plus the message
2159 	 * buffer to avoid complicating other code (message buffer address
2160 	 * calculation, etc.).
2161 	 */
2162 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2163 	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2164 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2165 		phys_avail[pa_indx--] = 0;
2166 		phys_avail[pa_indx--] = 0;
2167 	}
2168 
2169 	Maxmem = atop(phys_avail[pa_indx]);
2170 
2171 	/* Trim off space for the message buffer. */
2172 	phys_avail[pa_indx] -= round_page(msgbufsize);
2173 
2174 	/* Map the message buffer. */
2175 	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2176 		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2177 		    off);
2178 }
2179 
2180 static void
2181 i386_kdb_init(void)
2182 {
2183 #ifdef DDB
2184 	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
2185 #endif
2186 	kdb_init();
2187 #ifdef KDB
2188 	if (boothowto & RB_KDB)
2189 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2190 #endif
2191 }
2192 
2193 static void
2194 fixup_idt(void)
2195 {
2196 	struct gate_descriptor *ip;
2197 	uintptr_t off;
2198 	int x;
2199 
2200 	for (x = 0; x < NIDT; x++) {
2201 		ip = &idt[x];
2202 		if (ip->gd_type != SDT_SYS386IGT &&
2203 		    ip->gd_type != SDT_SYS386TGT)
2204 			continue;
2205 		off = ip->gd_looffset + (((u_int)ip->gd_hioffset) << 16);
2206 		KASSERT(off >= (uintptr_t)start_exceptions &&
2207 		    off < (uintptr_t)end_exceptions,
2208 		    ("IDT[%d] type %d off %#x", x, ip->gd_type, off));
2209 		off += setidt_disp;
2210 		MPASS(off >= PMAP_TRM_MIN_ADDRESS &&
2211 		    off < PMAP_TRM_MAX_ADDRESS);
2212 		ip->gd_looffset = off;
2213 		ip->gd_hioffset = off >> 16;
2214 	}
2215 }
2216 
2217 static void
2218 i386_setidt1(void)
2219 {
2220 	int x;
2221 
2222 	/* exceptions */
2223 	for (x = 0; x < NIDT; x++)
2224 		setidt(x, &IDTVEC(rsvd), SDT_SYS386IGT, SEL_KPL,
2225 		    GSEL(GCODE_SEL, SEL_KPL));
2226 	setidt(IDT_DE, &IDTVEC(div), SDT_SYS386IGT, SEL_KPL,
2227 	    GSEL(GCODE_SEL, SEL_KPL));
2228 	setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
2229 	    GSEL(GCODE_SEL, SEL_KPL));
2230 	setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
2231 	    GSEL(GCODE_SEL, SEL_KPL));
2232 	setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
2233 	    GSEL(GCODE_SEL, SEL_KPL));
2234 	setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386IGT, SEL_UPL,
2235 	    GSEL(GCODE_SEL, SEL_KPL));
2236 	setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386IGT, SEL_KPL,
2237 	    GSEL(GCODE_SEL, SEL_KPL));
2238 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
2239 	    GSEL(GCODE_SEL, SEL_KPL));
2240 	setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386IGT, SEL_KPL,
2241 	    GSEL(GCODE_SEL, SEL_KPL));
2242 	setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL,
2243 	    SEL_KPL));
2244 	setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386IGT,
2245 	    SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2246 	setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386IGT, SEL_KPL,
2247 	    GSEL(GCODE_SEL, SEL_KPL));
2248 	setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386IGT, SEL_KPL,
2249 	    GSEL(GCODE_SEL, SEL_KPL));
2250 	setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386IGT, SEL_KPL,
2251 	    GSEL(GCODE_SEL, SEL_KPL));
2252 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
2253 	    GSEL(GCODE_SEL, SEL_KPL));
2254 	setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
2255 	    GSEL(GCODE_SEL, SEL_KPL));
2256 	setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL,
2257 	    GSEL(GCODE_SEL, SEL_KPL));
2258 	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386IGT, SEL_KPL,
2259 	    GSEL(GCODE_SEL, SEL_KPL));
2260 	setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386IGT, SEL_KPL,
2261 	    GSEL(GCODE_SEL, SEL_KPL));
2262 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386IGT, SEL_KPL,
2263 	    GSEL(GCODE_SEL, SEL_KPL));
2264 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall),
2265 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2266 #ifdef KDTRACE_HOOKS
2267 	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret),
2268 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2269 #endif
2270 #ifdef XENHVM
2271 	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall),
2272 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2273 #endif
2274 }
2275 
2276 static void
2277 i386_setidt2(void)
2278 {
2279 
2280 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
2281 	    GSEL(GCODE_SEL, SEL_KPL));
2282 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
2283 	    GSEL(GCODE_SEL, SEL_KPL));
2284 }
2285 
2286 #if defined(DEV_ISA) && !defined(DEV_ATPIC)
2287 static void
2288 i386_setidt3(void)
2289 {
2290 
2291 	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint),
2292 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2293 	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint),
2294 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2295 }
2296 #endif
2297 
2298 register_t
2299 init386(int first)
2300 {
2301 	struct region_descriptor r_gdt, r_idt;	/* table descriptors */
2302 	int gsel_tss, metadata_missing, x, pa;
2303 	struct pcpu *pc;
2304 	struct xstate_hdr *xhdr;
2305 	caddr_t kmdp;
2306 	vm_offset_t addend;
2307 	int late_console;
2308 
2309 	thread0.td_kstack = proc0kstack;
2310 	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
2311 
2312 	/*
2313  	 * This may be done better later if it gets more high level
2314  	 * components in it. If so just link td->td_proc here.
2315 	 */
2316 	proc_linkup0(&proc0, &thread0);
2317 
2318 	if (bootinfo.bi_modulep) {
2319 		metadata_missing = 0;
2320 		addend = (vm_paddr_t)bootinfo.bi_modulep < KERNBASE ?
2321 		    PMAP_MAP_LOW : 0;
2322 		preload_metadata = (caddr_t)bootinfo.bi_modulep + addend;
2323 		preload_bootstrap_relocate(addend);
2324 	} else {
2325 		metadata_missing = 1;
2326 	}
2327 
2328 	if (bootinfo.bi_envp != 0) {
2329 		addend = (vm_paddr_t)bootinfo.bi_envp < KERNBASE ?
2330 		    PMAP_MAP_LOW : 0;
2331 		init_static_kenv((char *)bootinfo.bi_envp + addend, 0);
2332 	} else {
2333 		init_static_kenv(NULL, 0);
2334 	}
2335 
2336 	identify_hypervisor();
2337 
2338 	/* Init basic tunables, hz etc */
2339 	init_param1();
2340 
2341 	/*
2342 	 * Make gdt memory segments.  All segments cover the full 4GB
2343 	 * of address space and permissions are enforced at page level.
2344 	 */
2345 	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2346 	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2347 	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2348 	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2349 	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2350 	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2351 
2352 	pc = &__pcpu[0];
2353 	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2354 	gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
2355 	gdt_segs[GPROC0_SEL].ssd_base = (int)&common_tss0;
2356 
2357 	for (x = 0; x < NGDT; x++)
2358 		ssdtosd(&gdt_segs[x], &gdt0[x].sd);
2359 
2360 	r_gdt.rd_limit = NGDT * sizeof(gdt0[0]) - 1;
2361 	r_gdt.rd_base =  (int)gdt0;
2362 	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2363 	lgdt(&r_gdt);
2364 
2365 	pcpu_init(pc, 0, sizeof(struct pcpu));
2366 	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2367 		pmap_kenter(pa, pa);
2368 	dpcpu_init((void *)first, 0);
2369 	first += DPCPU_SIZE;
2370 	PCPU_SET(prvspace, pc);
2371 	PCPU_SET(curthread, &thread0);
2372 	/* Non-late cninit() and printf() can be moved up to here. */
2373 
2374 	/*
2375 	 * Initialize mutexes.
2376 	 *
2377 	 * icu_lock: in order to allow an interrupt to occur in a critical
2378 	 * 	     section, to set pcpu->ipending (etc...) properly, we
2379 	 *	     must be able to get the icu lock, so it can't be
2380 	 *	     under witness.
2381 	 */
2382 	mutex_init();
2383 	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2384 
2385 	i386_setidt1();
2386 
2387 	r_idt.rd_limit = sizeof(idt0) - 1;
2388 	r_idt.rd_base = (int) idt;
2389 	lidt(&r_idt);
2390 
2391 	/*
2392 	 * Initialize the clock before the console so that console
2393 	 * initialization can use DELAY().
2394 	 */
2395 	clock_init();
2396 
2397 	finishidentcpu();	/* Final stage of CPU initialization */
2398 	i386_setidt2();
2399 	initializecpu();	/* Initialize CPU registers */
2400 	initializecpucache();
2401 
2402 	/* pointer to selector slot for %fs/%gs */
2403 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2404 
2405 	/* Initialize the tss (except for the final esp0) early for vm86. */
2406 	common_tss0.tss_esp0 = thread0.td_kstack + thread0.td_kstack_pages *
2407 	    PAGE_SIZE - VM86_STACK_SPACE;
2408 	common_tss0.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
2409 	common_tss0.tss_ioopt = sizeof(struct i386tss) << 16;
2410 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2411 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2412 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2413 	ltr(gsel_tss);
2414 
2415 	/* Initialize the PIC early for vm86 calls. */
2416 #ifdef DEV_ISA
2417 #ifdef DEV_ATPIC
2418 	elcr_probe();
2419 	atpic_startup();
2420 #else
2421 	/* Reset and mask the atpics and leave them shut down. */
2422 	atpic_reset();
2423 
2424 	/*
2425 	 * Point the ICU spurious interrupt vectors at the APIC spurious
2426 	 * interrupt handler.
2427 	 */
2428 	i386_setidt3();
2429 #endif
2430 #endif
2431 
2432 	/*
2433 	 * The console and kdb should be initialized even earlier than here,
2434 	 * but some console drivers don't work until after getmemsize().
2435 	 * Default to late console initialization to support these drivers.
2436 	 * This loses mainly printf()s in getmemsize() and early debugging.
2437 	 */
2438 	late_console = 1;
2439 	TUNABLE_INT_FETCH("debug.late_console", &late_console);
2440 	if (!late_console) {
2441 		cninit();
2442 		i386_kdb_init();
2443 	}
2444 
2445 	kmdp = preload_search_by_type("elf kernel");
2446 	link_elf_ireloc(kmdp);
2447 
2448 	vm86_initialize();
2449 	getmemsize(first);
2450 	init_param2(physmem);
2451 
2452 	/* now running on new page tables, configured,and u/iom is accessible */
2453 
2454 	if (late_console)
2455 		cninit();
2456 
2457 	if (metadata_missing)
2458 		printf("WARNING: loader(8) metadata is missing!\n");
2459 
2460 	if (late_console)
2461 		i386_kdb_init();
2462 
2463 	msgbufinit(msgbufp, msgbufsize);
2464 	npxinit(true);
2465 	/*
2466 	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
2467 	 * area size.  Zero out the extended state header in fpu save
2468 	 * area.
2469 	 */
2470 	thread0.td_pcb = get_pcb_td(&thread0);
2471 	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
2472 	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2473 	if (use_xsave) {
2474 		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2475 		    1);
2476 		xhdr->xstate_bv = xsave_mask;
2477 	}
2478 	PCPU_SET(curpcb, thread0.td_pcb);
2479 	/* Move esp0 in the tss to its final place. */
2480 	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2481 	common_tss0.tss_esp0 = (vm_offset_t)thread0.td_pcb - VM86_STACK_SPACE;
2482 	PCPU_SET(kesp0, common_tss0.tss_esp0);
2483 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
2484 	ltr(gsel_tss);
2485 
2486 	/* transfer to user mode */
2487 
2488 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2489 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2490 
2491 	/* setup proc 0's pcb */
2492 	thread0.td_pcb->pcb_flags = 0;
2493 #if defined(PAE) || defined(PAE_TABLES)
2494 	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2495 #else
2496 	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2497 #endif
2498 	thread0.td_pcb->pcb_ext = 0;
2499 	thread0.td_frame = &proc0_tf;
2500 
2501 	cpu_probe_amdc1e();
2502 
2503 #ifdef FDT
2504 	x86_init_fdt();
2505 #endif
2506 
2507 	/* Location of kernel stack for locore */
2508 	return ((register_t)thread0.td_pcb);
2509 }
2510 
2511 extern u_int tramp_idleptd;
2512 
2513 static void
2514 machdep_init_trampoline(void)
2515 {
2516 	struct region_descriptor r_gdt, r_idt;
2517 	struct i386tss *tss;
2518 	char *copyout_buf, *trampoline, *tramp_stack_base;
2519 	u_int *tramp_idleptd_reloced;
2520 	int x;
2521 
2522 	gdt = pmap_trm_alloc(sizeof(union descriptor) * NGDT * mp_ncpus,
2523 	    M_NOWAIT | M_ZERO);
2524 	bcopy(gdt0, gdt, sizeof(union descriptor) * NGDT);
2525 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2526 	r_gdt.rd_base = (int)gdt;
2527 	lgdt(&r_gdt);
2528 
2529 	tss = pmap_trm_alloc(sizeof(struct i386tss) * mp_ncpus,
2530 	    M_NOWAIT | M_ZERO);
2531 	bcopy(&common_tss0, tss, sizeof(struct i386tss));
2532 	gdt[GPROC0_SEL].sd.sd_lobase = (int)tss;
2533 	gdt[GPROC0_SEL].sd.sd_hibase = (u_int)tss >> 24;
2534 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
2535 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2536 
2537 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2538 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2539 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2540 	PCPU_SET(common_tssp, tss);
2541 
2542 	trampoline = pmap_trm_alloc(end_exceptions - start_exceptions,
2543 	    M_NOWAIT);
2544 	bcopy(start_exceptions, trampoline, end_exceptions - start_exceptions);
2545 	tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
2546 	PCPU_SET(trampstk, (uintptr_t)tramp_stack_base + TRAMP_STACK_SZ -
2547 	    VM86_STACK_SPACE);
2548 	tss[0].tss_esp0 = PCPU_GET(trampstk);
2549 
2550 	idt = pmap_trm_alloc(sizeof(idt0), M_NOWAIT | M_ZERO);
2551 	bcopy(idt0, idt, sizeof(idt0));
2552 
2553 	/* Re-initialize new IDT since the handlers were relocated */
2554 	setidt_disp = trampoline - start_exceptions;
2555 	fixup_idt();
2556 
2557 	tramp_idleptd_reloced = (u_int *)((uintptr_t)&tramp_idleptd +
2558 	    setidt_disp);
2559 #if defined(PAE) || defined(PAE_TABLES)
2560 	*tramp_idleptd_reloced = (u_int)IdlePDPT;
2561 #else
2562 	*tramp_idleptd_reloced = (u_int)IdlePTD;
2563 #endif
2564 
2565 	r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
2566 	r_idt.rd_base = (int)idt;
2567 	lidt(&r_idt);
2568 
2569 	/* dblfault TSS */
2570 	dblfault_tss = pmap_trm_alloc(sizeof(struct i386tss), M_NOWAIT | M_ZERO);
2571 	dblfault_stack = pmap_trm_alloc(PAGE_SIZE, M_NOWAIT);
2572 	dblfault_tss->tss_esp = dblfault_tss->tss_esp0 =
2573 	    dblfault_tss->tss_esp1 = dblfault_tss->tss_esp2 =
2574 	    (int)dblfault_stack + PAGE_SIZE;
2575 	dblfault_tss->tss_ss = dblfault_tss->tss_ss0 = dblfault_tss->tss_ss1 =
2576 	    dblfault_tss->tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2577 #if defined(PAE) || defined(PAE_TABLES)
2578 	dblfault_tss->tss_cr3 = (int)IdlePDPT;
2579 #else
2580 	dblfault_tss->tss_cr3 = (int)IdlePTD;
2581 #endif
2582 	dblfault_tss->tss_eip = (int)dblfault_handler;
2583 	dblfault_tss->tss_eflags = PSL_KERNEL;
2584 	dblfault_tss->tss_ds = dblfault_tss->tss_es =
2585 	    dblfault_tss->tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2586 	dblfault_tss->tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2587 	dblfault_tss->tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2588 	dblfault_tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2589 	gdt[GPANIC_SEL].sd.sd_lobase = (int)dblfault_tss;
2590 	gdt[GPANIC_SEL].sd.sd_hibase = (u_int)dblfault_tss >> 24;
2591 
2592 	/* make ldt memory segments */
2593 	ldt = pmap_trm_alloc(sizeof(union descriptor) * NLDT,
2594 	    M_NOWAIT | M_ZERO);
2595 	gdt[GLDT_SEL].sd.sd_lobase = (int)ldt;
2596 	gdt[GLDT_SEL].sd.sd_hibase = (u_int)ldt >> 24;
2597 	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2598 	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2599 	for (x = 0; x < nitems(ldt_segs); x++)
2600 		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2601 
2602 	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2603 	lldt(_default_ldt);
2604 	PCPU_SET(currentldt, _default_ldt);
2605 
2606 	copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
2607 	PCPU_SET(copyout_buf, copyout_buf);
2608 	copyout_init_tramp();
2609 }
2610 SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_SECOND, machdep_init_trampoline, NULL);
2611 
2612 #ifdef COMPAT_43
2613 static void
2614 i386_setup_lcall_gate(void)
2615 {
2616 	struct sysentvec *sv;
2617 	struct user_segment_descriptor desc;
2618 	u_int lcall_addr;
2619 
2620 	sv = &elf32_freebsd_sysvec;
2621 	lcall_addr = (uintptr_t)sv->sv_psstrings - sz_lcall_tramp;
2622 
2623 	bzero(&desc, sizeof(desc));
2624 	desc.sd_type = SDT_MEMERA;
2625 	desc.sd_dpl = SEL_UPL;
2626 	desc.sd_p = 1;
2627 	desc.sd_def32 = 1;
2628 	desc.sd_gran = 1;
2629 	desc.sd_lolimit = 0xffff;
2630 	desc.sd_hilimit = 0xf;
2631 	desc.sd_lobase = lcall_addr;
2632 	desc.sd_hibase = lcall_addr >> 24;
2633 	bcopy(&desc, &ldt[LSYS5CALLS_SEL], sizeof(desc));
2634 }
2635 SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_ANY, i386_setup_lcall_gate, NULL);
2636 #endif
2637 
2638 void
2639 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2640 {
2641 
2642 	pcpu->pc_acpi_id = 0xffffffff;
2643 }
2644 
2645 static int
2646 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2647 {
2648 	struct bios_smap *smapbase;
2649 	struct bios_smap_xattr smap;
2650 	caddr_t kmdp;
2651 	uint32_t *smapattr;
2652 	int count, error, i;
2653 
2654 	/* Retrieve the system memory map from the loader. */
2655 	kmdp = preload_search_by_type("elf kernel");
2656 	if (kmdp == NULL)
2657 		kmdp = preload_search_by_type("elf32 kernel");
2658 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2659 	    MODINFO_METADATA | MODINFOMD_SMAP);
2660 	if (smapbase == NULL)
2661 		return (0);
2662 	smapattr = (uint32_t *)preload_search_info(kmdp,
2663 	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2664 	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
2665 	error = 0;
2666 	for (i = 0; i < count; i++) {
2667 		smap.base = smapbase[i].base;
2668 		smap.length = smapbase[i].length;
2669 		smap.type = smapbase[i].type;
2670 		if (smapattr != NULL)
2671 			smap.xattr = smapattr[i];
2672 		else
2673 			smap.xattr = 0;
2674 		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2675 	}
2676 	return (error);
2677 }
2678 SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2679     smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2680 
2681 void
2682 spinlock_enter(void)
2683 {
2684 	struct thread *td;
2685 	register_t flags;
2686 
2687 	td = curthread;
2688 	if (td->td_md.md_spinlock_count == 0) {
2689 		flags = intr_disable();
2690 		td->td_md.md_spinlock_count = 1;
2691 		td->td_md.md_saved_flags = flags;
2692 	} else
2693 		td->td_md.md_spinlock_count++;
2694 	critical_enter();
2695 }
2696 
2697 void
2698 spinlock_exit(void)
2699 {
2700 	struct thread *td;
2701 	register_t flags;
2702 
2703 	td = curthread;
2704 	critical_exit();
2705 	flags = td->td_md.md_saved_flags;
2706 	td->td_md.md_spinlock_count--;
2707 	if (td->td_md.md_spinlock_count == 0)
2708 		intr_restore(flags);
2709 }
2710 
2711 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2712 static void f00f_hack(void *unused);
2713 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2714 
2715 static void
2716 f00f_hack(void *unused)
2717 {
2718 	struct region_descriptor r_idt;
2719 	struct gate_descriptor *new_idt;
2720 	vm_offset_t tmp;
2721 
2722 	if (!has_f00f_bug)
2723 		return;
2724 
2725 	GIANT_REQUIRED;
2726 
2727 	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2728 
2729 	tmp = (vm_offset_t)pmap_trm_alloc(PAGE_SIZE * 3, M_NOWAIT | M_ZERO);
2730 	if (tmp == 0)
2731 		panic("kmem_malloc returned 0");
2732 	tmp = round_page(tmp);
2733 
2734 	/* Put the problematic entry (#6) at the end of the lower page. */
2735 	new_idt = (struct gate_descriptor *)
2736 	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
2737 	bcopy(idt, new_idt, sizeof(idt0));
2738 	r_idt.rd_base = (u_int)new_idt;
2739 	r_idt.rd_limit = sizeof(idt0) - 1;
2740 	lidt(&r_idt);
2741 	/* SMP machines do not need the F00F hack. */
2742 	idt = new_idt;
2743 	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
2744 }
2745 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2746 
2747 /*
2748  * Construct a PCB from a trapframe. This is called from kdb_trap() where
2749  * we want to start a backtrace from the function that caused us to enter
2750  * the debugger. We have the context in the trapframe, but base the trace
2751  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2752  * enough for a backtrace.
2753  */
2754 void
2755 makectx(struct trapframe *tf, struct pcb *pcb)
2756 {
2757 
2758 	pcb->pcb_edi = tf->tf_edi;
2759 	pcb->pcb_esi = tf->tf_esi;
2760 	pcb->pcb_ebp = tf->tf_ebp;
2761 	pcb->pcb_ebx = tf->tf_ebx;
2762 	pcb->pcb_eip = tf->tf_eip;
2763 	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
2764 	pcb->pcb_gs = rgs();
2765 }
2766 
2767 int
2768 ptrace_set_pc(struct thread *td, u_long addr)
2769 {
2770 
2771 	td->td_frame->tf_eip = addr;
2772 	return (0);
2773 }
2774 
2775 int
2776 ptrace_single_step(struct thread *td)
2777 {
2778 	td->td_frame->tf_eflags |= PSL_T;
2779 	return (0);
2780 }
2781 
2782 int
2783 ptrace_clear_single_step(struct thread *td)
2784 {
2785 	td->td_frame->tf_eflags &= ~PSL_T;
2786 	return (0);
2787 }
2788 
2789 int
2790 fill_regs(struct thread *td, struct reg *regs)
2791 {
2792 	struct pcb *pcb;
2793 	struct trapframe *tp;
2794 
2795 	tp = td->td_frame;
2796 	pcb = td->td_pcb;
2797 	regs->r_gs = pcb->pcb_gs;
2798 	return (fill_frame_regs(tp, regs));
2799 }
2800 
2801 int
2802 fill_frame_regs(struct trapframe *tp, struct reg *regs)
2803 {
2804 	regs->r_fs = tp->tf_fs;
2805 	regs->r_es = tp->tf_es;
2806 	regs->r_ds = tp->tf_ds;
2807 	regs->r_edi = tp->tf_edi;
2808 	regs->r_esi = tp->tf_esi;
2809 	regs->r_ebp = tp->tf_ebp;
2810 	regs->r_ebx = tp->tf_ebx;
2811 	regs->r_edx = tp->tf_edx;
2812 	regs->r_ecx = tp->tf_ecx;
2813 	regs->r_eax = tp->tf_eax;
2814 	regs->r_eip = tp->tf_eip;
2815 	regs->r_cs = tp->tf_cs;
2816 	regs->r_eflags = tp->tf_eflags;
2817 	regs->r_esp = tp->tf_esp;
2818 	regs->r_ss = tp->tf_ss;
2819 	return (0);
2820 }
2821 
2822 int
2823 set_regs(struct thread *td, struct reg *regs)
2824 {
2825 	struct pcb *pcb;
2826 	struct trapframe *tp;
2827 
2828 	tp = td->td_frame;
2829 	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2830 	    !CS_SECURE(regs->r_cs))
2831 		return (EINVAL);
2832 	pcb = td->td_pcb;
2833 	tp->tf_fs = regs->r_fs;
2834 	tp->tf_es = regs->r_es;
2835 	tp->tf_ds = regs->r_ds;
2836 	tp->tf_edi = regs->r_edi;
2837 	tp->tf_esi = regs->r_esi;
2838 	tp->tf_ebp = regs->r_ebp;
2839 	tp->tf_ebx = regs->r_ebx;
2840 	tp->tf_edx = regs->r_edx;
2841 	tp->tf_ecx = regs->r_ecx;
2842 	tp->tf_eax = regs->r_eax;
2843 	tp->tf_eip = regs->r_eip;
2844 	tp->tf_cs = regs->r_cs;
2845 	tp->tf_eflags = regs->r_eflags;
2846 	tp->tf_esp = regs->r_esp;
2847 	tp->tf_ss = regs->r_ss;
2848 	pcb->pcb_gs = regs->r_gs;
2849 	return (0);
2850 }
2851 
2852 int
2853 fill_fpregs(struct thread *td, struct fpreg *fpregs)
2854 {
2855 
2856 	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2857 	    P_SHOULDSTOP(td->td_proc),
2858 	    ("not suspended thread %p", td));
2859 	npxgetregs(td);
2860 	if (cpu_fxsr)
2861 		npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
2862 		    (struct save87 *)fpregs);
2863 	else
2864 		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
2865 		    sizeof(*fpregs));
2866 	return (0);
2867 }
2868 
2869 int
2870 set_fpregs(struct thread *td, struct fpreg *fpregs)
2871 {
2872 
2873 	if (cpu_fxsr)
2874 		npx_set_fpregs_xmm((struct save87 *)fpregs,
2875 		    &get_pcb_user_save_td(td)->sv_xmm);
2876 	else
2877 		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
2878 		    sizeof(*fpregs));
2879 	npxuserinited(td);
2880 	return (0);
2881 }
2882 
2883 /*
2884  * Get machine context.
2885  */
2886 int
2887 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2888 {
2889 	struct trapframe *tp;
2890 	struct segment_descriptor *sdp;
2891 
2892 	tp = td->td_frame;
2893 
2894 	PROC_LOCK(curthread->td_proc);
2895 	mcp->mc_onstack = sigonstack(tp->tf_esp);
2896 	PROC_UNLOCK(curthread->td_proc);
2897 	mcp->mc_gs = td->td_pcb->pcb_gs;
2898 	mcp->mc_fs = tp->tf_fs;
2899 	mcp->mc_es = tp->tf_es;
2900 	mcp->mc_ds = tp->tf_ds;
2901 	mcp->mc_edi = tp->tf_edi;
2902 	mcp->mc_esi = tp->tf_esi;
2903 	mcp->mc_ebp = tp->tf_ebp;
2904 	mcp->mc_isp = tp->tf_isp;
2905 	mcp->mc_eflags = tp->tf_eflags;
2906 	if (flags & GET_MC_CLEAR_RET) {
2907 		mcp->mc_eax = 0;
2908 		mcp->mc_edx = 0;
2909 		mcp->mc_eflags &= ~PSL_C;
2910 	} else {
2911 		mcp->mc_eax = tp->tf_eax;
2912 		mcp->mc_edx = tp->tf_edx;
2913 	}
2914 	mcp->mc_ebx = tp->tf_ebx;
2915 	mcp->mc_ecx = tp->tf_ecx;
2916 	mcp->mc_eip = tp->tf_eip;
2917 	mcp->mc_cs = tp->tf_cs;
2918 	mcp->mc_esp = tp->tf_esp;
2919 	mcp->mc_ss = tp->tf_ss;
2920 	mcp->mc_len = sizeof(*mcp);
2921 	get_fpcontext(td, mcp, NULL, 0);
2922 	sdp = &td->td_pcb->pcb_fsd;
2923 	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
2924 	sdp = &td->td_pcb->pcb_gsd;
2925 	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
2926 	mcp->mc_flags = 0;
2927 	mcp->mc_xfpustate = 0;
2928 	mcp->mc_xfpustate_len = 0;
2929 	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
2930 	return (0);
2931 }
2932 
2933 /*
2934  * Set machine context.
2935  *
2936  * However, we don't set any but the user modifiable flags, and we won't
2937  * touch the cs selector.
2938  */
2939 int
2940 set_mcontext(struct thread *td, mcontext_t *mcp)
2941 {
2942 	struct trapframe *tp;
2943 	char *xfpustate;
2944 	int eflags, ret;
2945 
2946 	tp = td->td_frame;
2947 	if (mcp->mc_len != sizeof(*mcp) ||
2948 	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2949 		return (EINVAL);
2950 	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2951 	    (tp->tf_eflags & ~PSL_USERCHANGE);
2952 	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2953 		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2954 		    sizeof(union savefpu))
2955 			return (EINVAL);
2956 		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2957 		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2958 		    mcp->mc_xfpustate_len);
2959 		if (ret != 0)
2960 			return (ret);
2961 	} else
2962 		xfpustate = NULL;
2963 	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2964 	if (ret != 0)
2965 		return (ret);
2966 	tp->tf_fs = mcp->mc_fs;
2967 	tp->tf_es = mcp->mc_es;
2968 	tp->tf_ds = mcp->mc_ds;
2969 	tp->tf_edi = mcp->mc_edi;
2970 	tp->tf_esi = mcp->mc_esi;
2971 	tp->tf_ebp = mcp->mc_ebp;
2972 	tp->tf_ebx = mcp->mc_ebx;
2973 	tp->tf_edx = mcp->mc_edx;
2974 	tp->tf_ecx = mcp->mc_ecx;
2975 	tp->tf_eax = mcp->mc_eax;
2976 	tp->tf_eip = mcp->mc_eip;
2977 	tp->tf_eflags = eflags;
2978 	tp->tf_esp = mcp->mc_esp;
2979 	tp->tf_ss = mcp->mc_ss;
2980 	td->td_pcb->pcb_gs = mcp->mc_gs;
2981 	return (0);
2982 }
2983 
2984 static void
2985 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2986     size_t xfpusave_len)
2987 {
2988 	size_t max_len, len;
2989 
2990 	mcp->mc_ownedfp = npxgetregs(td);
2991 	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2992 	    sizeof(mcp->mc_fpstate));
2993 	mcp->mc_fpformat = npxformat();
2994 	if (!use_xsave || xfpusave_len == 0)
2995 		return;
2996 	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
2997 	len = xfpusave_len;
2998 	if (len > max_len) {
2999 		len = max_len;
3000 		bzero(xfpusave + max_len, len - max_len);
3001 	}
3002 	mcp->mc_flags |= _MC_HASFPXSTATE;
3003 	mcp->mc_xfpustate_len = len;
3004 	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3005 }
3006 
3007 static int
3008 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3009     size_t xfpustate_len)
3010 {
3011 	int error;
3012 
3013 	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3014 		return (0);
3015 	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3016 	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3017 		return (EINVAL);
3018 	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3019 		/* We don't care what state is left in the FPU or PCB. */
3020 		fpstate_drop(td);
3021 		error = 0;
3022 	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3023 	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3024 		error = npxsetregs(td, (union savefpu *)&mcp->mc_fpstate,
3025 		    xfpustate, xfpustate_len);
3026 	} else
3027 		return (EINVAL);
3028 	return (error);
3029 }
3030 
3031 static void
3032 fpstate_drop(struct thread *td)
3033 {
3034 
3035 	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3036 	critical_enter();
3037 	if (PCPU_GET(fpcurthread) == td)
3038 		npxdrop();
3039 	/*
3040 	 * XXX force a full drop of the npx.  The above only drops it if we
3041 	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3042 	 *
3043 	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3044 	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3045 	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3046 	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3047 	 * have too many layers.
3048 	 */
3049 	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3050 	    PCB_NPXUSERINITDONE);
3051 	critical_exit();
3052 }
3053 
3054 int
3055 fill_dbregs(struct thread *td, struct dbreg *dbregs)
3056 {
3057 	struct pcb *pcb;
3058 
3059 	if (td == NULL) {
3060 		dbregs->dr[0] = rdr0();
3061 		dbregs->dr[1] = rdr1();
3062 		dbregs->dr[2] = rdr2();
3063 		dbregs->dr[3] = rdr3();
3064 		dbregs->dr[6] = rdr6();
3065 		dbregs->dr[7] = rdr7();
3066 	} else {
3067 		pcb = td->td_pcb;
3068 		dbregs->dr[0] = pcb->pcb_dr0;
3069 		dbregs->dr[1] = pcb->pcb_dr1;
3070 		dbregs->dr[2] = pcb->pcb_dr2;
3071 		dbregs->dr[3] = pcb->pcb_dr3;
3072 		dbregs->dr[6] = pcb->pcb_dr6;
3073 		dbregs->dr[7] = pcb->pcb_dr7;
3074 	}
3075 	dbregs->dr[4] = 0;
3076 	dbregs->dr[5] = 0;
3077 	return (0);
3078 }
3079 
3080 int
3081 set_dbregs(struct thread *td, struct dbreg *dbregs)
3082 {
3083 	struct pcb *pcb;
3084 	int i;
3085 
3086 	if (td == NULL) {
3087 		load_dr0(dbregs->dr[0]);
3088 		load_dr1(dbregs->dr[1]);
3089 		load_dr2(dbregs->dr[2]);
3090 		load_dr3(dbregs->dr[3]);
3091 		load_dr6(dbregs->dr[6]);
3092 		load_dr7(dbregs->dr[7]);
3093 	} else {
3094 		/*
3095 		 * Don't let an illegal value for dr7 get set.	Specifically,
3096 		 * check for undefined settings.  Setting these bit patterns
3097 		 * result in undefined behaviour and can lead to an unexpected
3098 		 * TRCTRAP.
3099 		 */
3100 		for (i = 0; i < 4; i++) {
3101 			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3102 				return (EINVAL);
3103 			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3104 				return (EINVAL);
3105 		}
3106 
3107 		pcb = td->td_pcb;
3108 
3109 		/*
3110 		 * Don't let a process set a breakpoint that is not within the
3111 		 * process's address space.  If a process could do this, it
3112 		 * could halt the system by setting a breakpoint in the kernel
3113 		 * (if ddb was enabled).  Thus, we need to check to make sure
3114 		 * that no breakpoints are being enabled for addresses outside
3115 		 * process's address space.
3116 		 *
3117 		 * XXX - what about when the watched area of the user's
3118 		 * address space is written into from within the kernel
3119 		 * ... wouldn't that still cause a breakpoint to be generated
3120 		 * from within kernel mode?
3121 		 */
3122 
3123 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3124 			/* dr0 is enabled */
3125 			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3126 				return (EINVAL);
3127 		}
3128 
3129 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3130 			/* dr1 is enabled */
3131 			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3132 				return (EINVAL);
3133 		}
3134 
3135 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3136 			/* dr2 is enabled */
3137 			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3138 				return (EINVAL);
3139 		}
3140 
3141 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3142 			/* dr3 is enabled */
3143 			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3144 				return (EINVAL);
3145 		}
3146 
3147 		pcb->pcb_dr0 = dbregs->dr[0];
3148 		pcb->pcb_dr1 = dbregs->dr[1];
3149 		pcb->pcb_dr2 = dbregs->dr[2];
3150 		pcb->pcb_dr3 = dbregs->dr[3];
3151 		pcb->pcb_dr6 = dbregs->dr[6];
3152 		pcb->pcb_dr7 = dbregs->dr[7];
3153 
3154 		pcb->pcb_flags |= PCB_DBREGS;
3155 	}
3156 
3157 	return (0);
3158 }
3159 
3160 /*
3161  * Return > 0 if a hardware breakpoint has been hit, and the
3162  * breakpoint was in user space.  Return 0, otherwise.
3163  */
3164 int
3165 user_dbreg_trap(void)
3166 {
3167         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
3168         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3169         int nbp;            /* number of breakpoints that triggered */
3170         caddr_t addr[4];    /* breakpoint addresses */
3171         int i;
3172 
3173         dr7 = rdr7();
3174         if ((dr7 & 0x000000ff) == 0) {
3175                 /*
3176                  * all GE and LE bits in the dr7 register are zero,
3177                  * thus the trap couldn't have been caused by the
3178                  * hardware debug registers
3179                  */
3180                 return 0;
3181         }
3182 
3183         nbp = 0;
3184         dr6 = rdr6();
3185         bp = dr6 & 0x0000000f;
3186 
3187         if (!bp) {
3188                 /*
3189                  * None of the breakpoint bits are set meaning this
3190                  * trap was not caused by any of the debug registers
3191                  */
3192                 return 0;
3193         }
3194 
3195         /*
3196          * at least one of the breakpoints were hit, check to see
3197          * which ones and if any of them are user space addresses
3198          */
3199 
3200         if (bp & 0x01) {
3201                 addr[nbp++] = (caddr_t)rdr0();
3202         }
3203         if (bp & 0x02) {
3204                 addr[nbp++] = (caddr_t)rdr1();
3205         }
3206         if (bp & 0x04) {
3207                 addr[nbp++] = (caddr_t)rdr2();
3208         }
3209         if (bp & 0x08) {
3210                 addr[nbp++] = (caddr_t)rdr3();
3211         }
3212 
3213         for (i = 0; i < nbp; i++) {
3214                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3215                         /*
3216                          * addr[i] is in user space
3217                          */
3218                         return nbp;
3219                 }
3220         }
3221 
3222         /*
3223          * None of the breakpoints are in user space.
3224          */
3225         return 0;
3226 }
3227 
3228 #ifdef KDB
3229 
3230 /*
3231  * Provide inb() and outb() as functions.  They are normally only available as
3232  * inline functions, thus cannot be called from the debugger.
3233  */
3234 
3235 /* silence compiler warnings */
3236 u_char inb_(u_short);
3237 void outb_(u_short, u_char);
3238 
3239 u_char
3240 inb_(u_short port)
3241 {
3242 	return inb(port);
3243 }
3244 
3245 void
3246 outb_(u_short port, u_char data)
3247 {
3248 	outb(port, data);
3249 }
3250 
3251 #endif /* KDB */
3252