xref: /freebsd/sys/kern/imgact_elf.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static bool __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
102     uint32_t *fctl0);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 static size_t __elfN(prepare_register_notes)(struct thread *td,
106     struct note_info_list *list, struct thread *target_td);
107 
108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
110     "");
111 
112 int __elfN(fallback_brand) = -1;
113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
116 
117 static int elf_legacy_coredump = 0;
118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
119     &elf_legacy_coredump, 0,
120     "include all and only RW pages in core dumps");
121 
122 int __elfN(nxstack) =
123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
125     defined(__riscv)
126 	1;
127 #else
128 	0;
129 #endif
130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
133 
134 #if defined(__amd64__)
135 static int __elfN(vdso) = 1;
136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
139 #else
140 static int __elfN(vdso) = 0;
141 #endif
142 
143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
144 int i386_read_exec = 0;
145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
146     "enable execution from readable segments");
147 #endif
148 
149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
150 static int
151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
152 {
153 	u_long val;
154 	int error;
155 
156 	val = __elfN(pie_base);
157 	error = sysctl_handle_long(oidp, &val, 0, req);
158 	if (error != 0 || req->newptr == NULL)
159 		return (error);
160 	if ((val & PAGE_MASK) != 0)
161 		return (EINVAL);
162 	__elfN(pie_base) = val;
163 	return (0);
164 }
165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
167     sysctl_pie_base, "LU",
168     "PIE load base without randomization");
169 
170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "");
173 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
174 
175 /*
176  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
177  * have limited address space (which can cause issues for applications with
178  * high memory use) so we leave it off there.
179  */
180 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
182     &__elfN(aslr_enabled), 0,
183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
184     ": enable address map randomization");
185 
186 /*
187  * Enable ASLR by default for 64-bit PIE binaries.
188  */
189 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
190 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
191     &__elfN(pie_aslr_enabled), 0,
192     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
193     ": enable address map randomization for PIE binaries");
194 
195 /*
196  * Sbrk is deprecated and it can be assumed that in most cases it will not be
197  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
198  * to use the bss grow region.
199  */
200 static int __elfN(aslr_honor_sbrk) = 0;
201 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
202     &__elfN(aslr_honor_sbrk), 0,
203     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
204 
205 static int __elfN(aslr_stack) = 1;
206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
207     &__elfN(aslr_stack), 0,
208     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
209     ": enable stack address randomization");
210 
211 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
212 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
213     &__elfN(aslr_shared_page), 0,
214     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
215     ": enable shared page address randomization");
216 
217 static int __elfN(sigfastblock) = 1;
218 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
219     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
220     "enable sigfastblock for new processes");
221 
222 static bool __elfN(allow_wx) = true;
223 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
224     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
225     "Allow pages to be mapped simultaneously writable and executable");
226 
227 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
228 
229 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
230 
231 Elf_Brandnote __elfN(freebsd_brandnote) = {
232 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
233 	.hdr.n_descsz	= sizeof(int32_t),
234 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
235 	.vendor		= FREEBSD_ABI_VENDOR,
236 	.flags		= BN_TRANSLATE_OSREL,
237 	.trans_osrel	= __elfN(freebsd_trans_osrel)
238 };
239 
240 static bool
241 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
242 {
243 	uintptr_t p;
244 
245 	p = (uintptr_t)(note + 1);
246 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
247 	*osrel = *(const int32_t *)(p);
248 
249 	return (true);
250 }
251 
252 static const char GNU_ABI_VENDOR[] = "GNU";
253 static int GNU_KFREEBSD_ABI_DESC = 3;
254 
255 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
256 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
257 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
258 	.hdr.n_type	= 1,
259 	.vendor		= GNU_ABI_VENDOR,
260 	.flags		= BN_TRANSLATE_OSREL,
261 	.trans_osrel	= kfreebsd_trans_osrel
262 };
263 
264 static bool
265 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
266 {
267 	const Elf32_Word *desc;
268 	uintptr_t p;
269 
270 	p = (uintptr_t)(note + 1);
271 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
272 
273 	desc = (const Elf32_Word *)p;
274 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
275 		return (false);
276 
277 	/*
278 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
279 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
280 	 */
281 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
282 
283 	return (true);
284 }
285 
286 int
287 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
288 {
289 	int i;
290 
291 	for (i = 0; i < MAX_BRANDS; i++) {
292 		if (elf_brand_list[i] == NULL) {
293 			elf_brand_list[i] = entry;
294 			break;
295 		}
296 	}
297 	if (i == MAX_BRANDS) {
298 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
299 			__func__, entry);
300 		return (-1);
301 	}
302 	return (0);
303 }
304 
305 int
306 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
307 {
308 	int i;
309 
310 	for (i = 0; i < MAX_BRANDS; i++) {
311 		if (elf_brand_list[i] == entry) {
312 			elf_brand_list[i] = NULL;
313 			break;
314 		}
315 	}
316 	if (i == MAX_BRANDS)
317 		return (-1);
318 	return (0);
319 }
320 
321 bool
322 __elfN(brand_inuse)(Elf_Brandinfo *entry)
323 {
324 	struct proc *p;
325 	bool rval = false;
326 
327 	sx_slock(&allproc_lock);
328 	FOREACH_PROC_IN_SYSTEM(p) {
329 		if (p->p_sysent == entry->sysvec) {
330 			rval = true;
331 			break;
332 		}
333 	}
334 	sx_sunlock(&allproc_lock);
335 
336 	return (rval);
337 }
338 
339 static Elf_Brandinfo *
340 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
341     int32_t *osrel, uint32_t *fctl0)
342 {
343 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
344 	Elf_Brandinfo *bi, *bi_m;
345 	bool ret, has_fctl0;
346 	int i, interp_name_len;
347 
348 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
349 
350 	/*
351 	 * We support four types of branding -- (1) the ELF EI_OSABI field
352 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
353 	 * branding w/in the ELF header, (3) path of the `interp_path'
354 	 * field, and (4) the ".note.ABI-tag" ELF section.
355 	 */
356 
357 	/* Look for an ".note.ABI-tag" ELF section */
358 	bi_m = NULL;
359 	for (i = 0; i < MAX_BRANDS; i++) {
360 		bi = elf_brand_list[i];
361 		if (bi == NULL)
362 			continue;
363 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
364 			continue;
365 		if (hdr->e_machine == bi->machine && (bi->flags &
366 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
367 			has_fctl0 = false;
368 			*fctl0 = 0;
369 			*osrel = 0;
370 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
371 			    &has_fctl0, fctl0);
372 			/* Give brand a chance to veto check_note's guess */
373 			if (ret && bi->header_supported) {
374 				ret = bi->header_supported(imgp, osrel,
375 				    has_fctl0 ? fctl0 : NULL);
376 			}
377 			/*
378 			 * If note checker claimed the binary, but the
379 			 * interpreter path in the image does not
380 			 * match default one for the brand, try to
381 			 * search for other brands with the same
382 			 * interpreter.  Either there is better brand
383 			 * with the right interpreter, or, failing
384 			 * this, we return first brand which accepted
385 			 * our note and, optionally, header.
386 			 */
387 			if (ret && bi_m == NULL && interp != NULL &&
388 			    (bi->interp_path == NULL ||
389 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
390 			    strncmp(interp, bi->interp_path, interp_name_len)
391 			    != 0))) {
392 				bi_m = bi;
393 				ret = 0;
394 			}
395 			if (ret)
396 				return (bi);
397 		}
398 	}
399 	if (bi_m != NULL)
400 		return (bi_m);
401 
402 	/* If the executable has a brand, search for it in the brand list. */
403 	for (i = 0; i < MAX_BRANDS; i++) {
404 		bi = elf_brand_list[i];
405 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
406 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
407 			continue;
408 		if (hdr->e_machine == bi->machine &&
409 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
410 		    (bi->compat_3_brand != NULL &&
411 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
412 		    bi->compat_3_brand) == 0))) {
413 			/* Looks good, but give brand a chance to veto */
414 			if (bi->header_supported == NULL ||
415 			    bi->header_supported(imgp, NULL, NULL)) {
416 				/*
417 				 * Again, prefer strictly matching
418 				 * interpreter path.
419 				 */
420 				if (interp_name_len == 0 &&
421 				    bi->interp_path == NULL)
422 					return (bi);
423 				if (bi->interp_path != NULL &&
424 				    strlen(bi->interp_path) + 1 ==
425 				    interp_name_len && strncmp(interp,
426 				    bi->interp_path, interp_name_len) == 0)
427 					return (bi);
428 				if (bi_m == NULL)
429 					bi_m = bi;
430 			}
431 		}
432 	}
433 	if (bi_m != NULL)
434 		return (bi_m);
435 
436 	/* No known brand, see if the header is recognized by any brand */
437 	for (i = 0; i < MAX_BRANDS; i++) {
438 		bi = elf_brand_list[i];
439 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
440 		    bi->header_supported == NULL)
441 			continue;
442 		if (hdr->e_machine == bi->machine) {
443 			ret = bi->header_supported(imgp, NULL, NULL);
444 			if (ret)
445 				return (bi);
446 		}
447 	}
448 
449 	/* Lacking a known brand, search for a recognized interpreter. */
450 	if (interp != NULL) {
451 		for (i = 0; i < MAX_BRANDS; i++) {
452 			bi = elf_brand_list[i];
453 			if (bi == NULL || (bi->flags &
454 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
455 			    != 0)
456 				continue;
457 			if (hdr->e_machine == bi->machine &&
458 			    bi->interp_path != NULL &&
459 			    /* ELF image p_filesz includes terminating zero */
460 			    strlen(bi->interp_path) + 1 == interp_name_len &&
461 			    strncmp(interp, bi->interp_path, interp_name_len)
462 			    == 0 && (bi->header_supported == NULL ||
463 			    bi->header_supported(imgp, NULL, NULL)))
464 				return (bi);
465 		}
466 	}
467 
468 	/* Lacking a recognized interpreter, try the default brand */
469 	for (i = 0; i < MAX_BRANDS; i++) {
470 		bi = elf_brand_list[i];
471 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
472 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
473 			continue;
474 		if (hdr->e_machine == bi->machine &&
475 		    __elfN(fallback_brand) == bi->brand &&
476 		    (bi->header_supported == NULL ||
477 		    bi->header_supported(imgp, NULL, NULL)))
478 			return (bi);
479 	}
480 	return (NULL);
481 }
482 
483 static bool
484 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
485 {
486 	return (hdr->e_phoff <= PAGE_SIZE &&
487 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
488 }
489 
490 static int
491 __elfN(check_header)(const Elf_Ehdr *hdr)
492 {
493 	Elf_Brandinfo *bi;
494 	int i;
495 
496 	if (!IS_ELF(*hdr) ||
497 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
498 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
499 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
500 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
501 	    hdr->e_version != ELF_TARG_VER)
502 		return (ENOEXEC);
503 
504 	/*
505 	 * Make sure we have at least one brand for this machine.
506 	 */
507 
508 	for (i = 0; i < MAX_BRANDS; i++) {
509 		bi = elf_brand_list[i];
510 		if (bi != NULL && bi->machine == hdr->e_machine)
511 			break;
512 	}
513 	if (i == MAX_BRANDS)
514 		return (ENOEXEC);
515 
516 	return (0);
517 }
518 
519 static int
520 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
521     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
522 {
523 	struct sf_buf *sf;
524 	int error;
525 	vm_offset_t off;
526 
527 	/*
528 	 * Create the page if it doesn't exist yet. Ignore errors.
529 	 */
530 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
531 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
532 
533 	/*
534 	 * Find the page from the underlying object.
535 	 */
536 	if (object != NULL) {
537 		sf = vm_imgact_map_page(object, offset);
538 		if (sf == NULL)
539 			return (KERN_FAILURE);
540 		off = offset - trunc_page(offset);
541 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
542 		    end - start);
543 		vm_imgact_unmap_page(sf);
544 		if (error != 0)
545 			return (KERN_FAILURE);
546 	}
547 
548 	return (KERN_SUCCESS);
549 }
550 
551 static int
552 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
553     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
554     int cow)
555 {
556 	struct sf_buf *sf;
557 	vm_offset_t off;
558 	vm_size_t sz;
559 	int error, locked, rv;
560 
561 	if (start != trunc_page(start)) {
562 		rv = __elfN(map_partial)(map, object, offset, start,
563 		    round_page(start), prot);
564 		if (rv != KERN_SUCCESS)
565 			return (rv);
566 		offset += round_page(start) - start;
567 		start = round_page(start);
568 	}
569 	if (end != round_page(end)) {
570 		rv = __elfN(map_partial)(map, object, offset +
571 		    trunc_page(end) - start, trunc_page(end), end, prot);
572 		if (rv != KERN_SUCCESS)
573 			return (rv);
574 		end = trunc_page(end);
575 	}
576 	if (start >= end)
577 		return (KERN_SUCCESS);
578 	if ((offset & PAGE_MASK) != 0) {
579 		/*
580 		 * The mapping is not page aligned.  This means that we have
581 		 * to copy the data.
582 		 */
583 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
584 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
585 		if (rv != KERN_SUCCESS)
586 			return (rv);
587 		if (object == NULL)
588 			return (KERN_SUCCESS);
589 		for (; start < end; start += sz) {
590 			sf = vm_imgact_map_page(object, offset);
591 			if (sf == NULL)
592 				return (KERN_FAILURE);
593 			off = offset - trunc_page(offset);
594 			sz = end - start;
595 			if (sz > PAGE_SIZE - off)
596 				sz = PAGE_SIZE - off;
597 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
598 			    (caddr_t)start, sz);
599 			vm_imgact_unmap_page(sf);
600 			if (error != 0)
601 				return (KERN_FAILURE);
602 			offset += sz;
603 		}
604 	} else {
605 		vm_object_reference(object);
606 		rv = vm_map_fixed(map, object, offset, start, end - start,
607 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
608 		    (object != NULL ? MAP_VN_EXEC : 0));
609 		if (rv != KERN_SUCCESS) {
610 			locked = VOP_ISLOCKED(imgp->vp);
611 			VOP_UNLOCK(imgp->vp);
612 			vm_object_deallocate(object);
613 			vn_lock(imgp->vp, locked | LK_RETRY);
614 			return (rv);
615 		} else if (object != NULL) {
616 			MPASS(imgp->vp->v_object == object);
617 			VOP_SET_TEXT_CHECKED(imgp->vp);
618 		}
619 	}
620 	return (KERN_SUCCESS);
621 }
622 
623 static int
624 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
625     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
626 {
627 	struct sf_buf *sf;
628 	size_t map_len;
629 	vm_map_t map;
630 	vm_object_t object;
631 	vm_offset_t map_addr;
632 	int error, rv, cow;
633 	size_t copy_len;
634 	vm_ooffset_t file_addr;
635 
636 	/*
637 	 * It's necessary to fail if the filsz + offset taken from the
638 	 * header is greater than the actual file pager object's size.
639 	 * If we were to allow this, then the vm_map_find() below would
640 	 * walk right off the end of the file object and into the ether.
641 	 *
642 	 * While I'm here, might as well check for something else that
643 	 * is invalid: filsz cannot be greater than memsz.
644 	 */
645 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
646 	    filsz > memsz) {
647 		uprintf("elf_load_section: truncated ELF file\n");
648 		return (ENOEXEC);
649 	}
650 
651 	object = imgp->object;
652 	map = &imgp->proc->p_vmspace->vm_map;
653 	map_addr = trunc_page((vm_offset_t)vmaddr);
654 	file_addr = trunc_page(offset);
655 
656 	/*
657 	 * We have two choices.  We can either clear the data in the last page
658 	 * of an oversized mapping, or we can start the anon mapping a page
659 	 * early and copy the initialized data into that first page.  We
660 	 * choose the second.
661 	 */
662 	if (filsz == 0)
663 		map_len = 0;
664 	else if (memsz > filsz)
665 		map_len = trunc_page(offset + filsz) - file_addr;
666 	else
667 		map_len = round_page(offset + filsz) - file_addr;
668 
669 	if (map_len != 0) {
670 		/* cow flags: don't dump readonly sections in core */
671 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
672 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
673 
674 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
675 		    map_addr, map_addr + map_len, prot, cow);
676 		if (rv != KERN_SUCCESS)
677 			return (EINVAL);
678 
679 		/* we can stop now if we've covered it all */
680 		if (memsz == filsz)
681 			return (0);
682 	}
683 
684 	/*
685 	 * We have to get the remaining bit of the file into the first part
686 	 * of the oversized map segment.  This is normally because the .data
687 	 * segment in the file is extended to provide bss.  It's a neat idea
688 	 * to try and save a page, but it's a pain in the behind to implement.
689 	 */
690 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
691 	    filsz);
692 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
693 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
694 
695 	/* This had damn well better be true! */
696 	if (map_len != 0) {
697 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
698 		    map_addr + map_len, prot, 0);
699 		if (rv != KERN_SUCCESS)
700 			return (EINVAL);
701 	}
702 
703 	if (copy_len != 0) {
704 		sf = vm_imgact_map_page(object, offset + filsz);
705 		if (sf == NULL)
706 			return (EIO);
707 
708 		/* send the page fragment to user space */
709 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
710 		    copy_len);
711 		vm_imgact_unmap_page(sf);
712 		if (error != 0)
713 			return (error);
714 	}
715 
716 	/*
717 	 * Remove write access to the page if it was only granted by map_insert
718 	 * to allow copyout.
719 	 */
720 	if ((prot & VM_PROT_WRITE) == 0)
721 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
722 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
723 
724 	return (0);
725 }
726 
727 static int
728 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
729     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
730 {
731 	vm_prot_t prot;
732 	u_long base_addr;
733 	bool first;
734 	int error, i;
735 
736 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
737 
738 	base_addr = 0;
739 	first = true;
740 
741 	for (i = 0; i < hdr->e_phnum; i++) {
742 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
743 			continue;
744 
745 		/* Loadable segment */
746 		prot = __elfN(trans_prot)(phdr[i].p_flags);
747 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
748 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
749 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
750 		if (error != 0)
751 			return (error);
752 
753 		/*
754 		 * Establish the base address if this is the first segment.
755 		 */
756 		if (first) {
757   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
758 			first = false;
759 		}
760 	}
761 
762 	if (base_addrp != NULL)
763 		*base_addrp = base_addr;
764 
765 	return (0);
766 }
767 
768 /*
769  * Load the file "file" into memory.  It may be either a shared object
770  * or an executable.
771  *
772  * The "addr" reference parameter is in/out.  On entry, it specifies
773  * the address where a shared object should be loaded.  If the file is
774  * an executable, this value is ignored.  On exit, "addr" specifies
775  * where the file was actually loaded.
776  *
777  * The "entry" reference parameter is out only.  On exit, it specifies
778  * the entry point for the loaded file.
779  */
780 static int
781 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
782 	u_long *entry)
783 {
784 	struct {
785 		struct nameidata nd;
786 		struct vattr attr;
787 		struct image_params image_params;
788 	} *tempdata;
789 	const Elf_Ehdr *hdr = NULL;
790 	const Elf_Phdr *phdr = NULL;
791 	struct nameidata *nd;
792 	struct vattr *attr;
793 	struct image_params *imgp;
794 	u_long rbase;
795 	u_long base_addr = 0;
796 	int error;
797 
798 #ifdef CAPABILITY_MODE
799 	/*
800 	 * XXXJA: This check can go away once we are sufficiently confident
801 	 * that the checks in namei() are correct.
802 	 */
803 	if (IN_CAPABILITY_MODE(curthread))
804 		return (ECAPMODE);
805 #endif
806 
807 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
808 	nd = &tempdata->nd;
809 	attr = &tempdata->attr;
810 	imgp = &tempdata->image_params;
811 
812 	/*
813 	 * Initialize part of the common data
814 	 */
815 	imgp->proc = p;
816 	imgp->attr = attr;
817 
818 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
819 	    UIO_SYSSPACE, file);
820 	if ((error = namei(nd)) != 0) {
821 		nd->ni_vp = NULL;
822 		goto fail;
823 	}
824 	NDFREE_PNBUF(nd);
825 	imgp->vp = nd->ni_vp;
826 
827 	/*
828 	 * Check permissions, modes, uid, etc on the file, and "open" it.
829 	 */
830 	error = exec_check_permissions(imgp);
831 	if (error)
832 		goto fail;
833 
834 	error = exec_map_first_page(imgp);
835 	if (error)
836 		goto fail;
837 
838 	imgp->object = nd->ni_vp->v_object;
839 
840 	hdr = (const Elf_Ehdr *)imgp->image_header;
841 	if ((error = __elfN(check_header)(hdr)) != 0)
842 		goto fail;
843 	if (hdr->e_type == ET_DYN)
844 		rbase = *addr;
845 	else if (hdr->e_type == ET_EXEC)
846 		rbase = 0;
847 	else {
848 		error = ENOEXEC;
849 		goto fail;
850 	}
851 
852 	/* Only support headers that fit within first page for now      */
853 	if (!__elfN(phdr_in_zero_page)(hdr)) {
854 		error = ENOEXEC;
855 		goto fail;
856 	}
857 
858 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
859 	if (!aligned(phdr, Elf_Addr)) {
860 		error = ENOEXEC;
861 		goto fail;
862 	}
863 
864 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
865 	if (error != 0)
866 		goto fail;
867 
868 	*addr = base_addr;
869 	*entry = (unsigned long)hdr->e_entry + rbase;
870 
871 fail:
872 	if (imgp->firstpage)
873 		exec_unmap_first_page(imgp);
874 
875 	if (nd->ni_vp) {
876 		if (imgp->textset)
877 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
878 		vput(nd->ni_vp);
879 	}
880 	free(tempdata, M_TEMP);
881 
882 	return (error);
883 }
884 
885 /*
886  * Select randomized valid address in the map map, between minv and
887  * maxv, with specified alignment.  The [minv, maxv) range must belong
888  * to the map.  Note that function only allocates the address, it is
889  * up to caller to clamp maxv in a way that the final allocation
890  * length fit into the map.
891  *
892  * Result is returned in *resp, error code indicates that arguments
893  * did not pass sanity checks for overflow and range correctness.
894  */
895 static int
896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
897     u_int align, u_long *resp)
898 {
899 	u_long rbase, res;
900 
901 	MPASS(vm_map_min(map) <= minv);
902 
903 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
904 		uprintf("Invalid ELF segments layout\n");
905 		return (ENOEXEC);
906 	}
907 
908 	arc4rand(&rbase, sizeof(rbase), 0);
909 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
910 	res &= ~((u_long)align - 1);
911 	if (res >= maxv)
912 		res -= align;
913 
914 	KASSERT(res >= minv,
915 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
916 	    res, minv, maxv, rbase));
917 	KASSERT(res < maxv,
918 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
919 	    res, maxv, minv, rbase));
920 
921 	*resp = res;
922 	return (0);
923 }
924 
925 static int
926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
927     const Elf_Phdr *phdr, u_long et_dyn_addr)
928 {
929 	struct vmspace *vmspace;
930 	const char *err_str;
931 	u_long text_size, data_size, total_size, text_addr, data_addr;
932 	u_long seg_size, seg_addr;
933 	int i;
934 
935 	err_str = NULL;
936 	text_size = data_size = total_size = text_addr = data_addr = 0;
937 
938 	for (i = 0; i < hdr->e_phnum; i++) {
939 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
940 			continue;
941 
942 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
943 		seg_size = round_page(phdr[i].p_memsz +
944 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
945 
946 		/*
947 		 * Make the largest executable segment the official
948 		 * text segment and all others data.
949 		 *
950 		 * Note that obreak() assumes that data_addr + data_size == end
951 		 * of data load area, and the ELF file format expects segments
952 		 * to be sorted by address.  If multiple data segments exist,
953 		 * the last one will be used.
954 		 */
955 
956 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
957 			text_size = seg_size;
958 			text_addr = seg_addr;
959 		} else {
960 			data_size = seg_size;
961 			data_addr = seg_addr;
962 		}
963 		total_size += seg_size;
964 	}
965 
966 	if (data_addr == 0 && data_size == 0) {
967 		data_addr = text_addr;
968 		data_size = text_size;
969 	}
970 
971 	/*
972 	 * Check limits.  It should be safe to check the
973 	 * limits after loading the segments since we do
974 	 * not actually fault in all the segments pages.
975 	 */
976 	PROC_LOCK(imgp->proc);
977 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
978 		err_str = "Data segment size exceeds process limit";
979 	else if (text_size > maxtsiz)
980 		err_str = "Text segment size exceeds system limit";
981 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
982 		err_str = "Total segment size exceeds process limit";
983 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
984 		err_str = "Data segment size exceeds resource limit";
985 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
986 		err_str = "Total segment size exceeds resource limit";
987 	PROC_UNLOCK(imgp->proc);
988 	if (err_str != NULL) {
989 		uprintf("%s\n", err_str);
990 		return (ENOMEM);
991 	}
992 
993 	vmspace = imgp->proc->p_vmspace;
994 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
995 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
996 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
997 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
998 
999 	return (0);
1000 }
1001 
1002 static int
1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1004     char **interpp, bool *free_interpp)
1005 {
1006 	struct thread *td;
1007 	char *interp;
1008 	int error, interp_name_len;
1009 
1010 	KASSERT(phdr->p_type == PT_INTERP,
1011 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1012 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1013 
1014 	td = curthread;
1015 
1016 	/* Path to interpreter */
1017 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1018 		uprintf("Invalid PT_INTERP\n");
1019 		return (ENOEXEC);
1020 	}
1021 
1022 	interp_name_len = phdr->p_filesz;
1023 	if (phdr->p_offset > PAGE_SIZE ||
1024 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1025 		/*
1026 		 * The vnode lock might be needed by the pagedaemon to
1027 		 * clean pages owned by the vnode.  Do not allow sleep
1028 		 * waiting for memory with the vnode locked, instead
1029 		 * try non-sleepable allocation first, and if it
1030 		 * fails, go to the slow path were we drop the lock
1031 		 * and do M_WAITOK.  A text reference prevents
1032 		 * modifications to the vnode content.
1033 		 */
1034 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1035 		if (interp == NULL) {
1036 			VOP_UNLOCK(imgp->vp);
1037 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1038 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1039 		}
1040 
1041 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1042 		    interp_name_len, phdr->p_offset,
1043 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1044 		    NOCRED, NULL, td);
1045 		if (error != 0) {
1046 			free(interp, M_TEMP);
1047 			uprintf("i/o error PT_INTERP %d\n", error);
1048 			return (error);
1049 		}
1050 		interp[interp_name_len] = '\0';
1051 
1052 		*interpp = interp;
1053 		*free_interpp = true;
1054 		return (0);
1055 	}
1056 
1057 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1058 	if (interp[interp_name_len - 1] != '\0') {
1059 		uprintf("Invalid PT_INTERP\n");
1060 		return (ENOEXEC);
1061 	}
1062 
1063 	*interpp = interp;
1064 	*free_interpp = false;
1065 	return (0);
1066 }
1067 
1068 static int
1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1070     const char *interp, u_long *addr, u_long *entry)
1071 {
1072 	char *path;
1073 	int error;
1074 
1075 	if (brand_info->emul_path != NULL &&
1076 	    brand_info->emul_path[0] != '\0') {
1077 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1078 		snprintf(path, MAXPATHLEN, "%s%s",
1079 		    brand_info->emul_path, interp);
1080 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1081 		free(path, M_TEMP);
1082 		if (error == 0)
1083 			return (0);
1084 	}
1085 
1086 	if (brand_info->interp_newpath != NULL &&
1087 	    (brand_info->interp_path == NULL ||
1088 	    strcmp(interp, brand_info->interp_path) == 0)) {
1089 		error = __elfN(load_file)(imgp->proc,
1090 		    brand_info->interp_newpath, addr, entry);
1091 		if (error == 0)
1092 			return (0);
1093 	}
1094 
1095 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1096 	if (error == 0)
1097 		return (0);
1098 
1099 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1100 	return (error);
1101 }
1102 
1103 /*
1104  * Impossible et_dyn_addr initial value indicating that the real base
1105  * must be calculated later with some randomization applied.
1106  */
1107 #define	ET_DYN_ADDR_RAND	1
1108 
1109 static int
1110 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1111 {
1112 	struct thread *td;
1113 	const Elf_Ehdr *hdr;
1114 	const Elf_Phdr *phdr;
1115 	Elf_Auxargs *elf_auxargs;
1116 	struct vmspace *vmspace;
1117 	vm_map_t map;
1118 	char *interp;
1119 	Elf_Brandinfo *brand_info;
1120 	struct sysentvec *sv;
1121 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1122 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1123 	uint32_t fctl0;
1124 	int32_t osrel;
1125 	bool free_interp;
1126 	int error, i, n;
1127 
1128 	hdr = (const Elf_Ehdr *)imgp->image_header;
1129 
1130 	/*
1131 	 * Do we have a valid ELF header ?
1132 	 *
1133 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1134 	 * if particular brand doesn't support it.
1135 	 */
1136 	if (__elfN(check_header)(hdr) != 0 ||
1137 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1138 		return (-1);
1139 
1140 	/*
1141 	 * From here on down, we return an errno, not -1, as we've
1142 	 * detected an ELF file.
1143 	 */
1144 
1145 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1146 		uprintf("Program headers not in the first page\n");
1147 		return (ENOEXEC);
1148 	}
1149 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1150 	if (!aligned(phdr, Elf_Addr)) {
1151 		uprintf("Unaligned program headers\n");
1152 		return (ENOEXEC);
1153 	}
1154 
1155 	n = error = 0;
1156 	baddr = 0;
1157 	osrel = 0;
1158 	fctl0 = 0;
1159 	entry = proghdr = 0;
1160 	interp = NULL;
1161 	free_interp = false;
1162 	td = curthread;
1163 
1164 	/*
1165 	 * Somewhat arbitrary, limit accepted max alignment for the
1166 	 * loadable segment to the max supported superpage size. Too
1167 	 * large alignment requests are not useful and are indicators
1168 	 * of corrupted or outright malicious binary.
1169 	 */
1170 	maxalign = PAGE_SIZE;
1171 	maxsalign = PAGE_SIZE * 1024;
1172 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1173 		if (pagesizes[i] > maxsalign)
1174 			maxsalign = pagesizes[i];
1175 	}
1176 
1177 	mapsz = 0;
1178 
1179 	for (i = 0; i < hdr->e_phnum; i++) {
1180 		switch (phdr[i].p_type) {
1181 		case PT_LOAD:
1182 			if (n == 0)
1183 				baddr = phdr[i].p_vaddr;
1184 			if (!powerof2(phdr[i].p_align) ||
1185 			    phdr[i].p_align > maxsalign) {
1186 				uprintf("Invalid segment alignment\n");
1187 				error = ENOEXEC;
1188 				goto ret;
1189 			}
1190 			if (phdr[i].p_align > maxalign)
1191 				maxalign = phdr[i].p_align;
1192 			if (mapsz + phdr[i].p_memsz < mapsz) {
1193 				uprintf("Mapsize overflow\n");
1194 				error = ENOEXEC;
1195 				goto ret;
1196 			}
1197 			mapsz += phdr[i].p_memsz;
1198 			n++;
1199 
1200 			/*
1201 			 * If this segment contains the program headers,
1202 			 * remember their virtual address for the AT_PHDR
1203 			 * aux entry. Static binaries don't usually include
1204 			 * a PT_PHDR entry.
1205 			 */
1206 			if (phdr[i].p_offset == 0 &&
1207 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1208 			    phdr[i].p_filesz)
1209 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1210 			break;
1211 		case PT_INTERP:
1212 			/* Path to interpreter */
1213 			if (interp != NULL) {
1214 				uprintf("Multiple PT_INTERP headers\n");
1215 				error = ENOEXEC;
1216 				goto ret;
1217 			}
1218 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1219 			    &free_interp);
1220 			if (error != 0)
1221 				goto ret;
1222 			break;
1223 		case PT_GNU_STACK:
1224 			if (__elfN(nxstack)) {
1225 				imgp->stack_prot =
1226 				    __elfN(trans_prot)(phdr[i].p_flags);
1227 				if ((imgp->stack_prot & VM_PROT_RW) !=
1228 				    VM_PROT_RW) {
1229 					uprintf("Invalid PT_GNU_STACK\n");
1230 					error = ENOEXEC;
1231 					goto ret;
1232 				}
1233 			}
1234 			imgp->stack_sz = phdr[i].p_memsz;
1235 			break;
1236 		case PT_PHDR: 	/* Program header table info */
1237 			proghdr = phdr[i].p_vaddr;
1238 			break;
1239 		}
1240 	}
1241 
1242 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1243 	if (brand_info == NULL) {
1244 		uprintf("ELF binary type \"%u\" not known.\n",
1245 		    hdr->e_ident[EI_OSABI]);
1246 		error = ENOEXEC;
1247 		goto ret;
1248 	}
1249 	sv = brand_info->sysvec;
1250 	et_dyn_addr = 0;
1251 	if (hdr->e_type == ET_DYN) {
1252 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1253 			uprintf("Cannot execute shared object\n");
1254 			error = ENOEXEC;
1255 			goto ret;
1256 		}
1257 		/*
1258 		 * Honour the base load address from the dso if it is
1259 		 * non-zero for some reason.
1260 		 */
1261 		if (baddr == 0) {
1262 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1263 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1264 				et_dyn_addr = __elfN(pie_base);
1265 			else if ((__elfN(pie_aslr_enabled) &&
1266 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1267 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1268 				et_dyn_addr = ET_DYN_ADDR_RAND;
1269 			else
1270 				et_dyn_addr = __elfN(pie_base);
1271 		}
1272 	}
1273 
1274 	/*
1275 	 * Avoid a possible deadlock if the current address space is destroyed
1276 	 * and that address space maps the locked vnode.  In the common case,
1277 	 * the locked vnode's v_usecount is decremented but remains greater
1278 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1279 	 * However, in cases where the vnode lock is external, such as nullfs,
1280 	 * v_usecount may become zero.
1281 	 *
1282 	 * The VV_TEXT flag prevents modifications to the executable while
1283 	 * the vnode is unlocked.
1284 	 */
1285 	VOP_UNLOCK(imgp->vp);
1286 
1287 	/*
1288 	 * Decide whether to enable randomization of user mappings.
1289 	 * First, reset user preferences for the setid binaries.
1290 	 * Then, account for the support of the randomization by the
1291 	 * ABI, by user preferences, and make special treatment for
1292 	 * PIE binaries.
1293 	 */
1294 	if (imgp->credential_setid) {
1295 		PROC_LOCK(imgp->proc);
1296 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1297 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1298 		PROC_UNLOCK(imgp->proc);
1299 	}
1300 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1301 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1302 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1303 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1304 		    ("et_dyn_addr == RAND and !ASLR"));
1305 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1306 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1307 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1308 		imgp->map_flags |= MAP_ASLR;
1309 		/*
1310 		 * If user does not care about sbrk, utilize the bss
1311 		 * grow region for mappings as well.  We can select
1312 		 * the base for the image anywere and still not suffer
1313 		 * from the fragmentation.
1314 		 */
1315 		if (!__elfN(aslr_honor_sbrk) ||
1316 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1317 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1318 		if (__elfN(aslr_stack))
1319 			imgp->map_flags |= MAP_ASLR_STACK;
1320 		if (__elfN(aslr_shared_page))
1321 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1322 	}
1323 
1324 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1325 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1326 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1327 		imgp->map_flags |= MAP_WXORX;
1328 
1329 	error = exec_new_vmspace(imgp, sv);
1330 
1331 	imgp->proc->p_sysent = sv;
1332 	imgp->proc->p_elf_brandinfo = brand_info;
1333 
1334 	vmspace = imgp->proc->p_vmspace;
1335 	map = &vmspace->vm_map;
1336 	maxv = sv->sv_usrstack;
1337 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1338 		maxv -= lim_max(td, RLIMIT_STACK);
1339 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1340 		uprintf("Excessive mapping size\n");
1341 		error = ENOEXEC;
1342 	}
1343 
1344 	if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
1345 		KASSERT((map->flags & MAP_ASLR) != 0,
1346 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1347 		error = __CONCAT(rnd_, __elfN(base))(map,
1348 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1349 		    /* reserve half of the address space to interpreter */
1350 		    maxv / 2, maxalign, &et_dyn_addr);
1351 	}
1352 
1353 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1354 	if (error != 0)
1355 		goto ret;
1356 
1357 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1358 	if (error != 0)
1359 		goto ret;
1360 
1361 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1362 	if (error != 0)
1363 		goto ret;
1364 
1365 	/*
1366 	 * We load the dynamic linker where a userland call
1367 	 * to mmap(0, ...) would put it.  The rationale behind this
1368 	 * calculation is that it leaves room for the heap to grow to
1369 	 * its maximum allowed size.
1370 	 */
1371 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1372 	    RLIMIT_DATA));
1373 	if ((map->flags & MAP_ASLR) != 0) {
1374 		maxv1 = maxv / 2 + addr / 2;
1375 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1376 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1377 		    pagesizes[1] : pagesizes[0], &anon_loc);
1378 		if (error != 0)
1379 			goto ret;
1380 		map->anon_loc = anon_loc;
1381 	} else {
1382 		map->anon_loc = addr;
1383 	}
1384 
1385 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1386 	imgp->entry_addr = entry;
1387 
1388 	if (interp != NULL) {
1389 		VOP_UNLOCK(imgp->vp);
1390 		if ((map->flags & MAP_ASLR) != 0) {
1391 			/* Assume that interpreter fits into 1/4 of AS */
1392 			maxv1 = maxv / 2 + addr / 2;
1393 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1394 			    maxv1, PAGE_SIZE, &addr);
1395 		}
1396 		if (error == 0) {
1397 			error = __elfN(load_interp)(imgp, brand_info, interp,
1398 			    &addr, &imgp->entry_addr);
1399 		}
1400 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1401 		if (error != 0)
1402 			goto ret;
1403 	} else
1404 		addr = et_dyn_addr;
1405 
1406 	error = exec_map_stack(imgp);
1407 	if (error != 0)
1408 		goto ret;
1409 
1410 	/*
1411 	 * Construct auxargs table (used by the copyout_auxargs routine)
1412 	 */
1413 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1414 	if (elf_auxargs == NULL) {
1415 		VOP_UNLOCK(imgp->vp);
1416 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1417 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1418 	}
1419 	elf_auxargs->execfd = -1;
1420 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1421 	elf_auxargs->phent = hdr->e_phentsize;
1422 	elf_auxargs->phnum = hdr->e_phnum;
1423 	elf_auxargs->pagesz = PAGE_SIZE;
1424 	elf_auxargs->base = addr;
1425 	elf_auxargs->flags = 0;
1426 	elf_auxargs->entry = entry;
1427 	elf_auxargs->hdr_eflags = hdr->e_flags;
1428 
1429 	imgp->auxargs = elf_auxargs;
1430 	imgp->interpreted = 0;
1431 	imgp->reloc_base = addr;
1432 	imgp->proc->p_osrel = osrel;
1433 	imgp->proc->p_fctl0 = fctl0;
1434 	imgp->proc->p_elf_flags = hdr->e_flags;
1435 
1436 ret:
1437 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1438 	if (free_interp)
1439 		free(interp, M_TEMP);
1440 	return (error);
1441 }
1442 
1443 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1444 
1445 int
1446 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1447 {
1448 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1449 	Elf_Auxinfo *argarray, *pos;
1450 	struct vmspace *vmspace;
1451 	rlim_t stacksz;
1452 	int error, bsdflags, oc;
1453 
1454 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1455 	    M_WAITOK | M_ZERO);
1456 
1457 	vmspace = imgp->proc->p_vmspace;
1458 
1459 	if (args->execfd != -1)
1460 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1461 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1462 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1463 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1464 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1465 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1466 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1467 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1468 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1469 	if (imgp->execpathp != 0)
1470 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1471 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1472 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1473 	if (imgp->canary != 0) {
1474 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1475 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1476 	}
1477 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1478 	if (imgp->pagesizes != 0) {
1479 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1480 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1481 	}
1482 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1483 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1484 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1485 	}
1486 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1487 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1488 	    imgp->sysent->sv_stackprot);
1489 	if (imgp->sysent->sv_hwcap != NULL)
1490 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1491 	if (imgp->sysent->sv_hwcap2 != NULL)
1492 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1493 	bsdflags = 0;
1494 	bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1495 	oc = atomic_load_int(&vm_overcommit);
1496 	bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1497 	    0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1498 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1499 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1500 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1501 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1502 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1503 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1504 #ifdef RANDOM_FENESTRASX
1505 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1506 		AUXARGS_ENTRY(pos, AT_FXRNG,
1507 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1508 	}
1509 #endif
1510 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1511 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1512 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1513 	}
1514 	AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1515 	stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1516 	AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1517 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1518 
1519 	free(imgp->auxargs, M_TEMP);
1520 	imgp->auxargs = NULL;
1521 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1522 
1523 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1524 	free(argarray, M_TEMP);
1525 	return (error);
1526 }
1527 
1528 int
1529 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1530 {
1531 	Elf_Addr *base;
1532 
1533 	base = (Elf_Addr *)*stack_base;
1534 	base--;
1535 	if (elf_suword(base, imgp->args->argc) == -1)
1536 		return (EFAULT);
1537 	*stack_base = (uintptr_t)base;
1538 	return (0);
1539 }
1540 
1541 /*
1542  * Code for generating ELF core dumps.
1543  */
1544 
1545 typedef void (*segment_callback)(vm_map_entry_t, void *);
1546 
1547 /* Closure for cb_put_phdr(). */
1548 struct phdr_closure {
1549 	Elf_Phdr *phdr;		/* Program header to fill in */
1550 	Elf_Off offset;		/* Offset of segment in core file */
1551 };
1552 
1553 struct note_info {
1554 	int		type;		/* Note type. */
1555 	struct regset	*regset;	/* Register set. */
1556 	outfunc_t 	outfunc; 	/* Output function. */
1557 	void		*outarg;	/* Argument for the output function. */
1558 	size_t		outsize;	/* Output size. */
1559 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1560 };
1561 
1562 TAILQ_HEAD(note_info_list, note_info);
1563 
1564 extern int compress_user_cores;
1565 extern int compress_user_cores_level;
1566 
1567 static void cb_put_phdr(vm_map_entry_t, void *);
1568 static void cb_size_segment(vm_map_entry_t, void *);
1569 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1570     int);
1571 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1572     struct note_info_list *, size_t, int);
1573 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1574 
1575 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1576 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1577 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1578 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1579 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1580 static void note_procstat_files(void *, struct sbuf *, size_t *);
1581 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1582 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1583 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1584 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1585 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1586 
1587 static int
1588 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1589 {
1590 
1591 	return (core_write((struct coredump_params *)arg, base, len, offset,
1592 	    UIO_SYSSPACE, NULL));
1593 }
1594 
1595 int
1596 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1597 {
1598 	struct ucred *cred = td->td_ucred;
1599 	int compm, error = 0;
1600 	struct sseg_closure seginfo;
1601 	struct note_info_list notelst;
1602 	struct coredump_params params;
1603 	struct note_info *ninfo;
1604 	void *hdr, *tmpbuf;
1605 	size_t hdrsize, notesz, coresize;
1606 
1607 	hdr = NULL;
1608 	tmpbuf = NULL;
1609 	TAILQ_INIT(&notelst);
1610 
1611 	/* Size the program segments. */
1612 	__elfN(size_segments)(td, &seginfo, flags);
1613 
1614 	/*
1615 	 * Collect info about the core file header area.
1616 	 */
1617 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1618 	if (seginfo.count + 1 >= PN_XNUM)
1619 		hdrsize += sizeof(Elf_Shdr);
1620 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1621 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1622 
1623 	/* Set up core dump parameters. */
1624 	params.offset = 0;
1625 	params.active_cred = cred;
1626 	params.file_cred = NOCRED;
1627 	params.td = td;
1628 	params.vp = vp;
1629 	params.comp = NULL;
1630 
1631 #ifdef RACCT
1632 	if (racct_enable) {
1633 		PROC_LOCK(td->td_proc);
1634 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1635 		PROC_UNLOCK(td->td_proc);
1636 		if (error != 0) {
1637 			error = EFAULT;
1638 			goto done;
1639 		}
1640 	}
1641 #endif
1642 	if (coresize >= limit) {
1643 		error = EFAULT;
1644 		goto done;
1645 	}
1646 
1647 	/* Create a compression stream if necessary. */
1648 	compm = compress_user_cores;
1649 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1650 	    compm == 0)
1651 		compm = COMPRESS_GZIP;
1652 	if (compm != 0) {
1653 		params.comp = compressor_init(core_compressed_write,
1654 		    compm, CORE_BUF_SIZE,
1655 		    compress_user_cores_level, &params);
1656 		if (params.comp == NULL) {
1657 			error = EFAULT;
1658 			goto done;
1659 		}
1660 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1661         }
1662 
1663 	/*
1664 	 * Allocate memory for building the header, fill it up,
1665 	 * and write it out following the notes.
1666 	 */
1667 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1668 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1669 	    notesz, flags);
1670 
1671 	/* Write the contents of all of the writable segments. */
1672 	if (error == 0) {
1673 		Elf_Phdr *php;
1674 		off_t offset;
1675 		int i;
1676 
1677 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1678 		offset = round_page(hdrsize + notesz);
1679 		for (i = 0; i < seginfo.count; i++) {
1680 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1681 			    php->p_filesz, offset, &params, tmpbuf);
1682 			if (error != 0)
1683 				break;
1684 			offset += php->p_filesz;
1685 			php++;
1686 		}
1687 		if (error == 0 && params.comp != NULL)
1688 			error = compressor_flush(params.comp);
1689 	}
1690 	if (error) {
1691 		log(LOG_WARNING,
1692 		    "Failed to write core file for process %s (error %d)\n",
1693 		    curproc->p_comm, error);
1694 	}
1695 
1696 done:
1697 	free(tmpbuf, M_TEMP);
1698 	if (params.comp != NULL)
1699 		compressor_fini(params.comp);
1700 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1701 		TAILQ_REMOVE(&notelst, ninfo, link);
1702 		free(ninfo, M_TEMP);
1703 	}
1704 	if (hdr != NULL)
1705 		free(hdr, M_TEMP);
1706 
1707 	return (error);
1708 }
1709 
1710 /*
1711  * A callback for each_dumpable_segment() to write out the segment's
1712  * program header entry.
1713  */
1714 static void
1715 cb_put_phdr(vm_map_entry_t entry, void *closure)
1716 {
1717 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1718 	Elf_Phdr *phdr = phc->phdr;
1719 
1720 	phc->offset = round_page(phc->offset);
1721 
1722 	phdr->p_type = PT_LOAD;
1723 	phdr->p_offset = phc->offset;
1724 	phdr->p_vaddr = entry->start;
1725 	phdr->p_paddr = 0;
1726 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1727 	phdr->p_align = PAGE_SIZE;
1728 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1729 
1730 	phc->offset += phdr->p_filesz;
1731 	phc->phdr++;
1732 }
1733 
1734 /*
1735  * A callback for each_dumpable_segment() to gather information about
1736  * the number of segments and their total size.
1737  */
1738 static void
1739 cb_size_segment(vm_map_entry_t entry, void *closure)
1740 {
1741 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1742 
1743 	ssc->count++;
1744 	ssc->size += entry->end - entry->start;
1745 }
1746 
1747 void
1748 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1749     int flags)
1750 {
1751 	seginfo->count = 0;
1752 	seginfo->size = 0;
1753 
1754 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1755 }
1756 
1757 /*
1758  * For each writable segment in the process's memory map, call the given
1759  * function with a pointer to the map entry and some arbitrary
1760  * caller-supplied data.
1761  */
1762 static void
1763 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1764     int flags)
1765 {
1766 	struct proc *p = td->td_proc;
1767 	vm_map_t map = &p->p_vmspace->vm_map;
1768 	vm_map_entry_t entry;
1769 	vm_object_t backing_object, object;
1770 	bool ignore_entry;
1771 
1772 	vm_map_lock_read(map);
1773 	VM_MAP_ENTRY_FOREACH(entry, map) {
1774 		/*
1775 		 * Don't dump inaccessible mappings, deal with legacy
1776 		 * coredump mode.
1777 		 *
1778 		 * Note that read-only segments related to the elf binary
1779 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1780 		 * need to arbitrarily ignore such segments.
1781 		 */
1782 		if ((flags & SVC_ALL) == 0) {
1783 			if (elf_legacy_coredump) {
1784 				if ((entry->protection & VM_PROT_RW) !=
1785 				    VM_PROT_RW)
1786 					continue;
1787 			} else {
1788 				if ((entry->protection & VM_PROT_ALL) == 0)
1789 					continue;
1790 			}
1791 		}
1792 
1793 		/*
1794 		 * Dont include memory segment in the coredump if
1795 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1796 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1797 		 * kernel map).
1798 		 */
1799 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1800 			continue;
1801 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1802 		    (flags & SVC_ALL) == 0)
1803 			continue;
1804 		if ((object = entry->object.vm_object) == NULL)
1805 			continue;
1806 
1807 		/* Ignore memory-mapped devices and such things. */
1808 		VM_OBJECT_RLOCK(object);
1809 		while ((backing_object = object->backing_object) != NULL) {
1810 			VM_OBJECT_RLOCK(backing_object);
1811 			VM_OBJECT_RUNLOCK(object);
1812 			object = backing_object;
1813 		}
1814 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1815 		VM_OBJECT_RUNLOCK(object);
1816 		if (ignore_entry)
1817 			continue;
1818 
1819 		(*func)(entry, closure);
1820 	}
1821 	vm_map_unlock_read(map);
1822 }
1823 
1824 /*
1825  * Write the core file header to the file, including padding up to
1826  * the page boundary.
1827  */
1828 static int
1829 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1830     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1831     int flags)
1832 {
1833 	struct note_info *ninfo;
1834 	struct sbuf *sb;
1835 	int error;
1836 
1837 	/* Fill in the header. */
1838 	bzero(hdr, hdrsize);
1839 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1840 
1841 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1842 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1843 	sbuf_start_section(sb, NULL);
1844 	sbuf_bcat(sb, hdr, hdrsize);
1845 	TAILQ_FOREACH(ninfo, notelst, link)
1846 	    __elfN(putnote)(p->td, ninfo, sb);
1847 	/* Align up to a page boundary for the program segments. */
1848 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1849 	error = sbuf_finish(sb);
1850 	sbuf_delete(sb);
1851 
1852 	return (error);
1853 }
1854 
1855 void
1856 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1857     size_t *sizep)
1858 {
1859 	struct proc *p;
1860 	struct thread *thr;
1861 	size_t size;
1862 
1863 	p = td->td_proc;
1864 	size = 0;
1865 
1866 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1867 	    __elfN(note_prpsinfo), p);
1868 
1869 	/*
1870 	 * To have the debugger select the right thread (LWP) as the initial
1871 	 * thread, we dump the state of the thread passed to us in td first.
1872 	 * This is the thread that causes the core dump and thus likely to
1873 	 * be the right thread one wants to have selected in the debugger.
1874 	 */
1875 	thr = td;
1876 	while (thr != NULL) {
1877 		size += __elfN(prepare_register_notes)(td, list, thr);
1878 		size += __elfN(register_note)(td, list, -1,
1879 		    __elfN(note_threadmd), thr);
1880 
1881 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1882 		    TAILQ_NEXT(thr, td_plist);
1883 		if (thr == td)
1884 			thr = TAILQ_NEXT(thr, td_plist);
1885 	}
1886 
1887 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1888 	    __elfN(note_procstat_proc), p);
1889 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1890 	    note_procstat_files, p);
1891 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1892 	    note_procstat_vmmap, p);
1893 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1894 	    note_procstat_groups, p);
1895 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1896 	    note_procstat_umask, p);
1897 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1898 	    note_procstat_rlimit, p);
1899 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1900 	    note_procstat_osrel, p);
1901 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1902 	    __elfN(note_procstat_psstrings), p);
1903 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1904 	    __elfN(note_procstat_auxv), p);
1905 
1906 	*sizep = size;
1907 }
1908 
1909 void
1910 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1911     size_t notesz, int flags)
1912 {
1913 	Elf_Ehdr *ehdr;
1914 	Elf_Phdr *phdr;
1915 	Elf_Shdr *shdr;
1916 	struct phdr_closure phc;
1917 	Elf_Brandinfo *bi;
1918 
1919 	ehdr = (Elf_Ehdr *)hdr;
1920 	bi = td->td_proc->p_elf_brandinfo;
1921 
1922 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1923 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1924 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1925 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1926 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1927 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1928 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1929 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1930 	ehdr->e_ident[EI_ABIVERSION] = 0;
1931 	ehdr->e_ident[EI_PAD] = 0;
1932 	ehdr->e_type = ET_CORE;
1933 	ehdr->e_machine = bi->machine;
1934 	ehdr->e_version = EV_CURRENT;
1935 	ehdr->e_entry = 0;
1936 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1937 	ehdr->e_flags = td->td_proc->p_elf_flags;
1938 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1939 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1940 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1941 	ehdr->e_shstrndx = SHN_UNDEF;
1942 	if (numsegs + 1 < PN_XNUM) {
1943 		ehdr->e_phnum = numsegs + 1;
1944 		ehdr->e_shnum = 0;
1945 	} else {
1946 		ehdr->e_phnum = PN_XNUM;
1947 		ehdr->e_shnum = 1;
1948 
1949 		ehdr->e_shoff = ehdr->e_phoff +
1950 		    (numsegs + 1) * ehdr->e_phentsize;
1951 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1952 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1953 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1954 
1955 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1956 		memset(shdr, 0, sizeof(*shdr));
1957 		/*
1958 		 * A special first section is used to hold large segment and
1959 		 * section counts.  This was proposed by Sun Microsystems in
1960 		 * Solaris and has been adopted by Linux; the standard ELF
1961 		 * tools are already familiar with the technique.
1962 		 *
1963 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1964 		 * (or 12-7 depending on the version of the document) for more
1965 		 * details.
1966 		 */
1967 		shdr->sh_type = SHT_NULL;
1968 		shdr->sh_size = ehdr->e_shnum;
1969 		shdr->sh_link = ehdr->e_shstrndx;
1970 		shdr->sh_info = numsegs + 1;
1971 	}
1972 
1973 	/*
1974 	 * Fill in the program header entries.
1975 	 */
1976 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1977 
1978 	/* The note segement. */
1979 	phdr->p_type = PT_NOTE;
1980 	phdr->p_offset = hdrsize;
1981 	phdr->p_vaddr = 0;
1982 	phdr->p_paddr = 0;
1983 	phdr->p_filesz = notesz;
1984 	phdr->p_memsz = 0;
1985 	phdr->p_flags = PF_R;
1986 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1987 	phdr++;
1988 
1989 	/* All the writable segments from the program. */
1990 	phc.phdr = phdr;
1991 	phc.offset = round_page(hdrsize + notesz);
1992 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1993 }
1994 
1995 static size_t
1996 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1997     struct regset *regset, struct thread *target_td)
1998 {
1999 	const struct sysentvec *sv;
2000 	struct note_info *ninfo;
2001 	size_t size, notesize;
2002 
2003 	size = 0;
2004 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2005 		return (0);
2006 
2007 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2008 	ninfo->type = regset->note;
2009 	ninfo->regset = regset;
2010 	ninfo->outarg = target_td;
2011 	ninfo->outsize = size;
2012 	TAILQ_INSERT_TAIL(list, ninfo, link);
2013 
2014 	sv = td->td_proc->p_sysent;
2015 	notesize = sizeof(Elf_Note) +		/* note header */
2016 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2017 						/* note name */
2018 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2019 
2020 	return (notesize);
2021 }
2022 
2023 size_t
2024 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2025     int type, outfunc_t out, void *arg)
2026 {
2027 	const struct sysentvec *sv;
2028 	struct note_info *ninfo;
2029 	size_t size, notesize;
2030 
2031 	sv = td->td_proc->p_sysent;
2032 	size = 0;
2033 	out(arg, NULL, &size);
2034 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2035 	ninfo->type = type;
2036 	ninfo->outfunc = out;
2037 	ninfo->outarg = arg;
2038 	ninfo->outsize = size;
2039 	TAILQ_INSERT_TAIL(list, ninfo, link);
2040 
2041 	if (type == -1)
2042 		return (size);
2043 
2044 	notesize = sizeof(Elf_Note) +		/* note header */
2045 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2046 						/* note name */
2047 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2048 
2049 	return (notesize);
2050 }
2051 
2052 static size_t
2053 append_note_data(const void *src, void *dst, size_t len)
2054 {
2055 	size_t padded_len;
2056 
2057 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2058 	if (dst != NULL) {
2059 		bcopy(src, dst, len);
2060 		bzero((char *)dst + len, padded_len - len);
2061 	}
2062 	return (padded_len);
2063 }
2064 
2065 size_t
2066 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2067 {
2068 	Elf_Note *note;
2069 	char *buf;
2070 	size_t notesize;
2071 
2072 	buf = dst;
2073 	if (buf != NULL) {
2074 		note = (Elf_Note *)buf;
2075 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2076 		note->n_descsz = size;
2077 		note->n_type = type;
2078 		buf += sizeof(*note);
2079 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2080 		    sizeof(FREEBSD_ABI_VENDOR));
2081 		append_note_data(src, buf, size);
2082 		if (descp != NULL)
2083 			*descp = buf;
2084 	}
2085 
2086 	notesize = sizeof(Elf_Note) +		/* note header */
2087 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2088 						/* note name */
2089 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2090 
2091 	return (notesize);
2092 }
2093 
2094 static void
2095 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2096 {
2097 	Elf_Note note;
2098 	const struct sysentvec *sv;
2099 	ssize_t old_len, sect_len;
2100 	size_t new_len, descsz, i;
2101 
2102 	if (ninfo->type == -1) {
2103 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2104 		return;
2105 	}
2106 
2107 	sv = td->td_proc->p_sysent;
2108 
2109 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2110 	note.n_descsz = ninfo->outsize;
2111 	note.n_type = ninfo->type;
2112 
2113 	sbuf_bcat(sb, &note, sizeof(note));
2114 	sbuf_start_section(sb, &old_len);
2115 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2116 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2117 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2118 	if (note.n_descsz == 0)
2119 		return;
2120 	sbuf_start_section(sb, &old_len);
2121 	if (ninfo->regset != NULL) {
2122 		struct regset *regset = ninfo->regset;
2123 		void *buf;
2124 
2125 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2126 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2127 		sbuf_bcat(sb, buf, ninfo->outsize);
2128 		free(buf, M_TEMP);
2129 	} else
2130 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2131 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2132 	if (sect_len < 0)
2133 		return;
2134 
2135 	new_len = (size_t)sect_len;
2136 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2137 	if (new_len < descsz) {
2138 		/*
2139 		 * It is expected that individual note emitters will correctly
2140 		 * predict their expected output size and fill up to that size
2141 		 * themselves, padding in a format-specific way if needed.
2142 		 * However, in case they don't, just do it here with zeros.
2143 		 */
2144 		for (i = 0; i < descsz - new_len; i++)
2145 			sbuf_putc(sb, 0);
2146 	} else if (new_len > descsz) {
2147 		/*
2148 		 * We can't always truncate sb -- we may have drained some
2149 		 * of it already.
2150 		 */
2151 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2152 		    "read it (%zu > %zu).  Since it is longer than "
2153 		    "expected, this coredump's notes are corrupt.  THIS "
2154 		    "IS A BUG in the note_procstat routine for type %u.\n",
2155 		    __func__, (unsigned)note.n_type, new_len, descsz,
2156 		    (unsigned)note.n_type));
2157 	}
2158 }
2159 
2160 /*
2161  * Miscellaneous note out functions.
2162  */
2163 
2164 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2165 #include <compat/freebsd32/freebsd32.h>
2166 #include <compat/freebsd32/freebsd32_signal.h>
2167 
2168 typedef struct prstatus32 elf_prstatus_t;
2169 typedef struct prpsinfo32 elf_prpsinfo_t;
2170 typedef struct fpreg32 elf_prfpregset_t;
2171 typedef struct fpreg32 elf_fpregset_t;
2172 typedef struct reg32 elf_gregset_t;
2173 typedef struct thrmisc32 elf_thrmisc_t;
2174 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2175 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2176 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2177 typedef uint32_t elf_ps_strings_t;
2178 #else
2179 typedef prstatus_t elf_prstatus_t;
2180 typedef prpsinfo_t elf_prpsinfo_t;
2181 typedef prfpregset_t elf_prfpregset_t;
2182 typedef prfpregset_t elf_fpregset_t;
2183 typedef gregset_t elf_gregset_t;
2184 typedef thrmisc_t elf_thrmisc_t;
2185 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2186 #define ELF_KERN_PROC_MASK	0
2187 typedef struct kinfo_proc elf_kinfo_proc_t;
2188 typedef vm_offset_t elf_ps_strings_t;
2189 #endif
2190 
2191 static void
2192 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2193 {
2194 	struct sbuf sbarg;
2195 	size_t len;
2196 	char *cp, *end;
2197 	struct proc *p;
2198 	elf_prpsinfo_t *psinfo;
2199 	int error;
2200 
2201 	p = arg;
2202 	if (sb != NULL) {
2203 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2204 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2205 		psinfo->pr_version = PRPSINFO_VERSION;
2206 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2207 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2208 		PROC_LOCK(p);
2209 		if (p->p_args != NULL) {
2210 			len = sizeof(psinfo->pr_psargs) - 1;
2211 			if (len > p->p_args->ar_length)
2212 				len = p->p_args->ar_length;
2213 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2214 			PROC_UNLOCK(p);
2215 			error = 0;
2216 		} else {
2217 			_PHOLD(p);
2218 			PROC_UNLOCK(p);
2219 			sbuf_new(&sbarg, psinfo->pr_psargs,
2220 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2221 			error = proc_getargv(curthread, p, &sbarg);
2222 			PRELE(p);
2223 			if (sbuf_finish(&sbarg) == 0) {
2224 				len = sbuf_len(&sbarg);
2225 				if (len > 0)
2226 					len--;
2227 			} else {
2228 				len = sizeof(psinfo->pr_psargs) - 1;
2229 			}
2230 			sbuf_delete(&sbarg);
2231 		}
2232 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2233 			strlcpy(psinfo->pr_psargs, p->p_comm,
2234 			    sizeof(psinfo->pr_psargs));
2235 		else {
2236 			KASSERT(len < sizeof(psinfo->pr_psargs),
2237 			    ("len is too long: %zu vs %zu", len,
2238 			    sizeof(psinfo->pr_psargs)));
2239 			cp = psinfo->pr_psargs;
2240 			end = cp + len - 1;
2241 			for (;;) {
2242 				cp = memchr(cp, '\0', end - cp);
2243 				if (cp == NULL)
2244 					break;
2245 				*cp = ' ';
2246 			}
2247 		}
2248 		psinfo->pr_pid = p->p_pid;
2249 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2250 		free(psinfo, M_TEMP);
2251 	}
2252 	*sizep = sizeof(*psinfo);
2253 }
2254 
2255 static bool
2256 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2257     size_t *sizep)
2258 {
2259 	elf_prstatus_t *status;
2260 
2261 	if (buf != NULL) {
2262 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2263 		    __func__));
2264 		status = buf;
2265 		memset(status, 0, *sizep);
2266 		status->pr_version = PRSTATUS_VERSION;
2267 		status->pr_statussz = sizeof(elf_prstatus_t);
2268 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2269 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2270 		status->pr_osreldate = osreldate;
2271 		status->pr_cursig = td->td_proc->p_sig;
2272 		status->pr_pid = td->td_tid;
2273 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2274 		fill_regs32(td, &status->pr_reg);
2275 #else
2276 		fill_regs(td, &status->pr_reg);
2277 #endif
2278 	}
2279 	*sizep = sizeof(*status);
2280 	return (true);
2281 }
2282 
2283 static bool
2284 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2285     size_t size)
2286 {
2287 	elf_prstatus_t *status;
2288 
2289 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2290 	status = buf;
2291 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2292 	set_regs32(td, &status->pr_reg);
2293 #else
2294 	set_regs(td, &status->pr_reg);
2295 #endif
2296 	return (true);
2297 }
2298 
2299 static struct regset __elfN(regset_prstatus) = {
2300 	.note = NT_PRSTATUS,
2301 	.size = sizeof(elf_prstatus_t),
2302 	.get = __elfN(get_prstatus),
2303 	.set = __elfN(set_prstatus),
2304 };
2305 ELF_REGSET(__elfN(regset_prstatus));
2306 
2307 static bool
2308 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2309     size_t *sizep)
2310 {
2311 	elf_prfpregset_t *fpregset;
2312 
2313 	if (buf != NULL) {
2314 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2315 		    __func__));
2316 		fpregset = buf;
2317 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2318 		fill_fpregs32(td, fpregset);
2319 #else
2320 		fill_fpregs(td, fpregset);
2321 #endif
2322 	}
2323 	*sizep = sizeof(*fpregset);
2324 	return (true);
2325 }
2326 
2327 static bool
2328 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2329     size_t size)
2330 {
2331 	elf_prfpregset_t *fpregset;
2332 
2333 	fpregset = buf;
2334 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2335 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2336 	set_fpregs32(td, fpregset);
2337 #else
2338 	set_fpregs(td, fpregset);
2339 #endif
2340 	return (true);
2341 }
2342 
2343 static struct regset __elfN(regset_fpregset) = {
2344 	.note = NT_FPREGSET,
2345 	.size = sizeof(elf_prfpregset_t),
2346 	.get = __elfN(get_fpregset),
2347 	.set = __elfN(set_fpregset),
2348 };
2349 ELF_REGSET(__elfN(regset_fpregset));
2350 
2351 static bool
2352 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2353     size_t *sizep)
2354 {
2355 	elf_thrmisc_t *thrmisc;
2356 
2357 	if (buf != NULL) {
2358 		KASSERT(*sizep == sizeof(*thrmisc),
2359 		    ("%s: invalid size", __func__));
2360 		thrmisc = buf;
2361 		bzero(thrmisc, sizeof(*thrmisc));
2362 		strcpy(thrmisc->pr_tname, td->td_name);
2363 	}
2364 	*sizep = sizeof(*thrmisc);
2365 	return (true);
2366 }
2367 
2368 static struct regset __elfN(regset_thrmisc) = {
2369 	.note = NT_THRMISC,
2370 	.size = sizeof(elf_thrmisc_t),
2371 	.get = __elfN(get_thrmisc),
2372 };
2373 ELF_REGSET(__elfN(regset_thrmisc));
2374 
2375 static bool
2376 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2377     size_t *sizep)
2378 {
2379 	elf_lwpinfo_t pl;
2380 	size_t size;
2381 	int structsize;
2382 
2383 	size = sizeof(structsize) + sizeof(pl);
2384 	if (buf != NULL) {
2385 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2386 		structsize = sizeof(pl);
2387 		memcpy(buf, &structsize, sizeof(structsize));
2388 		bzero(&pl, sizeof(pl));
2389 		pl.pl_lwpid = td->td_tid;
2390 		pl.pl_event = PL_EVENT_NONE;
2391 		pl.pl_sigmask = td->td_sigmask;
2392 		pl.pl_siglist = td->td_siglist;
2393 		if (td->td_si.si_signo != 0) {
2394 			pl.pl_event = PL_EVENT_SIGNAL;
2395 			pl.pl_flags |= PL_FLAG_SI;
2396 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2397 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2398 #else
2399 			pl.pl_siginfo = td->td_si;
2400 #endif
2401 		}
2402 		strcpy(pl.pl_tdname, td->td_name);
2403 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2404 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2405 	}
2406 	*sizep = size;
2407 	return (true);
2408 }
2409 
2410 static struct regset __elfN(regset_lwpinfo) = {
2411 	.note = NT_PTLWPINFO,
2412 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2413 	.get = __elfN(get_lwpinfo),
2414 };
2415 ELF_REGSET(__elfN(regset_lwpinfo));
2416 
2417 static size_t
2418 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2419     struct thread *target_td)
2420 {
2421 	struct sysentvec *sv = td->td_proc->p_sysent;
2422 	struct regset **regsetp, **regset_end, *regset;
2423 	size_t size;
2424 
2425 	size = 0;
2426 
2427 	/* NT_PRSTATUS must be the first register set note. */
2428 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2429 	    target_td);
2430 
2431 	regsetp = sv->sv_regset_begin;
2432 	if (regsetp == NULL) {
2433 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2434 		size += __elfN(register_regset_note)(td, list,
2435 		    &__elfN(regset_fpregset), target_td);
2436 		return (size);
2437 	}
2438 	regset_end = sv->sv_regset_end;
2439 	MPASS(regset_end != NULL);
2440 	for (; regsetp < regset_end; regsetp++) {
2441 		regset = *regsetp;
2442 		if (regset->note == NT_PRSTATUS)
2443 			continue;
2444 		size += __elfN(register_regset_note)(td, list, regset,
2445 		    target_td);
2446 	}
2447 	return (size);
2448 }
2449 
2450 /*
2451  * Allow for MD specific notes, as well as any MD
2452  * specific preparations for writing MI notes.
2453  */
2454 static void
2455 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2456 {
2457 	struct thread *td;
2458 	void *buf;
2459 	size_t size;
2460 
2461 	td = (struct thread *)arg;
2462 	size = *sizep;
2463 	if (size != 0 && sb != NULL)
2464 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2465 	else
2466 		buf = NULL;
2467 	size = 0;
2468 	__elfN(dump_thread)(td, buf, &size);
2469 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2470 	if (size != 0 && sb != NULL)
2471 		sbuf_bcat(sb, buf, size);
2472 	free(buf, M_TEMP);
2473 	*sizep = size;
2474 }
2475 
2476 #ifdef KINFO_PROC_SIZE
2477 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2478 #endif
2479 
2480 static void
2481 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2482 {
2483 	struct proc *p;
2484 	size_t size;
2485 	int structsize;
2486 
2487 	p = arg;
2488 	size = sizeof(structsize) + p->p_numthreads *
2489 	    sizeof(elf_kinfo_proc_t);
2490 
2491 	if (sb != NULL) {
2492 		KASSERT(*sizep == size, ("invalid size"));
2493 		structsize = sizeof(elf_kinfo_proc_t);
2494 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2495 		sx_slock(&proctree_lock);
2496 		PROC_LOCK(p);
2497 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2498 		sx_sunlock(&proctree_lock);
2499 	}
2500 	*sizep = size;
2501 }
2502 
2503 #ifdef KINFO_FILE_SIZE
2504 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2505 #endif
2506 
2507 static void
2508 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2509 {
2510 	struct proc *p;
2511 	size_t size, sect_sz, i;
2512 	ssize_t start_len, sect_len;
2513 	int structsize, filedesc_flags;
2514 
2515 	if (coredump_pack_fileinfo)
2516 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2517 	else
2518 		filedesc_flags = 0;
2519 
2520 	p = arg;
2521 	structsize = sizeof(struct kinfo_file);
2522 	if (sb == NULL) {
2523 		size = 0;
2524 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2525 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2526 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2527 		PROC_LOCK(p);
2528 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2529 		sbuf_finish(sb);
2530 		sbuf_delete(sb);
2531 		*sizep = size;
2532 	} else {
2533 		sbuf_start_section(sb, &start_len);
2534 
2535 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2536 		PROC_LOCK(p);
2537 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2538 		    filedesc_flags);
2539 
2540 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2541 		if (sect_len < 0)
2542 			return;
2543 		sect_sz = sect_len;
2544 
2545 		KASSERT(sect_sz <= *sizep,
2546 		    ("kern_proc_filedesc_out did not respect maxlen; "
2547 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2548 		     sect_sz - sizeof(structsize)));
2549 
2550 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2551 			sbuf_putc(sb, 0);
2552 	}
2553 }
2554 
2555 #ifdef KINFO_VMENTRY_SIZE
2556 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2557 #endif
2558 
2559 static void
2560 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2561 {
2562 	struct proc *p;
2563 	size_t size;
2564 	int structsize, vmmap_flags;
2565 
2566 	if (coredump_pack_vmmapinfo)
2567 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2568 	else
2569 		vmmap_flags = 0;
2570 
2571 	p = arg;
2572 	structsize = sizeof(struct kinfo_vmentry);
2573 	if (sb == NULL) {
2574 		size = 0;
2575 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2576 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2577 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2578 		PROC_LOCK(p);
2579 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2580 		sbuf_finish(sb);
2581 		sbuf_delete(sb);
2582 		*sizep = size;
2583 	} else {
2584 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2585 		PROC_LOCK(p);
2586 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2587 		    vmmap_flags);
2588 	}
2589 }
2590 
2591 static void
2592 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2593 {
2594 	struct proc *p;
2595 	size_t size;
2596 	int structsize;
2597 
2598 	p = arg;
2599 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2600 	if (sb != NULL) {
2601 		KASSERT(*sizep == size, ("invalid size"));
2602 		structsize = sizeof(gid_t);
2603 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2604 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2605 		    sizeof(gid_t));
2606 	}
2607 	*sizep = size;
2608 }
2609 
2610 static void
2611 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2612 {
2613 	struct proc *p;
2614 	size_t size;
2615 	int structsize;
2616 
2617 	p = arg;
2618 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2619 	if (sb != NULL) {
2620 		KASSERT(*sizep == size, ("invalid size"));
2621 		structsize = sizeof(p->p_pd->pd_cmask);
2622 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2623 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2624 	}
2625 	*sizep = size;
2626 }
2627 
2628 static void
2629 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2630 {
2631 	struct proc *p;
2632 	struct rlimit rlim[RLIM_NLIMITS];
2633 	size_t size;
2634 	int structsize, i;
2635 
2636 	p = arg;
2637 	size = sizeof(structsize) + sizeof(rlim);
2638 	if (sb != NULL) {
2639 		KASSERT(*sizep == size, ("invalid size"));
2640 		structsize = sizeof(rlim);
2641 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2642 		PROC_LOCK(p);
2643 		for (i = 0; i < RLIM_NLIMITS; i++)
2644 			lim_rlimit_proc(p, i, &rlim[i]);
2645 		PROC_UNLOCK(p);
2646 		sbuf_bcat(sb, rlim, sizeof(rlim));
2647 	}
2648 	*sizep = size;
2649 }
2650 
2651 static void
2652 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2653 {
2654 	struct proc *p;
2655 	size_t size;
2656 	int structsize;
2657 
2658 	p = arg;
2659 	size = sizeof(structsize) + sizeof(p->p_osrel);
2660 	if (sb != NULL) {
2661 		KASSERT(*sizep == size, ("invalid size"));
2662 		structsize = sizeof(p->p_osrel);
2663 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2664 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2665 	}
2666 	*sizep = size;
2667 }
2668 
2669 static void
2670 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2671 {
2672 	struct proc *p;
2673 	elf_ps_strings_t ps_strings;
2674 	size_t size;
2675 	int structsize;
2676 
2677 	p = arg;
2678 	size = sizeof(structsize) + sizeof(ps_strings);
2679 	if (sb != NULL) {
2680 		KASSERT(*sizep == size, ("invalid size"));
2681 		structsize = sizeof(ps_strings);
2682 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2683 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2684 #else
2685 		ps_strings = PROC_PS_STRINGS(p);
2686 #endif
2687 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2688 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2689 	}
2690 	*sizep = size;
2691 }
2692 
2693 static void
2694 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2695 {
2696 	struct proc *p;
2697 	size_t size;
2698 	int structsize;
2699 
2700 	p = arg;
2701 	if (sb == NULL) {
2702 		size = 0;
2703 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2704 		    SBUF_FIXEDLEN);
2705 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2706 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2707 		PHOLD(p);
2708 		proc_getauxv(curthread, p, sb);
2709 		PRELE(p);
2710 		sbuf_finish(sb);
2711 		sbuf_delete(sb);
2712 		*sizep = size;
2713 	} else {
2714 		structsize = sizeof(Elf_Auxinfo);
2715 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2716 		PHOLD(p);
2717 		proc_getauxv(curthread, p, sb);
2718 		PRELE(p);
2719 	}
2720 }
2721 
2722 static bool
2723 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2724     const char *note_vendor, const Elf_Phdr *pnote,
2725     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2726 {
2727 	const Elf_Note *note, *note0, *note_end;
2728 	const char *note_name;
2729 	char *buf;
2730 	int i, error;
2731 	bool res;
2732 
2733 	/* We need some limit, might as well use PAGE_SIZE. */
2734 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2735 		return (false);
2736 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2737 	if (pnote->p_offset > PAGE_SIZE ||
2738 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2739 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2740 		if (buf == NULL) {
2741 			VOP_UNLOCK(imgp->vp);
2742 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2743 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2744 		}
2745 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2746 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2747 		    curthread->td_ucred, NOCRED, NULL, curthread);
2748 		if (error != 0) {
2749 			uprintf("i/o error PT_NOTE\n");
2750 			goto retf;
2751 		}
2752 		note = note0 = (const Elf_Note *)buf;
2753 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2754 	} else {
2755 		note = note0 = (const Elf_Note *)(imgp->image_header +
2756 		    pnote->p_offset);
2757 		note_end = (const Elf_Note *)(imgp->image_header +
2758 		    pnote->p_offset + pnote->p_filesz);
2759 		buf = NULL;
2760 	}
2761 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2762 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2763 		    (const char *)note < sizeof(Elf_Note)) {
2764 			goto retf;
2765 		}
2766 		if (note->n_namesz != checknote->n_namesz ||
2767 		    note->n_descsz != checknote->n_descsz ||
2768 		    note->n_type != checknote->n_type)
2769 			goto nextnote;
2770 		note_name = (const char *)(note + 1);
2771 		if (note_name + checknote->n_namesz >=
2772 		    (const char *)note_end || strncmp(note_vendor,
2773 		    note_name, checknote->n_namesz) != 0)
2774 			goto nextnote;
2775 
2776 		if (cb(note, cb_arg, &res))
2777 			goto ret;
2778 nextnote:
2779 		note = (const Elf_Note *)((const char *)(note + 1) +
2780 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2781 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2782 	}
2783 retf:
2784 	res = false;
2785 ret:
2786 	free(buf, M_TEMP);
2787 	return (res);
2788 }
2789 
2790 struct brandnote_cb_arg {
2791 	Elf_Brandnote *brandnote;
2792 	int32_t *osrel;
2793 };
2794 
2795 static bool
2796 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2797 {
2798 	struct brandnote_cb_arg *arg;
2799 
2800 	arg = arg0;
2801 
2802 	/*
2803 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2804 	 * necessary.
2805 	 */
2806 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2807 	    arg->brandnote->trans_osrel != NULL ?
2808 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2809 
2810 	return (true);
2811 }
2812 
2813 static Elf_Note fctl_note = {
2814 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2815 	.n_descsz = sizeof(uint32_t),
2816 	.n_type = NT_FREEBSD_FEATURE_CTL,
2817 };
2818 
2819 struct fctl_cb_arg {
2820 	bool *has_fctl0;
2821 	uint32_t *fctl0;
2822 };
2823 
2824 static bool
2825 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2826 {
2827 	struct fctl_cb_arg *arg;
2828 	const Elf32_Word *desc;
2829 	uintptr_t p;
2830 
2831 	arg = arg0;
2832 	p = (uintptr_t)(note + 1);
2833 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2834 	desc = (const Elf32_Word *)p;
2835 	*arg->has_fctl0 = true;
2836 	*arg->fctl0 = desc[0];
2837 	*res = true;
2838 	return (true);
2839 }
2840 
2841 /*
2842  * Try to find the appropriate ABI-note section for checknote, fetch
2843  * the osreldate and feature control flags for binary from the ELF
2844  * OSABI-note.  Only the first page of the image is searched, the same
2845  * as for headers.
2846  */
2847 static bool
2848 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2849     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2850 {
2851 	const Elf_Phdr *phdr;
2852 	const Elf_Ehdr *hdr;
2853 	struct brandnote_cb_arg b_arg;
2854 	struct fctl_cb_arg f_arg;
2855 	int i, j;
2856 
2857 	hdr = (const Elf_Ehdr *)imgp->image_header;
2858 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2859 	b_arg.brandnote = brandnote;
2860 	b_arg.osrel = osrel;
2861 	f_arg.has_fctl0 = has_fctl0;
2862 	f_arg.fctl0 = fctl0;
2863 
2864 	for (i = 0; i < hdr->e_phnum; i++) {
2865 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2866 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2867 		    &b_arg)) {
2868 			for (j = 0; j < hdr->e_phnum; j++) {
2869 				if (phdr[j].p_type == PT_NOTE &&
2870 				    __elfN(parse_notes)(imgp, &fctl_note,
2871 				    FREEBSD_ABI_VENDOR, &phdr[j],
2872 				    note_fctl_cb, &f_arg))
2873 					break;
2874 			}
2875 			return (true);
2876 		}
2877 	}
2878 	return (false);
2879 
2880 }
2881 
2882 /*
2883  * Tell kern_execve.c about it, with a little help from the linker.
2884  */
2885 static struct execsw __elfN(execsw) = {
2886 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2887 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2888 };
2889 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2890 
2891 static vm_prot_t
2892 __elfN(trans_prot)(Elf_Word flags)
2893 {
2894 	vm_prot_t prot;
2895 
2896 	prot = 0;
2897 	if (flags & PF_X)
2898 		prot |= VM_PROT_EXECUTE;
2899 	if (flags & PF_W)
2900 		prot |= VM_PROT_WRITE;
2901 	if (flags & PF_R)
2902 		prot |= VM_PROT_READ;
2903 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2904 	if (i386_read_exec && (flags & PF_R))
2905 		prot |= VM_PROT_EXECUTE;
2906 #endif
2907 	return (prot);
2908 }
2909 
2910 static Elf_Word
2911 __elfN(untrans_prot)(vm_prot_t prot)
2912 {
2913 	Elf_Word flags;
2914 
2915 	flags = 0;
2916 	if (prot & VM_PROT_EXECUTE)
2917 		flags |= PF_X;
2918 	if (prot & VM_PROT_READ)
2919 		flags |= PF_R;
2920 	if (prot & VM_PROT_WRITE)
2921 		flags |= PF_W;
2922 	return (flags);
2923 }
2924