xref: /freebsd/sys/kern/kern_racct.c (revision d184218c)
1 /*-
2  * Copyright (c) 2010 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Edward Tomasz Napierala under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_kdtrace.h"
36 #include "opt_sched.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/eventhandler.h>
41 #include <sys/jail.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/loginclass.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/racct.h>
50 #include <sys/resourcevar.h>
51 #include <sys/sbuf.h>
52 #include <sys/sched.h>
53 #include <sys/sdt.h>
54 #include <sys/smp.h>
55 #include <sys/sx.h>
56 #include <sys/sysctl.h>
57 #include <sys/sysent.h>
58 #include <sys/sysproto.h>
59 #include <sys/umtx.h>
60 #include <machine/smp.h>
61 
62 #ifdef RCTL
63 #include <sys/rctl.h>
64 #endif
65 
66 #ifdef RACCT
67 
68 FEATURE(racct, "Resource Accounting");
69 
70 /*
71  * Do not block processes that have their %cpu usage <= pcpu_threshold.
72  */
73 static int pcpu_threshold = 1;
74 
75 SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting");
76 SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold,
77     0, "Processes with higher %cpu usage than this value can be throttled.");
78 
79 /*
80  * How many seconds it takes to use the scheduler %cpu calculations.  When a
81  * process starts, we compute its %cpu usage by dividing its runtime by the
82  * process wall clock time.  After RACCT_PCPU_SECS pass, we use the value
83  * provided by the scheduler.
84  */
85 #define RACCT_PCPU_SECS		3
86 
87 static struct mtx racct_lock;
88 MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF);
89 
90 static uma_zone_t racct_zone;
91 
92 static void racct_sub_racct(struct racct *dest, const struct racct *src);
93 static void racct_sub_cred_locked(struct ucred *cred, int resource,
94 		uint64_t amount);
95 static void racct_add_cred_locked(struct ucred *cred, int resource,
96 		uint64_t amount);
97 
98 SDT_PROVIDER_DEFINE(racct);
99 SDT_PROBE_DEFINE3(racct, kernel, rusage, add, add, "struct proc *", "int",
100     "uint64_t");
101 SDT_PROBE_DEFINE3(racct, kernel, rusage, add_failure, add-failure,
102     "struct proc *", "int", "uint64_t");
103 SDT_PROBE_DEFINE3(racct, kernel, rusage, add_cred, add-cred, "struct ucred *",
104     "int", "uint64_t");
105 SDT_PROBE_DEFINE3(racct, kernel, rusage, add_force, add-force, "struct proc *",
106     "int", "uint64_t");
107 SDT_PROBE_DEFINE3(racct, kernel, rusage, set, set, "struct proc *", "int",
108     "uint64_t");
109 SDT_PROBE_DEFINE3(racct, kernel, rusage, set_failure, set-failure,
110     "struct proc *", "int", "uint64_t");
111 SDT_PROBE_DEFINE3(racct, kernel, rusage, sub, sub, "struct proc *", "int",
112     "uint64_t");
113 SDT_PROBE_DEFINE3(racct, kernel, rusage, sub_cred, sub-cred, "struct ucred *",
114     "int", "uint64_t");
115 SDT_PROBE_DEFINE1(racct, kernel, racct, create, create, "struct racct *");
116 SDT_PROBE_DEFINE1(racct, kernel, racct, destroy, destroy, "struct racct *");
117 SDT_PROBE_DEFINE2(racct, kernel, racct, join, join, "struct racct *",
118     "struct racct *");
119 SDT_PROBE_DEFINE2(racct, kernel, racct, join_failure, join-failure,
120     "struct racct *", "struct racct *");
121 SDT_PROBE_DEFINE2(racct, kernel, racct, leave, leave, "struct racct *",
122     "struct racct *");
123 
124 int racct_types[] = {
125 	[RACCT_CPU] =
126 		RACCT_IN_MILLIONS,
127 	[RACCT_DATA] =
128 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
129 	[RACCT_STACK] =
130 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
131 	[RACCT_CORE] =
132 		RACCT_DENIABLE,
133 	[RACCT_RSS] =
134 		RACCT_RECLAIMABLE,
135 	[RACCT_MEMLOCK] =
136 		RACCT_RECLAIMABLE | RACCT_DENIABLE,
137 	[RACCT_NPROC] =
138 		RACCT_RECLAIMABLE | RACCT_DENIABLE,
139 	[RACCT_NOFILE] =
140 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
141 	[RACCT_VMEM] =
142 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
143 	[RACCT_NPTS] =
144 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
145 	[RACCT_SWAP] =
146 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
147 	[RACCT_NTHR] =
148 		RACCT_RECLAIMABLE | RACCT_DENIABLE,
149 	[RACCT_MSGQQUEUED] =
150 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
151 	[RACCT_MSGQSIZE] =
152 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
153 	[RACCT_NMSGQ] =
154 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
155 	[RACCT_NSEM] =
156 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
157 	[RACCT_NSEMOP] =
158 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
159 	[RACCT_NSHM] =
160 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
161 	[RACCT_SHMSIZE] =
162 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
163 	[RACCT_WALLCLOCK] =
164 		RACCT_IN_MILLIONS,
165 	[RACCT_PCTCPU] =
166 		RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS };
167 
168 static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE;
169 
170 #ifdef SCHED_4BSD
171 /*
172  * Contains intermediate values for %cpu calculations to avoid using floating
173  * point in the kernel.
174  * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20)
175  * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to
176  * zero so the calculations are more straightforward.
177  */
178 fixpt_t ccpu_exp[] = {
179 	[0] = FSCALE * 1,
180 	[1] = FSCALE * 0.95122942450071400909,
181 	[2] = FSCALE * 0.90483741803595957316,
182 	[3] = FSCALE * 0.86070797642505780722,
183 	[4] = FSCALE * 0.81873075307798185866,
184 	[5] = FSCALE * 0.77880078307140486824,
185 	[6] = FSCALE * 0.74081822068171786606,
186 	[7] = FSCALE * 0.70468808971871343435,
187 	[8] = FSCALE * 0.67032004603563930074,
188 	[9] = FSCALE * 0.63762815162177329314,
189 	[10] = FSCALE * 0.60653065971263342360,
190 	[11] = FSCALE * 0.57694981038048669531,
191 	[12] = FSCALE * 0.54881163609402643262,
192 	[13] = FSCALE * 0.52204577676101604789,
193 	[14] = FSCALE * 0.49658530379140951470,
194 	[15] = FSCALE * 0.47236655274101470713,
195 	[16] = FSCALE * 0.44932896411722159143,
196 	[17] = FSCALE * 0.42741493194872666992,
197 	[18] = FSCALE * 0.40656965974059911188,
198 	[19] = FSCALE * 0.38674102345450120691,
199 	[20] = FSCALE * 0.36787944117144232159,
200 	[21] = FSCALE * 0.34993774911115535467,
201 	[22] = FSCALE * 0.33287108369807955328,
202 	[23] = FSCALE * 0.31663676937905321821,
203 	[24] = FSCALE * 0.30119421191220209664,
204 	[25] = FSCALE * 0.28650479686019010032,
205 	[26] = FSCALE * 0.27253179303401260312,
206 	[27] = FSCALE * 0.25924026064589150757,
207 	[28] = FSCALE * 0.24659696394160647693,
208 	[29] = FSCALE * 0.23457028809379765313,
209 	[30] = FSCALE * 0.22313016014842982893,
210 	[31] = FSCALE * 0.21224797382674305771,
211 	[32] = FSCALE * 0.20189651799465540848,
212 	[33] = FSCALE * 0.19204990862075411423,
213 	[34] = FSCALE * 0.18268352405273465022,
214 	[35] = FSCALE * 0.17377394345044512668,
215 	[36] = FSCALE * 0.16529888822158653829,
216 	[37] = FSCALE * 0.15723716631362761621,
217 	[38] = FSCALE * 0.14956861922263505264,
218 	[39] = FSCALE * 0.14227407158651357185,
219 	[40] = FSCALE * 0.13533528323661269189,
220 	[41] = FSCALE * 0.12873490358780421886,
221 	[42] = FSCALE * 0.12245642825298191021,
222 	[43] = FSCALE * 0.11648415777349695786,
223 	[44] = FSCALE * 0.11080315836233388333,
224 	[45] = FSCALE * 0.10539922456186433678,
225 	[46] = FSCALE * 0.10025884372280373372,
226 	[47] = FSCALE * 0.09536916221554961888,
227 	[48] = FSCALE * 0.09071795328941250337,
228 	[49] = FSCALE * 0.08629358649937051097,
229 	[50] = FSCALE * 0.08208499862389879516,
230 	[51] = FSCALE * 0.07808166600115315231,
231 	[52] = FSCALE * 0.07427357821433388042,
232 	[53] = FSCALE * 0.07065121306042958674,
233 	[54] = FSCALE * 0.06720551273974976512,
234 	[55] = FSCALE * 0.06392786120670757270,
235 	[56] = FSCALE * 0.06081006262521796499,
236 	[57] = FSCALE * 0.05784432087483846296,
237 	[58] = FSCALE * 0.05502322005640722902,
238 	[59] = FSCALE * 0.05233970594843239308,
239 	[60] = FSCALE * 0.04978706836786394297,
240 	[61] = FSCALE * 0.04735892439114092119,
241 	[62] = FSCALE * 0.04504920239355780606,
242 	[63] = FSCALE * 0.04285212686704017991,
243 	[64] = FSCALE * 0.04076220397836621516,
244 	[65] = FSCALE * 0.03877420783172200988,
245 	[66] = FSCALE * 0.03688316740124000544,
246 	[67] = FSCALE * 0.03508435410084502588,
247 	[68] = FSCALE * 0.03337326996032607948,
248 	[69] = FSCALE * 0.03174563637806794323,
249 	[70] = FSCALE * 0.03019738342231850073,
250 	[71] = FSCALE * 0.02872463965423942912,
251 	[72] = FSCALE * 0.02732372244729256080,
252 	[73] = FSCALE * 0.02599112877875534358,
253 	[74] = FSCALE * 0.02472352647033939120,
254 	[75] = FSCALE * 0.02351774585600910823,
255 	[76] = FSCALE * 0.02237077185616559577,
256 	[77] = FSCALE * 0.02127973643837716938,
257 	[78] = FSCALE * 0.02024191144580438847,
258 	[79] = FSCALE * 0.01925470177538692429,
259 	[80] = FSCALE * 0.01831563888873418029,
260 	[81] = FSCALE * 0.01742237463949351138,
261 	[82] = FSCALE * 0.01657267540176124754,
262 	[83] = FSCALE * 0.01576441648485449082,
263 	[84] = FSCALE * 0.01499557682047770621,
264 	[85] = FSCALE * 0.01426423390899925527,
265 	[86] = FSCALE * 0.01356855901220093175,
266 	[87] = FSCALE * 0.01290681258047986886,
267 	[88] = FSCALE * 0.01227733990306844117,
268 	[89] = FSCALE * 0.01167856697039544521,
269 	[90] = FSCALE * 0.01110899653824230649,
270 	[91] = FSCALE * 0.01056720438385265337,
271 	[92] = FSCALE * 0.01005183574463358164,
272 	[93] = FSCALE * 0.00956160193054350793,
273 	[94] = FSCALE * 0.00909527710169581709,
274 	[95] = FSCALE * 0.00865169520312063417,
275 	[96] = FSCALE * 0.00822974704902002884,
276 	[97] = FSCALE * 0.00782837754922577143,
277 	[98] = FSCALE * 0.00744658307092434051,
278 	[99] = FSCALE * 0.00708340892905212004,
279 	[100] = FSCALE * 0.00673794699908546709,
280 	[101] = FSCALE * 0.00640933344625638184,
281 	[102] = FSCALE * 0.00609674656551563610,
282 	[103] = FSCALE * 0.00579940472684214321,
283 	[104] = FSCALE * 0.00551656442076077241,
284 	[105] = FSCALE * 0.00524751839918138427,
285 	[106] = FSCALE * 0.00499159390691021621,
286 	[107] = FSCALE * 0.00474815099941147558,
287 	[108] = FSCALE * 0.00451658094261266798,
288 	[109] = FSCALE * 0.00429630469075234057,
289 	[110] = FSCALE * 0.00408677143846406699,
290 };
291 #endif
292 
293 #define	CCPU_EXP_MAX	110
294 
295 /*
296  * This function is analogical to the getpcpu() function in the ps(1) command.
297  * They should both calculate in the same way so that the racct %cpu
298  * calculations are consistent with the values showed by the ps(1) tool.
299  * The calculations are more complex in the 4BSD scheduler because of the value
300  * of the ccpu variable.  In ULE it is defined to be zero which saves us some
301  * work.
302  */
303 static uint64_t
304 racct_getpcpu(struct proc *p, u_int pcpu)
305 {
306 	u_int swtime;
307 #ifdef SCHED_4BSD
308 	fixpt_t pctcpu, pctcpu_next;
309 #endif
310 #ifdef SMP
311 	struct pcpu *pc;
312 	int found;
313 #endif
314 	fixpt_t p_pctcpu;
315 	struct thread *td;
316 
317 	/*
318 	 * If the process is swapped out, we count its %cpu usage as zero.
319 	 * This behaviour is consistent with the userland ps(1) tool.
320 	 */
321 	if ((p->p_flag & P_INMEM) == 0)
322 		return (0);
323 	swtime = (ticks - p->p_swtick) / hz;
324 
325 	/*
326 	 * For short-lived processes, the sched_pctcpu() returns small
327 	 * values even for cpu intensive processes.  Therefore we use
328 	 * our own estimate in this case.
329 	 */
330 	if (swtime < RACCT_PCPU_SECS)
331 		return (pcpu);
332 
333 	p_pctcpu = 0;
334 	FOREACH_THREAD_IN_PROC(p, td) {
335 		if (td == PCPU_GET(idlethread))
336 			continue;
337 #ifdef SMP
338 		found = 0;
339 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
340 			if (td == pc->pc_idlethread) {
341 				found = 1;
342 				break;
343 			}
344 		}
345 		if (found)
346 			continue;
347 #endif
348 		thread_lock(td);
349 #ifdef SCHED_4BSD
350 		pctcpu = sched_pctcpu(td);
351 		/* Count also the yet unfinished second. */
352 		pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT;
353 		pctcpu_next += sched_pctcpu_delta(td);
354 		p_pctcpu += max(pctcpu, pctcpu_next);
355 #else
356 		/*
357 		 * In ULE the %cpu statistics are updated on every
358 		 * sched_pctcpu() call.  So special calculations to
359 		 * account for the latest (unfinished) second are
360 		 * not needed.
361 		 */
362 		p_pctcpu += sched_pctcpu(td);
363 #endif
364 		thread_unlock(td);
365 	}
366 
367 #ifdef SCHED_4BSD
368 	if (swtime <= CCPU_EXP_MAX)
369 		return ((100 * (uint64_t)p_pctcpu * 1000000) /
370 		    (FSCALE - ccpu_exp[swtime]));
371 #endif
372 
373 	return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE);
374 }
375 
376 static void
377 racct_add_racct(struct racct *dest, const struct racct *src)
378 {
379 	int i;
380 
381 	mtx_assert(&racct_lock, MA_OWNED);
382 
383 	/*
384 	 * Update resource usage in dest.
385 	 */
386 	for (i = 0; i <= RACCT_MAX; i++) {
387 		KASSERT(dest->r_resources[i] >= 0,
388 		    ("%s: resource %d propagation meltdown: dest < 0",
389 		    __func__, i));
390 		KASSERT(src->r_resources[i] >= 0,
391 		    ("%s: resource %d propagation meltdown: src < 0",
392 		    __func__, i));
393 		dest->r_resources[i] += src->r_resources[i];
394 	}
395 }
396 
397 static void
398 racct_sub_racct(struct racct *dest, const struct racct *src)
399 {
400 	int i;
401 
402 	mtx_assert(&racct_lock, MA_OWNED);
403 
404 	/*
405 	 * Update resource usage in dest.
406 	 */
407 	for (i = 0; i <= RACCT_MAX; i++) {
408 		if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) {
409 			KASSERT(dest->r_resources[i] >= 0,
410 			    ("%s: resource %d propagation meltdown: dest < 0",
411 			    __func__, i));
412 			KASSERT(src->r_resources[i] >= 0,
413 			    ("%s: resource %d propagation meltdown: src < 0",
414 			    __func__, i));
415 			KASSERT(src->r_resources[i] <= dest->r_resources[i],
416 			    ("%s: resource %d propagation meltdown: src > dest",
417 			    __func__, i));
418 		}
419 		if (RACCT_CAN_DROP(i)) {
420 			dest->r_resources[i] -= src->r_resources[i];
421 			if (dest->r_resources[i] < 0) {
422 				KASSERT(RACCT_IS_SLOPPY(i) ||
423 				    RACCT_IS_DECAYING(i),
424 				    ("%s: resource %d usage < 0", __func__, i));
425 				dest->r_resources[i] = 0;
426 			}
427 		}
428 	}
429 }
430 
431 void
432 racct_create(struct racct **racctp)
433 {
434 
435 	SDT_PROBE(racct, kernel, racct, create, racctp, 0, 0, 0, 0);
436 
437 	KASSERT(*racctp == NULL, ("racct already allocated"));
438 
439 	*racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO);
440 }
441 
442 static void
443 racct_destroy_locked(struct racct **racctp)
444 {
445 	int i;
446 	struct racct *racct;
447 
448 	SDT_PROBE(racct, kernel, racct, destroy, racctp, 0, 0, 0, 0);
449 
450 	mtx_assert(&racct_lock, MA_OWNED);
451 	KASSERT(racctp != NULL, ("NULL racctp"));
452 	KASSERT(*racctp != NULL, ("NULL racct"));
453 
454 	racct = *racctp;
455 
456 	for (i = 0; i <= RACCT_MAX; i++) {
457 		if (RACCT_IS_SLOPPY(i))
458 			continue;
459 		if (!RACCT_IS_RECLAIMABLE(i))
460 			continue;
461 		KASSERT(racct->r_resources[i] == 0,
462 		    ("destroying non-empty racct: "
463 		    "%ju allocated for resource %d\n",
464 		    racct->r_resources[i], i));
465 	}
466 	uma_zfree(racct_zone, racct);
467 	*racctp = NULL;
468 }
469 
470 void
471 racct_destroy(struct racct **racct)
472 {
473 
474 	mtx_lock(&racct_lock);
475 	racct_destroy_locked(racct);
476 	mtx_unlock(&racct_lock);
477 }
478 
479 /*
480  * Increase consumption of 'resource' by 'amount' for 'racct'
481  * and all its parents.  Differently from other cases, 'amount' here
482  * may be less than zero.
483  */
484 static void
485 racct_alloc_resource(struct racct *racct, int resource,
486     uint64_t amount)
487 {
488 
489 	mtx_assert(&racct_lock, MA_OWNED);
490 	KASSERT(racct != NULL, ("NULL racct"));
491 
492 	racct->r_resources[resource] += amount;
493 	if (racct->r_resources[resource] < 0) {
494 		KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource),
495 		    ("%s: resource %d usage < 0", __func__, resource));
496 		racct->r_resources[resource] = 0;
497 	}
498 
499 	/*
500 	 * There are some cases where the racct %cpu resource would grow
501 	 * beyond 100%.
502 	 * For example in racct_proc_exit() we add the process %cpu usage
503 	 * to the ucred racct containers.  If too many processes terminated
504 	 * in a short time span, the ucred %cpu resource could grow too much.
505 	 * Also, the 4BSD scheduler sometimes returns for a thread more than
506 	 * 100% cpu usage.  So we set a boundary here to 100%.
507 	 */
508 	if ((resource == RACCT_PCTCPU) &&
509 	    (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000))
510 		racct->r_resources[RACCT_PCTCPU] = 100 * 1000000;
511 }
512 
513 static int
514 racct_add_locked(struct proc *p, int resource, uint64_t amount)
515 {
516 #ifdef RCTL
517 	int error;
518 #endif
519 
520 	SDT_PROBE(racct, kernel, rusage, add, p, resource, amount, 0, 0);
521 
522 	/*
523 	 * We need proc lock to dereference p->p_ucred.
524 	 */
525 	PROC_LOCK_ASSERT(p, MA_OWNED);
526 
527 #ifdef RCTL
528 	error = rctl_enforce(p, resource, amount);
529 	if (error && RACCT_IS_DENIABLE(resource)) {
530 		SDT_PROBE(racct, kernel, rusage, add_failure, p, resource,
531 		    amount, 0, 0);
532 		return (error);
533 	}
534 #endif
535 	racct_alloc_resource(p->p_racct, resource, amount);
536 	racct_add_cred_locked(p->p_ucred, resource, amount);
537 
538 	return (0);
539 }
540 
541 /*
542  * Increase allocation of 'resource' by 'amount' for process 'p'.
543  * Return 0 if it's below limits, or errno, if it's not.
544  */
545 int
546 racct_add(struct proc *p, int resource, uint64_t amount)
547 {
548 	int error;
549 
550 	mtx_lock(&racct_lock);
551 	error = racct_add_locked(p, resource, amount);
552 	mtx_unlock(&racct_lock);
553 	return (error);
554 }
555 
556 static void
557 racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount)
558 {
559 	struct prison *pr;
560 
561 	SDT_PROBE(racct, kernel, rusage, add_cred, cred, resource, amount,
562 	    0, 0);
563 
564 	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, amount);
565 	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
566 		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
567 		    amount);
568 	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, amount);
569 }
570 
571 /*
572  * Increase allocation of 'resource' by 'amount' for credential 'cred'.
573  * Doesn't check for limits and never fails.
574  *
575  * XXX: Shouldn't this ever return an error?
576  */
577 void
578 racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
579 {
580 
581 	mtx_lock(&racct_lock);
582 	racct_add_cred_locked(cred, resource, amount);
583 	mtx_unlock(&racct_lock);
584 }
585 
586 /*
587  * Increase allocation of 'resource' by 'amount' for process 'p'.
588  * Doesn't check for limits and never fails.
589  */
590 void
591 racct_add_force(struct proc *p, int resource, uint64_t amount)
592 {
593 
594 	SDT_PROBE(racct, kernel, rusage, add_force, p, resource, amount, 0, 0);
595 
596 	/*
597 	 * We need proc lock to dereference p->p_ucred.
598 	 */
599 	PROC_LOCK_ASSERT(p, MA_OWNED);
600 
601 	mtx_lock(&racct_lock);
602 	racct_alloc_resource(p->p_racct, resource, amount);
603 	mtx_unlock(&racct_lock);
604 	racct_add_cred(p->p_ucred, resource, amount);
605 }
606 
607 static int
608 racct_set_locked(struct proc *p, int resource, uint64_t amount)
609 {
610 	int64_t old_amount, decayed_amount;
611 	int64_t diff_proc, diff_cred;
612 #ifdef RCTL
613 	int error;
614 #endif
615 
616 	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
617 
618 	/*
619 	 * We need proc lock to dereference p->p_ucred.
620 	 */
621 	PROC_LOCK_ASSERT(p, MA_OWNED);
622 
623 	old_amount = p->p_racct->r_resources[resource];
624 	/*
625 	 * The diffs may be negative.
626 	 */
627 	diff_proc = amount - old_amount;
628 	if (RACCT_IS_DECAYING(resource)) {
629 		/*
630 		 * Resources in per-credential racct containers may decay.
631 		 * If this is the case, we need to calculate the difference
632 		 * between the new amount and the proportional value of the
633 		 * old amount that has decayed in the ucred racct containers.
634 		 */
635 		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
636 		diff_cred = amount - decayed_amount;
637 	} else
638 		diff_cred = diff_proc;
639 #ifdef notyet
640 	KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource),
641 	    ("%s: usage of non-droppable resource %d dropping", __func__,
642 	     resource));
643 #endif
644 #ifdef RCTL
645 	if (diff_proc > 0) {
646 		error = rctl_enforce(p, resource, diff_proc);
647 		if (error && RACCT_IS_DENIABLE(resource)) {
648 			SDT_PROBE(racct, kernel, rusage, set_failure, p,
649 			    resource, amount, 0, 0);
650 			return (error);
651 		}
652 	}
653 #endif
654 	racct_alloc_resource(p->p_racct, resource, diff_proc);
655 	if (diff_cred > 0)
656 		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
657 	else if (diff_cred < 0)
658 		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
659 
660 	return (0);
661 }
662 
663 /*
664  * Set allocation of 'resource' to 'amount' for process 'p'.
665  * Return 0 if it's below limits, or errno, if it's not.
666  *
667  * Note that decreasing the allocation always returns 0,
668  * even if it's above the limit.
669  */
670 int
671 racct_set(struct proc *p, int resource, uint64_t amount)
672 {
673 	int error;
674 
675 	mtx_lock(&racct_lock);
676 	error = racct_set_locked(p, resource, amount);
677 	mtx_unlock(&racct_lock);
678 	return (error);
679 }
680 
681 static void
682 racct_set_force_locked(struct proc *p, int resource, uint64_t amount)
683 {
684 	int64_t old_amount, decayed_amount;
685 	int64_t diff_proc, diff_cred;
686 
687 	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
688 
689 	/*
690 	 * We need proc lock to dereference p->p_ucred.
691 	 */
692 	PROC_LOCK_ASSERT(p, MA_OWNED);
693 
694 	old_amount = p->p_racct->r_resources[resource];
695 	/*
696 	 * The diffs may be negative.
697 	 */
698 	diff_proc = amount - old_amount;
699 	if (RACCT_IS_DECAYING(resource)) {
700 		/*
701 		 * Resources in per-credential racct containers may decay.
702 		 * If this is the case, we need to calculate the difference
703 		 * between the new amount and the proportional value of the
704 		 * old amount that has decayed in the ucred racct containers.
705 		 */
706 		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
707 		diff_cred = amount - decayed_amount;
708 	} else
709 		diff_cred = diff_proc;
710 
711 	racct_alloc_resource(p->p_racct, resource, diff_proc);
712 	if (diff_cred > 0)
713 		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
714 	else if (diff_cred < 0)
715 		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
716 }
717 
718 void
719 racct_set_force(struct proc *p, int resource, uint64_t amount)
720 {
721 	mtx_lock(&racct_lock);
722 	racct_set_force_locked(p, resource, amount);
723 	mtx_unlock(&racct_lock);
724 }
725 
726 /*
727  * Returns amount of 'resource' the process 'p' can keep allocated.
728  * Allocating more than that would be denied, unless the resource
729  * is marked undeniable.  Amount of already allocated resource does
730  * not matter.
731  */
732 uint64_t
733 racct_get_limit(struct proc *p, int resource)
734 {
735 
736 #ifdef RCTL
737 	return (rctl_get_limit(p, resource));
738 #else
739 	return (UINT64_MAX);
740 #endif
741 }
742 
743 /*
744  * Returns amount of 'resource' the process 'p' can keep allocated.
745  * Allocating more than that would be denied, unless the resource
746  * is marked undeniable.  Amount of already allocated resource does
747  * matter.
748  */
749 uint64_t
750 racct_get_available(struct proc *p, int resource)
751 {
752 
753 #ifdef RCTL
754 	return (rctl_get_available(p, resource));
755 #else
756 	return (UINT64_MAX);
757 #endif
758 }
759 
760 /*
761  * Returns amount of the %cpu resource that process 'p' can add to its %cpu
762  * utilization.  Adding more than that would lead to the process being
763  * throttled.
764  */
765 static int64_t
766 racct_pcpu_available(struct proc *p)
767 {
768 
769 #ifdef RCTL
770 	return (rctl_pcpu_available(p));
771 #else
772 	return (INT64_MAX);
773 #endif
774 }
775 
776 /*
777  * Decrease allocation of 'resource' by 'amount' for process 'p'.
778  */
779 void
780 racct_sub(struct proc *p, int resource, uint64_t amount)
781 {
782 
783 	SDT_PROBE(racct, kernel, rusage, sub, p, resource, amount, 0, 0);
784 
785 	/*
786 	 * We need proc lock to dereference p->p_ucred.
787 	 */
788 	PROC_LOCK_ASSERT(p, MA_OWNED);
789 	KASSERT(RACCT_CAN_DROP(resource),
790 	    ("%s: called for non-droppable resource %d", __func__, resource));
791 
792 	mtx_lock(&racct_lock);
793 	KASSERT(amount <= p->p_racct->r_resources[resource],
794 	    ("%s: freeing %ju of resource %d, which is more "
795 	     "than allocated %jd for %s (pid %d)", __func__, amount, resource,
796 	    (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid));
797 
798 	racct_alloc_resource(p->p_racct, resource, -amount);
799 	racct_sub_cred_locked(p->p_ucred, resource, amount);
800 	mtx_unlock(&racct_lock);
801 }
802 
803 static void
804 racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount)
805 {
806 	struct prison *pr;
807 
808 	SDT_PROBE(racct, kernel, rusage, sub_cred, cred, resource, amount,
809 	    0, 0);
810 
811 #ifdef notyet
812 	KASSERT(RACCT_CAN_DROP(resource),
813 	    ("%s: called for resource %d which can not drop", __func__,
814 	     resource));
815 #endif
816 
817 	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, -amount);
818 	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
819 		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
820 		    -amount);
821 	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, -amount);
822 }
823 
824 /*
825  * Decrease allocation of 'resource' by 'amount' for credential 'cred'.
826  */
827 void
828 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
829 {
830 
831 	mtx_lock(&racct_lock);
832 	racct_sub_cred_locked(cred, resource, amount);
833 	mtx_unlock(&racct_lock);
834 }
835 
836 /*
837  * Inherit resource usage information from the parent process.
838  */
839 int
840 racct_proc_fork(struct proc *parent, struct proc *child)
841 {
842 	int i, error = 0;
843 
844 	/*
845 	 * Create racct for the child process.
846 	 */
847 	racct_create(&child->p_racct);
848 
849 	PROC_LOCK(parent);
850 	PROC_LOCK(child);
851 	mtx_lock(&racct_lock);
852 
853 #ifdef RCTL
854 	error = rctl_proc_fork(parent, child);
855 	if (error != 0)
856 		goto out;
857 #endif
858 
859 	/* Init process cpu time. */
860 	child->p_prev_runtime = 0;
861 	child->p_throttled = 0;
862 
863 	/*
864 	 * Inherit resource usage.
865 	 */
866 	for (i = 0; i <= RACCT_MAX; i++) {
867 		if (parent->p_racct->r_resources[i] == 0 ||
868 		    !RACCT_IS_INHERITABLE(i))
869 			continue;
870 
871 		error = racct_set_locked(child, i,
872 		    parent->p_racct->r_resources[i]);
873 		if (error != 0)
874 			goto out;
875 	}
876 
877 	error = racct_add_locked(child, RACCT_NPROC, 1);
878 	error += racct_add_locked(child, RACCT_NTHR, 1);
879 
880 out:
881 	mtx_unlock(&racct_lock);
882 	PROC_UNLOCK(child);
883 	PROC_UNLOCK(parent);
884 
885 	if (error != 0)
886 		racct_proc_exit(child);
887 
888 	return (error);
889 }
890 
891 /*
892  * Called at the end of fork1(), to handle rules that require the process
893  * to be fully initialized.
894  */
895 void
896 racct_proc_fork_done(struct proc *child)
897 {
898 
899 #ifdef RCTL
900 	PROC_LOCK(child);
901 	mtx_lock(&racct_lock);
902 	rctl_enforce(child, RACCT_NPROC, 0);
903 	rctl_enforce(child, RACCT_NTHR, 0);
904 	mtx_unlock(&racct_lock);
905 	PROC_UNLOCK(child);
906 #endif
907 }
908 
909 void
910 racct_proc_exit(struct proc *p)
911 {
912 	int i;
913 	uint64_t runtime;
914 	struct timeval wallclock;
915 	uint64_t pct_estimate, pct;
916 
917 	PROC_LOCK(p);
918 	/*
919 	 * We don't need to calculate rux, proc_reap() has already done this.
920 	 */
921 	runtime = cputick2usec(p->p_rux.rux_runtime);
922 #ifdef notyet
923 	KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime"));
924 #else
925 	if (runtime < p->p_prev_runtime)
926 		runtime = p->p_prev_runtime;
927 #endif
928 	microuptime(&wallclock);
929 	timevalsub(&wallclock, &p->p_stats->p_start);
930 	if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) {
931 		pct_estimate = (1000000 * runtime * 100) /
932 		    ((uint64_t)wallclock.tv_sec * 1000000 +
933 		    wallclock.tv_usec);
934 	} else
935 		pct_estimate = 0;
936 	pct = racct_getpcpu(p, pct_estimate);
937 
938 	mtx_lock(&racct_lock);
939 	racct_set_locked(p, RACCT_CPU, runtime);
940 	racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct);
941 
942 	for (i = 0; i <= RACCT_MAX; i++) {
943 		if (p->p_racct->r_resources[i] == 0)
944 			continue;
945 	    	if (!RACCT_IS_RECLAIMABLE(i))
946 			continue;
947 		racct_set_locked(p, i, 0);
948 	}
949 
950 	mtx_unlock(&racct_lock);
951 	PROC_UNLOCK(p);
952 
953 #ifdef RCTL
954 	rctl_racct_release(p->p_racct);
955 #endif
956 	racct_destroy(&p->p_racct);
957 }
958 
959 /*
960  * Called after credentials change, to move resource utilisation
961  * between raccts.
962  */
963 void
964 racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred,
965     struct ucred *newcred)
966 {
967 	struct uidinfo *olduip, *newuip;
968 	struct loginclass *oldlc, *newlc;
969 	struct prison *oldpr, *newpr, *pr;
970 
971 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
972 
973 	newuip = newcred->cr_ruidinfo;
974 	olduip = oldcred->cr_ruidinfo;
975 	newlc = newcred->cr_loginclass;
976 	oldlc = oldcred->cr_loginclass;
977 	newpr = newcred->cr_prison;
978 	oldpr = oldcred->cr_prison;
979 
980 	mtx_lock(&racct_lock);
981 	if (newuip != olduip) {
982 		racct_sub_racct(olduip->ui_racct, p->p_racct);
983 		racct_add_racct(newuip->ui_racct, p->p_racct);
984 	}
985 	if (newlc != oldlc) {
986 		racct_sub_racct(oldlc->lc_racct, p->p_racct);
987 		racct_add_racct(newlc->lc_racct, p->p_racct);
988 	}
989 	if (newpr != oldpr) {
990 		for (pr = oldpr; pr != NULL; pr = pr->pr_parent)
991 			racct_sub_racct(pr->pr_prison_racct->prr_racct,
992 			    p->p_racct);
993 		for (pr = newpr; pr != NULL; pr = pr->pr_parent)
994 			racct_add_racct(pr->pr_prison_racct->prr_racct,
995 			    p->p_racct);
996 	}
997 	mtx_unlock(&racct_lock);
998 
999 #ifdef RCTL
1000 	rctl_proc_ucred_changed(p, newcred);
1001 #endif
1002 }
1003 
1004 void
1005 racct_move(struct racct *dest, struct racct *src)
1006 {
1007 
1008 	mtx_lock(&racct_lock);
1009 
1010 	racct_add_racct(dest, src);
1011 	racct_sub_racct(src, src);
1012 
1013 	mtx_unlock(&racct_lock);
1014 }
1015 
1016 static void
1017 racct_proc_throttle(struct proc *p)
1018 {
1019 	struct thread *td;
1020 #ifdef SMP
1021 	int cpuid;
1022 #endif
1023 
1024 	PROC_LOCK_ASSERT(p, MA_OWNED);
1025 
1026 	/*
1027 	 * Do not block kernel processes.  Also do not block processes with
1028 	 * low %cpu utilization to improve interactivity.
1029 	 */
1030 	if (((p->p_flag & (P_SYSTEM | P_KTHREAD)) != 0) ||
1031 	    (p->p_racct->r_resources[RACCT_PCTCPU] <= pcpu_threshold))
1032 		return;
1033 	p->p_throttled = 1;
1034 
1035 	FOREACH_THREAD_IN_PROC(p, td) {
1036 		thread_lock(td);
1037 		switch (td->td_state) {
1038 		case TDS_RUNQ:
1039 			/*
1040 			 * If the thread is on the scheduler run-queue, we can
1041 			 * not just remove it from there.  So we set the flag
1042 			 * TDF_NEEDRESCHED for the thread, so that once it is
1043 			 * running, it is taken off the cpu as soon as possible.
1044 			 */
1045 			td->td_flags |= TDF_NEEDRESCHED;
1046 			break;
1047 		case TDS_RUNNING:
1048 			/*
1049 			 * If the thread is running, we request a context
1050 			 * switch for it by setting the TDF_NEEDRESCHED flag.
1051 			 */
1052 			td->td_flags |= TDF_NEEDRESCHED;
1053 #ifdef SMP
1054 			cpuid = td->td_oncpu;
1055 			if ((cpuid != NOCPU) && (td != curthread))
1056 				ipi_cpu(cpuid, IPI_AST);
1057 #endif
1058 			break;
1059 		default:
1060 			break;
1061 		}
1062 		thread_unlock(td);
1063 	}
1064 }
1065 
1066 static void
1067 racct_proc_wakeup(struct proc *p)
1068 {
1069 	PROC_LOCK_ASSERT(p, MA_OWNED);
1070 
1071 	if (p->p_throttled) {
1072 		p->p_throttled = 0;
1073 		wakeup(p->p_racct);
1074 	}
1075 }
1076 
1077 static void
1078 racct_decay_resource(struct racct *racct, void * res, void* dummy)
1079 {
1080 	int resource;
1081 	int64_t r_old, r_new;
1082 
1083 	resource = *(int *)res;
1084 	r_old = racct->r_resources[resource];
1085 
1086 	/* If there is nothing to decay, just exit. */
1087 	if (r_old <= 0)
1088 		return;
1089 
1090 	mtx_lock(&racct_lock);
1091 	r_new = r_old * RACCT_DECAY_FACTOR / FSCALE;
1092 	racct->r_resources[resource] = r_new;
1093 	mtx_unlock(&racct_lock);
1094 }
1095 
1096 static void
1097 racct_decay(int resource)
1098 {
1099 	ui_racct_foreach(racct_decay_resource, &resource, NULL);
1100 	loginclass_racct_foreach(racct_decay_resource, &resource, NULL);
1101 	prison_racct_foreach(racct_decay_resource, &resource, NULL);
1102 }
1103 
1104 static void
1105 racctd(void)
1106 {
1107 	struct thread *td;
1108 	struct proc *p;
1109 	struct timeval wallclock;
1110 	uint64_t runtime;
1111 	uint64_t pct, pct_estimate;
1112 
1113 	for (;;) {
1114 		racct_decay(RACCT_PCTCPU);
1115 
1116 		sx_slock(&allproc_lock);
1117 
1118 		LIST_FOREACH(p, &zombproc, p_list) {
1119 			PROC_LOCK(p);
1120 			racct_set(p, RACCT_PCTCPU, 0);
1121 			PROC_UNLOCK(p);
1122 		}
1123 
1124 		FOREACH_PROC_IN_SYSTEM(p) {
1125 			PROC_LOCK(p);
1126 			if (p->p_state != PRS_NORMAL) {
1127 				PROC_UNLOCK(p);
1128 				continue;
1129 			}
1130 
1131 			microuptime(&wallclock);
1132 			timevalsub(&wallclock, &p->p_stats->p_start);
1133 			PROC_SLOCK(p);
1134 			FOREACH_THREAD_IN_PROC(p, td)
1135 				ruxagg(p, td);
1136 			runtime = cputick2usec(p->p_rux.rux_runtime);
1137 			PROC_SUNLOCK(p);
1138 #ifdef notyet
1139 			KASSERT(runtime >= p->p_prev_runtime,
1140 			    ("runtime < p_prev_runtime"));
1141 #else
1142 			if (runtime < p->p_prev_runtime)
1143 				runtime = p->p_prev_runtime;
1144 #endif
1145 			p->p_prev_runtime = runtime;
1146 			if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) {
1147 				pct_estimate = (1000000 * runtime * 100) /
1148 				    ((uint64_t)wallclock.tv_sec * 1000000 +
1149 				    wallclock.tv_usec);
1150 			} else
1151 				pct_estimate = 0;
1152 			pct = racct_getpcpu(p, pct_estimate);
1153 			mtx_lock(&racct_lock);
1154 			racct_set_force_locked(p, RACCT_PCTCPU, pct);
1155 			racct_set_locked(p, RACCT_CPU, runtime);
1156 			racct_set_locked(p, RACCT_WALLCLOCK,
1157 			    (uint64_t)wallclock.tv_sec * 1000000 +
1158 			    wallclock.tv_usec);
1159 			mtx_unlock(&racct_lock);
1160 			PROC_UNLOCK(p);
1161 		}
1162 
1163 		/*
1164 		 * To ensure that processes are throttled in a fair way, we need
1165 		 * to iterate over all processes again and check the limits
1166 		 * for %cpu resource only after ucred racct containers have been
1167 		 * properly filled.
1168 		 */
1169 		FOREACH_PROC_IN_SYSTEM(p) {
1170 			PROC_LOCK(p);
1171 			if (p->p_state != PRS_NORMAL) {
1172 				PROC_UNLOCK(p);
1173 				continue;
1174 			}
1175 
1176 			if (racct_pcpu_available(p) <= 0)
1177 				racct_proc_throttle(p);
1178 			else if (p->p_throttled)
1179 				racct_proc_wakeup(p);
1180 			PROC_UNLOCK(p);
1181 		}
1182 		sx_sunlock(&allproc_lock);
1183 		pause("-", hz);
1184 	}
1185 }
1186 
1187 static struct kproc_desc racctd_kp = {
1188 	"racctd",
1189 	racctd,
1190 	NULL
1191 };
1192 SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, kproc_start, &racctd_kp);
1193 
1194 static void
1195 racct_init(void)
1196 {
1197 
1198 	racct_zone = uma_zcreate("racct", sizeof(struct racct),
1199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
1200 	/*
1201 	 * XXX: Move this somewhere.
1202 	 */
1203 	prison0.pr_prison_racct = prison_racct_find("0");
1204 }
1205 SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL);
1206 
1207 #else /* !RACCT */
1208 
1209 int
1210 racct_add(struct proc *p, int resource, uint64_t amount)
1211 {
1212 
1213 	return (0);
1214 }
1215 
1216 void
1217 racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
1218 {
1219 }
1220 
1221 void
1222 racct_add_force(struct proc *p, int resource, uint64_t amount)
1223 {
1224 
1225 	return;
1226 }
1227 
1228 int
1229 racct_set(struct proc *p, int resource, uint64_t amount)
1230 {
1231 
1232 	return (0);
1233 }
1234 
1235 void
1236 racct_set_force(struct proc *p, int resource, uint64_t amount)
1237 {
1238 }
1239 
1240 void
1241 racct_sub(struct proc *p, int resource, uint64_t amount)
1242 {
1243 }
1244 
1245 void
1246 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
1247 {
1248 }
1249 
1250 uint64_t
1251 racct_get_limit(struct proc *p, int resource)
1252 {
1253 
1254 	return (UINT64_MAX);
1255 }
1256 
1257 uint64_t
1258 racct_get_available(struct proc *p, int resource)
1259 {
1260 
1261 	return (UINT64_MAX);
1262 }
1263 
1264 void
1265 racct_create(struct racct **racctp)
1266 {
1267 }
1268 
1269 void
1270 racct_destroy(struct racct **racctp)
1271 {
1272 }
1273 
1274 int
1275 racct_proc_fork(struct proc *parent, struct proc *child)
1276 {
1277 
1278 	return (0);
1279 }
1280 
1281 void
1282 racct_proc_fork_done(struct proc *child)
1283 {
1284 }
1285 
1286 void
1287 racct_proc_exit(struct proc *p)
1288 {
1289 }
1290 
1291 #endif /* !RACCT */
1292