xref: /freebsd/sys/kern/kern_resource.c (revision 2be1a816)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/resourcevar.h>
54 #include <sys/rwlock.h>
55 #include <sys/sched.h>
56 #include <sys/sx.h>
57 #include <sys/syscallsubr.h>
58 #include <sys/sysent.h>
59 #include <sys/time.h>
60 #include <sys/umtx.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 
67 
68 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
69 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
70 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
71 static struct rwlock uihashtbl_lock;
72 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
73 static u_long uihash;		/* size of hash table - 1 */
74 
75 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
76 		    struct timeval *up, struct timeval *sp);
77 static int	donice(struct thread *td, struct proc *chgp, int n);
78 static struct uidinfo *uilookup(uid_t uid);
79 
80 /*
81  * Resource controls and accounting.
82  */
83 #ifndef _SYS_SYSPROTO_H_
84 struct getpriority_args {
85 	int	which;
86 	int	who;
87 };
88 #endif
89 int
90 getpriority(td, uap)
91 	struct thread *td;
92 	register struct getpriority_args *uap;
93 {
94 	struct proc *p;
95 	struct pgrp *pg;
96 	int error, low;
97 
98 	error = 0;
99 	low = PRIO_MAX + 1;
100 	switch (uap->which) {
101 
102 	case PRIO_PROCESS:
103 		if (uap->who == 0)
104 			low = td->td_proc->p_nice;
105 		else {
106 			p = pfind(uap->who);
107 			if (p == NULL)
108 				break;
109 			if (p_cansee(td, p) == 0)
110 				low = p->p_nice;
111 			PROC_UNLOCK(p);
112 		}
113 		break;
114 
115 	case PRIO_PGRP:
116 		sx_slock(&proctree_lock);
117 		if (uap->who == 0) {
118 			pg = td->td_proc->p_pgrp;
119 			PGRP_LOCK(pg);
120 		} else {
121 			pg = pgfind(uap->who);
122 			if (pg == NULL) {
123 				sx_sunlock(&proctree_lock);
124 				break;
125 			}
126 		}
127 		sx_sunlock(&proctree_lock);
128 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 			PROC_LOCK(p);
130 			if (p_cansee(td, p) == 0) {
131 				if (p->p_nice < low)
132 					low = p->p_nice;
133 			}
134 			PROC_UNLOCK(p);
135 		}
136 		PGRP_UNLOCK(pg);
137 		break;
138 
139 	case PRIO_USER:
140 		if (uap->who == 0)
141 			uap->who = td->td_ucred->cr_uid;
142 		sx_slock(&allproc_lock);
143 		FOREACH_PROC_IN_SYSTEM(p) {
144 			/* Do not bother to check PRS_NEW processes */
145 			if (p->p_state == PRS_NEW)
146 				continue;
147 			PROC_LOCK(p);
148 			if (p_cansee(td, p) == 0 &&
149 			    p->p_ucred->cr_uid == uap->who) {
150 				if (p->p_nice < low)
151 					low = p->p_nice;
152 			}
153 			PROC_UNLOCK(p);
154 		}
155 		sx_sunlock(&allproc_lock);
156 		break;
157 
158 	default:
159 		error = EINVAL;
160 		break;
161 	}
162 	if (low == PRIO_MAX + 1 && error == 0)
163 		error = ESRCH;
164 	td->td_retval[0] = low;
165 	return (error);
166 }
167 
168 #ifndef _SYS_SYSPROTO_H_
169 struct setpriority_args {
170 	int	which;
171 	int	who;
172 	int	prio;
173 };
174 #endif
175 int
176 setpriority(td, uap)
177 	struct thread *td;
178 	struct setpriority_args *uap;
179 {
180 	struct proc *curp, *p;
181 	struct pgrp *pg;
182 	int found = 0, error = 0;
183 
184 	curp = td->td_proc;
185 	switch (uap->which) {
186 	case PRIO_PROCESS:
187 		if (uap->who == 0) {
188 			PROC_LOCK(curp);
189 			error = donice(td, curp, uap->prio);
190 			PROC_UNLOCK(curp);
191 		} else {
192 			p = pfind(uap->who);
193 			if (p == NULL)
194 				break;
195 			error = p_cansee(td, p);
196 			if (error == 0)
197 				error = donice(td, p, uap->prio);
198 			PROC_UNLOCK(p);
199 		}
200 		found++;
201 		break;
202 
203 	case PRIO_PGRP:
204 		sx_slock(&proctree_lock);
205 		if (uap->who == 0) {
206 			pg = curp->p_pgrp;
207 			PGRP_LOCK(pg);
208 		} else {
209 			pg = pgfind(uap->who);
210 			if (pg == NULL) {
211 				sx_sunlock(&proctree_lock);
212 				break;
213 			}
214 		}
215 		sx_sunlock(&proctree_lock);
216 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
217 			PROC_LOCK(p);
218 			if (p_cansee(td, p) == 0) {
219 				error = donice(td, p, uap->prio);
220 				found++;
221 			}
222 			PROC_UNLOCK(p);
223 		}
224 		PGRP_UNLOCK(pg);
225 		break;
226 
227 	case PRIO_USER:
228 		if (uap->who == 0)
229 			uap->who = td->td_ucred->cr_uid;
230 		sx_slock(&allproc_lock);
231 		FOREACH_PROC_IN_SYSTEM(p) {
232 			PROC_LOCK(p);
233 			if (p->p_ucred->cr_uid == uap->who &&
234 			    p_cansee(td, p) == 0) {
235 				error = donice(td, p, uap->prio);
236 				found++;
237 			}
238 			PROC_UNLOCK(p);
239 		}
240 		sx_sunlock(&allproc_lock);
241 		break;
242 
243 	default:
244 		error = EINVAL;
245 		break;
246 	}
247 	if (found == 0 && error == 0)
248 		error = ESRCH;
249 	return (error);
250 }
251 
252 /*
253  * Set "nice" for a (whole) process.
254  */
255 static int
256 donice(struct thread *td, struct proc *p, int n)
257 {
258 	int error;
259 
260 	PROC_LOCK_ASSERT(p, MA_OWNED);
261 	if ((error = p_cansched(td, p)))
262 		return (error);
263 	if (n > PRIO_MAX)
264 		n = PRIO_MAX;
265 	if (n < PRIO_MIN)
266 		n = PRIO_MIN;
267 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
268 		return (EACCES);
269 	sched_nice(p, n);
270 	return (0);
271 }
272 
273 /*
274  * Set realtime priority for LWP.
275  */
276 #ifndef _SYS_SYSPROTO_H_
277 struct rtprio_thread_args {
278 	int		function;
279 	lwpid_t		lwpid;
280 	struct rtprio	*rtp;
281 };
282 #endif
283 int
284 rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
285 {
286 	struct proc *p;
287 	struct rtprio rtp;
288 	struct thread *td1;
289 	int cierror, error;
290 
291 	/* Perform copyin before acquiring locks if needed. */
292 	if (uap->function == RTP_SET)
293 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
294 	else
295 		cierror = 0;
296 
297 	/*
298 	 * Though lwpid is unique, only current process is supported
299 	 * since there is no efficient way to look up a LWP yet.
300 	 */
301 	p = td->td_proc;
302 	PROC_LOCK(p);
303 
304 	switch (uap->function) {
305 	case RTP_LOOKUP:
306 		if ((error = p_cansee(td, p)))
307 			break;
308 		if (uap->lwpid == 0 || uap->lwpid == td->td_tid)
309 			td1 = td;
310 		else
311 			td1 = thread_find(p, uap->lwpid);
312 		if (td1 != NULL)
313 			pri_to_rtp(td1, &rtp);
314 		else
315 			error = ESRCH;
316 		PROC_UNLOCK(p);
317 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
318 	case RTP_SET:
319 		if ((error = p_cansched(td, p)) || (error = cierror))
320 			break;
321 
322 		/* Disallow setting rtprio in most cases if not superuser. */
323 /*
324  * Realtime priority has to be restricted for reasons which should be
325  * obvious.  However, for idle priority, there is a potential for
326  * system deadlock if an idleprio process gains a lock on a resource
327  * that other processes need (and the idleprio process can't run
328  * due to a CPU-bound normal process).  Fix me!  XXX
329  */
330 #if 0
331 		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
332 #else
333 		if (rtp.type != RTP_PRIO_NORMAL) {
334 #endif
335 			error = priv_check(td, PRIV_SCHED_RTPRIO);
336 			if (error)
337 				break;
338 		}
339 
340 		if (uap->lwpid == 0 || uap->lwpid == td->td_tid)
341 			td1 = td;
342 		else
343 			td1 = thread_find(p, uap->lwpid);
344 		if (td1 != NULL)
345 			error = rtp_to_pri(&rtp, td1);
346 		else
347 			error = ESRCH;
348 		break;
349 	default:
350 		error = EINVAL;
351 		break;
352 	}
353 	PROC_UNLOCK(p);
354 	return (error);
355 }
356 
357 /*
358  * Set realtime priority.
359  */
360 #ifndef _SYS_SYSPROTO_H_
361 struct rtprio_args {
362 	int		function;
363 	pid_t		pid;
364 	struct rtprio	*rtp;
365 };
366 #endif
367 int
368 rtprio(td, uap)
369 	struct thread *td;		/* curthread */
370 	register struct rtprio_args *uap;
371 {
372 	struct proc *p;
373 	struct thread *tdp;
374 	struct rtprio rtp;
375 	int cierror, error;
376 
377 	/* Perform copyin before acquiring locks if needed. */
378 	if (uap->function == RTP_SET)
379 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
380 	else
381 		cierror = 0;
382 
383 	if (uap->pid == 0) {
384 		p = td->td_proc;
385 		PROC_LOCK(p);
386 	} else {
387 		p = pfind(uap->pid);
388 		if (p == NULL)
389 			return (ESRCH);
390 	}
391 
392 	switch (uap->function) {
393 	case RTP_LOOKUP:
394 		if ((error = p_cansee(td, p)))
395 			break;
396 		/*
397 		 * Return OUR priority if no pid specified,
398 		 * or if one is, report the highest priority
399 		 * in the process.  There isn't much more you can do as
400 		 * there is only room to return a single priority.
401 		 * Note: specifying our own pid is not the same
402 		 * as leaving it zero.
403 		 */
404 		if (uap->pid == 0) {
405 			pri_to_rtp(td, &rtp);
406 		} else {
407 			struct rtprio rtp2;
408 
409 			rtp.type = RTP_PRIO_IDLE;
410 			rtp.prio = RTP_PRIO_MAX;
411 			FOREACH_THREAD_IN_PROC(p, tdp) {
412 				pri_to_rtp(tdp, &rtp2);
413 				if (rtp2.type <  rtp.type ||
414 				    (rtp2.type == rtp.type &&
415 				    rtp2.prio < rtp.prio)) {
416 					rtp.type = rtp2.type;
417 					rtp.prio = rtp2.prio;
418 				}
419 			}
420 		}
421 		PROC_UNLOCK(p);
422 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
423 	case RTP_SET:
424 		if ((error = p_cansched(td, p)) || (error = cierror))
425 			break;
426 
427 		/* Disallow setting rtprio in most cases if not superuser. */
428 /*
429  * Realtime priority has to be restricted for reasons which should be
430  * obvious.  However, for idle priority, there is a potential for
431  * system deadlock if an idleprio process gains a lock on a resource
432  * that other processes need (and the idleprio process can't run
433  * due to a CPU-bound normal process).  Fix me!  XXX
434  */
435 #if 0
436 		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
437 #else
438 		if (rtp.type != RTP_PRIO_NORMAL) {
439 #endif
440 			error = priv_check(td, PRIV_SCHED_RTPRIO);
441 			if (error)
442 				break;
443 		}
444 
445 		/*
446 		 * If we are setting our own priority, set just our
447 		 * thread but if we are doing another process,
448 		 * do all the threads on that process. If we
449 		 * specify our own pid we do the latter.
450 		 */
451 		if (uap->pid == 0) {
452 			error = rtp_to_pri(&rtp, td);
453 		} else {
454 			FOREACH_THREAD_IN_PROC(p, td) {
455 				if ((error = rtp_to_pri(&rtp, td)) != 0)
456 					break;
457 			}
458 		}
459 		break;
460 	default:
461 		error = EINVAL;
462 		break;
463 	}
464 	PROC_UNLOCK(p);
465 	return (error);
466 }
467 
468 int
469 rtp_to_pri(struct rtprio *rtp, struct thread *td)
470 {
471 	u_char	newpri;
472 	u_char	oldpri;
473 
474 	if (rtp->prio > RTP_PRIO_MAX)
475 		return (EINVAL);
476 	thread_lock(td);
477 	switch (RTP_PRIO_BASE(rtp->type)) {
478 	case RTP_PRIO_REALTIME:
479 		newpri = PRI_MIN_REALTIME + rtp->prio;
480 		break;
481 	case RTP_PRIO_NORMAL:
482 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
483 		break;
484 	case RTP_PRIO_IDLE:
485 		newpri = PRI_MIN_IDLE + rtp->prio;
486 		break;
487 	default:
488 		thread_unlock(td);
489 		return (EINVAL);
490 	}
491 	sched_class(td, rtp->type);	/* XXX fix */
492 	oldpri = td->td_user_pri;
493 	sched_user_prio(td, newpri);
494 	if (curthread == td)
495 		sched_prio(curthread, td->td_user_pri); /* XXX dubious */
496 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
497 		thread_unlock(td);
498 		umtx_pi_adjust(td, oldpri);
499 	} else
500 		thread_unlock(td);
501 	return (0);
502 }
503 
504 void
505 pri_to_rtp(struct thread *td, struct rtprio *rtp)
506 {
507 
508 	thread_lock(td);
509 	switch (PRI_BASE(td->td_pri_class)) {
510 	case PRI_REALTIME:
511 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
512 		break;
513 	case PRI_TIMESHARE:
514 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
515 		break;
516 	case PRI_IDLE:
517 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
518 		break;
519 	default:
520 		break;
521 	}
522 	rtp->type = td->td_pri_class;
523 	thread_unlock(td);
524 }
525 
526 #if defined(COMPAT_43)
527 #ifndef _SYS_SYSPROTO_H_
528 struct osetrlimit_args {
529 	u_int	which;
530 	struct	orlimit *rlp;
531 };
532 #endif
533 int
534 osetrlimit(td, uap)
535 	struct thread *td;
536 	register struct osetrlimit_args *uap;
537 {
538 	struct orlimit olim;
539 	struct rlimit lim;
540 	int error;
541 
542 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
543 		return (error);
544 	lim.rlim_cur = olim.rlim_cur;
545 	lim.rlim_max = olim.rlim_max;
546 	error = kern_setrlimit(td, uap->which, &lim);
547 	return (error);
548 }
549 
550 #ifndef _SYS_SYSPROTO_H_
551 struct ogetrlimit_args {
552 	u_int	which;
553 	struct	orlimit *rlp;
554 };
555 #endif
556 int
557 ogetrlimit(td, uap)
558 	struct thread *td;
559 	register struct ogetrlimit_args *uap;
560 {
561 	struct orlimit olim;
562 	struct rlimit rl;
563 	struct proc *p;
564 	int error;
565 
566 	if (uap->which >= RLIM_NLIMITS)
567 		return (EINVAL);
568 	p = td->td_proc;
569 	PROC_LOCK(p);
570 	lim_rlimit(p, uap->which, &rl);
571 	PROC_UNLOCK(p);
572 
573 	/*
574 	 * XXX would be more correct to convert only RLIM_INFINITY to the
575 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
576 	 * values.  Most 64->32 and 32->16 conversions, including not
577 	 * unimportant ones of uids are even more broken than what we
578 	 * do here (they blindly truncate).  We don't do this correctly
579 	 * here since we have little experience with EOVERFLOW yet.
580 	 * Elsewhere, getuid() can't fail...
581 	 */
582 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
583 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
584 	error = copyout(&olim, uap->rlp, sizeof(olim));
585 	return (error);
586 }
587 #endif /* COMPAT_43 */
588 
589 #ifndef _SYS_SYSPROTO_H_
590 struct __setrlimit_args {
591 	u_int	which;
592 	struct	rlimit *rlp;
593 };
594 #endif
595 int
596 setrlimit(td, uap)
597 	struct thread *td;
598 	register struct __setrlimit_args *uap;
599 {
600 	struct rlimit alim;
601 	int error;
602 
603 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
604 		return (error);
605 	error = kern_setrlimit(td, uap->which, &alim);
606 	return (error);
607 }
608 
609 static void
610 lim_cb(void *arg)
611 {
612 	struct rlimit rlim;
613 	struct thread *td;
614 	struct proc *p;
615 
616 	p = arg;
617 	PROC_LOCK_ASSERT(p, MA_OWNED);
618 	/*
619 	 * Check if the process exceeds its cpu resource allocation.  If
620 	 * it reaches the max, arrange to kill the process in ast().
621 	 */
622 	if (p->p_cpulimit == RLIM_INFINITY)
623 		return;
624 	PROC_SLOCK(p);
625 	FOREACH_THREAD_IN_PROC(p, td) {
626 		thread_lock(td);
627 		ruxagg(&p->p_rux, td);
628 		thread_unlock(td);
629 	}
630 	PROC_SUNLOCK(p);
631 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
632 		lim_rlimit(p, RLIMIT_CPU, &rlim);
633 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
634 			killproc(p, "exceeded maximum CPU limit");
635 		} else {
636 			if (p->p_cpulimit < rlim.rlim_max)
637 				p->p_cpulimit += 5;
638 			psignal(p, SIGXCPU);
639 		}
640 	}
641 	callout_reset(&p->p_limco, hz, lim_cb, p);
642 }
643 
644 int
645 kern_setrlimit(td, which, limp)
646 	struct thread *td;
647 	u_int which;
648 	struct rlimit *limp;
649 {
650 	struct plimit *newlim, *oldlim;
651 	struct proc *p;
652 	register struct rlimit *alimp;
653 	struct rlimit oldssiz;
654 	int error;
655 
656 	if (which >= RLIM_NLIMITS)
657 		return (EINVAL);
658 
659 	/*
660 	 * Preserve historical bugs by treating negative limits as unsigned.
661 	 */
662 	if (limp->rlim_cur < 0)
663 		limp->rlim_cur = RLIM_INFINITY;
664 	if (limp->rlim_max < 0)
665 		limp->rlim_max = RLIM_INFINITY;
666 
667 	oldssiz.rlim_cur = 0;
668 	p = td->td_proc;
669 	newlim = lim_alloc();
670 	PROC_LOCK(p);
671 	oldlim = p->p_limit;
672 	alimp = &oldlim->pl_rlimit[which];
673 	if (limp->rlim_cur > alimp->rlim_max ||
674 	    limp->rlim_max > alimp->rlim_max)
675 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
676 			PROC_UNLOCK(p);
677 			lim_free(newlim);
678 			return (error);
679 		}
680 	if (limp->rlim_cur > limp->rlim_max)
681 		limp->rlim_cur = limp->rlim_max;
682 	lim_copy(newlim, oldlim);
683 	alimp = &newlim->pl_rlimit[which];
684 
685 	switch (which) {
686 
687 	case RLIMIT_CPU:
688 		if (limp->rlim_cur != RLIM_INFINITY &&
689 		    p->p_cpulimit == RLIM_INFINITY)
690 			callout_reset(&p->p_limco, hz, lim_cb, p);
691 		p->p_cpulimit = limp->rlim_cur;
692 		break;
693 	case RLIMIT_DATA:
694 		if (limp->rlim_cur > maxdsiz)
695 			limp->rlim_cur = maxdsiz;
696 		if (limp->rlim_max > maxdsiz)
697 			limp->rlim_max = maxdsiz;
698 		break;
699 
700 	case RLIMIT_STACK:
701 		if (limp->rlim_cur > maxssiz)
702 			limp->rlim_cur = maxssiz;
703 		if (limp->rlim_max > maxssiz)
704 			limp->rlim_max = maxssiz;
705 		oldssiz = *alimp;
706 		if (td->td_proc->p_sysent->sv_fixlimit != NULL)
707 			td->td_proc->p_sysent->sv_fixlimit(&oldssiz,
708 			    RLIMIT_STACK);
709 		break;
710 
711 	case RLIMIT_NOFILE:
712 		if (limp->rlim_cur > maxfilesperproc)
713 			limp->rlim_cur = maxfilesperproc;
714 		if (limp->rlim_max > maxfilesperproc)
715 			limp->rlim_max = maxfilesperproc;
716 		break;
717 
718 	case RLIMIT_NPROC:
719 		if (limp->rlim_cur > maxprocperuid)
720 			limp->rlim_cur = maxprocperuid;
721 		if (limp->rlim_max > maxprocperuid)
722 			limp->rlim_max = maxprocperuid;
723 		if (limp->rlim_cur < 1)
724 			limp->rlim_cur = 1;
725 		if (limp->rlim_max < 1)
726 			limp->rlim_max = 1;
727 		break;
728 	}
729 	if (td->td_proc->p_sysent->sv_fixlimit != NULL)
730 		td->td_proc->p_sysent->sv_fixlimit(limp, which);
731 	*alimp = *limp;
732 	p->p_limit = newlim;
733 	PROC_UNLOCK(p);
734 	lim_free(oldlim);
735 
736 	if (which == RLIMIT_STACK) {
737 		/*
738 		 * Stack is allocated to the max at exec time with only
739 		 * "rlim_cur" bytes accessible.  If stack limit is going
740 		 * up make more accessible, if going down make inaccessible.
741 		 */
742 		if (limp->rlim_cur != oldssiz.rlim_cur) {
743 			vm_offset_t addr;
744 			vm_size_t size;
745 			vm_prot_t prot;
746 
747 			if (limp->rlim_cur > oldssiz.rlim_cur) {
748 				prot = p->p_sysent->sv_stackprot;
749 				size = limp->rlim_cur - oldssiz.rlim_cur;
750 				addr = p->p_sysent->sv_usrstack -
751 				    limp->rlim_cur;
752 			} else {
753 				prot = VM_PROT_NONE;
754 				size = oldssiz.rlim_cur - limp->rlim_cur;
755 				addr = p->p_sysent->sv_usrstack -
756 				    oldssiz.rlim_cur;
757 			}
758 			addr = trunc_page(addr);
759 			size = round_page(size);
760 			(void)vm_map_protect(&p->p_vmspace->vm_map,
761 			    addr, addr + size, prot, FALSE);
762 		}
763 	}
764 
765 	return (0);
766 }
767 
768 #ifndef _SYS_SYSPROTO_H_
769 struct __getrlimit_args {
770 	u_int	which;
771 	struct	rlimit *rlp;
772 };
773 #endif
774 /* ARGSUSED */
775 int
776 getrlimit(td, uap)
777 	struct thread *td;
778 	register struct __getrlimit_args *uap;
779 {
780 	struct rlimit rlim;
781 	struct proc *p;
782 	int error;
783 
784 	if (uap->which >= RLIM_NLIMITS)
785 		return (EINVAL);
786 	p = td->td_proc;
787 	PROC_LOCK(p);
788 	lim_rlimit(p, uap->which, &rlim);
789 	PROC_UNLOCK(p);
790 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
791 	return (error);
792 }
793 
794 /*
795  * Transform the running time and tick information for children of proc p
796  * into user and system time usage.
797  */
798 void
799 calccru(p, up, sp)
800 	struct proc *p;
801 	struct timeval *up;
802 	struct timeval *sp;
803 {
804 
805 	PROC_LOCK_ASSERT(p, MA_OWNED);
806 	calcru1(p, &p->p_crux, up, sp);
807 }
808 
809 /*
810  * Transform the running time and tick information in proc p into user
811  * and system time usage.  If appropriate, include the current time slice
812  * on this CPU.
813  */
814 void
815 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
816 {
817 	struct thread *td;
818 	uint64_t u;
819 
820 	PROC_LOCK_ASSERT(p, MA_OWNED);
821 	PROC_SLOCK_ASSERT(p, MA_OWNED);
822 	/*
823 	 * If we are getting stats for the current process, then add in the
824 	 * stats that this thread has accumulated in its current time slice.
825 	 * We reset the thread and CPU state as if we had performed a context
826 	 * switch right here.
827 	 */
828 	td = curthread;
829 	if (td->td_proc == p) {
830 		u = cpu_ticks();
831 		p->p_rux.rux_runtime += u - PCPU_GET(switchtime);
832 		PCPU_SET(switchtime, u);
833 	}
834 	/* Make sure the per-thread stats are current. */
835 	FOREACH_THREAD_IN_PROC(p, td) {
836 		if (td->td_incruntime == 0)
837 			continue;
838 		thread_lock(td);
839 		ruxagg(&p->p_rux, td);
840 		thread_unlock(td);
841 	}
842 	calcru1(p, &p->p_rux, up, sp);
843 }
844 
845 static void
846 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
847     struct timeval *sp)
848 {
849 	/* {user, system, interrupt, total} {ticks, usec}: */
850 	u_int64_t ut, uu, st, su, it, tt, tu;
851 
852 	ut = ruxp->rux_uticks;
853 	st = ruxp->rux_sticks;
854 	it = ruxp->rux_iticks;
855 	tt = ut + st + it;
856 	if (tt == 0) {
857 		/* Avoid divide by zero */
858 		st = 1;
859 		tt = 1;
860 	}
861 	tu = cputick2usec(ruxp->rux_runtime);
862 	if ((int64_t)tu < 0) {
863 		/* XXX: this should be an assert /phk */
864 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
865 		    (intmax_t)tu, p->p_pid, p->p_comm);
866 		tu = ruxp->rux_tu;
867 	}
868 
869 	if (tu >= ruxp->rux_tu) {
870 		/*
871 		 * The normal case, time increased.
872 		 * Enforce monotonicity of bucketed numbers.
873 		 */
874 		uu = (tu * ut) / tt;
875 		if (uu < ruxp->rux_uu)
876 			uu = ruxp->rux_uu;
877 		su = (tu * st) / tt;
878 		if (su < ruxp->rux_su)
879 			su = ruxp->rux_su;
880 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
881 		/*
882 		 * When we calibrate the cputicker, it is not uncommon to
883 		 * see the presumably fixed frequency increase slightly over
884 		 * time as a result of thermal stabilization and NTP
885 		 * discipline (of the reference clock).  We therefore ignore
886 		 * a bit of backwards slop because we  expect to catch up
887 		 * shortly.  We use a 3 microsecond limit to catch low
888 		 * counts and a 1% limit for high counts.
889 		 */
890 		uu = ruxp->rux_uu;
891 		su = ruxp->rux_su;
892 		tu = ruxp->rux_tu;
893 	} else { /* tu < ruxp->rux_tu */
894 		/*
895 		 * What happene here was likely that a laptop, which ran at
896 		 * a reduced clock frequency at boot, kicked into high gear.
897 		 * The wisdom of spamming this message in that case is
898 		 * dubious, but it might also be indicative of something
899 		 * serious, so lets keep it and hope laptops can be made
900 		 * more truthful about their CPU speed via ACPI.
901 		 */
902 		printf("calcru: runtime went backwards from %ju usec "
903 		    "to %ju usec for pid %d (%s)\n",
904 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
905 		    p->p_pid, p->p_comm);
906 		uu = (tu * ut) / tt;
907 		su = (tu * st) / tt;
908 	}
909 
910 	ruxp->rux_uu = uu;
911 	ruxp->rux_su = su;
912 	ruxp->rux_tu = tu;
913 
914 	up->tv_sec = uu / 1000000;
915 	up->tv_usec = uu % 1000000;
916 	sp->tv_sec = su / 1000000;
917 	sp->tv_usec = su % 1000000;
918 }
919 
920 #ifndef _SYS_SYSPROTO_H_
921 struct getrusage_args {
922 	int	who;
923 	struct	rusage *rusage;
924 };
925 #endif
926 int
927 getrusage(td, uap)
928 	register struct thread *td;
929 	register struct getrusage_args *uap;
930 {
931 	struct rusage ru;
932 	int error;
933 
934 	error = kern_getrusage(td, uap->who, &ru);
935 	if (error == 0)
936 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
937 	return (error);
938 }
939 
940 int
941 kern_getrusage(td, who, rup)
942 	struct thread *td;
943 	int who;
944 	struct rusage *rup;
945 {
946 	struct proc *p;
947 	int error;
948 
949 	error = 0;
950 	p = td->td_proc;
951 	PROC_LOCK(p);
952 	switch (who) {
953 	case RUSAGE_SELF:
954 		rufetchcalc(p, rup, &rup->ru_utime,
955 		    &rup->ru_stime);
956 		break;
957 
958 	case RUSAGE_CHILDREN:
959 		*rup = p->p_stats->p_cru;
960 		calccru(p, &rup->ru_utime, &rup->ru_stime);
961 		break;
962 
963 	default:
964 		error = EINVAL;
965 	}
966 	PROC_UNLOCK(p);
967 	return (error);
968 }
969 
970 void
971 rucollect(struct rusage *ru, struct rusage *ru2)
972 {
973 	long *ip, *ip2;
974 	int i;
975 
976 	if (ru->ru_maxrss < ru2->ru_maxrss)
977 		ru->ru_maxrss = ru2->ru_maxrss;
978 	ip = &ru->ru_first;
979 	ip2 = &ru2->ru_first;
980 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
981 		*ip++ += *ip2++;
982 }
983 
984 void
985 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
986     struct rusage_ext *rux2)
987 {
988 
989 	rux->rux_runtime += rux2->rux_runtime;
990 	rux->rux_uticks += rux2->rux_uticks;
991 	rux->rux_sticks += rux2->rux_sticks;
992 	rux->rux_iticks += rux2->rux_iticks;
993 	rux->rux_uu += rux2->rux_uu;
994 	rux->rux_su += rux2->rux_su;
995 	rux->rux_tu += rux2->rux_tu;
996 	rucollect(ru, ru2);
997 }
998 
999 /*
1000  * Aggregate tick counts into the proc's rusage_ext.
1001  */
1002 void
1003 ruxagg(struct rusage_ext *rux, struct thread *td)
1004 {
1005 
1006 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1007 	PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
1008 	rux->rux_runtime += td->td_incruntime;
1009 	rux->rux_uticks += td->td_uticks;
1010 	rux->rux_sticks += td->td_sticks;
1011 	rux->rux_iticks += td->td_iticks;
1012 	td->td_incruntime = 0;
1013 	td->td_uticks = 0;
1014 	td->td_iticks = 0;
1015 	td->td_sticks = 0;
1016 }
1017 
1018 /*
1019  * Update the rusage_ext structure and fetch a valid aggregate rusage
1020  * for proc p if storage for one is supplied.
1021  */
1022 void
1023 rufetch(struct proc *p, struct rusage *ru)
1024 {
1025 	struct thread *td;
1026 
1027 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1028 
1029 	*ru = p->p_ru;
1030 	if (p->p_numthreads > 0)  {
1031 		FOREACH_THREAD_IN_PROC(p, td) {
1032 			thread_lock(td);
1033 			ruxagg(&p->p_rux, td);
1034 			thread_unlock(td);
1035 			rucollect(ru, &td->td_ru);
1036 		}
1037 	}
1038 }
1039 
1040 /*
1041  * Atomically perform a rufetch and a calcru together.
1042  * Consumers, can safely assume the calcru is executed only once
1043  * rufetch is completed.
1044  */
1045 void
1046 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1047     struct timeval *sp)
1048 {
1049 
1050 	PROC_SLOCK(p);
1051 	rufetch(p, ru);
1052 	calcru(p, up, sp);
1053 	PROC_SUNLOCK(p);
1054 }
1055 
1056 /*
1057  * Allocate a new resource limits structure and initialize its
1058  * reference count and mutex pointer.
1059  */
1060 struct plimit *
1061 lim_alloc()
1062 {
1063 	struct plimit *limp;
1064 
1065 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1066 	refcount_init(&limp->pl_refcnt, 1);
1067 	return (limp);
1068 }
1069 
1070 struct plimit *
1071 lim_hold(limp)
1072 	struct plimit *limp;
1073 {
1074 
1075 	refcount_acquire(&limp->pl_refcnt);
1076 	return (limp);
1077 }
1078 
1079 void
1080 lim_fork(struct proc *p1, struct proc *p2)
1081 {
1082 	p2->p_limit = lim_hold(p1->p_limit);
1083 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1084 	if (p1->p_cpulimit != RLIM_INFINITY)
1085 		callout_reset(&p2->p_limco, hz, lim_cb, p2);
1086 }
1087 
1088 void
1089 lim_free(limp)
1090 	struct plimit *limp;
1091 {
1092 
1093 	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
1094 	if (refcount_release(&limp->pl_refcnt))
1095 		free((void *)limp, M_PLIMIT);
1096 }
1097 
1098 /*
1099  * Make a copy of the plimit structure.
1100  * We share these structures copy-on-write after fork.
1101  */
1102 void
1103 lim_copy(dst, src)
1104 	struct plimit *dst, *src;
1105 {
1106 
1107 	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
1108 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1109 }
1110 
1111 /*
1112  * Return the hard limit for a particular system resource.  The
1113  * which parameter specifies the index into the rlimit array.
1114  */
1115 rlim_t
1116 lim_max(struct proc *p, int which)
1117 {
1118 	struct rlimit rl;
1119 
1120 	lim_rlimit(p, which, &rl);
1121 	return (rl.rlim_max);
1122 }
1123 
1124 /*
1125  * Return the current (soft) limit for a particular system resource.
1126  * The which parameter which specifies the index into the rlimit array
1127  */
1128 rlim_t
1129 lim_cur(struct proc *p, int which)
1130 {
1131 	struct rlimit rl;
1132 
1133 	lim_rlimit(p, which, &rl);
1134 	return (rl.rlim_cur);
1135 }
1136 
1137 /*
1138  * Return a copy of the entire rlimit structure for the system limit
1139  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1140  */
1141 void
1142 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
1143 {
1144 
1145 	PROC_LOCK_ASSERT(p, MA_OWNED);
1146 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1147 	    ("request for invalid resource limit"));
1148 	*rlp = p->p_limit->pl_rlimit[which];
1149 	if (p->p_sysent->sv_fixlimit != NULL)
1150 		p->p_sysent->sv_fixlimit(rlp, which);
1151 }
1152 
1153 /*
1154  * Find the uidinfo structure for a uid.  This structure is used to
1155  * track the total resource consumption (process count, socket buffer
1156  * size, etc.) for the uid and impose limits.
1157  */
1158 void
1159 uihashinit()
1160 {
1161 
1162 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1163 	rw_init(&uihashtbl_lock, "uidinfo hash");
1164 }
1165 
1166 /*
1167  * Look up a uidinfo struct for the parameter uid.
1168  * uihashtbl_lock must be locked.
1169  */
1170 static struct uidinfo *
1171 uilookup(uid)
1172 	uid_t uid;
1173 {
1174 	struct uihashhead *uipp;
1175 	struct uidinfo *uip;
1176 
1177 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1178 	uipp = UIHASH(uid);
1179 	LIST_FOREACH(uip, uipp, ui_hash)
1180 		if (uip->ui_uid == uid)
1181 			break;
1182 
1183 	return (uip);
1184 }
1185 
1186 /*
1187  * Find or allocate a struct uidinfo for a particular uid.
1188  * Increase refcount on uidinfo struct returned.
1189  * uifree() should be called on a struct uidinfo when released.
1190  */
1191 struct uidinfo *
1192 uifind(uid)
1193 	uid_t uid;
1194 {
1195 	struct uidinfo *old_uip, *uip;
1196 
1197 	rw_rlock(&uihashtbl_lock);
1198 	uip = uilookup(uid);
1199 	if (uip == NULL) {
1200 		rw_runlock(&uihashtbl_lock);
1201 		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1202 		rw_wlock(&uihashtbl_lock);
1203 		/*
1204 		 * There's a chance someone created our uidinfo while we
1205 		 * were in malloc and not holding the lock, so we have to
1206 		 * make sure we don't insert a duplicate uidinfo.
1207 		 */
1208 		if ((old_uip = uilookup(uid)) != NULL) {
1209 			/* Someone else beat us to it. */
1210 			free(uip, M_UIDINFO);
1211 			uip = old_uip;
1212 		} else {
1213 			refcount_init(&uip->ui_ref, 0);
1214 			uip->ui_uid = uid;
1215 			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1216 		}
1217 	}
1218 	uihold(uip);
1219 	rw_unlock(&uihashtbl_lock);
1220 	return (uip);
1221 }
1222 
1223 /*
1224  * Place another refcount on a uidinfo struct.
1225  */
1226 void
1227 uihold(uip)
1228 	struct uidinfo *uip;
1229 {
1230 
1231 	refcount_acquire(&uip->ui_ref);
1232 }
1233 
1234 /*-
1235  * Since uidinfo structs have a long lifetime, we use an
1236  * opportunistic refcounting scheme to avoid locking the lookup hash
1237  * for each release.
1238  *
1239  * If the refcount hits 0, we need to free the structure,
1240  * which means we need to lock the hash.
1241  * Optimal case:
1242  *   After locking the struct and lowering the refcount, if we find
1243  *   that we don't need to free, simply unlock and return.
1244  * Suboptimal case:
1245  *   If refcount lowering results in need to free, bump the count
1246  *   back up, lose the lock and acquire the locks in the proper
1247  *   order to try again.
1248  */
1249 void
1250 uifree(uip)
1251 	struct uidinfo *uip;
1252 {
1253 	int old;
1254 
1255 	/* Prepare for optimal case. */
1256 	old = uip->ui_ref;
1257 	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1258 		return;
1259 
1260 	/* Prepare for suboptimal case. */
1261 	rw_wlock(&uihashtbl_lock);
1262 	if (refcount_release(&uip->ui_ref)) {
1263 		LIST_REMOVE(uip, ui_hash);
1264 		rw_wunlock(&uihashtbl_lock);
1265 		if (uip->ui_sbsize != 0)
1266 			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1267 			    uip->ui_uid, uip->ui_sbsize);
1268 		if (uip->ui_proccnt != 0)
1269 			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1270 			    uip->ui_uid, uip->ui_proccnt);
1271 		FREE(uip, M_UIDINFO);
1272 		return;
1273 	}
1274 	/*
1275 	 * Someone added a reference between atomic_cmpset_int() and
1276 	 * rw_wlock(&uihashtbl_lock).
1277 	 */
1278 	rw_wunlock(&uihashtbl_lock);
1279 }
1280 
1281 /*
1282  * Change the count associated with number of processes
1283  * a given user is using.  When 'max' is 0, don't enforce a limit
1284  */
1285 int
1286 chgproccnt(uip, diff, max)
1287 	struct	uidinfo	*uip;
1288 	int	diff;
1289 	rlim_t	max;
1290 {
1291 
1292 	/* Don't allow them to exceed max, but allow subtraction. */
1293 	if (diff > 0 && max != 0) {
1294 		if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
1295 			atomic_subtract_long(&uip->ui_proccnt, (long)diff);
1296 			return (0);
1297 		}
1298 	} else {
1299 		atomic_add_long(&uip->ui_proccnt, (long)diff);
1300 		if (uip->ui_proccnt < 0)
1301 			printf("negative proccnt for uid = %d\n", uip->ui_uid);
1302 	}
1303 	return (1);
1304 }
1305 
1306 /*
1307  * Change the total socket buffer size a user has used.
1308  */
1309 int
1310 chgsbsize(uip, hiwat, to, max)
1311 	struct	uidinfo	*uip;
1312 	u_int  *hiwat;
1313 	u_int	to;
1314 	rlim_t	max;
1315 {
1316 	int diff;
1317 
1318 	diff = to - *hiwat;
1319 	if (diff > 0) {
1320 		if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
1321 			atomic_subtract_long(&uip->ui_sbsize, (long)diff);
1322 			return (0);
1323 		}
1324 	} else {
1325 		atomic_add_long(&uip->ui_sbsize, (long)diff);
1326 		if (uip->ui_sbsize < 0)
1327 			printf("negative sbsize for uid = %d\n", uip->ui_uid);
1328 	}
1329 	*hiwat = to;
1330 	return (1);
1331 }
1332