xref: /freebsd/sys/kern/kern_timeout.c (revision 4f52dfbb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_callout_profiling.h"
43 #include "opt_ddb.h"
44 #if defined(__arm__)
45 #include "opt_timer.h"
46 #endif
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bus.h>
52 #include <sys/callout.h>
53 #include <sys/file.h>
54 #include <sys/interrupt.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/sdt.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/sysctl.h>
64 #include <sys/smp.h>
65 
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #include <machine/_inttypes.h>
69 #endif
70 
71 #ifdef SMP
72 #include <machine/cpu.h>
73 #endif
74 
75 #ifndef NO_EVENTTIMERS
76 DPCPU_DECLARE(sbintime_t, hardclocktime);
77 #endif
78 
79 SDT_PROVIDER_DEFINE(callout_execute);
80 SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
81 SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
82 
83 #ifdef CALLOUT_PROFILING
84 static int avg_depth;
85 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
86     "Average number of items examined per softclock call. Units = 1/1000");
87 static int avg_gcalls;
88 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
89     "Average number of Giant callouts made per softclock call. Units = 1/1000");
90 static int avg_lockcalls;
91 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
92     "Average number of lock callouts made per softclock call. Units = 1/1000");
93 static int avg_mpcalls;
94 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
95     "Average number of MP callouts made per softclock call. Units = 1/1000");
96 static int avg_depth_dir;
97 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
98     "Average number of direct callouts examined per callout_process call. "
99     "Units = 1/1000");
100 static int avg_lockcalls_dir;
101 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
102     &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
103     "callout_process call. Units = 1/1000");
104 static int avg_mpcalls_dir;
105 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
106     0, "Average number of MP direct callouts made per callout_process call. "
107     "Units = 1/1000");
108 #endif
109 
110 static int ncallout;
111 SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
112     "Number of entries in callwheel and size of timeout() preallocation");
113 
114 #ifdef	RSS
115 static int pin_default_swi = 1;
116 static int pin_pcpu_swi = 1;
117 #else
118 static int pin_default_swi = 0;
119 static int pin_pcpu_swi = 0;
120 #endif
121 
122 SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
123     0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
124 SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
125     0, "Pin the per-CPU swis (except PCPU 0, which is also default");
126 
127 /*
128  * TODO:
129  *	allocate more timeout table slots when table overflows.
130  */
131 u_int callwheelsize, callwheelmask;
132 
133 /*
134  * The callout cpu exec entities represent informations necessary for
135  * describing the state of callouts currently running on the CPU and the ones
136  * necessary for migrating callouts to the new callout cpu. In particular,
137  * the first entry of the array cc_exec_entity holds informations for callout
138  * running in SWI thread context, while the second one holds informations
139  * for callout running directly from hardware interrupt context.
140  * The cached informations are very important for deferring migration when
141  * the migrating callout is already running.
142  */
143 struct cc_exec {
144 	struct callout		*cc_curr;
145 	void			(*cc_drain)(void *);
146 #ifdef SMP
147 	void			(*ce_migration_func)(void *);
148 	void			*ce_migration_arg;
149 	int			ce_migration_cpu;
150 	sbintime_t		ce_migration_time;
151 	sbintime_t		ce_migration_prec;
152 #endif
153 	bool			cc_cancel;
154 	bool			cc_waiting;
155 };
156 
157 /*
158  * There is one struct callout_cpu per cpu, holding all relevant
159  * state for the callout processing thread on the individual CPU.
160  */
161 struct callout_cpu {
162 	struct mtx_padalign	cc_lock;
163 	struct cc_exec 		cc_exec_entity[2];
164 	struct callout		*cc_next;
165 	struct callout		*cc_callout;
166 	struct callout_list	*cc_callwheel;
167 	struct callout_tailq	cc_expireq;
168 	struct callout_slist	cc_callfree;
169 	sbintime_t		cc_firstevent;
170 	sbintime_t		cc_lastscan;
171 	void			*cc_cookie;
172 	u_int			cc_bucket;
173 	u_int			cc_inited;
174 	char			cc_ktr_event_name[20];
175 };
176 
177 #define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
178 
179 #define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
180 #define	cc_exec_drain(cc, dir)		cc->cc_exec_entity[dir].cc_drain
181 #define	cc_exec_next(cc)		cc->cc_next
182 #define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
183 #define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
184 #ifdef SMP
185 #define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
186 #define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
187 #define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
188 #define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
189 #define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
190 
191 struct callout_cpu cc_cpu[MAXCPU];
192 #define	CPUBLOCK	MAXCPU
193 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
194 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
195 #else
196 struct callout_cpu cc_cpu;
197 #define	CC_CPU(cpu)	&cc_cpu
198 #define	CC_SELF()	&cc_cpu
199 #endif
200 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
201 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
202 #define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
203 
204 static int timeout_cpu;
205 
206 static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
207 static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
208 #ifdef CALLOUT_PROFILING
209 		    int *mpcalls, int *lockcalls, int *gcalls,
210 #endif
211 		    int direct);
212 
213 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
214 
215 /**
216  * Locked by cc_lock:
217  *   cc_curr         - If a callout is in progress, it is cc_curr.
218  *                     If cc_curr is non-NULL, threads waiting in
219  *                     callout_drain() will be woken up as soon as the
220  *                     relevant callout completes.
221  *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
222  *                     guarantees that the current callout will not run.
223  *                     The softclock() function sets this to 0 before it
224  *                     drops callout_lock to acquire c_lock, and it calls
225  *                     the handler only if curr_cancelled is still 0 after
226  *                     cc_lock is successfully acquired.
227  *   cc_waiting      - If a thread is waiting in callout_drain(), then
228  *                     callout_wait is nonzero.  Set only when
229  *                     cc_curr is non-NULL.
230  */
231 
232 /*
233  * Resets the execution entity tied to a specific callout cpu.
234  */
235 static void
236 cc_cce_cleanup(struct callout_cpu *cc, int direct)
237 {
238 
239 	cc_exec_curr(cc, direct) = NULL;
240 	cc_exec_cancel(cc, direct) = false;
241 	cc_exec_waiting(cc, direct) = false;
242 #ifdef SMP
243 	cc_migration_cpu(cc, direct) = CPUBLOCK;
244 	cc_migration_time(cc, direct) = 0;
245 	cc_migration_prec(cc, direct) = 0;
246 	cc_migration_func(cc, direct) = NULL;
247 	cc_migration_arg(cc, direct) = NULL;
248 #endif
249 }
250 
251 /*
252  * Checks if migration is requested by a specific callout cpu.
253  */
254 static int
255 cc_cce_migrating(struct callout_cpu *cc, int direct)
256 {
257 
258 #ifdef SMP
259 	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
260 #else
261 	return (0);
262 #endif
263 }
264 
265 /*
266  * Kernel low level callwheel initialization
267  * called on the BSP during kernel startup.
268  */
269 static void
270 callout_callwheel_init(void *dummy)
271 {
272 	struct callout_cpu *cc;
273 
274 	/*
275 	 * Calculate the size of the callout wheel and the preallocated
276 	 * timeout() structures.
277 	 * XXX: Clip callout to result of previous function of maxusers
278 	 * maximum 384.  This is still huge, but acceptable.
279 	 */
280 	memset(CC_CPU(curcpu), 0, sizeof(cc_cpu));
281 	ncallout = imin(16 + maxproc + maxfiles, 18508);
282 	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
283 
284 	/*
285 	 * Calculate callout wheel size, should be next power of two higher
286 	 * than 'ncallout'.
287 	 */
288 	callwheelsize = 1 << fls(ncallout);
289 	callwheelmask = callwheelsize - 1;
290 
291 	/*
292 	 * Fetch whether we're pinning the swi's or not.
293 	 */
294 	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
295 	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
296 
297 	/*
298 	 * Only BSP handles timeout(9) and receives a preallocation.
299 	 *
300 	 * XXX: Once all timeout(9) consumers are converted this can
301 	 * be removed.
302 	 */
303 	timeout_cpu = PCPU_GET(cpuid);
304 	cc = CC_CPU(timeout_cpu);
305 	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
306 	    M_CALLOUT, M_WAITOK);
307 	callout_cpu_init(cc, timeout_cpu);
308 }
309 SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
310 
311 /*
312  * Initialize the per-cpu callout structures.
313  */
314 static void
315 callout_cpu_init(struct callout_cpu *cc, int cpu)
316 {
317 	struct callout *c;
318 	int i;
319 
320 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
321 	SLIST_INIT(&cc->cc_callfree);
322 	cc->cc_inited = 1;
323 	cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
324 	    M_CALLOUT, M_WAITOK);
325 	for (i = 0; i < callwheelsize; i++)
326 		LIST_INIT(&cc->cc_callwheel[i]);
327 	TAILQ_INIT(&cc->cc_expireq);
328 	cc->cc_firstevent = SBT_MAX;
329 	for (i = 0; i < 2; i++)
330 		cc_cce_cleanup(cc, i);
331 	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
332 	    "callwheel cpu %d", cpu);
333 	if (cc->cc_callout == NULL)	/* Only BSP handles timeout(9) */
334 		return;
335 	for (i = 0; i < ncallout; i++) {
336 		c = &cc->cc_callout[i];
337 		callout_init(c, 0);
338 		c->c_iflags = CALLOUT_LOCAL_ALLOC;
339 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
340 	}
341 }
342 
343 #ifdef SMP
344 /*
345  * Switches the cpu tied to a specific callout.
346  * The function expects a locked incoming callout cpu and returns with
347  * locked outcoming callout cpu.
348  */
349 static struct callout_cpu *
350 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
351 {
352 	struct callout_cpu *new_cc;
353 
354 	MPASS(c != NULL && cc != NULL);
355 	CC_LOCK_ASSERT(cc);
356 
357 	/*
358 	 * Avoid interrupts and preemption firing after the callout cpu
359 	 * is blocked in order to avoid deadlocks as the new thread
360 	 * may be willing to acquire the callout cpu lock.
361 	 */
362 	c->c_cpu = CPUBLOCK;
363 	spinlock_enter();
364 	CC_UNLOCK(cc);
365 	new_cc = CC_CPU(new_cpu);
366 	CC_LOCK(new_cc);
367 	spinlock_exit();
368 	c->c_cpu = new_cpu;
369 	return (new_cc);
370 }
371 #endif
372 
373 /*
374  * Start standard softclock thread.
375  */
376 static void
377 start_softclock(void *dummy)
378 {
379 	struct callout_cpu *cc;
380 	char name[MAXCOMLEN];
381 #ifdef SMP
382 	int cpu;
383 	struct intr_event *ie;
384 #endif
385 
386 	cc = CC_CPU(timeout_cpu);
387 	snprintf(name, sizeof(name), "clock (%d)", timeout_cpu);
388 	if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK,
389 	    INTR_MPSAFE, &cc->cc_cookie))
390 		panic("died while creating standard software ithreads");
391 	if (pin_default_swi &&
392 	    (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) {
393 		printf("%s: timeout clock couldn't be pinned to cpu %d\n",
394 		    __func__,
395 		    timeout_cpu);
396 	}
397 
398 #ifdef SMP
399 	CPU_FOREACH(cpu) {
400 		if (cpu == timeout_cpu)
401 			continue;
402 		cc = CC_CPU(cpu);
403 		cc->cc_callout = NULL;	/* Only BSP handles timeout(9). */
404 		callout_cpu_init(cc, cpu);
405 		snprintf(name, sizeof(name), "clock (%d)", cpu);
406 		ie = NULL;
407 		if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
408 		    INTR_MPSAFE, &cc->cc_cookie))
409 			panic("died while creating standard software ithreads");
410 		if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) {
411 			printf("%s: per-cpu clock couldn't be pinned to "
412 			    "cpu %d\n",
413 			    __func__,
414 			    cpu);
415 		}
416 	}
417 #endif
418 }
419 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
420 
421 #define	CC_HASH_SHIFT	8
422 
423 static inline u_int
424 callout_hash(sbintime_t sbt)
425 {
426 
427 	return (sbt >> (32 - CC_HASH_SHIFT));
428 }
429 
430 static inline u_int
431 callout_get_bucket(sbintime_t sbt)
432 {
433 
434 	return (callout_hash(sbt) & callwheelmask);
435 }
436 
437 void
438 callout_process(sbintime_t now)
439 {
440 	struct callout *tmp, *tmpn;
441 	struct callout_cpu *cc;
442 	struct callout_list *sc;
443 	sbintime_t first, last, max, tmp_max;
444 	uint32_t lookahead;
445 	u_int firstb, lastb, nowb;
446 #ifdef CALLOUT_PROFILING
447 	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
448 #endif
449 
450 	cc = CC_SELF();
451 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
452 
453 	/* Compute the buckets of the last scan and present times. */
454 	firstb = callout_hash(cc->cc_lastscan);
455 	cc->cc_lastscan = now;
456 	nowb = callout_hash(now);
457 
458 	/* Compute the last bucket and minimum time of the bucket after it. */
459 	if (nowb == firstb)
460 		lookahead = (SBT_1S / 16);
461 	else if (nowb - firstb == 1)
462 		lookahead = (SBT_1S / 8);
463 	else
464 		lookahead = (SBT_1S / 2);
465 	first = last = now;
466 	first += (lookahead / 2);
467 	last += lookahead;
468 	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
469 	lastb = callout_hash(last) - 1;
470 	max = last;
471 
472 	/*
473 	 * Check if we wrapped around the entire wheel from the last scan.
474 	 * In case, we need to scan entirely the wheel for pending callouts.
475 	 */
476 	if (lastb - firstb >= callwheelsize) {
477 		lastb = firstb + callwheelsize - 1;
478 		if (nowb - firstb >= callwheelsize)
479 			nowb = lastb;
480 	}
481 
482 	/* Iterate callwheel from firstb to nowb and then up to lastb. */
483 	do {
484 		sc = &cc->cc_callwheel[firstb & callwheelmask];
485 		tmp = LIST_FIRST(sc);
486 		while (tmp != NULL) {
487 			/* Run the callout if present time within allowed. */
488 			if (tmp->c_time <= now) {
489 				/*
490 				 * Consumer told us the callout may be run
491 				 * directly from hardware interrupt context.
492 				 */
493 				if (tmp->c_iflags & CALLOUT_DIRECT) {
494 #ifdef CALLOUT_PROFILING
495 					++depth_dir;
496 #endif
497 					cc_exec_next(cc) =
498 					    LIST_NEXT(tmp, c_links.le);
499 					cc->cc_bucket = firstb & callwheelmask;
500 					LIST_REMOVE(tmp, c_links.le);
501 					softclock_call_cc(tmp, cc,
502 #ifdef CALLOUT_PROFILING
503 					    &mpcalls_dir, &lockcalls_dir, NULL,
504 #endif
505 					    1);
506 					tmp = cc_exec_next(cc);
507 					cc_exec_next(cc) = NULL;
508 				} else {
509 					tmpn = LIST_NEXT(tmp, c_links.le);
510 					LIST_REMOVE(tmp, c_links.le);
511 					TAILQ_INSERT_TAIL(&cc->cc_expireq,
512 					    tmp, c_links.tqe);
513 					tmp->c_iflags |= CALLOUT_PROCESSED;
514 					tmp = tmpn;
515 				}
516 				continue;
517 			}
518 			/* Skip events from distant future. */
519 			if (tmp->c_time >= max)
520 				goto next;
521 			/*
522 			 * Event minimal time is bigger than present maximal
523 			 * time, so it cannot be aggregated.
524 			 */
525 			if (tmp->c_time > last) {
526 				lastb = nowb;
527 				goto next;
528 			}
529 			/* Update first and last time, respecting this event. */
530 			if (tmp->c_time < first)
531 				first = tmp->c_time;
532 			tmp_max = tmp->c_time + tmp->c_precision;
533 			if (tmp_max < last)
534 				last = tmp_max;
535 next:
536 			tmp = LIST_NEXT(tmp, c_links.le);
537 		}
538 		/* Proceed with the next bucket. */
539 		firstb++;
540 		/*
541 		 * Stop if we looked after present time and found
542 		 * some event we can't execute at now.
543 		 * Stop if we looked far enough into the future.
544 		 */
545 	} while (((int)(firstb - lastb)) <= 0);
546 	cc->cc_firstevent = last;
547 #ifndef NO_EVENTTIMERS
548 	cpu_new_callout(curcpu, last, first);
549 #endif
550 #ifdef CALLOUT_PROFILING
551 	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
552 	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
553 	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
554 #endif
555 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
556 	/*
557 	 * swi_sched acquires the thread lock, so we don't want to call it
558 	 * with cc_lock held; incorrect locking order.
559 	 */
560 	if (!TAILQ_EMPTY(&cc->cc_expireq))
561 		swi_sched(cc->cc_cookie, 0);
562 }
563 
564 static struct callout_cpu *
565 callout_lock(struct callout *c)
566 {
567 	struct callout_cpu *cc;
568 	int cpu;
569 
570 	for (;;) {
571 		cpu = c->c_cpu;
572 #ifdef SMP
573 		if (cpu == CPUBLOCK) {
574 			while (c->c_cpu == CPUBLOCK)
575 				cpu_spinwait();
576 			continue;
577 		}
578 #endif
579 		cc = CC_CPU(cpu);
580 		CC_LOCK(cc);
581 		if (cpu == c->c_cpu)
582 			break;
583 		CC_UNLOCK(cc);
584 	}
585 	return (cc);
586 }
587 
588 static void
589 callout_cc_add(struct callout *c, struct callout_cpu *cc,
590     sbintime_t sbt, sbintime_t precision, void (*func)(void *),
591     void *arg, int cpu, int flags)
592 {
593 	int bucket;
594 
595 	CC_LOCK_ASSERT(cc);
596 	if (sbt < cc->cc_lastscan)
597 		sbt = cc->cc_lastscan;
598 	c->c_arg = arg;
599 	c->c_iflags |= CALLOUT_PENDING;
600 	c->c_iflags &= ~CALLOUT_PROCESSED;
601 	c->c_flags |= CALLOUT_ACTIVE;
602 	if (flags & C_DIRECT_EXEC)
603 		c->c_iflags |= CALLOUT_DIRECT;
604 	c->c_func = func;
605 	c->c_time = sbt;
606 	c->c_precision = precision;
607 	bucket = callout_get_bucket(c->c_time);
608 	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
609 	    c, (int)(c->c_precision >> 32),
610 	    (u_int)(c->c_precision & 0xffffffff));
611 	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
612 	if (cc->cc_bucket == bucket)
613 		cc_exec_next(cc) = c;
614 #ifndef NO_EVENTTIMERS
615 	/*
616 	 * Inform the eventtimers(4) subsystem there's a new callout
617 	 * that has been inserted, but only if really required.
618 	 */
619 	if (SBT_MAX - c->c_time < c->c_precision)
620 		c->c_precision = SBT_MAX - c->c_time;
621 	sbt = c->c_time + c->c_precision;
622 	if (sbt < cc->cc_firstevent) {
623 		cc->cc_firstevent = sbt;
624 		cpu_new_callout(cpu, sbt, c->c_time);
625 	}
626 #endif
627 }
628 
629 static void
630 callout_cc_del(struct callout *c, struct callout_cpu *cc)
631 {
632 
633 	if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) == 0)
634 		return;
635 	c->c_func = NULL;
636 	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
637 }
638 
639 static void
640 softclock_call_cc(struct callout *c, struct callout_cpu *cc,
641 #ifdef CALLOUT_PROFILING
642     int *mpcalls, int *lockcalls, int *gcalls,
643 #endif
644     int direct)
645 {
646 	struct rm_priotracker tracker;
647 	void (*c_func)(void *);
648 	void *c_arg;
649 	struct lock_class *class;
650 	struct lock_object *c_lock;
651 	uintptr_t lock_status;
652 	int c_iflags;
653 #ifdef SMP
654 	struct callout_cpu *new_cc;
655 	void (*new_func)(void *);
656 	void *new_arg;
657 	int flags, new_cpu;
658 	sbintime_t new_prec, new_time;
659 #endif
660 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
661 	sbintime_t sbt1, sbt2;
662 	struct timespec ts2;
663 	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
664 	static timeout_t *lastfunc;
665 #endif
666 
667 	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
668 	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
669 	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
670 	    ("softclock_call_cc: act %p %x", c, c->c_flags));
671 	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
672 	lock_status = 0;
673 	if (c->c_flags & CALLOUT_SHAREDLOCK) {
674 		if (class == &lock_class_rm)
675 			lock_status = (uintptr_t)&tracker;
676 		else
677 			lock_status = 1;
678 	}
679 	c_lock = c->c_lock;
680 	c_func = c->c_func;
681 	c_arg = c->c_arg;
682 	c_iflags = c->c_iflags;
683 	if (c->c_iflags & CALLOUT_LOCAL_ALLOC)
684 		c->c_iflags = CALLOUT_LOCAL_ALLOC;
685 	else
686 		c->c_iflags &= ~CALLOUT_PENDING;
687 
688 	cc_exec_curr(cc, direct) = c;
689 	cc_exec_cancel(cc, direct) = false;
690 	cc_exec_drain(cc, direct) = NULL;
691 	CC_UNLOCK(cc);
692 	if (c_lock != NULL) {
693 		class->lc_lock(c_lock, lock_status);
694 		/*
695 		 * The callout may have been cancelled
696 		 * while we switched locks.
697 		 */
698 		if (cc_exec_cancel(cc, direct)) {
699 			class->lc_unlock(c_lock);
700 			goto skip;
701 		}
702 		/* The callout cannot be stopped now. */
703 		cc_exec_cancel(cc, direct) = true;
704 		if (c_lock == &Giant.lock_object) {
705 #ifdef CALLOUT_PROFILING
706 			(*gcalls)++;
707 #endif
708 			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
709 			    c, c_func, c_arg);
710 		} else {
711 #ifdef CALLOUT_PROFILING
712 			(*lockcalls)++;
713 #endif
714 			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
715 			    c, c_func, c_arg);
716 		}
717 	} else {
718 #ifdef CALLOUT_PROFILING
719 		(*mpcalls)++;
720 #endif
721 		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
722 		    c, c_func, c_arg);
723 	}
724 	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
725 	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
726 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
727 	sbt1 = sbinuptime();
728 #endif
729 	THREAD_NO_SLEEPING();
730 	SDT_PROBE1(callout_execute, , , callout__start, c);
731 	c_func(c_arg);
732 	SDT_PROBE1(callout_execute, , , callout__end, c);
733 	THREAD_SLEEPING_OK();
734 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
735 	sbt2 = sbinuptime();
736 	sbt2 -= sbt1;
737 	if (sbt2 > maxdt) {
738 		if (lastfunc != c_func || sbt2 > maxdt * 2) {
739 			ts2 = sbttots(sbt2);
740 			printf(
741 		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
742 			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
743 		}
744 		maxdt = sbt2;
745 		lastfunc = c_func;
746 	}
747 #endif
748 	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
749 	CTR1(KTR_CALLOUT, "callout %p finished", c);
750 	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
751 		class->lc_unlock(c_lock);
752 skip:
753 	CC_LOCK(cc);
754 	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
755 	cc_exec_curr(cc, direct) = NULL;
756 	if (cc_exec_drain(cc, direct)) {
757 		void (*drain)(void *);
758 
759 		drain = cc_exec_drain(cc, direct);
760 		cc_exec_drain(cc, direct) = NULL;
761 		CC_UNLOCK(cc);
762 		drain(c_arg);
763 		CC_LOCK(cc);
764 	}
765 	if (cc_exec_waiting(cc, direct)) {
766 		/*
767 		 * There is someone waiting for the
768 		 * callout to complete.
769 		 * If the callout was scheduled for
770 		 * migration just cancel it.
771 		 */
772 		if (cc_cce_migrating(cc, direct)) {
773 			cc_cce_cleanup(cc, direct);
774 
775 			/*
776 			 * It should be assert here that the callout is not
777 			 * destroyed but that is not easy.
778 			 */
779 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
780 		}
781 		cc_exec_waiting(cc, direct) = false;
782 		CC_UNLOCK(cc);
783 		wakeup(&cc_exec_waiting(cc, direct));
784 		CC_LOCK(cc);
785 	} else if (cc_cce_migrating(cc, direct)) {
786 		KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0,
787 		    ("Migrating legacy callout %p", c));
788 #ifdef SMP
789 		/*
790 		 * If the callout was scheduled for
791 		 * migration just perform it now.
792 		 */
793 		new_cpu = cc_migration_cpu(cc, direct);
794 		new_time = cc_migration_time(cc, direct);
795 		new_prec = cc_migration_prec(cc, direct);
796 		new_func = cc_migration_func(cc, direct);
797 		new_arg = cc_migration_arg(cc, direct);
798 		cc_cce_cleanup(cc, direct);
799 
800 		/*
801 		 * It should be assert here that the callout is not destroyed
802 		 * but that is not easy.
803 		 *
804 		 * As first thing, handle deferred callout stops.
805 		 */
806 		if (!callout_migrating(c)) {
807 			CTR3(KTR_CALLOUT,
808 			     "deferred cancelled %p func %p arg %p",
809 			     c, new_func, new_arg);
810 			callout_cc_del(c, cc);
811 			return;
812 		}
813 		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
814 
815 		new_cc = callout_cpu_switch(c, cc, new_cpu);
816 		flags = (direct) ? C_DIRECT_EXEC : 0;
817 		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
818 		    new_arg, new_cpu, flags);
819 		CC_UNLOCK(new_cc);
820 		CC_LOCK(cc);
821 #else
822 		panic("migration should not happen");
823 #endif
824 	}
825 	/*
826 	 * If the current callout is locally allocated (from
827 	 * timeout(9)) then put it on the freelist.
828 	 *
829 	 * Note: we need to check the cached copy of c_iflags because
830 	 * if it was not local, then it's not safe to deref the
831 	 * callout pointer.
832 	 */
833 	KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0 ||
834 	    c->c_iflags == CALLOUT_LOCAL_ALLOC,
835 	    ("corrupted callout"));
836 	if (c_iflags & CALLOUT_LOCAL_ALLOC)
837 		callout_cc_del(c, cc);
838 }
839 
840 /*
841  * The callout mechanism is based on the work of Adam M. Costello and
842  * George Varghese, published in a technical report entitled "Redesigning
843  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
844  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
845  * used in this implementation was published by G. Varghese and T. Lauck in
846  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
847  * the Efficient Implementation of a Timer Facility" in the Proceedings of
848  * the 11th ACM Annual Symposium on Operating Systems Principles,
849  * Austin, Texas Nov 1987.
850  */
851 
852 /*
853  * Software (low priority) clock interrupt.
854  * Run periodic events from timeout queue.
855  */
856 void
857 softclock(void *arg)
858 {
859 	struct callout_cpu *cc;
860 	struct callout *c;
861 #ifdef CALLOUT_PROFILING
862 	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
863 #endif
864 
865 	cc = (struct callout_cpu *)arg;
866 	CC_LOCK(cc);
867 	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
868 		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
869 		softclock_call_cc(c, cc,
870 #ifdef CALLOUT_PROFILING
871 		    &mpcalls, &lockcalls, &gcalls,
872 #endif
873 		    0);
874 #ifdef CALLOUT_PROFILING
875 		++depth;
876 #endif
877 	}
878 #ifdef CALLOUT_PROFILING
879 	avg_depth += (depth * 1000 - avg_depth) >> 8;
880 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
881 	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
882 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
883 #endif
884 	CC_UNLOCK(cc);
885 }
886 
887 /*
888  * timeout --
889  *	Execute a function after a specified length of time.
890  *
891  * untimeout --
892  *	Cancel previous timeout function call.
893  *
894  * callout_handle_init --
895  *	Initialize a handle so that using it with untimeout is benign.
896  *
897  *	See AT&T BCI Driver Reference Manual for specification.  This
898  *	implementation differs from that one in that although an
899  *	identification value is returned from timeout, the original
900  *	arguments to timeout as well as the identifier are used to
901  *	identify entries for untimeout.
902  */
903 struct callout_handle
904 timeout(timeout_t *ftn, void *arg, int to_ticks)
905 {
906 	struct callout_cpu *cc;
907 	struct callout *new;
908 	struct callout_handle handle;
909 
910 	cc = CC_CPU(timeout_cpu);
911 	CC_LOCK(cc);
912 	/* Fill in the next free callout structure. */
913 	new = SLIST_FIRST(&cc->cc_callfree);
914 	if (new == NULL)
915 		/* XXX Attempt to malloc first */
916 		panic("timeout table full");
917 	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
918 	callout_reset(new, to_ticks, ftn, arg);
919 	handle.callout = new;
920 	CC_UNLOCK(cc);
921 
922 	return (handle);
923 }
924 
925 void
926 untimeout(timeout_t *ftn, void *arg, struct callout_handle handle)
927 {
928 	struct callout_cpu *cc;
929 
930 	/*
931 	 * Check for a handle that was initialized
932 	 * by callout_handle_init, but never used
933 	 * for a real timeout.
934 	 */
935 	if (handle.callout == NULL)
936 		return;
937 
938 	cc = callout_lock(handle.callout);
939 	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
940 		callout_stop(handle.callout);
941 	CC_UNLOCK(cc);
942 }
943 
944 void
945 callout_handle_init(struct callout_handle *handle)
946 {
947 	handle->callout = NULL;
948 }
949 
950 void
951 callout_when(sbintime_t sbt, sbintime_t precision, int flags,
952     sbintime_t *res, sbintime_t *prec_res)
953 {
954 	sbintime_t to_sbt, to_pr;
955 
956 	if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
957 		*res = sbt;
958 		*prec_res = precision;
959 		return;
960 	}
961 	if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
962 		sbt = tick_sbt;
963 	if ((flags & C_HARDCLOCK) != 0 ||
964 #ifdef NO_EVENTTIMERS
965 	    sbt >= sbt_timethreshold) {
966 		to_sbt = getsbinuptime();
967 
968 		/* Add safety belt for the case of hz > 1000. */
969 		to_sbt += tc_tick_sbt - tick_sbt;
970 #else
971 	    sbt >= sbt_tickthreshold) {
972 		/*
973 		 * Obtain the time of the last hardclock() call on
974 		 * this CPU directly from the kern_clocksource.c.
975 		 * This value is per-CPU, but it is equal for all
976 		 * active ones.
977 		 */
978 #ifdef __LP64__
979 		to_sbt = DPCPU_GET(hardclocktime);
980 #else
981 		spinlock_enter();
982 		to_sbt = DPCPU_GET(hardclocktime);
983 		spinlock_exit();
984 #endif
985 #endif
986 		if (cold && to_sbt == 0)
987 			to_sbt = sbinuptime();
988 		if ((flags & C_HARDCLOCK) == 0)
989 			to_sbt += tick_sbt;
990 	} else
991 		to_sbt = sbinuptime();
992 	if (SBT_MAX - to_sbt < sbt)
993 		to_sbt = SBT_MAX;
994 	else
995 		to_sbt += sbt;
996 	*res = to_sbt;
997 	to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
998 	    sbt >> C_PRELGET(flags));
999 	*prec_res = to_pr > precision ? to_pr : precision;
1000 }
1001 
1002 /*
1003  * New interface; clients allocate their own callout structures.
1004  *
1005  * callout_reset() - establish or change a timeout
1006  * callout_stop() - disestablish a timeout
1007  * callout_init() - initialize a callout structure so that it can
1008  *	safely be passed to callout_reset() and callout_stop()
1009  *
1010  * <sys/callout.h> defines three convenience macros:
1011  *
1012  * callout_active() - returns truth if callout has not been stopped,
1013  *	drained, or deactivated since the last time the callout was
1014  *	reset.
1015  * callout_pending() - returns truth if callout is still waiting for timeout
1016  * callout_deactivate() - marks the callout as having been serviced
1017  */
1018 int
1019 callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
1020     void (*ftn)(void *), void *arg, int cpu, int flags)
1021 {
1022 	sbintime_t to_sbt, precision;
1023 	struct callout_cpu *cc;
1024 	int cancelled, direct;
1025 	int ignore_cpu=0;
1026 
1027 	cancelled = 0;
1028 	if (cpu == -1) {
1029 		ignore_cpu = 1;
1030 	} else if ((cpu >= MAXCPU) ||
1031 		   ((CC_CPU(cpu))->cc_inited == 0)) {
1032 		/* Invalid CPU spec */
1033 		panic("Invalid CPU in callout %d", cpu);
1034 	}
1035 	callout_when(sbt, prec, flags, &to_sbt, &precision);
1036 
1037 	/*
1038 	 * This flag used to be added by callout_cc_add, but the
1039 	 * first time you call this we could end up with the
1040 	 * wrong direct flag if we don't do it before we add.
1041 	 */
1042 	if (flags & C_DIRECT_EXEC) {
1043 		direct = 1;
1044 	} else {
1045 		direct = 0;
1046 	}
1047 	KASSERT(!direct || c->c_lock == NULL,
1048 	    ("%s: direct callout %p has lock", __func__, c));
1049 	cc = callout_lock(c);
1050 	/*
1051 	 * Don't allow migration of pre-allocated callouts lest they
1052 	 * become unbalanced or handle the case where the user does
1053 	 * not care.
1054 	 */
1055 	if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) ||
1056 	    ignore_cpu) {
1057 		cpu = c->c_cpu;
1058 	}
1059 
1060 	if (cc_exec_curr(cc, direct) == c) {
1061 		/*
1062 		 * We're being asked to reschedule a callout which is
1063 		 * currently in progress.  If there is a lock then we
1064 		 * can cancel the callout if it has not really started.
1065 		 */
1066 		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
1067 			cancelled = cc_exec_cancel(cc, direct) = true;
1068 		if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
1069 			/*
1070 			 * Someone has called callout_drain to kill this
1071 			 * callout.  Don't reschedule.
1072 			 */
1073 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
1074 			    cancelled ? "cancelled" : "failed to cancel",
1075 			    c, c->c_func, c->c_arg);
1076 			CC_UNLOCK(cc);
1077 			return (cancelled);
1078 		}
1079 #ifdef SMP
1080 		if (callout_migrating(c)) {
1081 			/*
1082 			 * This only occurs when a second callout_reset_sbt_on
1083 			 * is made after a previous one moved it into
1084 			 * deferred migration (below). Note we do *not* change
1085 			 * the prev_cpu even though the previous target may
1086 			 * be different.
1087 			 */
1088 			cc_migration_cpu(cc, direct) = cpu;
1089 			cc_migration_time(cc, direct) = to_sbt;
1090 			cc_migration_prec(cc, direct) = precision;
1091 			cc_migration_func(cc, direct) = ftn;
1092 			cc_migration_arg(cc, direct) = arg;
1093 			cancelled = 1;
1094 			CC_UNLOCK(cc);
1095 			return (cancelled);
1096 		}
1097 #endif
1098 	}
1099 	if (c->c_iflags & CALLOUT_PENDING) {
1100 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1101 			if (cc_exec_next(cc) == c)
1102 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1103 			LIST_REMOVE(c, c_links.le);
1104 		} else {
1105 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1106 		}
1107 		cancelled = 1;
1108 		c->c_iflags &= ~ CALLOUT_PENDING;
1109 		c->c_flags &= ~ CALLOUT_ACTIVE;
1110 	}
1111 
1112 #ifdef SMP
1113 	/*
1114 	 * If the callout must migrate try to perform it immediately.
1115 	 * If the callout is currently running, just defer the migration
1116 	 * to a more appropriate moment.
1117 	 */
1118 	if (c->c_cpu != cpu) {
1119 		if (cc_exec_curr(cc, direct) == c) {
1120 			/*
1121 			 * Pending will have been removed since we are
1122 			 * actually executing the callout on another
1123 			 * CPU. That callout should be waiting on the
1124 			 * lock the caller holds. If we set both
1125 			 * active/and/pending after we return and the
1126 			 * lock on the executing callout proceeds, it
1127 			 * will then see pending is true and return.
1128 			 * At the return from the actual callout execution
1129 			 * the migration will occur in softclock_call_cc
1130 			 * and this new callout will be placed on the
1131 			 * new CPU via a call to callout_cpu_switch() which
1132 			 * will get the lock on the right CPU followed
1133 			 * by a call callout_cc_add() which will add it there.
1134 			 * (see above in softclock_call_cc()).
1135 			 */
1136 			cc_migration_cpu(cc, direct) = cpu;
1137 			cc_migration_time(cc, direct) = to_sbt;
1138 			cc_migration_prec(cc, direct) = precision;
1139 			cc_migration_func(cc, direct) = ftn;
1140 			cc_migration_arg(cc, direct) = arg;
1141 			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1142 			c->c_flags |= CALLOUT_ACTIVE;
1143 			CTR6(KTR_CALLOUT,
1144 		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1145 			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1146 			    (u_int)(to_sbt & 0xffffffff), cpu);
1147 			CC_UNLOCK(cc);
1148 			return (cancelled);
1149 		}
1150 		cc = callout_cpu_switch(c, cc, cpu);
1151 	}
1152 #endif
1153 
1154 	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1155 	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1156 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1157 	    (u_int)(to_sbt & 0xffffffff));
1158 	CC_UNLOCK(cc);
1159 
1160 	return (cancelled);
1161 }
1162 
1163 /*
1164  * Common idioms that can be optimized in the future.
1165  */
1166 int
1167 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1168 {
1169 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1170 }
1171 
1172 int
1173 callout_schedule(struct callout *c, int to_ticks)
1174 {
1175 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1176 }
1177 
1178 int
1179 _callout_stop_safe(struct callout *c, int flags, void (*drain)(void *))
1180 {
1181 	struct callout_cpu *cc, *old_cc;
1182 	struct lock_class *class;
1183 	int direct, sq_locked, use_lock;
1184 	int cancelled, not_on_a_list;
1185 
1186 	if ((flags & CS_DRAIN) != 0)
1187 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1188 		    "calling %s", __func__);
1189 
1190 	/*
1191 	 * Some old subsystems don't hold Giant while running a callout_stop(),
1192 	 * so just discard this check for the moment.
1193 	 */
1194 	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1195 		if (c->c_lock == &Giant.lock_object)
1196 			use_lock = mtx_owned(&Giant);
1197 		else {
1198 			use_lock = 1;
1199 			class = LOCK_CLASS(c->c_lock);
1200 			class->lc_assert(c->c_lock, LA_XLOCKED);
1201 		}
1202 	} else
1203 		use_lock = 0;
1204 	if (c->c_iflags & CALLOUT_DIRECT) {
1205 		direct = 1;
1206 	} else {
1207 		direct = 0;
1208 	}
1209 	sq_locked = 0;
1210 	old_cc = NULL;
1211 again:
1212 	cc = callout_lock(c);
1213 
1214 	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1215 	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1216 	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1217 		/*
1218 		 * Special case where this slipped in while we
1219 		 * were migrating *as* the callout is about to
1220 		 * execute. The caller probably holds the lock
1221 		 * the callout wants.
1222 		 *
1223 		 * Get rid of the migration first. Then set
1224 		 * the flag that tells this code *not* to
1225 		 * try to remove it from any lists (its not
1226 		 * on one yet). When the callout wheel runs,
1227 		 * it will ignore this callout.
1228 		 */
1229 		c->c_iflags &= ~CALLOUT_PENDING;
1230 		c->c_flags &= ~CALLOUT_ACTIVE;
1231 		not_on_a_list = 1;
1232 	} else {
1233 		not_on_a_list = 0;
1234 	}
1235 
1236 	/*
1237 	 * If the callout was migrating while the callout cpu lock was
1238 	 * dropped,  just drop the sleepqueue lock and check the states
1239 	 * again.
1240 	 */
1241 	if (sq_locked != 0 && cc != old_cc) {
1242 #ifdef SMP
1243 		CC_UNLOCK(cc);
1244 		sleepq_release(&cc_exec_waiting(old_cc, direct));
1245 		sq_locked = 0;
1246 		old_cc = NULL;
1247 		goto again;
1248 #else
1249 		panic("migration should not happen");
1250 #endif
1251 	}
1252 
1253 	/*
1254 	 * If the callout is running, try to stop it or drain it.
1255 	 */
1256 	if (cc_exec_curr(cc, direct) == c) {
1257 		/*
1258 		 * Succeed we to stop it or not, we must clear the
1259 		 * active flag - this is what API users expect.  If we're
1260 		 * draining and the callout is currently executing, first wait
1261 		 * until it finishes.
1262 		 */
1263 		if ((flags & CS_DRAIN) == 0)
1264 			c->c_flags &= ~CALLOUT_ACTIVE;
1265 
1266 		if ((flags & CS_DRAIN) != 0) {
1267 			/*
1268 			 * The current callout is running (or just
1269 			 * about to run) and blocking is allowed, so
1270 			 * just wait for the current invocation to
1271 			 * finish.
1272 			 */
1273 			while (cc_exec_curr(cc, direct) == c) {
1274 				/*
1275 				 * Use direct calls to sleepqueue interface
1276 				 * instead of cv/msleep in order to avoid
1277 				 * a LOR between cc_lock and sleepqueue
1278 				 * chain spinlocks.  This piece of code
1279 				 * emulates a msleep_spin() call actually.
1280 				 *
1281 				 * If we already have the sleepqueue chain
1282 				 * locked, then we can safely block.  If we
1283 				 * don't already have it locked, however,
1284 				 * we have to drop the cc_lock to lock
1285 				 * it.  This opens several races, so we
1286 				 * restart at the beginning once we have
1287 				 * both locks.  If nothing has changed, then
1288 				 * we will end up back here with sq_locked
1289 				 * set.
1290 				 */
1291 				if (!sq_locked) {
1292 					CC_UNLOCK(cc);
1293 					sleepq_lock(
1294 					    &cc_exec_waiting(cc, direct));
1295 					sq_locked = 1;
1296 					old_cc = cc;
1297 					goto again;
1298 				}
1299 
1300 				/*
1301 				 * Migration could be cancelled here, but
1302 				 * as long as it is still not sure when it
1303 				 * will be packed up, just let softclock()
1304 				 * take care of it.
1305 				 */
1306 				cc_exec_waiting(cc, direct) = true;
1307 				DROP_GIANT();
1308 				CC_UNLOCK(cc);
1309 				sleepq_add(
1310 				    &cc_exec_waiting(cc, direct),
1311 				    &cc->cc_lock.lock_object, "codrain",
1312 				    SLEEPQ_SLEEP, 0);
1313 				sleepq_wait(
1314 				    &cc_exec_waiting(cc, direct),
1315 					     0);
1316 				sq_locked = 0;
1317 				old_cc = NULL;
1318 
1319 				/* Reacquire locks previously released. */
1320 				PICKUP_GIANT();
1321 				CC_LOCK(cc);
1322 			}
1323 			c->c_flags &= ~CALLOUT_ACTIVE;
1324 		} else if (use_lock &&
1325 			   !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1326 
1327 			/*
1328 			 * The current callout is waiting for its
1329 			 * lock which we hold.  Cancel the callout
1330 			 * and return.  After our caller drops the
1331 			 * lock, the callout will be skipped in
1332 			 * softclock(). This *only* works with a
1333 			 * callout_stop() *not* callout_drain() or
1334 			 * callout_async_drain().
1335 			 */
1336 			cc_exec_cancel(cc, direct) = true;
1337 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1338 			    c, c->c_func, c->c_arg);
1339 			KASSERT(!cc_cce_migrating(cc, direct),
1340 			    ("callout wrongly scheduled for migration"));
1341 			if (callout_migrating(c)) {
1342 				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1343 #ifdef SMP
1344 				cc_migration_cpu(cc, direct) = CPUBLOCK;
1345 				cc_migration_time(cc, direct) = 0;
1346 				cc_migration_prec(cc, direct) = 0;
1347 				cc_migration_func(cc, direct) = NULL;
1348 				cc_migration_arg(cc, direct) = NULL;
1349 #endif
1350 			}
1351 			CC_UNLOCK(cc);
1352 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1353 			return (1);
1354 		} else if (callout_migrating(c)) {
1355 			/*
1356 			 * The callout is currently being serviced
1357 			 * and the "next" callout is scheduled at
1358 			 * its completion with a migration. We remove
1359 			 * the migration flag so it *won't* get rescheduled,
1360 			 * but we can't stop the one thats running so
1361 			 * we return 0.
1362 			 */
1363 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1364 #ifdef SMP
1365 			/*
1366 			 * We can't call cc_cce_cleanup here since
1367 			 * if we do it will remove .ce_curr and
1368 			 * its still running. This will prevent a
1369 			 * reschedule of the callout when the
1370 			 * execution completes.
1371 			 */
1372 			cc_migration_cpu(cc, direct) = CPUBLOCK;
1373 			cc_migration_time(cc, direct) = 0;
1374 			cc_migration_prec(cc, direct) = 0;
1375 			cc_migration_func(cc, direct) = NULL;
1376 			cc_migration_arg(cc, direct) = NULL;
1377 #endif
1378 			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1379 			    c, c->c_func, c->c_arg);
1380  			if (drain) {
1381 				cc_exec_drain(cc, direct) = drain;
1382 			}
1383 			CC_UNLOCK(cc);
1384 			return ((flags & CS_EXECUTING) != 0);
1385 		}
1386 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1387 		    c, c->c_func, c->c_arg);
1388 		if (drain) {
1389 			cc_exec_drain(cc, direct) = drain;
1390 		}
1391 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1392 		cancelled = ((flags & CS_EXECUTING) != 0);
1393 	} else
1394 		cancelled = 1;
1395 
1396 	if (sq_locked)
1397 		sleepq_release(&cc_exec_waiting(cc, direct));
1398 
1399 	if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1400 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1401 		    c, c->c_func, c->c_arg);
1402 		/*
1403 		 * For not scheduled and not executing callout return
1404 		 * negative value.
1405 		 */
1406 		if (cc_exec_curr(cc, direct) != c)
1407 			cancelled = -1;
1408 		CC_UNLOCK(cc);
1409 		return (cancelled);
1410 	}
1411 
1412 	c->c_iflags &= ~CALLOUT_PENDING;
1413 	c->c_flags &= ~CALLOUT_ACTIVE;
1414 
1415 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1416 	    c, c->c_func, c->c_arg);
1417 	if (not_on_a_list == 0) {
1418 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1419 			if (cc_exec_next(cc) == c)
1420 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1421 			LIST_REMOVE(c, c_links.le);
1422 		} else {
1423 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1424 		}
1425 	}
1426 	callout_cc_del(c, cc);
1427 	CC_UNLOCK(cc);
1428 	return (cancelled);
1429 }
1430 
1431 void
1432 callout_init(struct callout *c, int mpsafe)
1433 {
1434 	bzero(c, sizeof *c);
1435 	if (mpsafe) {
1436 		c->c_lock = NULL;
1437 		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1438 	} else {
1439 		c->c_lock = &Giant.lock_object;
1440 		c->c_iflags = 0;
1441 	}
1442 	c->c_cpu = timeout_cpu;
1443 }
1444 
1445 void
1446 _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1447 {
1448 	bzero(c, sizeof *c);
1449 	c->c_lock = lock;
1450 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1451 	    ("callout_init_lock: bad flags %d", flags));
1452 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1453 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1454 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1455 	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1456 	    __func__));
1457 	c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1458 	c->c_cpu = timeout_cpu;
1459 }
1460 
1461 #ifdef APM_FIXUP_CALLTODO
1462 /*
1463  * Adjust the kernel calltodo timeout list.  This routine is used after
1464  * an APM resume to recalculate the calltodo timer list values with the
1465  * number of hz's we have been sleeping.  The next hardclock() will detect
1466  * that there are fired timers and run softclock() to execute them.
1467  *
1468  * Please note, I have not done an exhaustive analysis of what code this
1469  * might break.  I am motivated to have my select()'s and alarm()'s that
1470  * have expired during suspend firing upon resume so that the applications
1471  * which set the timer can do the maintanence the timer was for as close
1472  * as possible to the originally intended time.  Testing this code for a
1473  * week showed that resuming from a suspend resulted in 22 to 25 timers
1474  * firing, which seemed independent on whether the suspend was 2 hours or
1475  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1476  */
1477 void
1478 adjust_timeout_calltodo(struct timeval *time_change)
1479 {
1480 	struct callout *p;
1481 	unsigned long delta_ticks;
1482 
1483 	/*
1484 	 * How many ticks were we asleep?
1485 	 * (stolen from tvtohz()).
1486 	 */
1487 
1488 	/* Don't do anything */
1489 	if (time_change->tv_sec < 0)
1490 		return;
1491 	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1492 		delta_ticks = howmany(time_change->tv_sec * 1000000 +
1493 		    time_change->tv_usec, tick) + 1;
1494 	else if (time_change->tv_sec <= LONG_MAX / hz)
1495 		delta_ticks = time_change->tv_sec * hz +
1496 		    howmany(time_change->tv_usec, tick) + 1;
1497 	else
1498 		delta_ticks = LONG_MAX;
1499 
1500 	if (delta_ticks > INT_MAX)
1501 		delta_ticks = INT_MAX;
1502 
1503 	/*
1504 	 * Now rip through the timer calltodo list looking for timers
1505 	 * to expire.
1506 	 */
1507 
1508 	/* don't collide with softclock() */
1509 	CC_LOCK(cc);
1510 	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1511 		p->c_time -= delta_ticks;
1512 
1513 		/* Break if the timer had more time on it than delta_ticks */
1514 		if (p->c_time > 0)
1515 			break;
1516 
1517 		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1518 		delta_ticks = -p->c_time;
1519 	}
1520 	CC_UNLOCK(cc);
1521 
1522 	return;
1523 }
1524 #endif /* APM_FIXUP_CALLTODO */
1525 
1526 static int
1527 flssbt(sbintime_t sbt)
1528 {
1529 
1530 	sbt += (uint64_t)sbt >> 1;
1531 	if (sizeof(long) >= sizeof(sbintime_t))
1532 		return (flsl(sbt));
1533 	if (sbt >= SBT_1S)
1534 		return (flsl(((uint64_t)sbt) >> 32) + 32);
1535 	return (flsl(sbt));
1536 }
1537 
1538 /*
1539  * Dump immediate statistic snapshot of the scheduled callouts.
1540  */
1541 static int
1542 sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1543 {
1544 	struct callout *tmp;
1545 	struct callout_cpu *cc;
1546 	struct callout_list *sc;
1547 	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1548 	int ct[64], cpr[64], ccpbk[32];
1549 	int error, val, i, count, tcum, pcum, maxc, c, medc;
1550 #ifdef SMP
1551 	int cpu;
1552 #endif
1553 
1554 	val = 0;
1555 	error = sysctl_handle_int(oidp, &val, 0, req);
1556 	if (error != 0 || req->newptr == NULL)
1557 		return (error);
1558 	count = maxc = 0;
1559 	st = spr = maxt = maxpr = 0;
1560 	bzero(ccpbk, sizeof(ccpbk));
1561 	bzero(ct, sizeof(ct));
1562 	bzero(cpr, sizeof(cpr));
1563 	now = sbinuptime();
1564 #ifdef SMP
1565 	CPU_FOREACH(cpu) {
1566 		cc = CC_CPU(cpu);
1567 #else
1568 		cc = CC_CPU(timeout_cpu);
1569 #endif
1570 		CC_LOCK(cc);
1571 		for (i = 0; i < callwheelsize; i++) {
1572 			sc = &cc->cc_callwheel[i];
1573 			c = 0;
1574 			LIST_FOREACH(tmp, sc, c_links.le) {
1575 				c++;
1576 				t = tmp->c_time - now;
1577 				if (t < 0)
1578 					t = 0;
1579 				st += t / SBT_1US;
1580 				spr += tmp->c_precision / SBT_1US;
1581 				if (t > maxt)
1582 					maxt = t;
1583 				if (tmp->c_precision > maxpr)
1584 					maxpr = tmp->c_precision;
1585 				ct[flssbt(t)]++;
1586 				cpr[flssbt(tmp->c_precision)]++;
1587 			}
1588 			if (c > maxc)
1589 				maxc = c;
1590 			ccpbk[fls(c + c / 2)]++;
1591 			count += c;
1592 		}
1593 		CC_UNLOCK(cc);
1594 #ifdef SMP
1595 	}
1596 #endif
1597 
1598 	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1599 		tcum += ct[i];
1600 	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1601 	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1602 		pcum += cpr[i];
1603 	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1604 	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1605 		c += ccpbk[i];
1606 	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1607 
1608 	printf("Scheduled callouts statistic snapshot:\n");
1609 	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1610 	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1611 	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1612 	    medc,
1613 	    count / callwheelsize / mp_ncpus,
1614 	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1615 	    maxc);
1616 	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1617 	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1618 	    (st / count) / 1000000, (st / count) % 1000000,
1619 	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1620 	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1621 	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1622 	    (spr / count) / 1000000, (spr / count) % 1000000,
1623 	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1624 	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1625 	    "   prec\t   pcum\n");
1626 	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1627 		if (ct[i] == 0 && cpr[i] == 0)
1628 			continue;
1629 		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1630 		tcum += ct[i];
1631 		pcum += cpr[i];
1632 		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1633 		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1634 		    i - 1 - (32 - CC_HASH_SHIFT),
1635 		    ct[i], tcum, cpr[i], pcum);
1636 	}
1637 	return (error);
1638 }
1639 SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1640     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1641     0, 0, sysctl_kern_callout_stat, "I",
1642     "Dump immediate statistic snapshot of the scheduled callouts");
1643 
1644 #ifdef DDB
1645 static void
1646 _show_callout(struct callout *c)
1647 {
1648 
1649 	db_printf("callout %p\n", c);
1650 #define	C_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, c->e);
1651 	db_printf("   &c_links = %p\n", &(c->c_links));
1652 	C_DB_PRINTF("%" PRId64,	c_time);
1653 	C_DB_PRINTF("%" PRId64,	c_precision);
1654 	C_DB_PRINTF("%p",	c_arg);
1655 	C_DB_PRINTF("%p",	c_func);
1656 	C_DB_PRINTF("%p",	c_lock);
1657 	C_DB_PRINTF("%#x",	c_flags);
1658 	C_DB_PRINTF("%#x",	c_iflags);
1659 	C_DB_PRINTF("%d",	c_cpu);
1660 #undef	C_DB_PRINTF
1661 }
1662 
1663 DB_SHOW_COMMAND(callout, db_show_callout)
1664 {
1665 
1666 	if (!have_addr) {
1667 		db_printf("usage: show callout <struct callout *>\n");
1668 		return;
1669 	}
1670 
1671 	_show_callout((struct callout *)addr);
1672 }
1673 #endif /* DDB */
1674