xref: /freebsd/sys/kern/subr_bus.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/bus.h>
55 #include <sys/cpuset.h>
56 
57 #include <net/vnet.h>
58 
59 #include <machine/cpu.h>
60 #include <machine/stdarg.h>
61 
62 #include <vm/uma.h>
63 #include <vm/vm.h>
64 
65 #include <ddb/ddb.h>
66 
67 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68     NULL);
69 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
70     NULL);
71 
72 /*
73  * Used to attach drivers to devclasses.
74  */
75 typedef struct driverlink *driverlink_t;
76 struct driverlink {
77 	kobj_class_t	driver;
78 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
79 	int		pass;
80 	int		flags;
81 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
82 	TAILQ_ENTRY(driverlink) passlink;
83 };
84 
85 /*
86  * Forward declarations
87  */
88 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
89 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
90 typedef TAILQ_HEAD(device_list, _device) device_list_t;
91 
92 struct devclass {
93 	TAILQ_ENTRY(devclass) link;
94 	devclass_t	parent;		/* parent in devclass hierarchy */
95 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
96 	char		*name;
97 	device_t	*devices;	/* array of devices indexed by unit */
98 	int		maxunit;	/* size of devices array */
99 	int		flags;
100 #define DC_HAS_CHILDREN		1
101 
102 	struct sysctl_ctx_list sysctl_ctx;
103 	struct sysctl_oid *sysctl_tree;
104 };
105 
106 /**
107  * @brief Implementation of _device.
108  *
109  * The structure is named "_device" instead of "device" to avoid type confusion
110  * caused by other subsystems defining a (struct device).
111  */
112 struct _device {
113 	/*
114 	 * A device is a kernel object. The first field must be the
115 	 * current ops table for the object.
116 	 */
117 	KOBJ_FIELDS;
118 
119 	/*
120 	 * Device hierarchy.
121 	 */
122 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
123 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
124 	device_t	parent;		/**< parent of this device  */
125 	device_list_t	children;	/**< list of child devices */
126 
127 	/*
128 	 * Details of this device.
129 	 */
130 	driver_t	*driver;	/**< current driver */
131 	devclass_t	devclass;	/**< current device class */
132 	int		unit;		/**< current unit number */
133 	char*		nameunit;	/**< name+unit e.g. foodev0 */
134 	char*		desc;		/**< driver specific description */
135 	u_int		busy;		/**< count of calls to device_busy() */
136 	device_state_t	state;		/**< current device state  */
137 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
138 	u_int		flags;		/**< internal device flags  */
139 	u_int	order;			/**< order from device_add_child_ordered() */
140 	void	*ivars;			/**< instance variables  */
141 	void	*softc;			/**< current driver's variables  */
142 
143 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
144 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
145 };
146 
147 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
148 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
149 
150 EVENTHANDLER_LIST_DEFINE(device_attach);
151 EVENTHANDLER_LIST_DEFINE(device_detach);
152 EVENTHANDLER_LIST_DEFINE(device_nomatch);
153 EVENTHANDLER_LIST_DEFINE(dev_lookup);
154 
155 static void devctl2_init(void);
156 static bool device_frozen;
157 
158 #define DRIVERNAME(d)	((d)? d->name : "no driver")
159 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
160 
161 #ifdef BUS_DEBUG
162 
163 static int bus_debug = 1;
164 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
165     "Bus debug level");
166 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
167 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
168 
169 /**
170  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
171  * prevent syslog from deleting initial spaces
172  */
173 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
174 
175 static void print_device_short(device_t dev, int indent);
176 static void print_device(device_t dev, int indent);
177 void print_device_tree_short(device_t dev, int indent);
178 void print_device_tree(device_t dev, int indent);
179 static void print_driver_short(driver_t *driver, int indent);
180 static void print_driver(driver_t *driver, int indent);
181 static void print_driver_list(driver_list_t drivers, int indent);
182 static void print_devclass_short(devclass_t dc, int indent);
183 static void print_devclass(devclass_t dc, int indent);
184 void print_devclass_list_short(void);
185 void print_devclass_list(void);
186 
187 #else
188 /* Make the compiler ignore the function calls */
189 #define PDEBUG(a)			/* nop */
190 #define DEVICENAME(d)			/* nop */
191 
192 #define print_device_short(d,i)		/* nop */
193 #define print_device(d,i)		/* nop */
194 #define print_device_tree_short(d,i)	/* nop */
195 #define print_device_tree(d,i)		/* nop */
196 #define print_driver_short(d,i)		/* nop */
197 #define print_driver(d,i)		/* nop */
198 #define print_driver_list(d,i)		/* nop */
199 #define print_devclass_short(d,i)	/* nop */
200 #define print_devclass(d,i)		/* nop */
201 #define print_devclass_list_short()	/* nop */
202 #define print_devclass_list()		/* nop */
203 #endif
204 
205 /*
206  * dev sysctl tree
207  */
208 
209 enum {
210 	DEVCLASS_SYSCTL_PARENT,
211 };
212 
213 static int
214 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
215 {
216 	devclass_t dc = (devclass_t)arg1;
217 	const char *value;
218 
219 	switch (arg2) {
220 	case DEVCLASS_SYSCTL_PARENT:
221 		value = dc->parent ? dc->parent->name : "";
222 		break;
223 	default:
224 		return (EINVAL);
225 	}
226 	return (SYSCTL_OUT_STR(req, value));
227 }
228 
229 static void
230 devclass_sysctl_init(devclass_t dc)
231 {
232 	if (dc->sysctl_tree != NULL)
233 		return;
234 	sysctl_ctx_init(&dc->sysctl_ctx);
235 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
236 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
237 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
238 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
239 	    OID_AUTO, "%parent",
240 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
241 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
242 	    "parent class");
243 }
244 
245 enum {
246 	DEVICE_SYSCTL_DESC,
247 	DEVICE_SYSCTL_DRIVER,
248 	DEVICE_SYSCTL_LOCATION,
249 	DEVICE_SYSCTL_PNPINFO,
250 	DEVICE_SYSCTL_PARENT,
251 };
252 
253 static int
254 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
255 {
256 	struct sbuf sb;
257 	device_t dev = (device_t)arg1;
258 	int error;
259 
260 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
261 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
262 	bus_topo_lock();
263 	switch (arg2) {
264 	case DEVICE_SYSCTL_DESC:
265 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
266 		break;
267 	case DEVICE_SYSCTL_DRIVER:
268 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
269 		break;
270 	case DEVICE_SYSCTL_LOCATION:
271 		bus_child_location(dev, &sb);
272 		break;
273 	case DEVICE_SYSCTL_PNPINFO:
274 		bus_child_pnpinfo(dev, &sb);
275 		break;
276 	case DEVICE_SYSCTL_PARENT:
277 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
278 		break;
279 	default:
280 		error = EINVAL;
281 		goto out;
282 	}
283 	error = sbuf_finish(&sb);
284 out:
285 	bus_topo_unlock();
286 	sbuf_delete(&sb);
287 	return (error);
288 }
289 
290 static void
291 device_sysctl_init(device_t dev)
292 {
293 	devclass_t dc = dev->devclass;
294 	int domain;
295 
296 	if (dev->sysctl_tree != NULL)
297 		return;
298 	devclass_sysctl_init(dc);
299 	sysctl_ctx_init(&dev->sysctl_ctx);
300 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
301 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
302 	    dev->nameunit + strlen(dc->name),
303 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
304 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
306 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
307 	    "device description");
308 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309 	    OID_AUTO, "%driver",
310 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
311 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
312 	    "device driver name");
313 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314 	    OID_AUTO, "%location",
315 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
316 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
317 	    "device location relative to parent");
318 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
319 	    OID_AUTO, "%pnpinfo",
320 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
321 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
322 	    "device identification");
323 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
324 	    OID_AUTO, "%parent",
325 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
326 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
327 	    "parent device");
328 	if (bus_get_domain(dev, &domain) == 0)
329 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
330 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
331 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
332 }
333 
334 static void
335 device_sysctl_update(device_t dev)
336 {
337 	devclass_t dc = dev->devclass;
338 
339 	if (dev->sysctl_tree == NULL)
340 		return;
341 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
342 }
343 
344 static void
345 device_sysctl_fini(device_t dev)
346 {
347 	if (dev->sysctl_tree == NULL)
348 		return;
349 	sysctl_ctx_free(&dev->sysctl_ctx);
350 	dev->sysctl_tree = NULL;
351 }
352 
353 static struct device_list bus_data_devices;
354 static int bus_data_generation = 1;
355 
356 static kobj_method_t null_methods[] = {
357 	KOBJMETHOD_END
358 };
359 
360 DEFINE_CLASS(null, null_methods, 0);
361 
362 void
363 bus_topo_assert(void)
364 {
365 
366 	GIANT_REQUIRED;
367 }
368 
369 struct mtx *
370 bus_topo_mtx(void)
371 {
372 
373 	return (&Giant);
374 }
375 
376 void
377 bus_topo_lock(void)
378 {
379 
380 	mtx_lock(bus_topo_mtx());
381 }
382 
383 void
384 bus_topo_unlock(void)
385 {
386 
387 	mtx_unlock(bus_topo_mtx());
388 }
389 
390 /*
391  * Bus pass implementation
392  */
393 
394 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
395 int bus_current_pass = BUS_PASS_ROOT;
396 
397 /**
398  * @internal
399  * @brief Register the pass level of a new driver attachment
400  *
401  * Register a new driver attachment's pass level.  If no driver
402  * attachment with the same pass level has been added, then @p new
403  * will be added to the global passes list.
404  *
405  * @param new		the new driver attachment
406  */
407 static void
408 driver_register_pass(struct driverlink *new)
409 {
410 	struct driverlink *dl;
411 
412 	/* We only consider pass numbers during boot. */
413 	if (bus_current_pass == BUS_PASS_DEFAULT)
414 		return;
415 
416 	/*
417 	 * Walk the passes list.  If we already know about this pass
418 	 * then there is nothing to do.  If we don't, then insert this
419 	 * driver link into the list.
420 	 */
421 	TAILQ_FOREACH(dl, &passes, passlink) {
422 		if (dl->pass < new->pass)
423 			continue;
424 		if (dl->pass == new->pass)
425 			return;
426 		TAILQ_INSERT_BEFORE(dl, new, passlink);
427 		return;
428 	}
429 	TAILQ_INSERT_TAIL(&passes, new, passlink);
430 }
431 
432 /**
433  * @brief Raise the current bus pass
434  *
435  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
436  * method on the root bus to kick off a new device tree scan for each
437  * new pass level that has at least one driver.
438  */
439 void
440 bus_set_pass(int pass)
441 {
442 	struct driverlink *dl;
443 
444 	if (bus_current_pass > pass)
445 		panic("Attempt to lower bus pass level");
446 
447 	TAILQ_FOREACH(dl, &passes, passlink) {
448 		/* Skip pass values below the current pass level. */
449 		if (dl->pass <= bus_current_pass)
450 			continue;
451 
452 		/*
453 		 * Bail once we hit a driver with a pass level that is
454 		 * too high.
455 		 */
456 		if (dl->pass > pass)
457 			break;
458 
459 		/*
460 		 * Raise the pass level to the next level and rescan
461 		 * the tree.
462 		 */
463 		bus_current_pass = dl->pass;
464 		BUS_NEW_PASS(root_bus);
465 	}
466 
467 	/*
468 	 * If there isn't a driver registered for the requested pass,
469 	 * then bus_current_pass might still be less than 'pass'.  Set
470 	 * it to 'pass' in that case.
471 	 */
472 	if (bus_current_pass < pass)
473 		bus_current_pass = pass;
474 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
475 }
476 
477 /*
478  * Devclass implementation
479  */
480 
481 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
482 
483 /**
484  * @internal
485  * @brief Find or create a device class
486  *
487  * If a device class with the name @p classname exists, return it,
488  * otherwise if @p create is non-zero create and return a new device
489  * class.
490  *
491  * If @p parentname is non-NULL, the parent of the devclass is set to
492  * the devclass of that name.
493  *
494  * @param classname	the devclass name to find or create
495  * @param parentname	the parent devclass name or @c NULL
496  * @param create	non-zero to create a devclass
497  */
498 static devclass_t
499 devclass_find_internal(const char *classname, const char *parentname,
500 		       int create)
501 {
502 	devclass_t dc;
503 
504 	PDEBUG(("looking for %s", classname));
505 	if (!classname)
506 		return (NULL);
507 
508 	TAILQ_FOREACH(dc, &devclasses, link) {
509 		if (!strcmp(dc->name, classname))
510 			break;
511 	}
512 
513 	if (create && !dc) {
514 		PDEBUG(("creating %s", classname));
515 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
516 		    M_BUS, M_NOWAIT | M_ZERO);
517 		if (!dc)
518 			return (NULL);
519 		dc->parent = NULL;
520 		dc->name = (char*) (dc + 1);
521 		strcpy(dc->name, classname);
522 		TAILQ_INIT(&dc->drivers);
523 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
524 
525 		bus_data_generation_update();
526 	}
527 
528 	/*
529 	 * If a parent class is specified, then set that as our parent so
530 	 * that this devclass will support drivers for the parent class as
531 	 * well.  If the parent class has the same name don't do this though
532 	 * as it creates a cycle that can trigger an infinite loop in
533 	 * device_probe_child() if a device exists for which there is no
534 	 * suitable driver.
535 	 */
536 	if (parentname && dc && !dc->parent &&
537 	    strcmp(classname, parentname) != 0) {
538 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
539 		dc->parent->flags |= DC_HAS_CHILDREN;
540 	}
541 
542 	return (dc);
543 }
544 
545 /**
546  * @brief Create a device class
547  *
548  * If a device class with the name @p classname exists, return it,
549  * otherwise create and return a new device class.
550  *
551  * @param classname	the devclass name to find or create
552  */
553 devclass_t
554 devclass_create(const char *classname)
555 {
556 	return (devclass_find_internal(classname, NULL, TRUE));
557 }
558 
559 /**
560  * @brief Find a device class
561  *
562  * If a device class with the name @p classname exists, return it,
563  * otherwise return @c NULL.
564  *
565  * @param classname	the devclass name to find
566  */
567 devclass_t
568 devclass_find(const char *classname)
569 {
570 	return (devclass_find_internal(classname, NULL, FALSE));
571 }
572 
573 /**
574  * @brief Register that a device driver has been added to a devclass
575  *
576  * Register that a device driver has been added to a devclass.  This
577  * is called by devclass_add_driver to accomplish the recursive
578  * notification of all the children classes of dc, as well as dc.
579  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
580  * the devclass.
581  *
582  * We do a full search here of the devclass list at each iteration
583  * level to save storing children-lists in the devclass structure.  If
584  * we ever move beyond a few dozen devices doing this, we may need to
585  * reevaluate...
586  *
587  * @param dc		the devclass to edit
588  * @param driver	the driver that was just added
589  */
590 static void
591 devclass_driver_added(devclass_t dc, driver_t *driver)
592 {
593 	devclass_t parent;
594 	int i;
595 
596 	/*
597 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
598 	 */
599 	for (i = 0; i < dc->maxunit; i++)
600 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
601 			BUS_DRIVER_ADDED(dc->devices[i], driver);
602 
603 	/*
604 	 * Walk through the children classes.  Since we only keep a
605 	 * single parent pointer around, we walk the entire list of
606 	 * devclasses looking for children.  We set the
607 	 * DC_HAS_CHILDREN flag when a child devclass is created on
608 	 * the parent, so we only walk the list for those devclasses
609 	 * that have children.
610 	 */
611 	if (!(dc->flags & DC_HAS_CHILDREN))
612 		return;
613 	parent = dc;
614 	TAILQ_FOREACH(dc, &devclasses, link) {
615 		if (dc->parent == parent)
616 			devclass_driver_added(dc, driver);
617 	}
618 }
619 
620 static void
621 device_handle_nomatch(device_t dev)
622 {
623 	BUS_PROBE_NOMATCH(dev->parent, dev);
624 	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
625 	dev->flags |= DF_DONENOMATCH;
626 }
627 
628 /**
629  * @brief Add a device driver to a device class
630  *
631  * Add a device driver to a devclass. This is normally called
632  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
633  * all devices in the devclass will be called to allow them to attempt
634  * to re-probe any unmatched children.
635  *
636  * @param dc		the devclass to edit
637  * @param driver	the driver to register
638  */
639 int
640 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
641 {
642 	driverlink_t dl;
643 	devclass_t child_dc;
644 	const char *parentname;
645 
646 	PDEBUG(("%s", DRIVERNAME(driver)));
647 
648 	/* Don't allow invalid pass values. */
649 	if (pass <= BUS_PASS_ROOT)
650 		return (EINVAL);
651 
652 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
653 	if (!dl)
654 		return (ENOMEM);
655 
656 	/*
657 	 * Compile the driver's methods. Also increase the reference count
658 	 * so that the class doesn't get freed when the last instance
659 	 * goes. This means we can safely use static methods and avoids a
660 	 * double-free in devclass_delete_driver.
661 	 */
662 	kobj_class_compile((kobj_class_t) driver);
663 
664 	/*
665 	 * If the driver has any base classes, make the
666 	 * devclass inherit from the devclass of the driver's
667 	 * first base class. This will allow the system to
668 	 * search for drivers in both devclasses for children
669 	 * of a device using this driver.
670 	 */
671 	if (driver->baseclasses)
672 		parentname = driver->baseclasses[0]->name;
673 	else
674 		parentname = NULL;
675 	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
676 	if (dcp != NULL)
677 		*dcp = child_dc;
678 
679 	dl->driver = driver;
680 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
681 	driver->refs++;		/* XXX: kobj_mtx */
682 	dl->pass = pass;
683 	driver_register_pass(dl);
684 
685 	if (device_frozen) {
686 		dl->flags |= DL_DEFERRED_PROBE;
687 	} else {
688 		devclass_driver_added(dc, driver);
689 	}
690 	bus_data_generation_update();
691 	return (0);
692 }
693 
694 /**
695  * @brief Register that a device driver has been deleted from a devclass
696  *
697  * Register that a device driver has been removed from a devclass.
698  * This is called by devclass_delete_driver to accomplish the
699  * recursive notification of all the children classes of busclass, as
700  * well as busclass.  Each layer will attempt to detach the driver
701  * from any devices that are children of the bus's devclass.  The function
702  * will return an error if a device fails to detach.
703  *
704  * We do a full search here of the devclass list at each iteration
705  * level to save storing children-lists in the devclass structure.  If
706  * we ever move beyond a few dozen devices doing this, we may need to
707  * reevaluate...
708  *
709  * @param busclass	the devclass of the parent bus
710  * @param dc		the devclass of the driver being deleted
711  * @param driver	the driver being deleted
712  */
713 static int
714 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
715 {
716 	devclass_t parent;
717 	device_t dev;
718 	int error, i;
719 
720 	/*
721 	 * Disassociate from any devices.  We iterate through all the
722 	 * devices in the devclass of the driver and detach any which are
723 	 * using the driver and which have a parent in the devclass which
724 	 * we are deleting from.
725 	 *
726 	 * Note that since a driver can be in multiple devclasses, we
727 	 * should not detach devices which are not children of devices in
728 	 * the affected devclass.
729 	 *
730 	 * If we're frozen, we don't generate NOMATCH events. Mark to
731 	 * generate later.
732 	 */
733 	for (i = 0; i < dc->maxunit; i++) {
734 		if (dc->devices[i]) {
735 			dev = dc->devices[i];
736 			if (dev->driver == driver && dev->parent &&
737 			    dev->parent->devclass == busclass) {
738 				if ((error = device_detach(dev)) != 0)
739 					return (error);
740 				if (device_frozen) {
741 					dev->flags &= ~DF_DONENOMATCH;
742 					dev->flags |= DF_NEEDNOMATCH;
743 				} else {
744 					device_handle_nomatch(dev);
745 				}
746 			}
747 		}
748 	}
749 
750 	/*
751 	 * Walk through the children classes.  Since we only keep a
752 	 * single parent pointer around, we walk the entire list of
753 	 * devclasses looking for children.  We set the
754 	 * DC_HAS_CHILDREN flag when a child devclass is created on
755 	 * the parent, so we only walk the list for those devclasses
756 	 * that have children.
757 	 */
758 	if (!(busclass->flags & DC_HAS_CHILDREN))
759 		return (0);
760 	parent = busclass;
761 	TAILQ_FOREACH(busclass, &devclasses, link) {
762 		if (busclass->parent == parent) {
763 			error = devclass_driver_deleted(busclass, dc, driver);
764 			if (error)
765 				return (error);
766 		}
767 	}
768 	return (0);
769 }
770 
771 /**
772  * @brief Delete a device driver from a device class
773  *
774  * Delete a device driver from a devclass. This is normally called
775  * automatically by DRIVER_MODULE().
776  *
777  * If the driver is currently attached to any devices,
778  * devclass_delete_driver() will first attempt to detach from each
779  * device. If one of the detach calls fails, the driver will not be
780  * deleted.
781  *
782  * @param dc		the devclass to edit
783  * @param driver	the driver to unregister
784  */
785 int
786 devclass_delete_driver(devclass_t busclass, driver_t *driver)
787 {
788 	devclass_t dc = devclass_find(driver->name);
789 	driverlink_t dl;
790 	int error;
791 
792 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
793 
794 	if (!dc)
795 		return (0);
796 
797 	/*
798 	 * Find the link structure in the bus' list of drivers.
799 	 */
800 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
801 		if (dl->driver == driver)
802 			break;
803 	}
804 
805 	if (!dl) {
806 		PDEBUG(("%s not found in %s list", driver->name,
807 		    busclass->name));
808 		return (ENOENT);
809 	}
810 
811 	error = devclass_driver_deleted(busclass, dc, driver);
812 	if (error != 0)
813 		return (error);
814 
815 	TAILQ_REMOVE(&busclass->drivers, dl, link);
816 	free(dl, M_BUS);
817 
818 	/* XXX: kobj_mtx */
819 	driver->refs--;
820 	if (driver->refs == 0)
821 		kobj_class_free((kobj_class_t) driver);
822 
823 	bus_data_generation_update();
824 	return (0);
825 }
826 
827 /**
828  * @brief Quiesces a set of device drivers from a device class
829  *
830  * Quiesce a device driver from a devclass. This is normally called
831  * automatically by DRIVER_MODULE().
832  *
833  * If the driver is currently attached to any devices,
834  * devclass_quiesece_driver() will first attempt to quiesce each
835  * device.
836  *
837  * @param dc		the devclass to edit
838  * @param driver	the driver to unregister
839  */
840 static int
841 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
842 {
843 	devclass_t dc = devclass_find(driver->name);
844 	driverlink_t dl;
845 	device_t dev;
846 	int i;
847 	int error;
848 
849 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
850 
851 	if (!dc)
852 		return (0);
853 
854 	/*
855 	 * Find the link structure in the bus' list of drivers.
856 	 */
857 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
858 		if (dl->driver == driver)
859 			break;
860 	}
861 
862 	if (!dl) {
863 		PDEBUG(("%s not found in %s list", driver->name,
864 		    busclass->name));
865 		return (ENOENT);
866 	}
867 
868 	/*
869 	 * Quiesce all devices.  We iterate through all the devices in
870 	 * the devclass of the driver and quiesce any which are using
871 	 * the driver and which have a parent in the devclass which we
872 	 * are quiescing.
873 	 *
874 	 * Note that since a driver can be in multiple devclasses, we
875 	 * should not quiesce devices which are not children of
876 	 * devices in the affected devclass.
877 	 */
878 	for (i = 0; i < dc->maxunit; i++) {
879 		if (dc->devices[i]) {
880 			dev = dc->devices[i];
881 			if (dev->driver == driver && dev->parent &&
882 			    dev->parent->devclass == busclass) {
883 				if ((error = device_quiesce(dev)) != 0)
884 					return (error);
885 			}
886 		}
887 	}
888 
889 	return (0);
890 }
891 
892 /**
893  * @internal
894  */
895 static driverlink_t
896 devclass_find_driver_internal(devclass_t dc, const char *classname)
897 {
898 	driverlink_t dl;
899 
900 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
901 
902 	TAILQ_FOREACH(dl, &dc->drivers, link) {
903 		if (!strcmp(dl->driver->name, classname))
904 			return (dl);
905 	}
906 
907 	PDEBUG(("not found"));
908 	return (NULL);
909 }
910 
911 /**
912  * @brief Return the name of the devclass
913  */
914 const char *
915 devclass_get_name(devclass_t dc)
916 {
917 	return (dc->name);
918 }
919 
920 /**
921  * @brief Find a device given a unit number
922  *
923  * @param dc		the devclass to search
924  * @param unit		the unit number to search for
925  *
926  * @returns		the device with the given unit number or @c
927  *			NULL if there is no such device
928  */
929 device_t
930 devclass_get_device(devclass_t dc, int unit)
931 {
932 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
933 		return (NULL);
934 	return (dc->devices[unit]);
935 }
936 
937 /**
938  * @brief Find the softc field of a device given a unit number
939  *
940  * @param dc		the devclass to search
941  * @param unit		the unit number to search for
942  *
943  * @returns		the softc field of the device with the given
944  *			unit number or @c NULL if there is no such
945  *			device
946  */
947 void *
948 devclass_get_softc(devclass_t dc, int unit)
949 {
950 	device_t dev;
951 
952 	dev = devclass_get_device(dc, unit);
953 	if (!dev)
954 		return (NULL);
955 
956 	return (device_get_softc(dev));
957 }
958 
959 /**
960  * @brief Get a list of devices in the devclass
961  *
962  * An array containing a list of all the devices in the given devclass
963  * is allocated and returned in @p *devlistp. The number of devices
964  * in the array is returned in @p *devcountp. The caller should free
965  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
966  *
967  * @param dc		the devclass to examine
968  * @param devlistp	points at location for array pointer return
969  *			value
970  * @param devcountp	points at location for array size return value
971  *
972  * @retval 0		success
973  * @retval ENOMEM	the array allocation failed
974  */
975 int
976 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
977 {
978 	int count, i;
979 	device_t *list;
980 
981 	count = devclass_get_count(dc);
982 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
983 	if (!list)
984 		return (ENOMEM);
985 
986 	count = 0;
987 	for (i = 0; i < dc->maxunit; i++) {
988 		if (dc->devices[i]) {
989 			list[count] = dc->devices[i];
990 			count++;
991 		}
992 	}
993 
994 	*devlistp = list;
995 	*devcountp = count;
996 
997 	return (0);
998 }
999 
1000 /**
1001  * @brief Get a list of drivers in the devclass
1002  *
1003  * An array containing a list of pointers to all the drivers in the
1004  * given devclass is allocated and returned in @p *listp.  The number
1005  * of drivers in the array is returned in @p *countp. The caller should
1006  * free the array using @c free(p, M_TEMP).
1007  *
1008  * @param dc		the devclass to examine
1009  * @param listp		gives location for array pointer return value
1010  * @param countp	gives location for number of array elements
1011  *			return value
1012  *
1013  * @retval 0		success
1014  * @retval ENOMEM	the array allocation failed
1015  */
1016 int
1017 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1018 {
1019 	driverlink_t dl;
1020 	driver_t **list;
1021 	int count;
1022 
1023 	count = 0;
1024 	TAILQ_FOREACH(dl, &dc->drivers, link)
1025 		count++;
1026 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1027 	if (list == NULL)
1028 		return (ENOMEM);
1029 
1030 	count = 0;
1031 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1032 		list[count] = dl->driver;
1033 		count++;
1034 	}
1035 	*listp = list;
1036 	*countp = count;
1037 
1038 	return (0);
1039 }
1040 
1041 /**
1042  * @brief Get the number of devices in a devclass
1043  *
1044  * @param dc		the devclass to examine
1045  */
1046 int
1047 devclass_get_count(devclass_t dc)
1048 {
1049 	int count, i;
1050 
1051 	count = 0;
1052 	for (i = 0; i < dc->maxunit; i++)
1053 		if (dc->devices[i])
1054 			count++;
1055 	return (count);
1056 }
1057 
1058 /**
1059  * @brief Get the maximum unit number used in a devclass
1060  *
1061  * Note that this is one greater than the highest currently-allocated
1062  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1063  * that not even the devclass has been allocated yet.
1064  *
1065  * @param dc		the devclass to examine
1066  */
1067 int
1068 devclass_get_maxunit(devclass_t dc)
1069 {
1070 	if (dc == NULL)
1071 		return (-1);
1072 	return (dc->maxunit);
1073 }
1074 
1075 /**
1076  * @brief Find a free unit number in a devclass
1077  *
1078  * This function searches for the first unused unit number greater
1079  * that or equal to @p unit.
1080  *
1081  * @param dc		the devclass to examine
1082  * @param unit		the first unit number to check
1083  */
1084 int
1085 devclass_find_free_unit(devclass_t dc, int unit)
1086 {
1087 	if (dc == NULL)
1088 		return (unit);
1089 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1090 		unit++;
1091 	return (unit);
1092 }
1093 
1094 /**
1095  * @brief Set the parent of a devclass
1096  *
1097  * The parent class is normally initialised automatically by
1098  * DRIVER_MODULE().
1099  *
1100  * @param dc		the devclass to edit
1101  * @param pdc		the new parent devclass
1102  */
1103 void
1104 devclass_set_parent(devclass_t dc, devclass_t pdc)
1105 {
1106 	dc->parent = pdc;
1107 }
1108 
1109 /**
1110  * @brief Get the parent of a devclass
1111  *
1112  * @param dc		the devclass to examine
1113  */
1114 devclass_t
1115 devclass_get_parent(devclass_t dc)
1116 {
1117 	return (dc->parent);
1118 }
1119 
1120 struct sysctl_ctx_list *
1121 devclass_get_sysctl_ctx(devclass_t dc)
1122 {
1123 	return (&dc->sysctl_ctx);
1124 }
1125 
1126 struct sysctl_oid *
1127 devclass_get_sysctl_tree(devclass_t dc)
1128 {
1129 	return (dc->sysctl_tree);
1130 }
1131 
1132 /**
1133  * @internal
1134  * @brief Allocate a unit number
1135  *
1136  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1137  * will do). The allocated unit number is returned in @p *unitp.
1138 
1139  * @param dc		the devclass to allocate from
1140  * @param unitp		points at the location for the allocated unit
1141  *			number
1142  *
1143  * @retval 0		success
1144  * @retval EEXIST	the requested unit number is already allocated
1145  * @retval ENOMEM	memory allocation failure
1146  */
1147 static int
1148 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1149 {
1150 	const char *s;
1151 	int unit = *unitp;
1152 
1153 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1154 
1155 	/* Ask the parent bus if it wants to wire this device. */
1156 	if (unit == -1)
1157 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1158 		    &unit);
1159 
1160 	/* If we were given a wired unit number, check for existing device */
1161 	/* XXX imp XXX */
1162 	if (unit != -1) {
1163 		if (unit >= 0 && unit < dc->maxunit &&
1164 		    dc->devices[unit] != NULL) {
1165 			if (bootverbose)
1166 				printf("%s: %s%d already exists; skipping it\n",
1167 				    dc->name, dc->name, *unitp);
1168 			return (EEXIST);
1169 		}
1170 	} else {
1171 		/* Unwired device, find the next available slot for it */
1172 		unit = 0;
1173 		for (unit = 0;; unit++) {
1174 			/* If this device slot is already in use, skip it. */
1175 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1176 				continue;
1177 
1178 			/* If there is an "at" hint for a unit then skip it. */
1179 			if (resource_string_value(dc->name, unit, "at", &s) ==
1180 			    0)
1181 				continue;
1182 
1183 			break;
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * We've selected a unit beyond the length of the table, so let's
1189 	 * extend the table to make room for all units up to and including
1190 	 * this one.
1191 	 */
1192 	if (unit >= dc->maxunit) {
1193 		device_t *newlist, *oldlist;
1194 		int newsize;
1195 
1196 		oldlist = dc->devices;
1197 		newsize = roundup((unit + 1),
1198 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1199 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1200 		if (!newlist)
1201 			return (ENOMEM);
1202 		if (oldlist != NULL)
1203 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1204 		bzero(newlist + dc->maxunit,
1205 		    sizeof(device_t) * (newsize - dc->maxunit));
1206 		dc->devices = newlist;
1207 		dc->maxunit = newsize;
1208 		if (oldlist != NULL)
1209 			free(oldlist, M_BUS);
1210 	}
1211 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1212 
1213 	*unitp = unit;
1214 	return (0);
1215 }
1216 
1217 /**
1218  * @internal
1219  * @brief Add a device to a devclass
1220  *
1221  * A unit number is allocated for the device (using the device's
1222  * preferred unit number if any) and the device is registered in the
1223  * devclass. This allows the device to be looked up by its unit
1224  * number, e.g. by decoding a dev_t minor number.
1225  *
1226  * @param dc		the devclass to add to
1227  * @param dev		the device to add
1228  *
1229  * @retval 0		success
1230  * @retval EEXIST	the requested unit number is already allocated
1231  * @retval ENOMEM	memory allocation failure
1232  */
1233 static int
1234 devclass_add_device(devclass_t dc, device_t dev)
1235 {
1236 	int buflen, error;
1237 
1238 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1239 
1240 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1241 	if (buflen < 0)
1242 		return (ENOMEM);
1243 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1244 	if (!dev->nameunit)
1245 		return (ENOMEM);
1246 
1247 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1248 		free(dev->nameunit, M_BUS);
1249 		dev->nameunit = NULL;
1250 		return (error);
1251 	}
1252 	dc->devices[dev->unit] = dev;
1253 	dev->devclass = dc;
1254 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1255 
1256 	return (0);
1257 }
1258 
1259 /**
1260  * @internal
1261  * @brief Delete a device from a devclass
1262  *
1263  * The device is removed from the devclass's device list and its unit
1264  * number is freed.
1265 
1266  * @param dc		the devclass to delete from
1267  * @param dev		the device to delete
1268  *
1269  * @retval 0		success
1270  */
1271 static int
1272 devclass_delete_device(devclass_t dc, device_t dev)
1273 {
1274 	if (!dc || !dev)
1275 		return (0);
1276 
1277 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1278 
1279 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1280 		panic("devclass_delete_device: inconsistent device class");
1281 	dc->devices[dev->unit] = NULL;
1282 	if (dev->flags & DF_WILDCARD)
1283 		dev->unit = -1;
1284 	dev->devclass = NULL;
1285 	free(dev->nameunit, M_BUS);
1286 	dev->nameunit = NULL;
1287 
1288 	return (0);
1289 }
1290 
1291 /**
1292  * @internal
1293  * @brief Make a new device and add it as a child of @p parent
1294  *
1295  * @param parent	the parent of the new device
1296  * @param name		the devclass name of the new device or @c NULL
1297  *			to leave the devclass unspecified
1298  * @parem unit		the unit number of the new device of @c -1 to
1299  *			leave the unit number unspecified
1300  *
1301  * @returns the new device
1302  */
1303 static device_t
1304 make_device(device_t parent, const char *name, int unit)
1305 {
1306 	device_t dev;
1307 	devclass_t dc;
1308 
1309 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1310 
1311 	if (name) {
1312 		dc = devclass_find_internal(name, NULL, TRUE);
1313 		if (!dc) {
1314 			printf("make_device: can't find device class %s\n",
1315 			    name);
1316 			return (NULL);
1317 		}
1318 	} else {
1319 		dc = NULL;
1320 	}
1321 
1322 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1323 	if (!dev)
1324 		return (NULL);
1325 
1326 	dev->parent = parent;
1327 	TAILQ_INIT(&dev->children);
1328 	kobj_init((kobj_t) dev, &null_class);
1329 	dev->driver = NULL;
1330 	dev->devclass = NULL;
1331 	dev->unit = unit;
1332 	dev->nameunit = NULL;
1333 	dev->desc = NULL;
1334 	dev->busy = 0;
1335 	dev->devflags = 0;
1336 	dev->flags = DF_ENABLED;
1337 	dev->order = 0;
1338 	if (unit == -1)
1339 		dev->flags |= DF_WILDCARD;
1340 	if (name) {
1341 		dev->flags |= DF_FIXEDCLASS;
1342 		if (devclass_add_device(dc, dev)) {
1343 			kobj_delete((kobj_t) dev, M_BUS);
1344 			return (NULL);
1345 		}
1346 	}
1347 	if (parent != NULL && device_has_quiet_children(parent))
1348 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1349 	dev->ivars = NULL;
1350 	dev->softc = NULL;
1351 
1352 	dev->state = DS_NOTPRESENT;
1353 
1354 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1355 	bus_data_generation_update();
1356 
1357 	return (dev);
1358 }
1359 
1360 /**
1361  * @internal
1362  * @brief Print a description of a device.
1363  */
1364 static int
1365 device_print_child(device_t dev, device_t child)
1366 {
1367 	int retval = 0;
1368 
1369 	if (device_is_alive(child))
1370 		retval += BUS_PRINT_CHILD(dev, child);
1371 	else
1372 		retval += device_printf(child, " not found\n");
1373 
1374 	return (retval);
1375 }
1376 
1377 /**
1378  * @brief Create a new device
1379  *
1380  * This creates a new device and adds it as a child of an existing
1381  * parent device. The new device will be added after the last existing
1382  * child with order zero.
1383  *
1384  * @param dev		the device which will be the parent of the
1385  *			new child device
1386  * @param name		devclass name for new device or @c NULL if not
1387  *			specified
1388  * @param unit		unit number for new device or @c -1 if not
1389  *			specified
1390  *
1391  * @returns		the new device
1392  */
1393 device_t
1394 device_add_child(device_t dev, const char *name, int unit)
1395 {
1396 	return (device_add_child_ordered(dev, 0, name, unit));
1397 }
1398 
1399 /**
1400  * @brief Create a new device
1401  *
1402  * This creates a new device and adds it as a child of an existing
1403  * parent device. The new device will be added after the last existing
1404  * child with the same order.
1405  *
1406  * @param dev		the device which will be the parent of the
1407  *			new child device
1408  * @param order		a value which is used to partially sort the
1409  *			children of @p dev - devices created using
1410  *			lower values of @p order appear first in @p
1411  *			dev's list of children
1412  * @param name		devclass name for new device or @c NULL if not
1413  *			specified
1414  * @param unit		unit number for new device or @c -1 if not
1415  *			specified
1416  *
1417  * @returns		the new device
1418  */
1419 device_t
1420 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1421 {
1422 	device_t child;
1423 	device_t place;
1424 
1425 	PDEBUG(("%s at %s with order %u as unit %d",
1426 	    name, DEVICENAME(dev), order, unit));
1427 	KASSERT(name != NULL || unit == -1,
1428 	    ("child device with wildcard name and specific unit number"));
1429 
1430 	child = make_device(dev, name, unit);
1431 	if (child == NULL)
1432 		return (child);
1433 	child->order = order;
1434 
1435 	TAILQ_FOREACH(place, &dev->children, link) {
1436 		if (place->order > order)
1437 			break;
1438 	}
1439 
1440 	if (place) {
1441 		/*
1442 		 * The device 'place' is the first device whose order is
1443 		 * greater than the new child.
1444 		 */
1445 		TAILQ_INSERT_BEFORE(place, child, link);
1446 	} else {
1447 		/*
1448 		 * The new child's order is greater or equal to the order of
1449 		 * any existing device. Add the child to the tail of the list.
1450 		 */
1451 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1452 	}
1453 
1454 	bus_data_generation_update();
1455 	return (child);
1456 }
1457 
1458 /**
1459  * @brief Delete a device
1460  *
1461  * This function deletes a device along with all of its children. If
1462  * the device currently has a driver attached to it, the device is
1463  * detached first using device_detach().
1464  *
1465  * @param dev		the parent device
1466  * @param child		the device to delete
1467  *
1468  * @retval 0		success
1469  * @retval non-zero	a unit error code describing the error
1470  */
1471 int
1472 device_delete_child(device_t dev, device_t child)
1473 {
1474 	int error;
1475 	device_t grandchild;
1476 
1477 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1478 
1479 	/* detach parent before deleting children, if any */
1480 	if ((error = device_detach(child)) != 0)
1481 		return (error);
1482 
1483 	/* remove children second */
1484 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1485 		error = device_delete_child(child, grandchild);
1486 		if (error)
1487 			return (error);
1488 	}
1489 
1490 	if (child->devclass)
1491 		devclass_delete_device(child->devclass, child);
1492 	if (child->parent)
1493 		BUS_CHILD_DELETED(dev, child);
1494 	TAILQ_REMOVE(&dev->children, child, link);
1495 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1496 	kobj_delete((kobj_t) child, M_BUS);
1497 
1498 	bus_data_generation_update();
1499 	return (0);
1500 }
1501 
1502 /**
1503  * @brief Delete all children devices of the given device, if any.
1504  *
1505  * This function deletes all children devices of the given device, if
1506  * any, using the device_delete_child() function for each device it
1507  * finds. If a child device cannot be deleted, this function will
1508  * return an error code.
1509  *
1510  * @param dev		the parent device
1511  *
1512  * @retval 0		success
1513  * @retval non-zero	a device would not detach
1514  */
1515 int
1516 device_delete_children(device_t dev)
1517 {
1518 	device_t child;
1519 	int error;
1520 
1521 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1522 
1523 	error = 0;
1524 
1525 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1526 		error = device_delete_child(dev, child);
1527 		if (error) {
1528 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1529 			break;
1530 		}
1531 	}
1532 	return (error);
1533 }
1534 
1535 /**
1536  * @brief Find a device given a unit number
1537  *
1538  * This is similar to devclass_get_devices() but only searches for
1539  * devices which have @p dev as a parent.
1540  *
1541  * @param dev		the parent device to search
1542  * @param unit		the unit number to search for.  If the unit is -1,
1543  *			return the first child of @p dev which has name
1544  *			@p classname (that is, the one with the lowest unit.)
1545  *
1546  * @returns		the device with the given unit number or @c
1547  *			NULL if there is no such device
1548  */
1549 device_t
1550 device_find_child(device_t dev, const char *classname, int unit)
1551 {
1552 	devclass_t dc;
1553 	device_t child;
1554 
1555 	dc = devclass_find(classname);
1556 	if (!dc)
1557 		return (NULL);
1558 
1559 	if (unit != -1) {
1560 		child = devclass_get_device(dc, unit);
1561 		if (child && child->parent == dev)
1562 			return (child);
1563 	} else {
1564 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1565 			child = devclass_get_device(dc, unit);
1566 			if (child && child->parent == dev)
1567 				return (child);
1568 		}
1569 	}
1570 	return (NULL);
1571 }
1572 
1573 /**
1574  * @internal
1575  */
1576 static driverlink_t
1577 first_matching_driver(devclass_t dc, device_t dev)
1578 {
1579 	if (dev->devclass)
1580 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1581 	return (TAILQ_FIRST(&dc->drivers));
1582 }
1583 
1584 /**
1585  * @internal
1586  */
1587 static driverlink_t
1588 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1589 {
1590 	if (dev->devclass) {
1591 		driverlink_t dl;
1592 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1593 			if (!strcmp(dev->devclass->name, dl->driver->name))
1594 				return (dl);
1595 		return (NULL);
1596 	}
1597 	return (TAILQ_NEXT(last, link));
1598 }
1599 
1600 /**
1601  * @internal
1602  */
1603 int
1604 device_probe_child(device_t dev, device_t child)
1605 {
1606 	devclass_t dc;
1607 	driverlink_t best = NULL;
1608 	driverlink_t dl;
1609 	int result, pri = 0;
1610 	/* We should preserve the devclass (or lack of) set by the bus. */
1611 	int hasclass = (child->devclass != NULL);
1612 
1613 	bus_topo_assert();
1614 
1615 	dc = dev->devclass;
1616 	if (!dc)
1617 		panic("device_probe_child: parent device has no devclass");
1618 
1619 	/*
1620 	 * If the state is already probed, then return.
1621 	 */
1622 	if (child->state == DS_ALIVE)
1623 		return (0);
1624 
1625 	for (; dc; dc = dc->parent) {
1626 		for (dl = first_matching_driver(dc, child);
1627 		     dl;
1628 		     dl = next_matching_driver(dc, child, dl)) {
1629 			/* If this driver's pass is too high, then ignore it. */
1630 			if (dl->pass > bus_current_pass)
1631 				continue;
1632 
1633 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1634 			result = device_set_driver(child, dl->driver);
1635 			if (result == ENOMEM)
1636 				return (result);
1637 			else if (result != 0)
1638 				continue;
1639 			if (!hasclass) {
1640 				if (device_set_devclass(child,
1641 				    dl->driver->name) != 0) {
1642 					char const * devname =
1643 					    device_get_name(child);
1644 					if (devname == NULL)
1645 						devname = "(unknown)";
1646 					printf("driver bug: Unable to set "
1647 					    "devclass (class: %s "
1648 					    "devname: %s)\n",
1649 					    dl->driver->name,
1650 					    devname);
1651 					(void)device_set_driver(child, NULL);
1652 					continue;
1653 				}
1654 			}
1655 
1656 			/* Fetch any flags for the device before probing. */
1657 			resource_int_value(dl->driver->name, child->unit,
1658 			    "flags", &child->devflags);
1659 
1660 			result = DEVICE_PROBE(child);
1661 
1662 			/*
1663 			 * If the driver returns SUCCESS, there can be
1664 			 * no higher match for this device.
1665 			 */
1666 			if (result == 0) {
1667 				best = dl;
1668 				pri = 0;
1669 				break;
1670 			}
1671 
1672 			/* Reset flags and devclass before the next probe. */
1673 			child->devflags = 0;
1674 			if (!hasclass)
1675 				(void)device_set_devclass(child, NULL);
1676 
1677 			/*
1678 			 * Reset DF_QUIET in case this driver doesn't
1679 			 * end up as the best driver.
1680 			 */
1681 			device_verbose(child);
1682 
1683 			/*
1684 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1685 			 * only match on devices whose driver was explicitly
1686 			 * specified.
1687 			 */
1688 			if (result <= BUS_PROBE_NOWILDCARD &&
1689 			    !(child->flags & DF_FIXEDCLASS)) {
1690 				result = ENXIO;
1691 			}
1692 
1693 			/*
1694 			 * The driver returned an error so it
1695 			 * certainly doesn't match.
1696 			 */
1697 			if (result > 0) {
1698 				(void)device_set_driver(child, NULL);
1699 				continue;
1700 			}
1701 
1702 			/*
1703 			 * A priority lower than SUCCESS, remember the
1704 			 * best matching driver. Initialise the value
1705 			 * of pri for the first match.
1706 			 */
1707 			if (best == NULL || result > pri) {
1708 				best = dl;
1709 				pri = result;
1710 				continue;
1711 			}
1712 		}
1713 		/*
1714 		 * If we have an unambiguous match in this devclass,
1715 		 * don't look in the parent.
1716 		 */
1717 		if (best && pri == 0)
1718 			break;
1719 	}
1720 
1721 	if (best == NULL)
1722 		return (ENXIO);
1723 
1724 	/*
1725 	 * If we found a driver, change state and initialise the devclass.
1726 	 */
1727 	if (pri < 0) {
1728 		/* Set the winning driver, devclass, and flags. */
1729 		result = device_set_driver(child, best->driver);
1730 		if (result != 0)
1731 			return (result);
1732 		if (!child->devclass) {
1733 			result = device_set_devclass(child, best->driver->name);
1734 			if (result != 0) {
1735 				(void)device_set_driver(child, NULL);
1736 				return (result);
1737 			}
1738 		}
1739 		resource_int_value(best->driver->name, child->unit,
1740 		    "flags", &child->devflags);
1741 
1742 		/*
1743 		 * A bit bogus. Call the probe method again to make sure
1744 		 * that we have the right description.
1745 		 */
1746 		result = DEVICE_PROBE(child);
1747 		if (result > 0) {
1748 			if (!hasclass)
1749 				(void)device_set_devclass(child, NULL);
1750 			(void)device_set_driver(child, NULL);
1751 			return (result);
1752 		}
1753 	}
1754 
1755 	child->state = DS_ALIVE;
1756 	bus_data_generation_update();
1757 	return (0);
1758 }
1759 
1760 /**
1761  * @brief Return the parent of a device
1762  */
1763 device_t
1764 device_get_parent(device_t dev)
1765 {
1766 	return (dev->parent);
1767 }
1768 
1769 /**
1770  * @brief Get a list of children of a device
1771  *
1772  * An array containing a list of all the children of the given device
1773  * is allocated and returned in @p *devlistp. The number of devices
1774  * in the array is returned in @p *devcountp. The caller should free
1775  * the array using @c free(p, M_TEMP).
1776  *
1777  * @param dev		the device to examine
1778  * @param devlistp	points at location for array pointer return
1779  *			value
1780  * @param devcountp	points at location for array size return value
1781  *
1782  * @retval 0		success
1783  * @retval ENOMEM	the array allocation failed
1784  */
1785 int
1786 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1787 {
1788 	int count;
1789 	device_t child;
1790 	device_t *list;
1791 
1792 	count = 0;
1793 	TAILQ_FOREACH(child, &dev->children, link) {
1794 		count++;
1795 	}
1796 	if (count == 0) {
1797 		*devlistp = NULL;
1798 		*devcountp = 0;
1799 		return (0);
1800 	}
1801 
1802 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1803 	if (!list)
1804 		return (ENOMEM);
1805 
1806 	count = 0;
1807 	TAILQ_FOREACH(child, &dev->children, link) {
1808 		list[count] = child;
1809 		count++;
1810 	}
1811 
1812 	*devlistp = list;
1813 	*devcountp = count;
1814 
1815 	return (0);
1816 }
1817 
1818 /**
1819  * @brief Return the current driver for the device or @c NULL if there
1820  * is no driver currently attached
1821  */
1822 driver_t *
1823 device_get_driver(device_t dev)
1824 {
1825 	return (dev->driver);
1826 }
1827 
1828 /**
1829  * @brief Return the current devclass for the device or @c NULL if
1830  * there is none.
1831  */
1832 devclass_t
1833 device_get_devclass(device_t dev)
1834 {
1835 	return (dev->devclass);
1836 }
1837 
1838 /**
1839  * @brief Return the name of the device's devclass or @c NULL if there
1840  * is none.
1841  */
1842 const char *
1843 device_get_name(device_t dev)
1844 {
1845 	if (dev != NULL && dev->devclass)
1846 		return (devclass_get_name(dev->devclass));
1847 	return (NULL);
1848 }
1849 
1850 /**
1851  * @brief Return a string containing the device's devclass name
1852  * followed by an ascii representation of the device's unit number
1853  * (e.g. @c "foo2").
1854  */
1855 const char *
1856 device_get_nameunit(device_t dev)
1857 {
1858 	return (dev->nameunit);
1859 }
1860 
1861 /**
1862  * @brief Return the device's unit number.
1863  */
1864 int
1865 device_get_unit(device_t dev)
1866 {
1867 	return (dev->unit);
1868 }
1869 
1870 /**
1871  * @brief Return the device's description string
1872  */
1873 const char *
1874 device_get_desc(device_t dev)
1875 {
1876 	return (dev->desc);
1877 }
1878 
1879 /**
1880  * @brief Return the device's flags
1881  */
1882 uint32_t
1883 device_get_flags(device_t dev)
1884 {
1885 	return (dev->devflags);
1886 }
1887 
1888 struct sysctl_ctx_list *
1889 device_get_sysctl_ctx(device_t dev)
1890 {
1891 	return (&dev->sysctl_ctx);
1892 }
1893 
1894 struct sysctl_oid *
1895 device_get_sysctl_tree(device_t dev)
1896 {
1897 	return (dev->sysctl_tree);
1898 }
1899 
1900 /**
1901  * @brief Print the name of the device followed by a colon and a space
1902  *
1903  * @returns the number of characters printed
1904  */
1905 int
1906 device_print_prettyname(device_t dev)
1907 {
1908 	const char *name = device_get_name(dev);
1909 
1910 	if (name == NULL)
1911 		return (printf("unknown: "));
1912 	return (printf("%s%d: ", name, device_get_unit(dev)));
1913 }
1914 
1915 /**
1916  * @brief Print the name of the device followed by a colon, a space
1917  * and the result of calling vprintf() with the value of @p fmt and
1918  * the following arguments.
1919  *
1920  * @returns the number of characters printed
1921  */
1922 int
1923 device_printf(device_t dev, const char * fmt, ...)
1924 {
1925 	char buf[128];
1926 	struct sbuf sb;
1927 	const char *name;
1928 	va_list ap;
1929 	size_t retval;
1930 
1931 	retval = 0;
1932 
1933 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1934 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1935 
1936 	name = device_get_name(dev);
1937 
1938 	if (name == NULL)
1939 		sbuf_cat(&sb, "unknown: ");
1940 	else
1941 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1942 
1943 	va_start(ap, fmt);
1944 	sbuf_vprintf(&sb, fmt, ap);
1945 	va_end(ap);
1946 
1947 	sbuf_finish(&sb);
1948 	sbuf_delete(&sb);
1949 
1950 	return (retval);
1951 }
1952 
1953 /**
1954  * @brief Print the name of the device followed by a colon, a space
1955  * and the result of calling log() with the value of @p fmt and
1956  * the following arguments.
1957  *
1958  * @returns the number of characters printed
1959  */
1960 int
1961 device_log(device_t dev, int pri, const char * fmt, ...)
1962 {
1963 	char buf[128];
1964 	struct sbuf sb;
1965 	const char *name;
1966 	va_list ap;
1967 	size_t retval;
1968 
1969 	retval = 0;
1970 
1971 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1972 
1973 	name = device_get_name(dev);
1974 
1975 	if (name == NULL)
1976 		sbuf_cat(&sb, "unknown: ");
1977 	else
1978 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1979 
1980 	va_start(ap, fmt);
1981 	sbuf_vprintf(&sb, fmt, ap);
1982 	va_end(ap);
1983 
1984 	sbuf_finish(&sb);
1985 
1986 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
1987 	retval = sbuf_len(&sb);
1988 
1989 	sbuf_delete(&sb);
1990 
1991 	return (retval);
1992 }
1993 
1994 /**
1995  * @internal
1996  */
1997 static void
1998 device_set_desc_internal(device_t dev, const char* desc, int copy)
1999 {
2000 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2001 		free(dev->desc, M_BUS);
2002 		dev->flags &= ~DF_DESCMALLOCED;
2003 		dev->desc = NULL;
2004 	}
2005 
2006 	if (copy && desc) {
2007 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2008 		if (dev->desc) {
2009 			strcpy(dev->desc, desc);
2010 			dev->flags |= DF_DESCMALLOCED;
2011 		}
2012 	} else {
2013 		/* Avoid a -Wcast-qual warning */
2014 		dev->desc = (char *)(uintptr_t) desc;
2015 	}
2016 
2017 	bus_data_generation_update();
2018 }
2019 
2020 /**
2021  * @brief Set the device's description
2022  *
2023  * The value of @c desc should be a string constant that will not
2024  * change (at least until the description is changed in a subsequent
2025  * call to device_set_desc() or device_set_desc_copy()).
2026  */
2027 void
2028 device_set_desc(device_t dev, const char* desc)
2029 {
2030 	device_set_desc_internal(dev, desc, FALSE);
2031 }
2032 
2033 /**
2034  * @brief Set the device's description
2035  *
2036  * The string pointed to by @c desc is copied. Use this function if
2037  * the device description is generated, (e.g. with sprintf()).
2038  */
2039 void
2040 device_set_desc_copy(device_t dev, const char* desc)
2041 {
2042 	device_set_desc_internal(dev, desc, TRUE);
2043 }
2044 
2045 /**
2046  * @brief Set the device's flags
2047  */
2048 void
2049 device_set_flags(device_t dev, uint32_t flags)
2050 {
2051 	dev->devflags = flags;
2052 }
2053 
2054 /**
2055  * @brief Return the device's softc field
2056  *
2057  * The softc is allocated and zeroed when a driver is attached, based
2058  * on the size field of the driver.
2059  */
2060 void *
2061 device_get_softc(device_t dev)
2062 {
2063 	return (dev->softc);
2064 }
2065 
2066 /**
2067  * @brief Set the device's softc field
2068  *
2069  * Most drivers do not need to use this since the softc is allocated
2070  * automatically when the driver is attached.
2071  */
2072 void
2073 device_set_softc(device_t dev, void *softc)
2074 {
2075 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2076 		free(dev->softc, M_BUS_SC);
2077 	dev->softc = softc;
2078 	if (dev->softc)
2079 		dev->flags |= DF_EXTERNALSOFTC;
2080 	else
2081 		dev->flags &= ~DF_EXTERNALSOFTC;
2082 }
2083 
2084 /**
2085  * @brief Free claimed softc
2086  *
2087  * Most drivers do not need to use this since the softc is freed
2088  * automatically when the driver is detached.
2089  */
2090 void
2091 device_free_softc(void *softc)
2092 {
2093 	free(softc, M_BUS_SC);
2094 }
2095 
2096 /**
2097  * @brief Claim softc
2098  *
2099  * This function can be used to let the driver free the automatically
2100  * allocated softc using "device_free_softc()". This function is
2101  * useful when the driver is refcounting the softc and the softc
2102  * cannot be freed when the "device_detach" method is called.
2103  */
2104 void
2105 device_claim_softc(device_t dev)
2106 {
2107 	if (dev->softc)
2108 		dev->flags |= DF_EXTERNALSOFTC;
2109 	else
2110 		dev->flags &= ~DF_EXTERNALSOFTC;
2111 }
2112 
2113 /**
2114  * @brief Get the device's ivars field
2115  *
2116  * The ivars field is used by the parent device to store per-device
2117  * state (e.g. the physical location of the device or a list of
2118  * resources).
2119  */
2120 void *
2121 device_get_ivars(device_t dev)
2122 {
2123 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2124 	return (dev->ivars);
2125 }
2126 
2127 /**
2128  * @brief Set the device's ivars field
2129  */
2130 void
2131 device_set_ivars(device_t dev, void * ivars)
2132 {
2133 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2134 	dev->ivars = ivars;
2135 }
2136 
2137 /**
2138  * @brief Return the device's state
2139  */
2140 device_state_t
2141 device_get_state(device_t dev)
2142 {
2143 	return (dev->state);
2144 }
2145 
2146 /**
2147  * @brief Set the DF_ENABLED flag for the device
2148  */
2149 void
2150 device_enable(device_t dev)
2151 {
2152 	dev->flags |= DF_ENABLED;
2153 }
2154 
2155 /**
2156  * @brief Clear the DF_ENABLED flag for the device
2157  */
2158 void
2159 device_disable(device_t dev)
2160 {
2161 	dev->flags &= ~DF_ENABLED;
2162 }
2163 
2164 /**
2165  * @brief Increment the busy counter for the device
2166  */
2167 void
2168 device_busy(device_t dev)
2169 {
2170 
2171 	/*
2172 	 * Mark the device as busy, recursively up the tree if this busy count
2173 	 * goes 0->1.
2174 	 */
2175 	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2176 		device_busy(dev->parent);
2177 }
2178 
2179 /**
2180  * @brief Decrement the busy counter for the device
2181  */
2182 void
2183 device_unbusy(device_t dev)
2184 {
2185 
2186 	/*
2187 	 * Mark the device as unbsy, recursively if this is the last busy count.
2188 	 */
2189 	if (refcount_release(&dev->busy) && dev->parent != NULL)
2190 		device_unbusy(dev->parent);
2191 }
2192 
2193 /**
2194  * @brief Set the DF_QUIET flag for the device
2195  */
2196 void
2197 device_quiet(device_t dev)
2198 {
2199 	dev->flags |= DF_QUIET;
2200 }
2201 
2202 /**
2203  * @brief Set the DF_QUIET_CHILDREN flag for the device
2204  */
2205 void
2206 device_quiet_children(device_t dev)
2207 {
2208 	dev->flags |= DF_QUIET_CHILDREN;
2209 }
2210 
2211 /**
2212  * @brief Clear the DF_QUIET flag for the device
2213  */
2214 void
2215 device_verbose(device_t dev)
2216 {
2217 	dev->flags &= ~DF_QUIET;
2218 }
2219 
2220 ssize_t
2221 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2222     device_property_type_t type)
2223 {
2224 	device_t bus = device_get_parent(dev);
2225 
2226 	switch (type) {
2227 	case DEVICE_PROP_ANY:
2228 	case DEVICE_PROP_BUFFER:
2229 	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2230 		break;
2231 	case DEVICE_PROP_UINT32:
2232 		if (sz % 4 != 0)
2233 			return (-1);
2234 		break;
2235 	case DEVICE_PROP_UINT64:
2236 		if (sz % 8 != 0)
2237 			return (-1);
2238 		break;
2239 	default:
2240 		return (-1);
2241 	}
2242 
2243 	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2244 }
2245 
2246 bool
2247 device_has_property(device_t dev, const char *prop)
2248 {
2249 	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2250 }
2251 
2252 /**
2253  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2254  */
2255 int
2256 device_has_quiet_children(device_t dev)
2257 {
2258 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2259 }
2260 
2261 /**
2262  * @brief Return non-zero if the DF_QUIET flag is set on the device
2263  */
2264 int
2265 device_is_quiet(device_t dev)
2266 {
2267 	return ((dev->flags & DF_QUIET) != 0);
2268 }
2269 
2270 /**
2271  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2272  */
2273 int
2274 device_is_enabled(device_t dev)
2275 {
2276 	return ((dev->flags & DF_ENABLED) != 0);
2277 }
2278 
2279 /**
2280  * @brief Return non-zero if the device was successfully probed
2281  */
2282 int
2283 device_is_alive(device_t dev)
2284 {
2285 	return (dev->state >= DS_ALIVE);
2286 }
2287 
2288 /**
2289  * @brief Return non-zero if the device currently has a driver
2290  * attached to it
2291  */
2292 int
2293 device_is_attached(device_t dev)
2294 {
2295 	return (dev->state >= DS_ATTACHED);
2296 }
2297 
2298 /**
2299  * @brief Return non-zero if the device is currently suspended.
2300  */
2301 int
2302 device_is_suspended(device_t dev)
2303 {
2304 	return ((dev->flags & DF_SUSPENDED) != 0);
2305 }
2306 
2307 /**
2308  * @brief Set the devclass of a device
2309  * @see devclass_add_device().
2310  */
2311 int
2312 device_set_devclass(device_t dev, const char *classname)
2313 {
2314 	devclass_t dc;
2315 	int error;
2316 
2317 	if (!classname) {
2318 		if (dev->devclass)
2319 			devclass_delete_device(dev->devclass, dev);
2320 		return (0);
2321 	}
2322 
2323 	if (dev->devclass) {
2324 		printf("device_set_devclass: device class already set\n");
2325 		return (EINVAL);
2326 	}
2327 
2328 	dc = devclass_find_internal(classname, NULL, TRUE);
2329 	if (!dc)
2330 		return (ENOMEM);
2331 
2332 	error = devclass_add_device(dc, dev);
2333 
2334 	bus_data_generation_update();
2335 	return (error);
2336 }
2337 
2338 /**
2339  * @brief Set the devclass of a device and mark the devclass fixed.
2340  * @see device_set_devclass()
2341  */
2342 int
2343 device_set_devclass_fixed(device_t dev, const char *classname)
2344 {
2345 	int error;
2346 
2347 	if (classname == NULL)
2348 		return (EINVAL);
2349 
2350 	error = device_set_devclass(dev, classname);
2351 	if (error)
2352 		return (error);
2353 	dev->flags |= DF_FIXEDCLASS;
2354 	return (0);
2355 }
2356 
2357 /**
2358  * @brief Query the device to determine if it's of a fixed devclass
2359  * @see device_set_devclass_fixed()
2360  */
2361 bool
2362 device_is_devclass_fixed(device_t dev)
2363 {
2364 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2365 }
2366 
2367 /**
2368  * @brief Set the driver of a device
2369  *
2370  * @retval 0		success
2371  * @retval EBUSY	the device already has a driver attached
2372  * @retval ENOMEM	a memory allocation failure occurred
2373  */
2374 int
2375 device_set_driver(device_t dev, driver_t *driver)
2376 {
2377 	int domain;
2378 	struct domainset *policy;
2379 
2380 	if (dev->state >= DS_ATTACHED)
2381 		return (EBUSY);
2382 
2383 	if (dev->driver == driver)
2384 		return (0);
2385 
2386 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2387 		free(dev->softc, M_BUS_SC);
2388 		dev->softc = NULL;
2389 	}
2390 	device_set_desc(dev, NULL);
2391 	kobj_delete((kobj_t) dev, NULL);
2392 	dev->driver = driver;
2393 	if (driver) {
2394 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2395 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2396 			if (bus_get_domain(dev, &domain) == 0)
2397 				policy = DOMAINSET_PREF(domain);
2398 			else
2399 				policy = DOMAINSET_RR();
2400 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2401 			    policy, M_NOWAIT | M_ZERO);
2402 			if (!dev->softc) {
2403 				kobj_delete((kobj_t) dev, NULL);
2404 				kobj_init((kobj_t) dev, &null_class);
2405 				dev->driver = NULL;
2406 				return (ENOMEM);
2407 			}
2408 		}
2409 	} else {
2410 		kobj_init((kobj_t) dev, &null_class);
2411 	}
2412 
2413 	bus_data_generation_update();
2414 	return (0);
2415 }
2416 
2417 /**
2418  * @brief Probe a device, and return this status.
2419  *
2420  * This function is the core of the device autoconfiguration
2421  * system. Its purpose is to select a suitable driver for a device and
2422  * then call that driver to initialise the hardware appropriately. The
2423  * driver is selected by calling the DEVICE_PROBE() method of a set of
2424  * candidate drivers and then choosing the driver which returned the
2425  * best value. This driver is then attached to the device using
2426  * device_attach().
2427  *
2428  * The set of suitable drivers is taken from the list of drivers in
2429  * the parent device's devclass. If the device was originally created
2430  * with a specific class name (see device_add_child()), only drivers
2431  * with that name are probed, otherwise all drivers in the devclass
2432  * are probed. If no drivers return successful probe values in the
2433  * parent devclass, the search continues in the parent of that
2434  * devclass (see devclass_get_parent()) if any.
2435  *
2436  * @param dev		the device to initialise
2437  *
2438  * @retval 0		success
2439  * @retval ENXIO	no driver was found
2440  * @retval ENOMEM	memory allocation failure
2441  * @retval non-zero	some other unix error code
2442  * @retval -1		Device already attached
2443  */
2444 int
2445 device_probe(device_t dev)
2446 {
2447 	int error;
2448 
2449 	bus_topo_assert();
2450 
2451 	if (dev->state >= DS_ALIVE)
2452 		return (-1);
2453 
2454 	if (!(dev->flags & DF_ENABLED)) {
2455 		if (bootverbose && device_get_name(dev) != NULL) {
2456 			device_print_prettyname(dev);
2457 			printf("not probed (disabled)\n");
2458 		}
2459 		return (-1);
2460 	}
2461 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2462 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2463 		    !(dev->flags & DF_DONENOMATCH)) {
2464 			device_handle_nomatch(dev);
2465 		}
2466 		return (error);
2467 	}
2468 	return (0);
2469 }
2470 
2471 /**
2472  * @brief Probe a device and attach a driver if possible
2473  *
2474  * calls device_probe() and attaches if that was successful.
2475  */
2476 int
2477 device_probe_and_attach(device_t dev)
2478 {
2479 	int error;
2480 
2481 	bus_topo_assert();
2482 
2483 	error = device_probe(dev);
2484 	if (error == -1)
2485 		return (0);
2486 	else if (error != 0)
2487 		return (error);
2488 
2489 	CURVNET_SET_QUIET(vnet0);
2490 	error = device_attach(dev);
2491 	CURVNET_RESTORE();
2492 	return error;
2493 }
2494 
2495 /**
2496  * @brief Attach a device driver to a device
2497  *
2498  * This function is a wrapper around the DEVICE_ATTACH() driver
2499  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2500  * device's sysctl tree, optionally prints a description of the device
2501  * and queues a notification event for user-based device management
2502  * services.
2503  *
2504  * Normally this function is only called internally from
2505  * device_probe_and_attach().
2506  *
2507  * @param dev		the device to initialise
2508  *
2509  * @retval 0		success
2510  * @retval ENXIO	no driver was found
2511  * @retval ENOMEM	memory allocation failure
2512  * @retval non-zero	some other unix error code
2513  */
2514 int
2515 device_attach(device_t dev)
2516 {
2517 	uint64_t attachtime;
2518 	uint16_t attachentropy;
2519 	int error;
2520 
2521 	if (resource_disabled(dev->driver->name, dev->unit)) {
2522 		device_disable(dev);
2523 		if (bootverbose)
2524 			 device_printf(dev, "disabled via hints entry\n");
2525 		return (ENXIO);
2526 	}
2527 
2528 	device_sysctl_init(dev);
2529 	if (!device_is_quiet(dev))
2530 		device_print_child(dev->parent, dev);
2531 	attachtime = get_cyclecount();
2532 	dev->state = DS_ATTACHING;
2533 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2534 		printf("device_attach: %s%d attach returned %d\n",
2535 		    dev->driver->name, dev->unit, error);
2536 		if (!(dev->flags & DF_FIXEDCLASS))
2537 			devclass_delete_device(dev->devclass, dev);
2538 		(void)device_set_driver(dev, NULL);
2539 		device_sysctl_fini(dev);
2540 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2541 		dev->state = DS_NOTPRESENT;
2542 		return (error);
2543 	}
2544 	dev->flags |= DF_ATTACHED_ONCE;
2545 	/* We only need the low bits of this time, but ranges from tens to thousands
2546 	 * have been seen, so keep 2 bytes' worth.
2547 	 */
2548 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2549 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2550 	device_sysctl_update(dev);
2551 	dev->state = DS_ATTACHED;
2552 	dev->flags &= ~DF_DONENOMATCH;
2553 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2554 	return (0);
2555 }
2556 
2557 /**
2558  * @brief Detach a driver from a device
2559  *
2560  * This function is a wrapper around the DEVICE_DETACH() driver
2561  * method. If the call to DEVICE_DETACH() succeeds, it calls
2562  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2563  * notification event for user-based device management services and
2564  * cleans up the device's sysctl tree.
2565  *
2566  * @param dev		the device to un-initialise
2567  *
2568  * @retval 0		success
2569  * @retval ENXIO	no driver was found
2570  * @retval ENOMEM	memory allocation failure
2571  * @retval non-zero	some other unix error code
2572  */
2573 int
2574 device_detach(device_t dev)
2575 {
2576 	int error;
2577 
2578 	bus_topo_assert();
2579 
2580 	PDEBUG(("%s", DEVICENAME(dev)));
2581 	if (dev->busy > 0)
2582 		return (EBUSY);
2583 	if (dev->state == DS_ATTACHING) {
2584 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2585 		return (EBUSY);
2586 	}
2587 	if (dev->state != DS_ATTACHED)
2588 		return (0);
2589 
2590 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2591 	if ((error = DEVICE_DETACH(dev)) != 0) {
2592 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2593 		    EVHDEV_DETACH_FAILED);
2594 		return (error);
2595 	} else {
2596 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2597 		    EVHDEV_DETACH_COMPLETE);
2598 	}
2599 	if (!device_is_quiet(dev))
2600 		device_printf(dev, "detached\n");
2601 	if (dev->parent)
2602 		BUS_CHILD_DETACHED(dev->parent, dev);
2603 
2604 	if (!(dev->flags & DF_FIXEDCLASS))
2605 		devclass_delete_device(dev->devclass, dev);
2606 
2607 	device_verbose(dev);
2608 	dev->state = DS_NOTPRESENT;
2609 	(void)device_set_driver(dev, NULL);
2610 	device_sysctl_fini(dev);
2611 
2612 	return (0);
2613 }
2614 
2615 /**
2616  * @brief Tells a driver to quiesce itself.
2617  *
2618  * This function is a wrapper around the DEVICE_QUIESCE() driver
2619  * method. If the call to DEVICE_QUIESCE() succeeds.
2620  *
2621  * @param dev		the device to quiesce
2622  *
2623  * @retval 0		success
2624  * @retval ENXIO	no driver was found
2625  * @retval ENOMEM	memory allocation failure
2626  * @retval non-zero	some other unix error code
2627  */
2628 int
2629 device_quiesce(device_t dev)
2630 {
2631 	PDEBUG(("%s", DEVICENAME(dev)));
2632 	if (dev->busy > 0)
2633 		return (EBUSY);
2634 	if (dev->state != DS_ATTACHED)
2635 		return (0);
2636 
2637 	return (DEVICE_QUIESCE(dev));
2638 }
2639 
2640 /**
2641  * @brief Notify a device of system shutdown
2642  *
2643  * This function calls the DEVICE_SHUTDOWN() driver method if the
2644  * device currently has an attached driver.
2645  *
2646  * @returns the value returned by DEVICE_SHUTDOWN()
2647  */
2648 int
2649 device_shutdown(device_t dev)
2650 {
2651 	if (dev->state < DS_ATTACHED)
2652 		return (0);
2653 	return (DEVICE_SHUTDOWN(dev));
2654 }
2655 
2656 /**
2657  * @brief Set the unit number of a device
2658  *
2659  * This function can be used to override the unit number used for a
2660  * device (e.g. to wire a device to a pre-configured unit number).
2661  */
2662 int
2663 device_set_unit(device_t dev, int unit)
2664 {
2665 	devclass_t dc;
2666 	int err;
2667 
2668 	if (unit == dev->unit)
2669 		return (0);
2670 	dc = device_get_devclass(dev);
2671 	if (unit < dc->maxunit && dc->devices[unit])
2672 		return (EBUSY);
2673 	err = devclass_delete_device(dc, dev);
2674 	if (err)
2675 		return (err);
2676 	dev->unit = unit;
2677 	err = devclass_add_device(dc, dev);
2678 	if (err)
2679 		return (err);
2680 
2681 	bus_data_generation_update();
2682 	return (0);
2683 }
2684 
2685 /*======================================*/
2686 /*
2687  * Some useful method implementations to make life easier for bus drivers.
2688  */
2689 
2690 void
2691 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2692 {
2693 	bzero(args, sz);
2694 	args->size = sz;
2695 	args->memattr = VM_MEMATTR_DEVICE;
2696 }
2697 
2698 /**
2699  * @brief Initialise a resource list.
2700  *
2701  * @param rl		the resource list to initialise
2702  */
2703 void
2704 resource_list_init(struct resource_list *rl)
2705 {
2706 	STAILQ_INIT(rl);
2707 }
2708 
2709 /**
2710  * @brief Reclaim memory used by a resource list.
2711  *
2712  * This function frees the memory for all resource entries on the list
2713  * (if any).
2714  *
2715  * @param rl		the resource list to free
2716  */
2717 void
2718 resource_list_free(struct resource_list *rl)
2719 {
2720 	struct resource_list_entry *rle;
2721 
2722 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2723 		if (rle->res)
2724 			panic("resource_list_free: resource entry is busy");
2725 		STAILQ_REMOVE_HEAD(rl, link);
2726 		free(rle, M_BUS);
2727 	}
2728 }
2729 
2730 /**
2731  * @brief Add a resource entry.
2732  *
2733  * This function adds a resource entry using the given @p type, @p
2734  * start, @p end and @p count values. A rid value is chosen by
2735  * searching sequentially for the first unused rid starting at zero.
2736  *
2737  * @param rl		the resource list to edit
2738  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2739  * @param start		the start address of the resource
2740  * @param end		the end address of the resource
2741  * @param count		XXX end-start+1
2742  */
2743 int
2744 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2745     rman_res_t end, rman_res_t count)
2746 {
2747 	int rid;
2748 
2749 	rid = 0;
2750 	while (resource_list_find(rl, type, rid) != NULL)
2751 		rid++;
2752 	resource_list_add(rl, type, rid, start, end, count);
2753 	return (rid);
2754 }
2755 
2756 /**
2757  * @brief Add or modify a resource entry.
2758  *
2759  * If an existing entry exists with the same type and rid, it will be
2760  * modified using the given values of @p start, @p end and @p
2761  * count. If no entry exists, a new one will be created using the
2762  * given values.  The resource list entry that matches is then returned.
2763  *
2764  * @param rl		the resource list to edit
2765  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2766  * @param rid		the resource identifier
2767  * @param start		the start address of the resource
2768  * @param end		the end address of the resource
2769  * @param count		XXX end-start+1
2770  */
2771 struct resource_list_entry *
2772 resource_list_add(struct resource_list *rl, int type, int rid,
2773     rman_res_t start, rman_res_t end, rman_res_t count)
2774 {
2775 	struct resource_list_entry *rle;
2776 
2777 	rle = resource_list_find(rl, type, rid);
2778 	if (!rle) {
2779 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2780 		    M_NOWAIT);
2781 		if (!rle)
2782 			panic("resource_list_add: can't record entry");
2783 		STAILQ_INSERT_TAIL(rl, rle, link);
2784 		rle->type = type;
2785 		rle->rid = rid;
2786 		rle->res = NULL;
2787 		rle->flags = 0;
2788 	}
2789 
2790 	if (rle->res)
2791 		panic("resource_list_add: resource entry is busy");
2792 
2793 	rle->start = start;
2794 	rle->end = end;
2795 	rle->count = count;
2796 	return (rle);
2797 }
2798 
2799 /**
2800  * @brief Determine if a resource entry is busy.
2801  *
2802  * Returns true if a resource entry is busy meaning that it has an
2803  * associated resource that is not an unallocated "reserved" resource.
2804  *
2805  * @param rl		the resource list to search
2806  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2807  * @param rid		the resource identifier
2808  *
2809  * @returns Non-zero if the entry is busy, zero otherwise.
2810  */
2811 int
2812 resource_list_busy(struct resource_list *rl, int type, int rid)
2813 {
2814 	struct resource_list_entry *rle;
2815 
2816 	rle = resource_list_find(rl, type, rid);
2817 	if (rle == NULL || rle->res == NULL)
2818 		return (0);
2819 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2820 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2821 		    ("reserved resource is active"));
2822 		return (0);
2823 	}
2824 	return (1);
2825 }
2826 
2827 /**
2828  * @brief Determine if a resource entry is reserved.
2829  *
2830  * Returns true if a resource entry is reserved meaning that it has an
2831  * associated "reserved" resource.  The resource can either be
2832  * allocated or unallocated.
2833  *
2834  * @param rl		the resource list to search
2835  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2836  * @param rid		the resource identifier
2837  *
2838  * @returns Non-zero if the entry is reserved, zero otherwise.
2839  */
2840 int
2841 resource_list_reserved(struct resource_list *rl, int type, int rid)
2842 {
2843 	struct resource_list_entry *rle;
2844 
2845 	rle = resource_list_find(rl, type, rid);
2846 	if (rle != NULL && rle->flags & RLE_RESERVED)
2847 		return (1);
2848 	return (0);
2849 }
2850 
2851 /**
2852  * @brief Find a resource entry by type and rid.
2853  *
2854  * @param rl		the resource list to search
2855  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2856  * @param rid		the resource identifier
2857  *
2858  * @returns the resource entry pointer or NULL if there is no such
2859  * entry.
2860  */
2861 struct resource_list_entry *
2862 resource_list_find(struct resource_list *rl, int type, int rid)
2863 {
2864 	struct resource_list_entry *rle;
2865 
2866 	STAILQ_FOREACH(rle, rl, link) {
2867 		if (rle->type == type && rle->rid == rid)
2868 			return (rle);
2869 	}
2870 	return (NULL);
2871 }
2872 
2873 /**
2874  * @brief Delete a resource entry.
2875  *
2876  * @param rl		the resource list to edit
2877  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2878  * @param rid		the resource identifier
2879  */
2880 void
2881 resource_list_delete(struct resource_list *rl, int type, int rid)
2882 {
2883 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2884 
2885 	if (rle) {
2886 		if (rle->res != NULL)
2887 			panic("resource_list_delete: resource has not been released");
2888 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2889 		free(rle, M_BUS);
2890 	}
2891 }
2892 
2893 /**
2894  * @brief Allocate a reserved resource
2895  *
2896  * This can be used by buses to force the allocation of resources
2897  * that are always active in the system even if they are not allocated
2898  * by a driver (e.g. PCI BARs).  This function is usually called when
2899  * adding a new child to the bus.  The resource is allocated from the
2900  * parent bus when it is reserved.  The resource list entry is marked
2901  * with RLE_RESERVED to note that it is a reserved resource.
2902  *
2903  * Subsequent attempts to allocate the resource with
2904  * resource_list_alloc() will succeed the first time and will set
2905  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2906  * resource that has been allocated is released with
2907  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2908  * the actual resource remains allocated.  The resource can be released to
2909  * the parent bus by calling resource_list_unreserve().
2910  *
2911  * @param rl		the resource list to allocate from
2912  * @param bus		the parent device of @p child
2913  * @param child		the device for which the resource is being reserved
2914  * @param type		the type of resource to allocate
2915  * @param rid		a pointer to the resource identifier
2916  * @param start		hint at the start of the resource range - pass
2917  *			@c 0 for any start address
2918  * @param end		hint at the end of the resource range - pass
2919  *			@c ~0 for any end address
2920  * @param count		hint at the size of range required - pass @c 1
2921  *			for any size
2922  * @param flags		any extra flags to control the resource
2923  *			allocation - see @c RF_XXX flags in
2924  *			<sys/rman.h> for details
2925  *
2926  * @returns		the resource which was allocated or @c NULL if no
2927  *			resource could be allocated
2928  */
2929 struct resource *
2930 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
2931     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
2932 {
2933 	struct resource_list_entry *rle = NULL;
2934 	int passthrough = (device_get_parent(child) != bus);
2935 	struct resource *r;
2936 
2937 	if (passthrough)
2938 		panic(
2939     "resource_list_reserve() should only be called for direct children");
2940 	if (flags & RF_ACTIVE)
2941 		panic(
2942     "resource_list_reserve() should only reserve inactive resources");
2943 
2944 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
2945 	    flags);
2946 	if (r != NULL) {
2947 		rle = resource_list_find(rl, type, *rid);
2948 		rle->flags |= RLE_RESERVED;
2949 	}
2950 	return (r);
2951 }
2952 
2953 /**
2954  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2955  *
2956  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2957  * and passing the allocation up to the parent of @p bus. This assumes
2958  * that the first entry of @c device_get_ivars(child) is a struct
2959  * resource_list. This also handles 'passthrough' allocations where a
2960  * child is a remote descendant of bus by passing the allocation up to
2961  * the parent of bus.
2962  *
2963  * Typically, a bus driver would store a list of child resources
2964  * somewhere in the child device's ivars (see device_get_ivars()) and
2965  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2966  * then call resource_list_alloc() to perform the allocation.
2967  *
2968  * @param rl		the resource list to allocate from
2969  * @param bus		the parent device of @p child
2970  * @param child		the device which is requesting an allocation
2971  * @param type		the type of resource to allocate
2972  * @param rid		a pointer to the resource identifier
2973  * @param start		hint at the start of the resource range - pass
2974  *			@c 0 for any start address
2975  * @param end		hint at the end of the resource range - pass
2976  *			@c ~0 for any end address
2977  * @param count		hint at the size of range required - pass @c 1
2978  *			for any size
2979  * @param flags		any extra flags to control the resource
2980  *			allocation - see @c RF_XXX flags in
2981  *			<sys/rman.h> for details
2982  *
2983  * @returns		the resource which was allocated or @c NULL if no
2984  *			resource could be allocated
2985  */
2986 struct resource *
2987 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2988     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
2989 {
2990 	struct resource_list_entry *rle = NULL;
2991 	int passthrough = (device_get_parent(child) != bus);
2992 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
2993 
2994 	if (passthrough) {
2995 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2996 		    type, rid, start, end, count, flags));
2997 	}
2998 
2999 	rle = resource_list_find(rl, type, *rid);
3000 
3001 	if (!rle)
3002 		return (NULL);		/* no resource of that type/rid */
3003 
3004 	if (rle->res) {
3005 		if (rle->flags & RLE_RESERVED) {
3006 			if (rle->flags & RLE_ALLOCATED)
3007 				return (NULL);
3008 			if ((flags & RF_ACTIVE) &&
3009 			    bus_activate_resource(child, type, *rid,
3010 			    rle->res) != 0)
3011 				return (NULL);
3012 			rle->flags |= RLE_ALLOCATED;
3013 			return (rle->res);
3014 		}
3015 		device_printf(bus,
3016 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3017 		    type, device_get_nameunit(child));
3018 		return (NULL);
3019 	}
3020 
3021 	if (isdefault) {
3022 		start = rle->start;
3023 		count = ulmax(count, rle->count);
3024 		end = ulmax(rle->end, start + count - 1);
3025 	}
3026 
3027 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3028 	    type, rid, start, end, count, flags);
3029 
3030 	/*
3031 	 * Record the new range.
3032 	 */
3033 	if (rle->res) {
3034 		rle->start = rman_get_start(rle->res);
3035 		rle->end = rman_get_end(rle->res);
3036 		rle->count = count;
3037 	}
3038 
3039 	return (rle->res);
3040 }
3041 
3042 /**
3043  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3044  *
3045  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3046  * used with resource_list_alloc().
3047  *
3048  * @param rl		the resource list which was allocated from
3049  * @param bus		the parent device of @p child
3050  * @param child		the device which is requesting a release
3051  * @param type		the type of resource to release
3052  * @param rid		the resource identifier
3053  * @param res		the resource to release
3054  *
3055  * @retval 0		success
3056  * @retval non-zero	a standard unix error code indicating what
3057  *			error condition prevented the operation
3058  */
3059 int
3060 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3061     int type, int rid, struct resource *res)
3062 {
3063 	struct resource_list_entry *rle = NULL;
3064 	int passthrough = (device_get_parent(child) != bus);
3065 	int error;
3066 
3067 	if (passthrough) {
3068 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3069 		    type, rid, res));
3070 	}
3071 
3072 	rle = resource_list_find(rl, type, rid);
3073 
3074 	if (!rle)
3075 		panic("resource_list_release: can't find resource");
3076 	if (!rle->res)
3077 		panic("resource_list_release: resource entry is not busy");
3078 	if (rle->flags & RLE_RESERVED) {
3079 		if (rle->flags & RLE_ALLOCATED) {
3080 			if (rman_get_flags(res) & RF_ACTIVE) {
3081 				error = bus_deactivate_resource(child, type,
3082 				    rid, res);
3083 				if (error)
3084 					return (error);
3085 			}
3086 			rle->flags &= ~RLE_ALLOCATED;
3087 			return (0);
3088 		}
3089 		return (EINVAL);
3090 	}
3091 
3092 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3093 	    type, rid, res);
3094 	if (error)
3095 		return (error);
3096 
3097 	rle->res = NULL;
3098 	return (0);
3099 }
3100 
3101 /**
3102  * @brief Release all active resources of a given type
3103  *
3104  * Release all active resources of a specified type.  This is intended
3105  * to be used to cleanup resources leaked by a driver after detach or
3106  * a failed attach.
3107  *
3108  * @param rl		the resource list which was allocated from
3109  * @param bus		the parent device of @p child
3110  * @param child		the device whose active resources are being released
3111  * @param type		the type of resources to release
3112  *
3113  * @retval 0		success
3114  * @retval EBUSY	at least one resource was active
3115  */
3116 int
3117 resource_list_release_active(struct resource_list *rl, device_t bus,
3118     device_t child, int type)
3119 {
3120 	struct resource_list_entry *rle;
3121 	int error, retval;
3122 
3123 	retval = 0;
3124 	STAILQ_FOREACH(rle, rl, link) {
3125 		if (rle->type != type)
3126 			continue;
3127 		if (rle->res == NULL)
3128 			continue;
3129 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3130 		    RLE_RESERVED)
3131 			continue;
3132 		retval = EBUSY;
3133 		error = resource_list_release(rl, bus, child, type,
3134 		    rman_get_rid(rle->res), rle->res);
3135 		if (error != 0)
3136 			device_printf(bus,
3137 			    "Failed to release active resource: %d\n", error);
3138 	}
3139 	return (retval);
3140 }
3141 
3142 /**
3143  * @brief Fully release a reserved resource
3144  *
3145  * Fully releases a resource reserved via resource_list_reserve().
3146  *
3147  * @param rl		the resource list which was allocated from
3148  * @param bus		the parent device of @p child
3149  * @param child		the device whose reserved resource is being released
3150  * @param type		the type of resource to release
3151  * @param rid		the resource identifier
3152  * @param res		the resource to release
3153  *
3154  * @retval 0		success
3155  * @retval non-zero	a standard unix error code indicating what
3156  *			error condition prevented the operation
3157  */
3158 int
3159 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3160     int type, int rid)
3161 {
3162 	struct resource_list_entry *rle = NULL;
3163 	int passthrough = (device_get_parent(child) != bus);
3164 
3165 	if (passthrough)
3166 		panic(
3167     "resource_list_unreserve() should only be called for direct children");
3168 
3169 	rle = resource_list_find(rl, type, rid);
3170 
3171 	if (!rle)
3172 		panic("resource_list_unreserve: can't find resource");
3173 	if (!(rle->flags & RLE_RESERVED))
3174 		return (EINVAL);
3175 	if (rle->flags & RLE_ALLOCATED)
3176 		return (EBUSY);
3177 	rle->flags &= ~RLE_RESERVED;
3178 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3179 }
3180 
3181 /**
3182  * @brief Print a description of resources in a resource list
3183  *
3184  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3185  * The name is printed if at least one resource of the given type is available.
3186  * The format is used to print resource start and end.
3187  *
3188  * @param rl		the resource list to print
3189  * @param name		the name of @p type, e.g. @c "memory"
3190  * @param type		type type of resource entry to print
3191  * @param format	printf(9) format string to print resource
3192  *			start and end values
3193  *
3194  * @returns		the number of characters printed
3195  */
3196 int
3197 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3198     const char *format)
3199 {
3200 	struct resource_list_entry *rle;
3201 	int printed, retval;
3202 
3203 	printed = 0;
3204 	retval = 0;
3205 	/* Yes, this is kinda cheating */
3206 	STAILQ_FOREACH(rle, rl, link) {
3207 		if (rle->type == type) {
3208 			if (printed == 0)
3209 				retval += printf(" %s ", name);
3210 			else
3211 				retval += printf(",");
3212 			printed++;
3213 			retval += printf(format, rle->start);
3214 			if (rle->count > 1) {
3215 				retval += printf("-");
3216 				retval += printf(format, rle->start +
3217 						 rle->count - 1);
3218 			}
3219 		}
3220 	}
3221 	return (retval);
3222 }
3223 
3224 /**
3225  * @brief Releases all the resources in a list.
3226  *
3227  * @param rl		The resource list to purge.
3228  *
3229  * @returns		nothing
3230  */
3231 void
3232 resource_list_purge(struct resource_list *rl)
3233 {
3234 	struct resource_list_entry *rle;
3235 
3236 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3237 		if (rle->res)
3238 			bus_release_resource(rman_get_device(rle->res),
3239 			    rle->type, rle->rid, rle->res);
3240 		STAILQ_REMOVE_HEAD(rl, link);
3241 		free(rle, M_BUS);
3242 	}
3243 }
3244 
3245 device_t
3246 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3247 {
3248 	return (device_add_child_ordered(dev, order, name, unit));
3249 }
3250 
3251 /**
3252  * @brief Helper function for implementing DEVICE_PROBE()
3253  *
3254  * This function can be used to help implement the DEVICE_PROBE() for
3255  * a bus (i.e. a device which has other devices attached to it). It
3256  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3257  * devclass.
3258  */
3259 int
3260 bus_generic_probe(device_t dev)
3261 {
3262 	devclass_t dc = dev->devclass;
3263 	driverlink_t dl;
3264 
3265 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3266 		/*
3267 		 * If this driver's pass is too high, then ignore it.
3268 		 * For most drivers in the default pass, this will
3269 		 * never be true.  For early-pass drivers they will
3270 		 * only call the identify routines of eligible drivers
3271 		 * when this routine is called.  Drivers for later
3272 		 * passes should have their identify routines called
3273 		 * on early-pass buses during BUS_NEW_PASS().
3274 		 */
3275 		if (dl->pass > bus_current_pass)
3276 			continue;
3277 		DEVICE_IDENTIFY(dl->driver, dev);
3278 	}
3279 
3280 	return (0);
3281 }
3282 
3283 /**
3284  * @brief Helper function for implementing DEVICE_ATTACH()
3285  *
3286  * This function can be used to help implement the DEVICE_ATTACH() for
3287  * a bus. It calls device_probe_and_attach() for each of the device's
3288  * children.
3289  */
3290 int
3291 bus_generic_attach(device_t dev)
3292 {
3293 	device_t child;
3294 
3295 	TAILQ_FOREACH(child, &dev->children, link) {
3296 		device_probe_and_attach(child);
3297 	}
3298 
3299 	return (0);
3300 }
3301 
3302 /**
3303  * @brief Helper function for delaying attaching children
3304  *
3305  * Many buses can't run transactions on the bus which children need to probe and
3306  * attach until after interrupts and/or timers are running.  This function
3307  * delays their attach until interrupts and timers are enabled.
3308  */
3309 int
3310 bus_delayed_attach_children(device_t dev)
3311 {
3312 	/* Probe and attach the bus children when interrupts are available */
3313 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3314 
3315 	return (0);
3316 }
3317 
3318 /**
3319  * @brief Helper function for implementing DEVICE_DETACH()
3320  *
3321  * This function can be used to help implement the DEVICE_DETACH() for
3322  * a bus. It calls device_detach() for each of the device's
3323  * children.
3324  */
3325 int
3326 bus_generic_detach(device_t dev)
3327 {
3328 	device_t child;
3329 	int error;
3330 
3331 	if (dev->state != DS_ATTACHED)
3332 		return (EBUSY);
3333 
3334 	/*
3335 	 * Detach children in the reverse order.
3336 	 * See bus_generic_suspend for details.
3337 	 */
3338 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3339 		if ((error = device_detach(child)) != 0)
3340 			return (error);
3341 	}
3342 
3343 	return (0);
3344 }
3345 
3346 /**
3347  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3348  *
3349  * This function can be used to help implement the DEVICE_SHUTDOWN()
3350  * for a bus. It calls device_shutdown() for each of the device's
3351  * children.
3352  */
3353 int
3354 bus_generic_shutdown(device_t dev)
3355 {
3356 	device_t child;
3357 
3358 	/*
3359 	 * Shut down children in the reverse order.
3360 	 * See bus_generic_suspend for details.
3361 	 */
3362 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3363 		device_shutdown(child);
3364 	}
3365 
3366 	return (0);
3367 }
3368 
3369 /**
3370  * @brief Default function for suspending a child device.
3371  *
3372  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3373  */
3374 int
3375 bus_generic_suspend_child(device_t dev, device_t child)
3376 {
3377 	int	error;
3378 
3379 	error = DEVICE_SUSPEND(child);
3380 
3381 	if (error == 0)
3382 		child->flags |= DF_SUSPENDED;
3383 
3384 	return (error);
3385 }
3386 
3387 /**
3388  * @brief Default function for resuming a child device.
3389  *
3390  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3391  */
3392 int
3393 bus_generic_resume_child(device_t dev, device_t child)
3394 {
3395 	DEVICE_RESUME(child);
3396 	child->flags &= ~DF_SUSPENDED;
3397 
3398 	return (0);
3399 }
3400 
3401 /**
3402  * @brief Helper function for implementing DEVICE_SUSPEND()
3403  *
3404  * This function can be used to help implement the DEVICE_SUSPEND()
3405  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3406  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3407  * operation is aborted and any devices which were suspended are
3408  * resumed immediately by calling their DEVICE_RESUME() methods.
3409  */
3410 int
3411 bus_generic_suspend(device_t dev)
3412 {
3413 	int		error;
3414 	device_t	child;
3415 
3416 	/*
3417 	 * Suspend children in the reverse order.
3418 	 * For most buses all children are equal, so the order does not matter.
3419 	 * Other buses, such as acpi, carefully order their child devices to
3420 	 * express implicit dependencies between them.  For such buses it is
3421 	 * safer to bring down devices in the reverse order.
3422 	 */
3423 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3424 		error = BUS_SUSPEND_CHILD(dev, child);
3425 		if (error != 0) {
3426 			child = TAILQ_NEXT(child, link);
3427 			if (child != NULL) {
3428 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3429 					BUS_RESUME_CHILD(dev, child);
3430 			}
3431 			return (error);
3432 		}
3433 	}
3434 	return (0);
3435 }
3436 
3437 /**
3438  * @brief Helper function for implementing DEVICE_RESUME()
3439  *
3440  * This function can be used to help implement the DEVICE_RESUME() for
3441  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3442  */
3443 int
3444 bus_generic_resume(device_t dev)
3445 {
3446 	device_t	child;
3447 
3448 	TAILQ_FOREACH(child, &dev->children, link) {
3449 		BUS_RESUME_CHILD(dev, child);
3450 		/* if resume fails, there's nothing we can usefully do... */
3451 	}
3452 	return (0);
3453 }
3454 
3455 /**
3456  * @brief Helper function for implementing BUS_RESET_POST
3457  *
3458  * Bus can use this function to implement common operations of
3459  * re-attaching or resuming the children after the bus itself was
3460  * reset, and after restoring bus-unique state of children.
3461  *
3462  * @param dev	The bus
3463  * #param flags	DEVF_RESET_*
3464  */
3465 int
3466 bus_helper_reset_post(device_t dev, int flags)
3467 {
3468 	device_t child;
3469 	int error, error1;
3470 
3471 	error = 0;
3472 	TAILQ_FOREACH(child, &dev->children,link) {
3473 		BUS_RESET_POST(dev, child);
3474 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3475 		    device_probe_and_attach(child) :
3476 		    BUS_RESUME_CHILD(dev, child);
3477 		if (error == 0 && error1 != 0)
3478 			error = error1;
3479 	}
3480 	return (error);
3481 }
3482 
3483 static void
3484 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3485 {
3486 	child = TAILQ_NEXT(child, link);
3487 	if (child == NULL)
3488 		return;
3489 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3490 		BUS_RESET_POST(dev, child);
3491 		if ((flags & DEVF_RESET_DETACH) != 0)
3492 			device_probe_and_attach(child);
3493 		else
3494 			BUS_RESUME_CHILD(dev, child);
3495 	}
3496 }
3497 
3498 /**
3499  * @brief Helper function for implementing BUS_RESET_PREPARE
3500  *
3501  * Bus can use this function to implement common operations of
3502  * detaching or suspending the children before the bus itself is
3503  * reset, and then save bus-unique state of children that must
3504  * persists around reset.
3505  *
3506  * @param dev	The bus
3507  * #param flags	DEVF_RESET_*
3508  */
3509 int
3510 bus_helper_reset_prepare(device_t dev, int flags)
3511 {
3512 	device_t child;
3513 	int error;
3514 
3515 	if (dev->state != DS_ATTACHED)
3516 		return (EBUSY);
3517 
3518 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3519 		if ((flags & DEVF_RESET_DETACH) != 0) {
3520 			error = device_get_state(child) == DS_ATTACHED ?
3521 			    device_detach(child) : 0;
3522 		} else {
3523 			error = BUS_SUSPEND_CHILD(dev, child);
3524 		}
3525 		if (error == 0) {
3526 			error = BUS_RESET_PREPARE(dev, child);
3527 			if (error != 0) {
3528 				if ((flags & DEVF_RESET_DETACH) != 0)
3529 					device_probe_and_attach(child);
3530 				else
3531 					BUS_RESUME_CHILD(dev, child);
3532 			}
3533 		}
3534 		if (error != 0) {
3535 			bus_helper_reset_prepare_rollback(dev, child, flags);
3536 			return (error);
3537 		}
3538 	}
3539 	return (0);
3540 }
3541 
3542 /**
3543  * @brief Helper function for implementing BUS_PRINT_CHILD().
3544  *
3545  * This function prints the first part of the ascii representation of
3546  * @p child, including its name, unit and description (if any - see
3547  * device_set_desc()).
3548  *
3549  * @returns the number of characters printed
3550  */
3551 int
3552 bus_print_child_header(device_t dev, device_t child)
3553 {
3554 	int	retval = 0;
3555 
3556 	if (device_get_desc(child)) {
3557 		retval += device_printf(child, "<%s>", device_get_desc(child));
3558 	} else {
3559 		retval += printf("%s", device_get_nameunit(child));
3560 	}
3561 
3562 	return (retval);
3563 }
3564 
3565 /**
3566  * @brief Helper function for implementing BUS_PRINT_CHILD().
3567  *
3568  * This function prints the last part of the ascii representation of
3569  * @p child, which consists of the string @c " on " followed by the
3570  * name and unit of the @p dev.
3571  *
3572  * @returns the number of characters printed
3573  */
3574 int
3575 bus_print_child_footer(device_t dev, device_t child)
3576 {
3577 	return (printf(" on %s\n", device_get_nameunit(dev)));
3578 }
3579 
3580 /**
3581  * @brief Helper function for implementing BUS_PRINT_CHILD().
3582  *
3583  * This function prints out the VM domain for the given device.
3584  *
3585  * @returns the number of characters printed
3586  */
3587 int
3588 bus_print_child_domain(device_t dev, device_t child)
3589 {
3590 	int domain;
3591 
3592 	/* No domain? Don't print anything */
3593 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3594 		return (0);
3595 
3596 	return (printf(" numa-domain %d", domain));
3597 }
3598 
3599 /**
3600  * @brief Helper function for implementing BUS_PRINT_CHILD().
3601  *
3602  * This function simply calls bus_print_child_header() followed by
3603  * bus_print_child_footer().
3604  *
3605  * @returns the number of characters printed
3606  */
3607 int
3608 bus_generic_print_child(device_t dev, device_t child)
3609 {
3610 	int	retval = 0;
3611 
3612 	retval += bus_print_child_header(dev, child);
3613 	retval += bus_print_child_domain(dev, child);
3614 	retval += bus_print_child_footer(dev, child);
3615 
3616 	return (retval);
3617 }
3618 
3619 /**
3620  * @brief Stub function for implementing BUS_READ_IVAR().
3621  *
3622  * @returns ENOENT
3623  */
3624 int
3625 bus_generic_read_ivar(device_t dev, device_t child, int index,
3626     uintptr_t * result)
3627 {
3628 	return (ENOENT);
3629 }
3630 
3631 /**
3632  * @brief Stub function for implementing BUS_WRITE_IVAR().
3633  *
3634  * @returns ENOENT
3635  */
3636 int
3637 bus_generic_write_ivar(device_t dev, device_t child, int index,
3638     uintptr_t value)
3639 {
3640 	return (ENOENT);
3641 }
3642 
3643 /**
3644  * @brief Helper function for implementing BUS_GET_PROPERTY().
3645  *
3646  * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3647  * until a non-default implementation is found.
3648  */
3649 ssize_t
3650 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3651     void *propvalue, size_t size, device_property_type_t type)
3652 {
3653 	if (device_get_parent(dev) != NULL)
3654 		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3655 		    propname, propvalue, size, type));
3656 
3657 	return (-1);
3658 }
3659 
3660 /**
3661  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3662  *
3663  * @returns NULL
3664  */
3665 struct resource_list *
3666 bus_generic_get_resource_list(device_t dev, device_t child)
3667 {
3668 	return (NULL);
3669 }
3670 
3671 /**
3672  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3673  *
3674  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3675  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3676  * and then calls device_probe_and_attach() for each unattached child.
3677  */
3678 void
3679 bus_generic_driver_added(device_t dev, driver_t *driver)
3680 {
3681 	device_t child;
3682 
3683 	DEVICE_IDENTIFY(driver, dev);
3684 	TAILQ_FOREACH(child, &dev->children, link) {
3685 		if (child->state == DS_NOTPRESENT)
3686 			device_probe_and_attach(child);
3687 	}
3688 }
3689 
3690 /**
3691  * @brief Helper function for implementing BUS_NEW_PASS().
3692  *
3693  * This implementing of BUS_NEW_PASS() first calls the identify
3694  * routines for any drivers that probe at the current pass.  Then it
3695  * walks the list of devices for this bus.  If a device is already
3696  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3697  * device is not already attached, it attempts to attach a driver to
3698  * it.
3699  */
3700 void
3701 bus_generic_new_pass(device_t dev)
3702 {
3703 	driverlink_t dl;
3704 	devclass_t dc;
3705 	device_t child;
3706 
3707 	dc = dev->devclass;
3708 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3709 		if (dl->pass == bus_current_pass)
3710 			DEVICE_IDENTIFY(dl->driver, dev);
3711 	}
3712 	TAILQ_FOREACH(child, &dev->children, link) {
3713 		if (child->state >= DS_ATTACHED)
3714 			BUS_NEW_PASS(child);
3715 		else if (child->state == DS_NOTPRESENT)
3716 			device_probe_and_attach(child);
3717 	}
3718 }
3719 
3720 /**
3721  * @brief Helper function for implementing BUS_SETUP_INTR().
3722  *
3723  * This simple implementation of BUS_SETUP_INTR() simply calls the
3724  * BUS_SETUP_INTR() method of the parent of @p dev.
3725  */
3726 int
3727 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3728     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3729     void **cookiep)
3730 {
3731 	/* Propagate up the bus hierarchy until someone handles it. */
3732 	if (dev->parent)
3733 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3734 		    filter, intr, arg, cookiep));
3735 	return (EINVAL);
3736 }
3737 
3738 /**
3739  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3740  *
3741  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3742  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3743  */
3744 int
3745 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3746     void *cookie)
3747 {
3748 	/* Propagate up the bus hierarchy until someone handles it. */
3749 	if (dev->parent)
3750 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3751 	return (EINVAL);
3752 }
3753 
3754 /**
3755  * @brief Helper function for implementing BUS_SUSPEND_INTR().
3756  *
3757  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3758  * BUS_SUSPEND_INTR() method of the parent of @p dev.
3759  */
3760 int
3761 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3762 {
3763 	/* Propagate up the bus hierarchy until someone handles it. */
3764 	if (dev->parent)
3765 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3766 	return (EINVAL);
3767 }
3768 
3769 /**
3770  * @brief Helper function for implementing BUS_RESUME_INTR().
3771  *
3772  * This simple implementation of BUS_RESUME_INTR() simply calls the
3773  * BUS_RESUME_INTR() method of the parent of @p dev.
3774  */
3775 int
3776 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3777 {
3778 	/* Propagate up the bus hierarchy until someone handles it. */
3779 	if (dev->parent)
3780 		return (BUS_RESUME_INTR(dev->parent, child, irq));
3781 	return (EINVAL);
3782 }
3783 
3784 /**
3785  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3786  *
3787  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3788  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3789  */
3790 int
3791 bus_generic_adjust_resource(device_t dev, device_t child, int type,
3792     struct resource *r, rman_res_t start, rman_res_t end)
3793 {
3794 	/* Propagate up the bus hierarchy until someone handles it. */
3795 	if (dev->parent)
3796 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3797 		    end));
3798 	return (EINVAL);
3799 }
3800 
3801 /*
3802  * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3803  *
3804  * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3805  * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
3806  * parent, no translation happens.
3807  */
3808 int
3809 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3810     rman_res_t *newstart)
3811 {
3812 	if (dev->parent)
3813 		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3814 		    newstart));
3815 	*newstart = start;
3816 	return (0);
3817 }
3818 
3819 /**
3820  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3821  *
3822  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3823  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3824  */
3825 struct resource *
3826 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3827     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3828 {
3829 	/* Propagate up the bus hierarchy until someone handles it. */
3830 	if (dev->parent)
3831 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3832 		    start, end, count, flags));
3833 	return (NULL);
3834 }
3835 
3836 /**
3837  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3838  *
3839  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3840  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3841  */
3842 int
3843 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3844     struct resource *r)
3845 {
3846 	/* Propagate up the bus hierarchy until someone handles it. */
3847 	if (dev->parent)
3848 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3849 		    r));
3850 	return (EINVAL);
3851 }
3852 
3853 /**
3854  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3855  *
3856  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3857  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3858  */
3859 int
3860 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3861     struct resource *r)
3862 {
3863 	/* Propagate up the bus hierarchy until someone handles it. */
3864 	if (dev->parent)
3865 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3866 		    r));
3867 	return (EINVAL);
3868 }
3869 
3870 /**
3871  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3872  *
3873  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3874  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3875  */
3876 int
3877 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3878     int rid, struct resource *r)
3879 {
3880 	/* Propagate up the bus hierarchy until someone handles it. */
3881 	if (dev->parent)
3882 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3883 		    r));
3884 	return (EINVAL);
3885 }
3886 
3887 /**
3888  * @brief Helper function for implementing BUS_MAP_RESOURCE().
3889  *
3890  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
3891  * BUS_MAP_RESOURCE() method of the parent of @p dev.
3892  */
3893 int
3894 bus_generic_map_resource(device_t dev, device_t child, int type,
3895     struct resource *r, struct resource_map_request *args,
3896     struct resource_map *map)
3897 {
3898 	/* Propagate up the bus hierarchy until someone handles it. */
3899 	if (dev->parent)
3900 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
3901 		    map));
3902 	return (EINVAL);
3903 }
3904 
3905 /**
3906  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
3907  *
3908  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
3909  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
3910  */
3911 int
3912 bus_generic_unmap_resource(device_t dev, device_t child, int type,
3913     struct resource *r, struct resource_map *map)
3914 {
3915 	/* Propagate up the bus hierarchy until someone handles it. */
3916 	if (dev->parent)
3917 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
3918 	return (EINVAL);
3919 }
3920 
3921 /**
3922  * @brief Helper function for implementing BUS_BIND_INTR().
3923  *
3924  * This simple implementation of BUS_BIND_INTR() simply calls the
3925  * BUS_BIND_INTR() method of the parent of @p dev.
3926  */
3927 int
3928 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3929     int cpu)
3930 {
3931 	/* Propagate up the bus hierarchy until someone handles it. */
3932 	if (dev->parent)
3933 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3934 	return (EINVAL);
3935 }
3936 
3937 /**
3938  * @brief Helper function for implementing BUS_CONFIG_INTR().
3939  *
3940  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3941  * BUS_CONFIG_INTR() method of the parent of @p dev.
3942  */
3943 int
3944 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3945     enum intr_polarity pol)
3946 {
3947 	/* Propagate up the bus hierarchy until someone handles it. */
3948 	if (dev->parent)
3949 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3950 	return (EINVAL);
3951 }
3952 
3953 /**
3954  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3955  *
3956  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3957  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3958  */
3959 int
3960 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3961     void *cookie, const char *descr)
3962 {
3963 	/* Propagate up the bus hierarchy until someone handles it. */
3964 	if (dev->parent)
3965 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3966 		    descr));
3967 	return (EINVAL);
3968 }
3969 
3970 /**
3971  * @brief Helper function for implementing BUS_GET_CPUS().
3972  *
3973  * This simple implementation of BUS_GET_CPUS() simply calls the
3974  * BUS_GET_CPUS() method of the parent of @p dev.
3975  */
3976 int
3977 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
3978     size_t setsize, cpuset_t *cpuset)
3979 {
3980 	/* Propagate up the bus hierarchy until someone handles it. */
3981 	if (dev->parent != NULL)
3982 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
3983 	return (EINVAL);
3984 }
3985 
3986 /**
3987  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3988  *
3989  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3990  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3991  */
3992 bus_dma_tag_t
3993 bus_generic_get_dma_tag(device_t dev, device_t child)
3994 {
3995 	/* Propagate up the bus hierarchy until someone handles it. */
3996 	if (dev->parent != NULL)
3997 		return (BUS_GET_DMA_TAG(dev->parent, child));
3998 	return (NULL);
3999 }
4000 
4001 /**
4002  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4003  *
4004  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4005  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4006  */
4007 bus_space_tag_t
4008 bus_generic_get_bus_tag(device_t dev, device_t child)
4009 {
4010 	/* Propagate up the bus hierarchy until someone handles it. */
4011 	if (dev->parent != NULL)
4012 		return (BUS_GET_BUS_TAG(dev->parent, child));
4013 	return ((bus_space_tag_t)0);
4014 }
4015 
4016 /**
4017  * @brief Helper function for implementing BUS_GET_RESOURCE().
4018  *
4019  * This implementation of BUS_GET_RESOURCE() uses the
4020  * resource_list_find() function to do most of the work. It calls
4021  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4022  * search.
4023  */
4024 int
4025 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4026     rman_res_t *startp, rman_res_t *countp)
4027 {
4028 	struct resource_list *		rl = NULL;
4029 	struct resource_list_entry *	rle = NULL;
4030 
4031 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4032 	if (!rl)
4033 		return (EINVAL);
4034 
4035 	rle = resource_list_find(rl, type, rid);
4036 	if (!rle)
4037 		return (ENOENT);
4038 
4039 	if (startp)
4040 		*startp = rle->start;
4041 	if (countp)
4042 		*countp = rle->count;
4043 
4044 	return (0);
4045 }
4046 
4047 /**
4048  * @brief Helper function for implementing BUS_SET_RESOURCE().
4049  *
4050  * This implementation of BUS_SET_RESOURCE() uses the
4051  * resource_list_add() function to do most of the work. It calls
4052  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4053  * edit.
4054  */
4055 int
4056 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4057     rman_res_t start, rman_res_t count)
4058 {
4059 	struct resource_list *		rl = NULL;
4060 
4061 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4062 	if (!rl)
4063 		return (EINVAL);
4064 
4065 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4066 
4067 	return (0);
4068 }
4069 
4070 /**
4071  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4072  *
4073  * This implementation of BUS_DELETE_RESOURCE() uses the
4074  * resource_list_delete() function to do most of the work. It calls
4075  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4076  * edit.
4077  */
4078 void
4079 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4080 {
4081 	struct resource_list *		rl = NULL;
4082 
4083 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4084 	if (!rl)
4085 		return;
4086 
4087 	resource_list_delete(rl, type, rid);
4088 
4089 	return;
4090 }
4091 
4092 /**
4093  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4094  *
4095  * This implementation of BUS_RELEASE_RESOURCE() uses the
4096  * resource_list_release() function to do most of the work. It calls
4097  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4098  */
4099 int
4100 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4101     int rid, struct resource *r)
4102 {
4103 	struct resource_list *		rl = NULL;
4104 
4105 	if (device_get_parent(child) != dev)
4106 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4107 		    type, rid, r));
4108 
4109 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4110 	if (!rl)
4111 		return (EINVAL);
4112 
4113 	return (resource_list_release(rl, dev, child, type, rid, r));
4114 }
4115 
4116 /**
4117  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4118  *
4119  * This implementation of BUS_ALLOC_RESOURCE() uses the
4120  * resource_list_alloc() function to do most of the work. It calls
4121  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4122  */
4123 struct resource *
4124 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4125     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4126 {
4127 	struct resource_list *		rl = NULL;
4128 
4129 	if (device_get_parent(child) != dev)
4130 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4131 		    type, rid, start, end, count, flags));
4132 
4133 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4134 	if (!rl)
4135 		return (NULL);
4136 
4137 	return (resource_list_alloc(rl, dev, child, type, rid,
4138 	    start, end, count, flags));
4139 }
4140 
4141 /**
4142  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4143  *
4144  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4145  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4146  */
4147 int
4148 bus_generic_child_present(device_t dev, device_t child)
4149 {
4150 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4151 }
4152 
4153 int
4154 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4155 {
4156 	if (dev->parent)
4157 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4158 
4159 	return (ENOENT);
4160 }
4161 
4162 /**
4163  * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4164  *
4165  * This function knows how to (a) pass the request up the tree if there's
4166  * a parent and (b) Knows how to supply a FreeBSD locator.
4167  *
4168  * @param bus		bus in the walk up the tree
4169  * @param child		leaf node to print information about
4170  * @param locator	BUS_LOCATOR_xxx string for locator
4171  * @param sb		Buffer to print information into
4172  */
4173 int
4174 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4175     struct sbuf *sb)
4176 {
4177 	int rv = 0;
4178 	device_t parent;
4179 
4180 	/*
4181 	 * We don't recurse on ACPI since either we know the handle for the
4182 	 * device or we don't. And if we're in the generic routine, we don't
4183 	 * have a ACPI override. All other locators build up a path by having
4184 	 * their parents create a path and then adding the path element for this
4185 	 * node. That's why we recurse with parent, bus rather than the typical
4186 	 * parent, child: each spot in the tree is independent of what our child
4187 	 * will do with this path.
4188 	 */
4189 	parent = device_get_parent(bus);
4190 	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4191 		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4192 	}
4193 	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4194 		if (rv == 0) {
4195 			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4196 		}
4197 		return (rv);
4198 	}
4199 	/*
4200 	 * Don't know what to do. So assume we do nothing. Not sure that's
4201 	 * the right thing, but keeps us from having a big list here.
4202 	 */
4203 	return (0);
4204 }
4205 
4206 
4207 /**
4208  * @brief Helper function for implementing BUS_RESCAN().
4209  *
4210  * This null implementation of BUS_RESCAN() always fails to indicate
4211  * the bus does not support rescanning.
4212  */
4213 int
4214 bus_null_rescan(device_t dev)
4215 {
4216 	return (ENODEV);
4217 }
4218 
4219 /*
4220  * Some convenience functions to make it easier for drivers to use the
4221  * resource-management functions.  All these really do is hide the
4222  * indirection through the parent's method table, making for slightly
4223  * less-wordy code.  In the future, it might make sense for this code
4224  * to maintain some sort of a list of resources allocated by each device.
4225  */
4226 
4227 int
4228 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4229     struct resource **res)
4230 {
4231 	int i;
4232 
4233 	for (i = 0; rs[i].type != -1; i++)
4234 		res[i] = NULL;
4235 	for (i = 0; rs[i].type != -1; i++) {
4236 		res[i] = bus_alloc_resource_any(dev,
4237 		    rs[i].type, &rs[i].rid, rs[i].flags);
4238 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4239 			bus_release_resources(dev, rs, res);
4240 			return (ENXIO);
4241 		}
4242 	}
4243 	return (0);
4244 }
4245 
4246 void
4247 bus_release_resources(device_t dev, const struct resource_spec *rs,
4248     struct resource **res)
4249 {
4250 	int i;
4251 
4252 	for (i = 0; rs[i].type != -1; i++)
4253 		if (res[i] != NULL) {
4254 			bus_release_resource(
4255 			    dev, rs[i].type, rs[i].rid, res[i]);
4256 			res[i] = NULL;
4257 		}
4258 }
4259 
4260 /**
4261  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4262  *
4263  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4264  * parent of @p dev.
4265  */
4266 struct resource *
4267 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4268     rman_res_t end, rman_res_t count, u_int flags)
4269 {
4270 	struct resource *res;
4271 
4272 	if (dev->parent == NULL)
4273 		return (NULL);
4274 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4275 	    count, flags);
4276 	return (res);
4277 }
4278 
4279 /**
4280  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4281  *
4282  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4283  * parent of @p dev.
4284  */
4285 int
4286 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4287     rman_res_t end)
4288 {
4289 	if (dev->parent == NULL)
4290 		return (EINVAL);
4291 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4292 }
4293 
4294 /**
4295  * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4296  *
4297  * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4298  * parent of @p dev.
4299  */
4300 int
4301 bus_translate_resource(device_t dev, int type, rman_res_t start,
4302     rman_res_t *newstart)
4303 {
4304 	if (dev->parent == NULL)
4305 		return (EINVAL);
4306 	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4307 }
4308 
4309 /**
4310  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4311  *
4312  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4313  * parent of @p dev.
4314  */
4315 int
4316 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4317 {
4318 	if (dev->parent == NULL)
4319 		return (EINVAL);
4320 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4321 }
4322 
4323 /**
4324  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4325  *
4326  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4327  * parent of @p dev.
4328  */
4329 int
4330 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4331 {
4332 	if (dev->parent == NULL)
4333 		return (EINVAL);
4334 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4335 }
4336 
4337 /**
4338  * @brief Wrapper function for BUS_MAP_RESOURCE().
4339  *
4340  * This function simply calls the BUS_MAP_RESOURCE() method of the
4341  * parent of @p dev.
4342  */
4343 int
4344 bus_map_resource(device_t dev, int type, struct resource *r,
4345     struct resource_map_request *args, struct resource_map *map)
4346 {
4347 	if (dev->parent == NULL)
4348 		return (EINVAL);
4349 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4350 }
4351 
4352 /**
4353  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4354  *
4355  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4356  * parent of @p dev.
4357  */
4358 int
4359 bus_unmap_resource(device_t dev, int type, struct resource *r,
4360     struct resource_map *map)
4361 {
4362 	if (dev->parent == NULL)
4363 		return (EINVAL);
4364 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4365 }
4366 
4367 /**
4368  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4369  *
4370  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4371  * parent of @p dev.
4372  */
4373 int
4374 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4375 {
4376 	int rv;
4377 
4378 	if (dev->parent == NULL)
4379 		return (EINVAL);
4380 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4381 	return (rv);
4382 }
4383 
4384 /**
4385  * @brief Wrapper function for BUS_SETUP_INTR().
4386  *
4387  * This function simply calls the BUS_SETUP_INTR() method of the
4388  * parent of @p dev.
4389  */
4390 int
4391 bus_setup_intr(device_t dev, struct resource *r, int flags,
4392     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4393 {
4394 	int error;
4395 
4396 	if (dev->parent == NULL)
4397 		return (EINVAL);
4398 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4399 	    arg, cookiep);
4400 	if (error != 0)
4401 		return (error);
4402 	if (handler != NULL && !(flags & INTR_MPSAFE))
4403 		device_printf(dev, "[GIANT-LOCKED]\n");
4404 	return (0);
4405 }
4406 
4407 /**
4408  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4409  *
4410  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4411  * parent of @p dev.
4412  */
4413 int
4414 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4415 {
4416 	if (dev->parent == NULL)
4417 		return (EINVAL);
4418 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4419 }
4420 
4421 /**
4422  * @brief Wrapper function for BUS_SUSPEND_INTR().
4423  *
4424  * This function simply calls the BUS_SUSPEND_INTR() method of the
4425  * parent of @p dev.
4426  */
4427 int
4428 bus_suspend_intr(device_t dev, struct resource *r)
4429 {
4430 	if (dev->parent == NULL)
4431 		return (EINVAL);
4432 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4433 }
4434 
4435 /**
4436  * @brief Wrapper function for BUS_RESUME_INTR().
4437  *
4438  * This function simply calls the BUS_RESUME_INTR() method of the
4439  * parent of @p dev.
4440  */
4441 int
4442 bus_resume_intr(device_t dev, struct resource *r)
4443 {
4444 	if (dev->parent == NULL)
4445 		return (EINVAL);
4446 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4447 }
4448 
4449 /**
4450  * @brief Wrapper function for BUS_BIND_INTR().
4451  *
4452  * This function simply calls the BUS_BIND_INTR() method of the
4453  * parent of @p dev.
4454  */
4455 int
4456 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4457 {
4458 	if (dev->parent == NULL)
4459 		return (EINVAL);
4460 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4461 }
4462 
4463 /**
4464  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4465  *
4466  * This function first formats the requested description into a
4467  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4468  * the parent of @p dev.
4469  */
4470 int
4471 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4472     const char *fmt, ...)
4473 {
4474 	va_list ap;
4475 	char descr[MAXCOMLEN + 1];
4476 
4477 	if (dev->parent == NULL)
4478 		return (EINVAL);
4479 	va_start(ap, fmt);
4480 	vsnprintf(descr, sizeof(descr), fmt, ap);
4481 	va_end(ap);
4482 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4483 }
4484 
4485 /**
4486  * @brief Wrapper function for BUS_SET_RESOURCE().
4487  *
4488  * This function simply calls the BUS_SET_RESOURCE() method of the
4489  * parent of @p dev.
4490  */
4491 int
4492 bus_set_resource(device_t dev, int type, int rid,
4493     rman_res_t start, rman_res_t count)
4494 {
4495 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4496 	    start, count));
4497 }
4498 
4499 /**
4500  * @brief Wrapper function for BUS_GET_RESOURCE().
4501  *
4502  * This function simply calls the BUS_GET_RESOURCE() method of the
4503  * parent of @p dev.
4504  */
4505 int
4506 bus_get_resource(device_t dev, int type, int rid,
4507     rman_res_t *startp, rman_res_t *countp)
4508 {
4509 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4510 	    startp, countp));
4511 }
4512 
4513 /**
4514  * @brief Wrapper function for BUS_GET_RESOURCE().
4515  *
4516  * This function simply calls the BUS_GET_RESOURCE() method of the
4517  * parent of @p dev and returns the start value.
4518  */
4519 rman_res_t
4520 bus_get_resource_start(device_t dev, int type, int rid)
4521 {
4522 	rman_res_t start;
4523 	rman_res_t count;
4524 	int error;
4525 
4526 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4527 	    &start, &count);
4528 	if (error)
4529 		return (0);
4530 	return (start);
4531 }
4532 
4533 /**
4534  * @brief Wrapper function for BUS_GET_RESOURCE().
4535  *
4536  * This function simply calls the BUS_GET_RESOURCE() method of the
4537  * parent of @p dev and returns the count value.
4538  */
4539 rman_res_t
4540 bus_get_resource_count(device_t dev, int type, int rid)
4541 {
4542 	rman_res_t start;
4543 	rman_res_t count;
4544 	int error;
4545 
4546 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4547 	    &start, &count);
4548 	if (error)
4549 		return (0);
4550 	return (count);
4551 }
4552 
4553 /**
4554  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4555  *
4556  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4557  * parent of @p dev.
4558  */
4559 void
4560 bus_delete_resource(device_t dev, int type, int rid)
4561 {
4562 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4563 }
4564 
4565 /**
4566  * @brief Wrapper function for BUS_CHILD_PRESENT().
4567  *
4568  * This function simply calls the BUS_CHILD_PRESENT() method of the
4569  * parent of @p dev.
4570  */
4571 int
4572 bus_child_present(device_t child)
4573 {
4574 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4575 }
4576 
4577 /**
4578  * @brief Wrapper function for BUS_CHILD_PNPINFO().
4579  *
4580  * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4581  * dev.
4582  */
4583 int
4584 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4585 {
4586 	device_t parent;
4587 
4588 	parent = device_get_parent(child);
4589 	if (parent == NULL)
4590 		return (0);
4591 	return (BUS_CHILD_PNPINFO(parent, child, sb));
4592 }
4593 
4594 /**
4595  * @brief Generic implementation that does nothing for bus_child_pnpinfo
4596  *
4597  * This function has the right signature and returns 0 since the sbuf is passed
4598  * to us to append to.
4599  */
4600 int
4601 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4602 {
4603 	return (0);
4604 }
4605 
4606 /**
4607  * @brief Wrapper function for BUS_CHILD_LOCATION().
4608  *
4609  * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4610  * @p dev.
4611  */
4612 int
4613 bus_child_location(device_t child, struct sbuf *sb)
4614 {
4615 	device_t parent;
4616 
4617 	parent = device_get_parent(child);
4618 	if (parent == NULL)
4619 		return (0);
4620 	return (BUS_CHILD_LOCATION(parent, child, sb));
4621 }
4622 
4623 /**
4624  * @brief Generic implementation that does nothing for bus_child_location
4625  *
4626  * This function has the right signature and returns 0 since the sbuf is passed
4627  * to us to append to.
4628  */
4629 int
4630 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4631 {
4632 	return (0);
4633 }
4634 
4635 /**
4636  * @brief Wrapper function for BUS_GET_CPUS().
4637  *
4638  * This function simply calls the BUS_GET_CPUS() method of the
4639  * parent of @p dev.
4640  */
4641 int
4642 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4643 {
4644 	device_t parent;
4645 
4646 	parent = device_get_parent(dev);
4647 	if (parent == NULL)
4648 		return (EINVAL);
4649 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4650 }
4651 
4652 /**
4653  * @brief Wrapper function for BUS_GET_DMA_TAG().
4654  *
4655  * This function simply calls the BUS_GET_DMA_TAG() method of the
4656  * parent of @p dev.
4657  */
4658 bus_dma_tag_t
4659 bus_get_dma_tag(device_t dev)
4660 {
4661 	device_t parent;
4662 
4663 	parent = device_get_parent(dev);
4664 	if (parent == NULL)
4665 		return (NULL);
4666 	return (BUS_GET_DMA_TAG(parent, dev));
4667 }
4668 
4669 /**
4670  * @brief Wrapper function for BUS_GET_BUS_TAG().
4671  *
4672  * This function simply calls the BUS_GET_BUS_TAG() method of the
4673  * parent of @p dev.
4674  */
4675 bus_space_tag_t
4676 bus_get_bus_tag(device_t dev)
4677 {
4678 	device_t parent;
4679 
4680 	parent = device_get_parent(dev);
4681 	if (parent == NULL)
4682 		return ((bus_space_tag_t)0);
4683 	return (BUS_GET_BUS_TAG(parent, dev));
4684 }
4685 
4686 /**
4687  * @brief Wrapper function for BUS_GET_DOMAIN().
4688  *
4689  * This function simply calls the BUS_GET_DOMAIN() method of the
4690  * parent of @p dev.
4691  */
4692 int
4693 bus_get_domain(device_t dev, int *domain)
4694 {
4695 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4696 }
4697 
4698 /* Resume all devices and then notify userland that we're up again. */
4699 static int
4700 root_resume(device_t dev)
4701 {
4702 	int error;
4703 
4704 	error = bus_generic_resume(dev);
4705 	if (error == 0) {
4706 		devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */
4707 		devctl_notify("kernel", "power", "resume", NULL);
4708 	}
4709 	return (error);
4710 }
4711 
4712 static int
4713 root_print_child(device_t dev, device_t child)
4714 {
4715 	int	retval = 0;
4716 
4717 	retval += bus_print_child_header(dev, child);
4718 	retval += printf("\n");
4719 
4720 	return (retval);
4721 }
4722 
4723 static int
4724 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4725     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4726 {
4727 	/*
4728 	 * If an interrupt mapping gets to here something bad has happened.
4729 	 */
4730 	panic("root_setup_intr");
4731 }
4732 
4733 /*
4734  * If we get here, assume that the device is permanent and really is
4735  * present in the system.  Removable bus drivers are expected to intercept
4736  * this call long before it gets here.  We return -1 so that drivers that
4737  * really care can check vs -1 or some ERRNO returned higher in the food
4738  * chain.
4739  */
4740 static int
4741 root_child_present(device_t dev, device_t child)
4742 {
4743 	return (-1);
4744 }
4745 
4746 static int
4747 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4748     cpuset_t *cpuset)
4749 {
4750 	switch (op) {
4751 	case INTR_CPUS:
4752 		/* Default to returning the set of all CPUs. */
4753 		if (setsize != sizeof(cpuset_t))
4754 			return (EINVAL);
4755 		*cpuset = all_cpus;
4756 		return (0);
4757 	default:
4758 		return (EINVAL);
4759 	}
4760 }
4761 
4762 static kobj_method_t root_methods[] = {
4763 	/* Device interface */
4764 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4765 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4766 	KOBJMETHOD(device_resume,	root_resume),
4767 
4768 	/* Bus interface */
4769 	KOBJMETHOD(bus_print_child,	root_print_child),
4770 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4771 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4772 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4773 	KOBJMETHOD(bus_child_present,	root_child_present),
4774 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4775 
4776 	KOBJMETHOD_END
4777 };
4778 
4779 static driver_t root_driver = {
4780 	"root",
4781 	root_methods,
4782 	1,			/* no softc */
4783 };
4784 
4785 device_t	root_bus;
4786 devclass_t	root_devclass;
4787 
4788 static int
4789 root_bus_module_handler(module_t mod, int what, void* arg)
4790 {
4791 	switch (what) {
4792 	case MOD_LOAD:
4793 		TAILQ_INIT(&bus_data_devices);
4794 		kobj_class_compile((kobj_class_t) &root_driver);
4795 		root_bus = make_device(NULL, "root", 0);
4796 		root_bus->desc = "System root bus";
4797 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4798 		root_bus->driver = &root_driver;
4799 		root_bus->state = DS_ATTACHED;
4800 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4801 		devctl2_init();
4802 		return (0);
4803 
4804 	case MOD_SHUTDOWN:
4805 		device_shutdown(root_bus);
4806 		return (0);
4807 	default:
4808 		return (EOPNOTSUPP);
4809 	}
4810 
4811 	return (0);
4812 }
4813 
4814 static moduledata_t root_bus_mod = {
4815 	"rootbus",
4816 	root_bus_module_handler,
4817 	NULL
4818 };
4819 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4820 
4821 /**
4822  * @brief Automatically configure devices
4823  *
4824  * This function begins the autoconfiguration process by calling
4825  * device_probe_and_attach() for each child of the @c root0 device.
4826  */
4827 void
4828 root_bus_configure(void)
4829 {
4830 	PDEBUG(("."));
4831 
4832 	/* Eventually this will be split up, but this is sufficient for now. */
4833 	bus_set_pass(BUS_PASS_DEFAULT);
4834 }
4835 
4836 /**
4837  * @brief Module handler for registering device drivers
4838  *
4839  * This module handler is used to automatically register device
4840  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4841  * devclass_add_driver() for the driver described by the
4842  * driver_module_data structure pointed to by @p arg
4843  */
4844 int
4845 driver_module_handler(module_t mod, int what, void *arg)
4846 {
4847 	struct driver_module_data *dmd;
4848 	devclass_t bus_devclass;
4849 	kobj_class_t driver;
4850 	int error, pass;
4851 
4852 	dmd = (struct driver_module_data *)arg;
4853 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4854 	error = 0;
4855 
4856 	switch (what) {
4857 	case MOD_LOAD:
4858 		if (dmd->dmd_chainevh)
4859 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4860 
4861 		pass = dmd->dmd_pass;
4862 		driver = dmd->dmd_driver;
4863 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4864 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4865 		error = devclass_add_driver(bus_devclass, driver, pass,
4866 		    dmd->dmd_devclass);
4867 		break;
4868 
4869 	case MOD_UNLOAD:
4870 		PDEBUG(("Unloading module: driver %s from bus %s",
4871 		    DRIVERNAME(dmd->dmd_driver),
4872 		    dmd->dmd_busname));
4873 		error = devclass_delete_driver(bus_devclass,
4874 		    dmd->dmd_driver);
4875 
4876 		if (!error && dmd->dmd_chainevh)
4877 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4878 		break;
4879 	case MOD_QUIESCE:
4880 		PDEBUG(("Quiesce module: driver %s from bus %s",
4881 		    DRIVERNAME(dmd->dmd_driver),
4882 		    dmd->dmd_busname));
4883 		error = devclass_quiesce_driver(bus_devclass,
4884 		    dmd->dmd_driver);
4885 
4886 		if (!error && dmd->dmd_chainevh)
4887 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4888 		break;
4889 	default:
4890 		error = EOPNOTSUPP;
4891 		break;
4892 	}
4893 
4894 	return (error);
4895 }
4896 
4897 /**
4898  * @brief Enumerate all hinted devices for this bus.
4899  *
4900  * Walks through the hints for this bus and calls the bus_hinted_child
4901  * routine for each one it fines.  It searches first for the specific
4902  * bus that's being probed for hinted children (eg isa0), and then for
4903  * generic children (eg isa).
4904  *
4905  * @param	dev	bus device to enumerate
4906  */
4907 void
4908 bus_enumerate_hinted_children(device_t bus)
4909 {
4910 	int i;
4911 	const char *dname, *busname;
4912 	int dunit;
4913 
4914 	/*
4915 	 * enumerate all devices on the specific bus
4916 	 */
4917 	busname = device_get_nameunit(bus);
4918 	i = 0;
4919 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4920 		BUS_HINTED_CHILD(bus, dname, dunit);
4921 
4922 	/*
4923 	 * and all the generic ones.
4924 	 */
4925 	busname = device_get_name(bus);
4926 	i = 0;
4927 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4928 		BUS_HINTED_CHILD(bus, dname, dunit);
4929 }
4930 
4931 #ifdef BUS_DEBUG
4932 
4933 /* the _short versions avoid iteration by not calling anything that prints
4934  * more than oneliners. I love oneliners.
4935  */
4936 
4937 static void
4938 print_device_short(device_t dev, int indent)
4939 {
4940 	if (!dev)
4941 		return;
4942 
4943 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4944 	    dev->unit, dev->desc,
4945 	    (dev->parent? "":"no "),
4946 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4947 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4948 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4949 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4950 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4951 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
4952 	    (dev->ivars? "":"no "),
4953 	    (dev->softc? "":"no "),
4954 	    dev->busy));
4955 }
4956 
4957 static void
4958 print_device(device_t dev, int indent)
4959 {
4960 	if (!dev)
4961 		return;
4962 
4963 	print_device_short(dev, indent);
4964 
4965 	indentprintf(("Parent:\n"));
4966 	print_device_short(dev->parent, indent+1);
4967 	indentprintf(("Driver:\n"));
4968 	print_driver_short(dev->driver, indent+1);
4969 	indentprintf(("Devclass:\n"));
4970 	print_devclass_short(dev->devclass, indent+1);
4971 }
4972 
4973 void
4974 print_device_tree_short(device_t dev, int indent)
4975 /* print the device and all its children (indented) */
4976 {
4977 	device_t child;
4978 
4979 	if (!dev)
4980 		return;
4981 
4982 	print_device_short(dev, indent);
4983 
4984 	TAILQ_FOREACH(child, &dev->children, link) {
4985 		print_device_tree_short(child, indent+1);
4986 	}
4987 }
4988 
4989 void
4990 print_device_tree(device_t dev, int indent)
4991 /* print the device and all its children (indented) */
4992 {
4993 	device_t child;
4994 
4995 	if (!dev)
4996 		return;
4997 
4998 	print_device(dev, indent);
4999 
5000 	TAILQ_FOREACH(child, &dev->children, link) {
5001 		print_device_tree(child, indent+1);
5002 	}
5003 }
5004 
5005 static void
5006 print_driver_short(driver_t *driver, int indent)
5007 {
5008 	if (!driver)
5009 		return;
5010 
5011 	indentprintf(("driver %s: softc size = %zd\n",
5012 	    driver->name, driver->size));
5013 }
5014 
5015 static void
5016 print_driver(driver_t *driver, int indent)
5017 {
5018 	if (!driver)
5019 		return;
5020 
5021 	print_driver_short(driver, indent);
5022 }
5023 
5024 static void
5025 print_driver_list(driver_list_t drivers, int indent)
5026 {
5027 	driverlink_t driver;
5028 
5029 	TAILQ_FOREACH(driver, &drivers, link) {
5030 		print_driver(driver->driver, indent);
5031 	}
5032 }
5033 
5034 static void
5035 print_devclass_short(devclass_t dc, int indent)
5036 {
5037 	if ( !dc )
5038 		return;
5039 
5040 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5041 }
5042 
5043 static void
5044 print_devclass(devclass_t dc, int indent)
5045 {
5046 	int i;
5047 
5048 	if ( !dc )
5049 		return;
5050 
5051 	print_devclass_short(dc, indent);
5052 	indentprintf(("Drivers:\n"));
5053 	print_driver_list(dc->drivers, indent+1);
5054 
5055 	indentprintf(("Devices:\n"));
5056 	for (i = 0; i < dc->maxunit; i++)
5057 		if (dc->devices[i])
5058 			print_device(dc->devices[i], indent+1);
5059 }
5060 
5061 void
5062 print_devclass_list_short(void)
5063 {
5064 	devclass_t dc;
5065 
5066 	printf("Short listing of devclasses, drivers & devices:\n");
5067 	TAILQ_FOREACH(dc, &devclasses, link) {
5068 		print_devclass_short(dc, 0);
5069 	}
5070 }
5071 
5072 void
5073 print_devclass_list(void)
5074 {
5075 	devclass_t dc;
5076 
5077 	printf("Full listing of devclasses, drivers & devices:\n");
5078 	TAILQ_FOREACH(dc, &devclasses, link) {
5079 		print_devclass(dc, 0);
5080 	}
5081 }
5082 
5083 #endif
5084 
5085 /*
5086  * User-space access to the device tree.
5087  *
5088  * We implement a small set of nodes:
5089  *
5090  * hw.bus			Single integer read method to obtain the
5091  *				current generation count.
5092  * hw.bus.devices		Reads the entire device tree in flat space.
5093  * hw.bus.rman			Resource manager interface
5094  *
5095  * We might like to add the ability to scan devclasses and/or drivers to
5096  * determine what else is currently loaded/available.
5097  */
5098 
5099 static int
5100 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5101 {
5102 	struct u_businfo	ubus;
5103 
5104 	ubus.ub_version = BUS_USER_VERSION;
5105 	ubus.ub_generation = bus_data_generation;
5106 
5107 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5108 }
5109 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5110     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5111     "bus-related data");
5112 
5113 static int
5114 sysctl_devices(SYSCTL_HANDLER_ARGS)
5115 {
5116 	struct sbuf		sb;
5117 	int			*name = (int *)arg1;
5118 	u_int			namelen = arg2;
5119 	int			index;
5120 	device_t		dev;
5121 	struct u_device		*udev;
5122 	int			error;
5123 
5124 	if (namelen != 2)
5125 		return (EINVAL);
5126 
5127 	if (bus_data_generation_check(name[0]))
5128 		return (EINVAL);
5129 
5130 	index = name[1];
5131 
5132 	/*
5133 	 * Scan the list of devices, looking for the requested index.
5134 	 */
5135 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5136 		if (index-- == 0)
5137 			break;
5138 	}
5139 	if (dev == NULL)
5140 		return (ENOENT);
5141 
5142 	/*
5143 	 * Populate the return item, careful not to overflow the buffer.
5144 	 */
5145 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5146 	if (udev == NULL)
5147 		return (ENOMEM);
5148 	udev->dv_handle = (uintptr_t)dev;
5149 	udev->dv_parent = (uintptr_t)dev->parent;
5150 	udev->dv_devflags = dev->devflags;
5151 	udev->dv_flags = dev->flags;
5152 	udev->dv_state = dev->state;
5153 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5154 	if (dev->nameunit != NULL)
5155 		sbuf_cat(&sb, dev->nameunit);
5156 	sbuf_putc(&sb, '\0');
5157 	if (dev->desc != NULL)
5158 		sbuf_cat(&sb, dev->desc);
5159 	sbuf_putc(&sb, '\0');
5160 	if (dev->driver != NULL)
5161 		sbuf_cat(&sb, dev->driver->name);
5162 	sbuf_putc(&sb, '\0');
5163 	bus_child_pnpinfo(dev, &sb);
5164 	sbuf_putc(&sb, '\0');
5165 	bus_child_location(dev, &sb);
5166 	sbuf_putc(&sb, '\0');
5167 	error = sbuf_finish(&sb);
5168 	if (error == 0)
5169 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5170 	sbuf_delete(&sb);
5171 	free(udev, M_BUS);
5172 	return (error);
5173 }
5174 
5175 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5176     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5177     "system device tree");
5178 
5179 int
5180 bus_data_generation_check(int generation)
5181 {
5182 	if (generation != bus_data_generation)
5183 		return (1);
5184 
5185 	/* XXX generate optimised lists here? */
5186 	return (0);
5187 }
5188 
5189 void
5190 bus_data_generation_update(void)
5191 {
5192 	atomic_add_int(&bus_data_generation, 1);
5193 }
5194 
5195 int
5196 bus_free_resource(device_t dev, int type, struct resource *r)
5197 {
5198 	if (r == NULL)
5199 		return (0);
5200 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5201 }
5202 
5203 device_t
5204 device_lookup_by_name(const char *name)
5205 {
5206 	device_t dev;
5207 
5208 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5209 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5210 			return (dev);
5211 	}
5212 	return (NULL);
5213 }
5214 
5215 /*
5216  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5217  * implicit semantics on open, so it could not be reused for this.
5218  * Another option would be to call this /dev/bus?
5219  */
5220 static int
5221 find_device(struct devreq *req, device_t *devp)
5222 {
5223 	device_t dev;
5224 
5225 	/*
5226 	 * First, ensure that the name is nul terminated.
5227 	 */
5228 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5229 		return (EINVAL);
5230 
5231 	/*
5232 	 * Second, try to find an attached device whose name matches
5233 	 * 'name'.
5234 	 */
5235 	dev = device_lookup_by_name(req->dr_name);
5236 	if (dev != NULL) {
5237 		*devp = dev;
5238 		return (0);
5239 	}
5240 
5241 	/* Finally, give device enumerators a chance. */
5242 	dev = NULL;
5243 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5244 	if (dev == NULL)
5245 		return (ENOENT);
5246 	*devp = dev;
5247 	return (0);
5248 }
5249 
5250 static bool
5251 driver_exists(device_t bus, const char *driver)
5252 {
5253 	devclass_t dc;
5254 
5255 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5256 		if (devclass_find_driver_internal(dc, driver) != NULL)
5257 			return (true);
5258 	}
5259 	return (false);
5260 }
5261 
5262 static void
5263 device_gen_nomatch(device_t dev)
5264 {
5265 	device_t child;
5266 
5267 	if (dev->flags & DF_NEEDNOMATCH &&
5268 	    dev->state == DS_NOTPRESENT) {
5269 		device_handle_nomatch(dev);
5270 	}
5271 	dev->flags &= ~DF_NEEDNOMATCH;
5272 	TAILQ_FOREACH(child, &dev->children, link) {
5273 		device_gen_nomatch(child);
5274 	}
5275 }
5276 
5277 static void
5278 device_do_deferred_actions(void)
5279 {
5280 	devclass_t dc;
5281 	driverlink_t dl;
5282 
5283 	/*
5284 	 * Walk through the devclasses to find all the drivers we've tagged as
5285 	 * deferred during the freeze and call the driver added routines. They
5286 	 * have already been added to the lists in the background, so the driver
5287 	 * added routines that trigger a probe will have all the right bidders
5288 	 * for the probe auction.
5289 	 */
5290 	TAILQ_FOREACH(dc, &devclasses, link) {
5291 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5292 			if (dl->flags & DL_DEFERRED_PROBE) {
5293 				devclass_driver_added(dc, dl->driver);
5294 				dl->flags &= ~DL_DEFERRED_PROBE;
5295 			}
5296 		}
5297 	}
5298 
5299 	/*
5300 	 * We also defer no-match events during a freeze. Walk the tree and
5301 	 * generate all the pent-up events that are still relevant.
5302 	 */
5303 	device_gen_nomatch(root_bus);
5304 	bus_data_generation_update();
5305 }
5306 
5307 static char *
5308 device_get_path(device_t dev, const char *locator)
5309 {
5310 	struct sbuf *sb;
5311 	ssize_t len;
5312 	char *rv = NULL;
5313 	int error;
5314 
5315 	sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND | SBUF_INCLUDENUL);
5316 	error = BUS_GET_DEVICE_PATH(device_get_parent(dev), dev, locator, sb);
5317 	sbuf_finish(sb);	/* Note: errors checked with sbuf_len() below */
5318 	if (error != 0)
5319 		goto out;
5320 	len = sbuf_len(sb);
5321 	if (len <= 1)
5322 		goto out;
5323 	rv = malloc(len, M_BUS, M_NOWAIT);
5324 	memcpy(rv, sbuf_data(sb), len);
5325 out:
5326 	sbuf_delete(sb);
5327 	return (rv);
5328 }
5329 
5330 static int
5331 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5332     struct thread *td)
5333 {
5334 	struct devreq *req;
5335 	device_t dev;
5336 	int error, old;
5337 
5338 	/* Locate the device to control. */
5339 	bus_topo_lock();
5340 	req = (struct devreq *)data;
5341 	switch (cmd) {
5342 	case DEV_ATTACH:
5343 	case DEV_DETACH:
5344 	case DEV_ENABLE:
5345 	case DEV_DISABLE:
5346 	case DEV_SUSPEND:
5347 	case DEV_RESUME:
5348 	case DEV_SET_DRIVER:
5349 	case DEV_CLEAR_DRIVER:
5350 	case DEV_RESCAN:
5351 	case DEV_DELETE:
5352 	case DEV_RESET:
5353 		error = priv_check(td, PRIV_DRIVER);
5354 		if (error == 0)
5355 			error = find_device(req, &dev);
5356 		break;
5357 	case DEV_FREEZE:
5358 	case DEV_THAW:
5359 		error = priv_check(td, PRIV_DRIVER);
5360 		break;
5361 	case DEV_GET_PATH:
5362 		error = find_device(req, &dev);
5363 		break;
5364 	default:
5365 		error = ENOTTY;
5366 		break;
5367 	}
5368 	if (error) {
5369 		bus_topo_unlock();
5370 		return (error);
5371 	}
5372 
5373 	/* Perform the requested operation. */
5374 	switch (cmd) {
5375 	case DEV_ATTACH:
5376 		if (device_is_attached(dev))
5377 			error = EBUSY;
5378 		else if (!device_is_enabled(dev))
5379 			error = ENXIO;
5380 		else
5381 			error = device_probe_and_attach(dev);
5382 		break;
5383 	case DEV_DETACH:
5384 		if (!device_is_attached(dev)) {
5385 			error = ENXIO;
5386 			break;
5387 		}
5388 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5389 			error = device_quiesce(dev);
5390 			if (error)
5391 				break;
5392 		}
5393 		error = device_detach(dev);
5394 		break;
5395 	case DEV_ENABLE:
5396 		if (device_is_enabled(dev)) {
5397 			error = EBUSY;
5398 			break;
5399 		}
5400 
5401 		/*
5402 		 * If the device has been probed but not attached (e.g.
5403 		 * when it has been disabled by a loader hint), just
5404 		 * attach the device rather than doing a full probe.
5405 		 */
5406 		device_enable(dev);
5407 		if (device_is_alive(dev)) {
5408 			/*
5409 			 * If the device was disabled via a hint, clear
5410 			 * the hint.
5411 			 */
5412 			if (resource_disabled(dev->driver->name, dev->unit))
5413 				resource_unset_value(dev->driver->name,
5414 				    dev->unit, "disabled");
5415 			error = device_attach(dev);
5416 		} else
5417 			error = device_probe_and_attach(dev);
5418 		break;
5419 	case DEV_DISABLE:
5420 		if (!device_is_enabled(dev)) {
5421 			error = ENXIO;
5422 			break;
5423 		}
5424 
5425 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5426 			error = device_quiesce(dev);
5427 			if (error)
5428 				break;
5429 		}
5430 
5431 		/*
5432 		 * Force DF_FIXEDCLASS on around detach to preserve
5433 		 * the existing name.
5434 		 */
5435 		old = dev->flags;
5436 		dev->flags |= DF_FIXEDCLASS;
5437 		error = device_detach(dev);
5438 		if (!(old & DF_FIXEDCLASS))
5439 			dev->flags &= ~DF_FIXEDCLASS;
5440 		if (error == 0)
5441 			device_disable(dev);
5442 		break;
5443 	case DEV_SUSPEND:
5444 		if (device_is_suspended(dev)) {
5445 			error = EBUSY;
5446 			break;
5447 		}
5448 		if (device_get_parent(dev) == NULL) {
5449 			error = EINVAL;
5450 			break;
5451 		}
5452 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5453 		break;
5454 	case DEV_RESUME:
5455 		if (!device_is_suspended(dev)) {
5456 			error = EINVAL;
5457 			break;
5458 		}
5459 		if (device_get_parent(dev) == NULL) {
5460 			error = EINVAL;
5461 			break;
5462 		}
5463 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5464 		break;
5465 	case DEV_SET_DRIVER: {
5466 		devclass_t dc;
5467 		char driver[128];
5468 
5469 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5470 		if (error)
5471 			break;
5472 		if (driver[0] == '\0') {
5473 			error = EINVAL;
5474 			break;
5475 		}
5476 		if (dev->devclass != NULL &&
5477 		    strcmp(driver, dev->devclass->name) == 0)
5478 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5479 			break;
5480 
5481 		/*
5482 		 * Scan drivers for this device's bus looking for at
5483 		 * least one matching driver.
5484 		 */
5485 		if (dev->parent == NULL) {
5486 			error = EINVAL;
5487 			break;
5488 		}
5489 		if (!driver_exists(dev->parent, driver)) {
5490 			error = ENOENT;
5491 			break;
5492 		}
5493 		dc = devclass_create(driver);
5494 		if (dc == NULL) {
5495 			error = ENOMEM;
5496 			break;
5497 		}
5498 
5499 		/* Detach device if necessary. */
5500 		if (device_is_attached(dev)) {
5501 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5502 				error = device_detach(dev);
5503 			else
5504 				error = EBUSY;
5505 			if (error)
5506 				break;
5507 		}
5508 
5509 		/* Clear any previously-fixed device class and unit. */
5510 		if (dev->flags & DF_FIXEDCLASS)
5511 			devclass_delete_device(dev->devclass, dev);
5512 		dev->flags |= DF_WILDCARD;
5513 		dev->unit = -1;
5514 
5515 		/* Force the new device class. */
5516 		error = devclass_add_device(dc, dev);
5517 		if (error)
5518 			break;
5519 		dev->flags |= DF_FIXEDCLASS;
5520 		error = device_probe_and_attach(dev);
5521 		break;
5522 	}
5523 	case DEV_CLEAR_DRIVER:
5524 		if (!(dev->flags & DF_FIXEDCLASS)) {
5525 			error = 0;
5526 			break;
5527 		}
5528 		if (device_is_attached(dev)) {
5529 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5530 				error = device_detach(dev);
5531 			else
5532 				error = EBUSY;
5533 			if (error)
5534 				break;
5535 		}
5536 
5537 		dev->flags &= ~DF_FIXEDCLASS;
5538 		dev->flags |= DF_WILDCARD;
5539 		devclass_delete_device(dev->devclass, dev);
5540 		error = device_probe_and_attach(dev);
5541 		break;
5542 	case DEV_RESCAN:
5543 		if (!device_is_attached(dev)) {
5544 			error = ENXIO;
5545 			break;
5546 		}
5547 		error = BUS_RESCAN(dev);
5548 		break;
5549 	case DEV_DELETE: {
5550 		device_t parent;
5551 
5552 		parent = device_get_parent(dev);
5553 		if (parent == NULL) {
5554 			error = EINVAL;
5555 			break;
5556 		}
5557 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5558 			if (bus_child_present(dev) != 0) {
5559 				error = EBUSY;
5560 				break;
5561 			}
5562 		}
5563 
5564 		error = device_delete_child(parent, dev);
5565 		break;
5566 	}
5567 	case DEV_FREEZE:
5568 		if (device_frozen)
5569 			error = EBUSY;
5570 		else
5571 			device_frozen = true;
5572 		break;
5573 	case DEV_THAW:
5574 		if (!device_frozen)
5575 			error = EBUSY;
5576 		else {
5577 			device_do_deferred_actions();
5578 			device_frozen = false;
5579 		}
5580 		break;
5581 	case DEV_RESET:
5582 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5583 			error = EINVAL;
5584 			break;
5585 		}
5586 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5587 		    req->dr_flags);
5588 		break;
5589 	case DEV_GET_PATH: {
5590 		char locator[64];
5591 		char *path;
5592 		ssize_t len;
5593 
5594 		error = copyinstr(req->dr_buffer.buffer, locator, sizeof(locator), NULL);
5595 		if (error)
5596 			break;
5597 		path = device_get_path(dev, locator);
5598 		if (path == NULL) {
5599 			error = ENOMEM;
5600 			break;
5601 		}
5602 		len = strlen(path) + 1;
5603 		if (req->dr_buffer.length < len) {
5604 			error = ENAMETOOLONG;
5605 		} else {
5606 			error = copyout(path, req->dr_buffer.buffer, len);
5607 		}
5608 		req->dr_buffer.length = len;
5609 		free(path, M_BUS);
5610 		break;
5611 	}
5612 	}
5613 	bus_topo_unlock();
5614 	return (error);
5615 }
5616 
5617 static struct cdevsw devctl2_cdevsw = {
5618 	.d_version =	D_VERSION,
5619 	.d_ioctl =	devctl2_ioctl,
5620 	.d_name =	"devctl2",
5621 };
5622 
5623 static void
5624 devctl2_init(void)
5625 {
5626 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5627 	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
5628 }
5629 
5630 /*
5631  * For maintaining device 'at' location info to avoid recomputing it
5632  */
5633 struct device_location_node {
5634 	const char *dln_locator;
5635 	const char *dln_path;
5636 	TAILQ_ENTRY(device_location_node) dln_link;
5637 };
5638 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
5639 
5640 struct device_location_cache {
5641 	device_location_list_t dlc_list;
5642 };
5643 
5644 
5645 /*
5646  * Location cache for wired devices.
5647  */
5648 device_location_cache_t *
5649 dev_wired_cache_init(void)
5650 {
5651 	device_location_cache_t *dcp;
5652 
5653 	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
5654 	TAILQ_INIT(&dcp->dlc_list);
5655 
5656 	return (dcp);
5657 }
5658 
5659 void
5660 dev_wired_cache_fini(device_location_cache_t *dcp)
5661 {
5662 	struct device_location_node *dln, *tdln;
5663 
5664 	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
5665 		/* Note: one allocation for both node and locator, but not path */
5666 		free(__DECONST(void *, dln->dln_path), M_BUS);
5667 		free(dln, M_BUS);
5668 	}
5669 	free(dcp, M_BUS);
5670 }
5671 
5672 static struct device_location_node *
5673 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
5674 {
5675 	struct device_location_node *dln;
5676 
5677 	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
5678 		if (strcmp(locator, dln->dln_locator) == 0)
5679 			return (dln);
5680 	}
5681 
5682 	return (NULL);
5683 }
5684 
5685 static struct device_location_node *
5686 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
5687 {
5688 	struct device_location_node *dln;
5689 	char *l;
5690 
5691 	dln = malloc(sizeof(*dln) + strlen(locator) + 1, M_BUS, M_WAITOK | M_ZERO);
5692 	dln->dln_locator = l = (char *)(dln + 1);
5693 	memcpy(l, locator, strlen(locator) + 1);
5694 	dln->dln_path = path;
5695 	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
5696 
5697 	return (dln);
5698 }
5699 
5700 bool
5701 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev, const char *at)
5702 {
5703 	const char *cp, *path;
5704 	char locator[32];
5705 	int len;
5706 	struct device_location_node *res;
5707 
5708 	cp = strchr(at, ':');
5709 	if (cp == NULL)
5710 		return (false);
5711 	len = cp - at;
5712 	if (len > sizeof(locator) - 1)	/* Skip too long locator */
5713 		return (false);
5714 	memcpy(locator, at, len);
5715 	locator[len] = '\0';
5716 	cp++;
5717 
5718 	/* maybe cache this inside device_t and look that up, but not yet */
5719 	res = dev_wired_cache_lookup(dcp, locator);
5720 	if (res == NULL) {
5721 		path = device_get_path(dev, locator);
5722 		res = dev_wired_cache_add(dcp, locator, path);
5723 	}
5724 	if (res == NULL || res->dln_path == NULL)
5725 		return (false);
5726 
5727 	return (strcmp(res->dln_path, cp) == 0);
5728 }
5729 
5730 /*
5731  * APIs to manage deprecation and obsolescence.
5732  */
5733 static int obsolete_panic = 0;
5734 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5735     "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
5736     "2 = if deprecated)");
5737 
5738 static void
5739 gone_panic(int major, int running, const char *msg)
5740 {
5741 	switch (obsolete_panic)
5742 	{
5743 	case 0:
5744 		return;
5745 	case 1:
5746 		if (running < major)
5747 			return;
5748 		/* FALLTHROUGH */
5749 	default:
5750 		panic("%s", msg);
5751 	}
5752 }
5753 
5754 void
5755 _gone_in(int major, const char *msg)
5756 {
5757 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5758 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5759 		printf("Obsolete code will be removed soon: %s\n", msg);
5760 	else
5761 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5762 		    major, msg);
5763 }
5764 
5765 void
5766 _gone_in_dev(device_t dev, int major, const char *msg)
5767 {
5768 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5769 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5770 		device_printf(dev,
5771 		    "Obsolete code will be removed soon: %s\n", msg);
5772 	else
5773 		device_printf(dev,
5774 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5775 		    major, msg);
5776 }
5777 
5778 #ifdef DDB
5779 DB_SHOW_COMMAND(device, db_show_device)
5780 {
5781 	device_t dev;
5782 
5783 	if (!have_addr)
5784 		return;
5785 
5786 	dev = (device_t)addr;
5787 
5788 	db_printf("name:    %s\n", device_get_nameunit(dev));
5789 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5790 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5791 	db_printf("  addr:    %p\n", dev);
5792 	db_printf("  parent:  %p\n", dev->parent);
5793 	db_printf("  softc:   %p\n", dev->softc);
5794 	db_printf("  ivars:   %p\n", dev->ivars);
5795 }
5796 
5797 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5798 {
5799 	device_t dev;
5800 
5801 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5802 		db_show_device((db_expr_t)dev, true, count, modif);
5803 	}
5804 }
5805 #endif
5806