xref: /freebsd/sys/kern/subr_gtaskqueue.c (revision 19261079)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * Copyright (c) 2014 Jeff Roberson
4  * Copyright (c) 2016 Matthew Macy
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/kernel.h>
37 #include <sys/kthread.h>
38 #include <sys/libkern.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/epoch.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/gtaskqueue.h>
48 #include <sys/unistd.h>
49 #include <machine/stdarg.h>
50 
51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
52 static void	gtaskqueue_thread_enqueue(void *);
53 static void	gtaskqueue_thread_loop(void *arg);
54 static int	task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
55 static void	gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
56 
57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
58 
59 struct gtaskqueue_busy {
60 	struct gtask		*tb_running;
61 	u_int			 tb_seq;
62 	LIST_ENTRY(gtaskqueue_busy) tb_link;
63 };
64 
65 typedef void (*gtaskqueue_enqueue_fn)(void *context);
66 
67 struct gtaskqueue {
68 	STAILQ_HEAD(, gtask)	tq_queue;
69 	LIST_HEAD(, gtaskqueue_busy) tq_active;
70 	u_int			tq_seq;
71 	int			tq_callouts;
72 	struct mtx_padalign	tq_mutex;
73 	gtaskqueue_enqueue_fn	tq_enqueue;
74 	void			*tq_context;
75 	char			*tq_name;
76 	struct thread		**tq_threads;
77 	int			tq_tcount;
78 	int			tq_spin;
79 	int			tq_flags;
80 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82 };
83 
84 #define	TQ_FLAGS_ACTIVE		(1 << 0)
85 #define	TQ_FLAGS_BLOCKED	(1 << 1)
86 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
87 
88 #define	DT_CALLOUT_ARMED	(1 << 0)
89 
90 #define	TQ_LOCK(tq)							\
91 	do {								\
92 		if ((tq)->tq_spin)					\
93 			mtx_lock_spin(&(tq)->tq_mutex);			\
94 		else							\
95 			mtx_lock(&(tq)->tq_mutex);			\
96 	} while (0)
97 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98 
99 #define	TQ_UNLOCK(tq)							\
100 	do {								\
101 		if ((tq)->tq_spin)					\
102 			mtx_unlock_spin(&(tq)->tq_mutex);		\
103 		else							\
104 			mtx_unlock(&(tq)->tq_mutex);			\
105 	} while (0)
106 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107 
108 #ifdef INVARIANTS
109 static void
110 gtask_dump(struct gtask *gtask)
111 {
112 	printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113 	       gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114 }
115 #endif
116 
117 static __inline int
118 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
119 {
120 	if (tq->tq_spin)
121 		return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
122 	return (msleep(p, &tq->tq_mutex, 0, wm, 0));
123 }
124 
125 static struct gtaskqueue *
126 _gtaskqueue_create(const char *name, int mflags,
127 		 taskqueue_enqueue_fn enqueue, void *context,
128 		 int mtxflags, const char *mtxname __unused)
129 {
130 	struct gtaskqueue *queue;
131 	char *tq_name;
132 
133 	tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134 	if (!tq_name)
135 		return (NULL);
136 
137 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138 
139 	queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140 	if (!queue) {
141 		free(tq_name, M_GTASKQUEUE);
142 		return (NULL);
143 	}
144 
145 	STAILQ_INIT(&queue->tq_queue);
146 	LIST_INIT(&queue->tq_active);
147 	queue->tq_enqueue = enqueue;
148 	queue->tq_context = context;
149 	queue->tq_name = tq_name;
150 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
152 	if (enqueue == gtaskqueue_thread_enqueue)
153 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155 
156 	return (queue);
157 }
158 
159 /*
160  * Signal a taskqueue thread to terminate.
161  */
162 static void
163 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
164 {
165 
166 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
167 		wakeup(tq);
168 		TQ_SLEEP(tq, pp, "gtq_destroy");
169 	}
170 }
171 
172 static void __unused
173 gtaskqueue_free(struct gtaskqueue *queue)
174 {
175 
176 	TQ_LOCK(queue);
177 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
178 	gtaskqueue_terminate(queue->tq_threads, queue);
179 	KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
180 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
181 	mtx_destroy(&queue->tq_mutex);
182 	free(queue->tq_threads, M_GTASKQUEUE);
183 	free(queue->tq_name, M_GTASKQUEUE);
184 	free(queue, M_GTASKQUEUE);
185 }
186 
187 /*
188  * Wait for all to complete, then prevent it from being enqueued
189  */
190 void
191 grouptask_block(struct grouptask *grouptask)
192 {
193 	struct gtaskqueue *queue = grouptask->gt_taskqueue;
194 	struct gtask *gtask = &grouptask->gt_task;
195 
196 #ifdef INVARIANTS
197 	if (queue == NULL) {
198 		gtask_dump(gtask);
199 		panic("queue == NULL");
200 	}
201 #endif
202 	TQ_LOCK(queue);
203 	gtask->ta_flags |= TASK_NOENQUEUE;
204   	gtaskqueue_drain_locked(queue, gtask);
205 	TQ_UNLOCK(queue);
206 }
207 
208 void
209 grouptask_unblock(struct grouptask *grouptask)
210 {
211 	struct gtaskqueue *queue = grouptask->gt_taskqueue;
212 	struct gtask *gtask = &grouptask->gt_task;
213 
214 #ifdef INVARIANTS
215 	if (queue == NULL) {
216 		gtask_dump(gtask);
217 		panic("queue == NULL");
218 	}
219 #endif
220 	TQ_LOCK(queue);
221 	gtask->ta_flags &= ~TASK_NOENQUEUE;
222 	TQ_UNLOCK(queue);
223 }
224 
225 int
226 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
227 {
228 #ifdef INVARIANTS
229 	if (queue == NULL) {
230 		gtask_dump(gtask);
231 		panic("queue == NULL");
232 	}
233 #endif
234 	TQ_LOCK(queue);
235 	if (gtask->ta_flags & TASK_ENQUEUED) {
236 		TQ_UNLOCK(queue);
237 		return (0);
238 	}
239 	if (gtask->ta_flags & TASK_NOENQUEUE) {
240 		TQ_UNLOCK(queue);
241 		return (EAGAIN);
242 	}
243 	STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
244 	gtask->ta_flags |= TASK_ENQUEUED;
245 	TQ_UNLOCK(queue);
246 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
247 		queue->tq_enqueue(queue->tq_context);
248 	return (0);
249 }
250 
251 static void
252 gtaskqueue_task_nop_fn(void *context)
253 {
254 }
255 
256 /*
257  * Block until all currently queued tasks in this taskqueue
258  * have begun execution.  Tasks queued during execution of
259  * this function are ignored.
260  */
261 static void
262 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
263 {
264 	struct gtask t_barrier;
265 
266 	if (STAILQ_EMPTY(&queue->tq_queue))
267 		return;
268 
269 	/*
270 	 * Enqueue our barrier after all current tasks, but with
271 	 * the highest priority so that newly queued tasks cannot
272 	 * pass it.  Because of the high priority, we can not use
273 	 * taskqueue_enqueue_locked directly (which drops the lock
274 	 * anyway) so just insert it at tail while we have the
275 	 * queue lock.
276 	 */
277 	GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
278 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
279 	t_barrier.ta_flags |= TASK_ENQUEUED;
280 
281 	/*
282 	 * Once the barrier has executed, all previously queued tasks
283 	 * have completed or are currently executing.
284 	 */
285 	while (t_barrier.ta_flags & TASK_ENQUEUED)
286 		TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
287 }
288 
289 /*
290  * Block until all currently executing tasks for this taskqueue
291  * complete.  Tasks that begin execution during the execution
292  * of this function are ignored.
293  */
294 static void
295 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
296 {
297 	struct gtaskqueue_busy *tb;
298 	u_int seq;
299 
300 	if (LIST_EMPTY(&queue->tq_active))
301 		return;
302 
303 	/* Block taskq_terminate().*/
304 	queue->tq_callouts++;
305 
306 	/* Wait for any active task with sequence from the past. */
307 	seq = queue->tq_seq;
308 restart:
309 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
310 		if ((int)(tb->tb_seq - seq) <= 0) {
311 			TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
312 			goto restart;
313 		}
314 	}
315 
316 	/* Release taskqueue_terminate(). */
317 	queue->tq_callouts--;
318 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
319 		wakeup_one(queue->tq_threads);
320 }
321 
322 void
323 gtaskqueue_block(struct gtaskqueue *queue)
324 {
325 
326 	TQ_LOCK(queue);
327 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
328 	TQ_UNLOCK(queue);
329 }
330 
331 void
332 gtaskqueue_unblock(struct gtaskqueue *queue)
333 {
334 
335 	TQ_LOCK(queue);
336 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
337 	if (!STAILQ_EMPTY(&queue->tq_queue))
338 		queue->tq_enqueue(queue->tq_context);
339 	TQ_UNLOCK(queue);
340 }
341 
342 static void
343 gtaskqueue_run_locked(struct gtaskqueue *queue)
344 {
345 	struct epoch_tracker et;
346 	struct gtaskqueue_busy tb;
347 	struct gtask *gtask;
348 	bool in_net_epoch;
349 
350 	KASSERT(queue != NULL, ("tq is NULL"));
351 	TQ_ASSERT_LOCKED(queue);
352 	tb.tb_running = NULL;
353 	LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
354 	in_net_epoch = false;
355 
356 	while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
357 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
358 		gtask->ta_flags &= ~TASK_ENQUEUED;
359 		tb.tb_running = gtask;
360 		tb.tb_seq = ++queue->tq_seq;
361 		TQ_UNLOCK(queue);
362 
363 		KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
364 		if (!in_net_epoch && TASK_IS_NET(gtask)) {
365 			in_net_epoch = true;
366 			NET_EPOCH_ENTER(et);
367 		} else if (in_net_epoch && !TASK_IS_NET(gtask)) {
368 			NET_EPOCH_EXIT(et);
369 			in_net_epoch = false;
370 		}
371 		gtask->ta_func(gtask->ta_context);
372 
373 		TQ_LOCK(queue);
374 		wakeup(gtask);
375 	}
376 	if (in_net_epoch)
377 		NET_EPOCH_EXIT(et);
378 	LIST_REMOVE(&tb, tb_link);
379 }
380 
381 static int
382 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
383 {
384 	struct gtaskqueue_busy *tb;
385 
386 	TQ_ASSERT_LOCKED(queue);
387 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
388 		if (tb->tb_running == gtask)
389 			return (1);
390 	}
391 	return (0);
392 }
393 
394 static int
395 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
396 {
397 
398 	if (gtask->ta_flags & TASK_ENQUEUED)
399 		STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
400 	gtask->ta_flags &= ~TASK_ENQUEUED;
401 	return (task_is_running(queue, gtask) ? EBUSY : 0);
402 }
403 
404 int
405 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
406 {
407 	int error;
408 
409 	TQ_LOCK(queue);
410 	error = gtaskqueue_cancel_locked(queue, gtask);
411 	TQ_UNLOCK(queue);
412 
413 	return (error);
414 }
415 
416 static void
417 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
418 {
419 	while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
420 		TQ_SLEEP(queue, gtask, "gtq_drain");
421 }
422 
423 void
424 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
425 {
426 
427 	if (!queue->tq_spin)
428 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
429 
430 	TQ_LOCK(queue);
431 	gtaskqueue_drain_locked(queue, gtask);
432 	TQ_UNLOCK(queue);
433 }
434 
435 void
436 gtaskqueue_drain_all(struct gtaskqueue *queue)
437 {
438 
439 	if (!queue->tq_spin)
440 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
441 
442 	TQ_LOCK(queue);
443 	gtaskqueue_drain_tq_queue(queue);
444 	gtaskqueue_drain_tq_active(queue);
445 	TQ_UNLOCK(queue);
446 }
447 
448 static int
449 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
450     cpuset_t *mask, const char *name, va_list ap)
451 {
452 	char ktname[MAXCOMLEN + 1];
453 	struct thread *td;
454 	struct gtaskqueue *tq;
455 	int i, error;
456 
457 	if (count <= 0)
458 		return (EINVAL);
459 
460 	vsnprintf(ktname, sizeof(ktname), name, ap);
461 	tq = *tqp;
462 
463 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
464 	    M_NOWAIT | M_ZERO);
465 	if (tq->tq_threads == NULL) {
466 		printf("%s: no memory for %s threads\n", __func__, ktname);
467 		return (ENOMEM);
468 	}
469 
470 	for (i = 0; i < count; i++) {
471 		if (count == 1)
472 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
473 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
474 		else
475 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
476 			    &tq->tq_threads[i], RFSTOPPED, 0,
477 			    "%s_%d", ktname, i);
478 		if (error) {
479 			/* should be ok to continue, taskqueue_free will dtrt */
480 			printf("%s: kthread_add(%s): error %d", __func__,
481 			    ktname, error);
482 			tq->tq_threads[i] = NULL;		/* paranoid */
483 		} else
484 			tq->tq_tcount++;
485 	}
486 	for (i = 0; i < count; i++) {
487 		if (tq->tq_threads[i] == NULL)
488 			continue;
489 		td = tq->tq_threads[i];
490 		if (mask) {
491 			error = cpuset_setthread(td->td_tid, mask);
492 			/*
493 			 * Failing to pin is rarely an actual fatal error;
494 			 * it'll just affect performance.
495 			 */
496 			if (error)
497 				printf("%s: curthread=%llu: can't pin; "
498 				    "error=%d\n",
499 				    __func__,
500 				    (unsigned long long) td->td_tid,
501 				    error);
502 		}
503 		thread_lock(td);
504 		sched_prio(td, pri);
505 		sched_add(td, SRQ_BORING);
506 	}
507 
508 	return (0);
509 }
510 
511 static int
512 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
513     const char *name, ...)
514 {
515 	va_list ap;
516 	int error;
517 
518 	va_start(ap, name);
519 	error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
520 	va_end(ap);
521 	return (error);
522 }
523 
524 static inline void
525 gtaskqueue_run_callback(struct gtaskqueue *tq,
526     enum taskqueue_callback_type cb_type)
527 {
528 	taskqueue_callback_fn tq_callback;
529 
530 	TQ_ASSERT_UNLOCKED(tq);
531 	tq_callback = tq->tq_callbacks[cb_type];
532 	if (tq_callback != NULL)
533 		tq_callback(tq->tq_cb_contexts[cb_type]);
534 }
535 
536 static void
537 gtaskqueue_thread_loop(void *arg)
538 {
539 	struct gtaskqueue **tqp, *tq;
540 
541 	tqp = arg;
542 	tq = *tqp;
543 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
544 	TQ_LOCK(tq);
545 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
546 		/* XXX ? */
547 		gtaskqueue_run_locked(tq);
548 		/*
549 		 * Because taskqueue_run() can drop tq_mutex, we need to
550 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
551 		 * meantime, which means we missed a wakeup.
552 		 */
553 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
554 			break;
555 		TQ_SLEEP(tq, tq, "-");
556 	}
557 	gtaskqueue_run_locked(tq);
558 	/*
559 	 * This thread is on its way out, so just drop the lock temporarily
560 	 * in order to call the shutdown callback.  This allows the callback
561 	 * to look at the taskqueue, even just before it dies.
562 	 */
563 	TQ_UNLOCK(tq);
564 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
565 	TQ_LOCK(tq);
566 
567 	/* rendezvous with thread that asked us to terminate */
568 	tq->tq_tcount--;
569 	wakeup_one(tq->tq_threads);
570 	TQ_UNLOCK(tq);
571 	kthread_exit();
572 }
573 
574 static void
575 gtaskqueue_thread_enqueue(void *context)
576 {
577 	struct gtaskqueue **tqp, *tq;
578 
579 	tqp = context;
580 	tq = *tqp;
581 	wakeup_any(tq);
582 }
583 
584 static struct gtaskqueue *
585 gtaskqueue_create_fast(const char *name, int mflags,
586 		 taskqueue_enqueue_fn enqueue, void *context)
587 {
588 	return _gtaskqueue_create(name, mflags, enqueue, context,
589 			MTX_SPIN, "fast_taskqueue");
590 }
591 
592 struct taskqgroup_cpu {
593 	LIST_HEAD(, grouptask) tgc_tasks;
594 	struct gtaskqueue *tgc_taskq;
595 	int		tgc_cnt;
596 	int		tgc_cpu;
597 };
598 
599 struct taskqgroup {
600 	struct taskqgroup_cpu tqg_queue[MAXCPU];
601 	struct mtx	tqg_lock;
602 	const char *	tqg_name;
603 	int		tqg_cnt;
604 };
605 
606 struct taskq_bind_task {
607 	struct gtask bt_task;
608 	int	bt_cpuid;
609 };
610 
611 static void
612 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
613 {
614 	struct taskqgroup_cpu *qcpu;
615 
616 	qcpu = &qgroup->tqg_queue[idx];
617 	LIST_INIT(&qcpu->tgc_tasks);
618 	qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
619 	    taskqueue_thread_enqueue, &qcpu->tgc_taskq);
620 	gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
621 	    "%s_%d", qgroup->tqg_name, idx);
622 	qcpu->tgc_cpu = cpu;
623 }
624 
625 /*
626  * Find the taskq with least # of tasks that doesn't currently have any
627  * other queues from the uniq identifier.
628  */
629 static int
630 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
631 {
632 	struct grouptask *n;
633 	int i, idx, mincnt;
634 	int strict;
635 
636 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
637 	KASSERT(qgroup->tqg_cnt != 0,
638 	    ("qgroup %s has no queues", qgroup->tqg_name));
639 
640 	/*
641 	 * Two passes: first scan for a queue with the least tasks that
642 	 * does not already service this uniq id.  If that fails simply find
643 	 * the queue with the least total tasks.
644 	 */
645 	for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
646 	    strict = 0) {
647 		for (i = 0; i < qgroup->tqg_cnt; i++) {
648 			if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
649 				continue;
650 			if (strict) {
651 				LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
652 				    gt_list)
653 					if (n->gt_uniq == uniq)
654 						break;
655 				if (n != NULL)
656 					continue;
657 			}
658 			mincnt = qgroup->tqg_queue[i].tgc_cnt;
659 			idx = i;
660 		}
661 	}
662 	if (idx == -1)
663 		panic("%s: failed to pick a qid.", __func__);
664 
665 	return (idx);
666 }
667 
668 void
669 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
670     void *uniq, device_t dev, struct resource *irq, const char *name)
671 {
672 	int cpu, qid, error;
673 
674 	KASSERT(qgroup->tqg_cnt > 0,
675 	    ("qgroup %s has no queues", qgroup->tqg_name));
676 
677 	gtask->gt_uniq = uniq;
678 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
679 	gtask->gt_dev = dev;
680 	gtask->gt_irq = irq;
681 	gtask->gt_cpu = -1;
682 	mtx_lock(&qgroup->tqg_lock);
683 	qid = taskqgroup_find(qgroup, uniq);
684 	qgroup->tqg_queue[qid].tgc_cnt++;
685 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
686 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
687 	if (dev != NULL && irq != NULL) {
688 		cpu = qgroup->tqg_queue[qid].tgc_cpu;
689 		gtask->gt_cpu = cpu;
690 		mtx_unlock(&qgroup->tqg_lock);
691 		error = bus_bind_intr(dev, irq, cpu);
692 		if (error)
693 			printf("%s: binding interrupt failed for %s: %d\n",
694 			    __func__, gtask->gt_name, error);
695 	} else
696 		mtx_unlock(&qgroup->tqg_lock);
697 }
698 
699 int
700 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
701     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
702 {
703 	int i, qid, error;
704 
705 	gtask->gt_uniq = uniq;
706 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
707 	gtask->gt_dev = dev;
708 	gtask->gt_irq = irq;
709 	gtask->gt_cpu = cpu;
710 	mtx_lock(&qgroup->tqg_lock);
711 	for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
712 		if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
713 			qid = i;
714 			break;
715 		}
716 	if (qid == -1) {
717 		mtx_unlock(&qgroup->tqg_lock);
718 		printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
719 		return (EINVAL);
720 	}
721 	qgroup->tqg_queue[qid].tgc_cnt++;
722 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
723 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
724 	cpu = qgroup->tqg_queue[qid].tgc_cpu;
725 	mtx_unlock(&qgroup->tqg_lock);
726 
727 	if (dev != NULL && irq != NULL) {
728 		error = bus_bind_intr(dev, irq, cpu);
729 		if (error)
730 			printf("%s: binding interrupt failed for %s: %d\n",
731 			    __func__, gtask->gt_name, error);
732 	}
733 	return (0);
734 }
735 
736 void
737 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
738 {
739 	int i;
740 
741 	grouptask_block(gtask);
742 	mtx_lock(&qgroup->tqg_lock);
743 	for (i = 0; i < qgroup->tqg_cnt; i++)
744 		if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
745 			break;
746 	if (i == qgroup->tqg_cnt)
747 		panic("%s: task %s not in group", __func__, gtask->gt_name);
748 	qgroup->tqg_queue[i].tgc_cnt--;
749 	LIST_REMOVE(gtask, gt_list);
750 	mtx_unlock(&qgroup->tqg_lock);
751 	gtask->gt_taskqueue = NULL;
752 	gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
753 }
754 
755 static void
756 taskqgroup_binder(void *ctx)
757 {
758 	struct taskq_bind_task *gtask;
759 	cpuset_t mask;
760 	int error;
761 
762 	gtask = ctx;
763 	CPU_ZERO(&mask);
764 	CPU_SET(gtask->bt_cpuid, &mask);
765 	error = cpuset_setthread(curthread->td_tid, &mask);
766 	thread_lock(curthread);
767 	sched_bind(curthread, gtask->bt_cpuid);
768 	thread_unlock(curthread);
769 
770 	if (error)
771 		printf("%s: binding curthread failed: %d\n", __func__, error);
772 	free(gtask, M_DEVBUF);
773 }
774 
775 void
776 taskqgroup_bind(struct taskqgroup *qgroup)
777 {
778 	struct taskq_bind_task *gtask;
779 	int i;
780 
781 	/*
782 	 * Bind taskqueue threads to specific CPUs, if they have been assigned
783 	 * one.
784 	 */
785 	if (qgroup->tqg_cnt == 1)
786 		return;
787 
788 	for (i = 0; i < qgroup->tqg_cnt; i++) {
789 		gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
790 		GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
791 		gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
792 		grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
793 		    &gtask->bt_task);
794 	}
795 }
796 
797 struct taskqgroup *
798 taskqgroup_create(const char *name, int cnt, int stride)
799 {
800 	struct taskqgroup *qgroup;
801 	int cpu, i, j;
802 
803 	qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
804 	mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
805 	qgroup->tqg_name = name;
806 	qgroup->tqg_cnt = cnt;
807 
808 	for (cpu = i = 0; i < cnt; i++) {
809 		taskqgroup_cpu_create(qgroup, i, cpu);
810 		for (j = 0; j < stride; j++)
811 			cpu = CPU_NEXT(cpu);
812 	}
813 	return (qgroup);
814 }
815 
816 void
817 taskqgroup_destroy(struct taskqgroup *qgroup)
818 {
819 }
820 
821 void
822 taskqgroup_drain_all(struct taskqgroup *tqg)
823 {
824 	struct gtaskqueue *q;
825 
826 	for (int i = 0; i < mp_ncpus; i++) {
827 		q = tqg->tqg_queue[i].tgc_taskq;
828 		if (q == NULL)
829 			continue;
830 		gtaskqueue_drain_all(q);
831 	}
832 }
833