xref: /freebsd/sys/kern/subr_turnstile.c (revision 1f474190)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Implementation of turnstiles used to hold queue of threads blocked on
36  * non-sleepable locks.  Sleepable locks use condition variables to
37  * implement their queues.  Turnstiles differ from a sleep queue in that
38  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
39  * when one thread is enqueued onto a turnstile, it can lend its priority
40  * to the owning thread.
41  *
42  * We wish to avoid bloating locks with an embedded turnstile and we do not
43  * want to use back-pointers in the locks for the same reason.  Thus, we
44  * use a similar approach to that of Solaris 7 as described in Solaris
45  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
46  * in a hash table based on the address of the lock.  Each entry in the
47  * hash table is a linked-lists of turnstiles and is called a turnstile
48  * chain.  Each chain contains a spin mutex that protects all of the
49  * turnstiles in the chain.
50  *
51  * Each time a thread is created, a turnstile is allocated from a UMA zone
52  * and attached to that thread.  When a thread blocks on a lock, if it is the
53  * first thread to block, it lends its turnstile to the lock.  If the lock
54  * already has a turnstile, then it gives its turnstile to the lock's
55  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
56  * the free list if there are any other waiters.  If it is the only thread
57  * blocked on the lock, then it reclaims the turnstile associated with the lock
58  * and removes it from the hash table.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_ddb.h"
65 #include "opt_turnstile_profiling.h"
66 #include "opt_sched.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kdb.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/queue.h>
77 #include <sys/sched.h>
78 #include <sys/sdt.h>
79 #include <sys/sysctl.h>
80 #include <sys/turnstile.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #include <sys/lockmgr.h>
87 #include <sys/sx.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
92  * number chosen because the sleep queue's use the same value for the
93  * shift.  Basically, we ignore the lower 8 bits of the address.
94  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
95  */
96 #define	TC_TABLESIZE	128			/* Must be power of 2. */
97 #define	TC_MASK		(TC_TABLESIZE - 1)
98 #define	TC_SHIFT	8
99 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
100 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
101 
102 /*
103  * There are three different lists of turnstiles as follows.  The list
104  * connected by ts_link entries is a per-thread list of all the turnstiles
105  * attached to locks that we own.  This is used to fixup our priority when
106  * a lock is released.  The other two lists use the ts_hash entries.  The
107  * first of these two is the turnstile chain list that a turnstile is on
108  * when it is attached to a lock.  The second list to use ts_hash is the
109  * free list hung off of a turnstile that is attached to a lock.
110  *
111  * Each turnstile contains three lists of threads.  The two ts_blocked lists
112  * are linked list of threads blocked on the turnstile's lock.  One list is
113  * for exclusive waiters, and the other is for shared waiters.  The
114  * ts_pending list is a linked list of threads previously awakened by
115  * turnstile_signal() or turnstile_wait() that are waiting to be put on
116  * the run queue.
117  *
118  * Locking key:
119  *  c - turnstile chain lock
120  *  q - td_contested lock
121  */
122 struct turnstile {
123 	struct mtx ts_lock;			/* Spin lock for self. */
124 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
125 	struct threadqueue ts_pending;		/* (c) Pending threads. */
126 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
127 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
128 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
129 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
130 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
131 };
132 
133 struct turnstile_chain {
134 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
135 	struct mtx tc_lock;			/* Spin lock for this chain. */
136 #ifdef TURNSTILE_PROFILING
137 	u_int	tc_depth;			/* Length of tc_queues. */
138 	u_int	tc_max_depth;			/* Max length of tc_queues. */
139 #endif
140 };
141 
142 #ifdef TURNSTILE_PROFILING
143 u_int turnstile_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
145     "turnstile profiling");
146 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains,
147     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
148     "turnstile chain stats");
149 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
150     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
151 #endif
152 static struct mtx td_contested_lock;
153 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
154 static uma_zone_t turnstile_zone;
155 
156 /*
157  * Prototypes for non-exported routines.
158  */
159 static void	init_turnstile0(void *dummy);
160 #ifdef TURNSTILE_PROFILING
161 static void	init_turnstile_profiling(void *arg);
162 #endif
163 static void	propagate_priority(struct thread *td);
164 static int	turnstile_adjust_thread(struct turnstile *ts,
165 		    struct thread *td);
166 static struct thread *turnstile_first_waiter(struct turnstile *ts);
167 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
168 #ifdef INVARIANTS
169 static void	turnstile_dtor(void *mem, int size, void *arg);
170 #endif
171 static int	turnstile_init(void *mem, int size, int flags);
172 static void	turnstile_fini(void *mem, int size);
173 
174 SDT_PROVIDER_DECLARE(sched);
175 SDT_PROBE_DEFINE(sched, , , sleep);
176 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
177     "struct proc *");
178 
179 static inline void
180 propagate_unlock_ts(struct turnstile *top, struct turnstile *ts)
181 {
182 
183 	if (ts != top)
184 		mtx_unlock_spin(&ts->ts_lock);
185 }
186 
187 static inline void
188 propagate_unlock_td(struct turnstile *top, struct thread *td)
189 {
190 
191 	if (td->td_lock != &top->ts_lock)
192 		thread_unlock(td);
193 }
194 
195 /*
196  * Walks the chain of turnstiles and their owners to propagate the priority
197  * of the thread being blocked to all the threads holding locks that have to
198  * release their locks before this thread can run again.
199  */
200 static void
201 propagate_priority(struct thread *td)
202 {
203 	struct turnstile *ts, *top;
204 	int pri;
205 
206 	THREAD_LOCK_ASSERT(td, MA_OWNED);
207 	pri = td->td_priority;
208 	top = ts = td->td_blocked;
209 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
210 
211 	/*
212 	 * The original turnstile lock is held across the entire
213 	 * operation.  We only ever lock down the chain so the lock
214 	 * order is constant.
215 	 */
216 	for (;;) {
217 		td = ts->ts_owner;
218 
219 		if (td == NULL) {
220 			/*
221 			 * This might be a read lock with no owner.  There's
222 			 * not much we can do, so just bail.
223 			 */
224 			propagate_unlock_ts(top, ts);
225 			return;
226 		}
227 
228 		/*
229 		 * Wait for the thread lock to be stable and then only
230 		 * acquire if it is not the turnstile lock.
231 		 */
232 		thread_lock_block_wait(td);
233 		if (td->td_lock != &ts->ts_lock) {
234 			thread_lock_flags(td, MTX_DUPOK);
235 			propagate_unlock_ts(top, ts);
236 		}
237 		MPASS(td->td_proc != NULL);
238 		MPASS(td->td_proc->p_magic == P_MAGIC);
239 
240 		/*
241 		 * If the thread is asleep, then we are probably about
242 		 * to deadlock.  To make debugging this easier, show
243 		 * backtrace of misbehaving thread and panic to not
244 		 * leave the kernel deadlocked.
245 		 */
246 		if (TD_IS_SLEEPING(td)) {
247 			printf(
248 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
249 			    td->td_tid, td->td_proc->p_pid);
250 			kdb_backtrace_thread(td);
251 			panic("sleeping thread");
252 		}
253 
254 		/*
255 		 * If this thread already has higher priority than the
256 		 * thread that is being blocked, we are finished.
257 		 */
258 		if (td->td_priority <= pri) {
259 			propagate_unlock_td(top, td);
260 			return;
261 		}
262 
263 		/*
264 		 * Bump this thread's priority.
265 		 */
266 		sched_lend_prio(td, pri);
267 
268 		/*
269 		 * If lock holder is actually running or on the run queue
270 		 * then we are done.
271 		 */
272 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
273 			MPASS(td->td_blocked == NULL);
274 			propagate_unlock_td(top, td);
275 			return;
276 		}
277 
278 #ifndef SMP
279 		/*
280 		 * For UP, we check to see if td is curthread (this shouldn't
281 		 * ever happen however as it would mean we are in a deadlock.)
282 		 */
283 		KASSERT(td != curthread, ("Deadlock detected"));
284 #endif
285 
286 		/*
287 		 * If we aren't blocked on a lock, we should be.
288 		 */
289 		KASSERT(TD_ON_LOCK(td), (
290 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
291 		    td->td_tid, td->td_name, td->td_state,
292 		    ts->ts_lockobj->lo_name));
293 
294 		/*
295 		 * Pick up the lock that td is blocked on.
296 		 */
297 		ts = td->td_blocked;
298 		MPASS(ts != NULL);
299 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
300 		/* Resort td on the list if needed. */
301 		if (!turnstile_adjust_thread(ts, td)) {
302 			propagate_unlock_ts(top, ts);
303 			return;
304 		}
305 		/* The thread lock is released as ts lock above. */
306 	}
307 }
308 
309 /*
310  * Adjust the thread's position on a turnstile after its priority has been
311  * changed.
312  */
313 static int
314 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
315 {
316 	struct thread *td1, *td2;
317 	int queue;
318 
319 	THREAD_LOCK_ASSERT(td, MA_OWNED);
320 	MPASS(TD_ON_LOCK(td));
321 
322 	/*
323 	 * This thread may not be blocked on this turnstile anymore
324 	 * but instead might already be woken up on another CPU
325 	 * that is waiting on the thread lock in turnstile_unpend() to
326 	 * finish waking this thread up.  We can detect this case
327 	 * by checking to see if this thread has been given a
328 	 * turnstile by either turnstile_signal() or
329 	 * turnstile_broadcast().  In this case, treat the thread as
330 	 * if it was already running.
331 	 */
332 	if (td->td_turnstile != NULL)
333 		return (0);
334 
335 	/*
336 	 * Check if the thread needs to be moved on the blocked chain.
337 	 * It needs to be moved if either its priority is lower than
338 	 * the previous thread or higher than the next thread.
339 	 */
340 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
341 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
342 	td2 = TAILQ_NEXT(td, td_lockq);
343 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
344 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
345 		/*
346 		 * Remove thread from blocked chain and determine where
347 		 * it should be moved to.
348 		 */
349 		queue = td->td_tsqueue;
350 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
351 		mtx_lock_spin(&td_contested_lock);
352 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
353 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
354 			MPASS(td1->td_proc->p_magic == P_MAGIC);
355 			if (td1->td_priority > td->td_priority)
356 				break;
357 		}
358 
359 		if (td1 == NULL)
360 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
361 		else
362 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
363 		mtx_unlock_spin(&td_contested_lock);
364 		if (td1 == NULL)
365 			CTR3(KTR_LOCK,
366 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
367 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
368 		else
369 			CTR4(KTR_LOCK,
370 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
371 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
372 			    ts->ts_lockobj->lo_name);
373 	}
374 	return (1);
375 }
376 
377 /*
378  * Early initialization of turnstiles.  This is not done via a SYSINIT()
379  * since this needs to be initialized very early when mutexes are first
380  * initialized.
381  */
382 void
383 init_turnstiles(void)
384 {
385 	int i;
386 
387 	for (i = 0; i < TC_TABLESIZE; i++) {
388 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
389 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
390 		    NULL, MTX_SPIN);
391 	}
392 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
393 	LIST_INIT(&thread0.td_contested);
394 	thread0.td_turnstile = NULL;
395 }
396 
397 #ifdef TURNSTILE_PROFILING
398 static void
399 init_turnstile_profiling(void *arg)
400 {
401 	struct sysctl_oid *chain_oid;
402 	char chain_name[10];
403 	int i;
404 
405 	for (i = 0; i < TC_TABLESIZE; i++) {
406 		snprintf(chain_name, sizeof(chain_name), "%d", i);
407 		chain_oid = SYSCTL_ADD_NODE(NULL,
408 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
409 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
410 		    "turnstile chain stats");
411 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
412 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
413 		    NULL);
414 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
415 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
416 		    0, NULL);
417 	}
418 }
419 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
420     init_turnstile_profiling, NULL);
421 #endif
422 
423 static void
424 init_turnstile0(void *dummy)
425 {
426 
427 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
428 	    NULL,
429 #ifdef INVARIANTS
430 	    turnstile_dtor,
431 #else
432 	    NULL,
433 #endif
434 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
435 	thread0.td_turnstile = turnstile_alloc();
436 }
437 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
438 
439 /*
440  * Update a thread on the turnstile list after it's priority has been changed.
441  * The old priority is passed in as an argument.
442  */
443 void
444 turnstile_adjust(struct thread *td, u_char oldpri)
445 {
446 	struct turnstile *ts;
447 
448 	MPASS(TD_ON_LOCK(td));
449 
450 	/*
451 	 * Pick up the lock that td is blocked on.
452 	 */
453 	ts = td->td_blocked;
454 	MPASS(ts != NULL);
455 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
456 	mtx_assert(&ts->ts_lock, MA_OWNED);
457 
458 	/* Resort the turnstile on the list. */
459 	if (!turnstile_adjust_thread(ts, td))
460 		return;
461 	/*
462 	 * If our priority was lowered and we are at the head of the
463 	 * turnstile, then propagate our new priority up the chain.
464 	 * Note that we currently don't try to revoke lent priorities
465 	 * when our priority goes up.
466 	 */
467 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
468 	    td->td_tsqueue == TS_SHARED_QUEUE);
469 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
470 	    td->td_priority < oldpri) {
471 		propagate_priority(td);
472 	}
473 }
474 
475 /*
476  * Set the owner of the lock this turnstile is attached to.
477  */
478 static void
479 turnstile_setowner(struct turnstile *ts, struct thread *owner)
480 {
481 
482 	mtx_assert(&td_contested_lock, MA_OWNED);
483 	MPASS(ts->ts_owner == NULL);
484 
485 	/* A shared lock might not have an owner. */
486 	if (owner == NULL)
487 		return;
488 
489 	MPASS(owner->td_proc->p_magic == P_MAGIC);
490 	ts->ts_owner = owner;
491 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
492 }
493 
494 #ifdef INVARIANTS
495 /*
496  * UMA zone item deallocator.
497  */
498 static void
499 turnstile_dtor(void *mem, int size, void *arg)
500 {
501 	struct turnstile *ts;
502 
503 	ts = mem;
504 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
505 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
506 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
507 }
508 #endif
509 
510 /*
511  * UMA zone item initializer.
512  */
513 static int
514 turnstile_init(void *mem, int size, int flags)
515 {
516 	struct turnstile *ts;
517 
518 	bzero(mem, size);
519 	ts = mem;
520 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
521 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
522 	TAILQ_INIT(&ts->ts_pending);
523 	LIST_INIT(&ts->ts_free);
524 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN);
525 	return (0);
526 }
527 
528 static void
529 turnstile_fini(void *mem, int size)
530 {
531 	struct turnstile *ts;
532 
533 	ts = mem;
534 	mtx_destroy(&ts->ts_lock);
535 }
536 
537 /*
538  * Get a turnstile for a new thread.
539  */
540 struct turnstile *
541 turnstile_alloc(void)
542 {
543 
544 	return (uma_zalloc(turnstile_zone, M_WAITOK));
545 }
546 
547 /*
548  * Free a turnstile when a thread is destroyed.
549  */
550 void
551 turnstile_free(struct turnstile *ts)
552 {
553 
554 	uma_zfree(turnstile_zone, ts);
555 }
556 
557 /*
558  * Lock the turnstile chain associated with the specified lock.
559  */
560 void
561 turnstile_chain_lock(struct lock_object *lock)
562 {
563 	struct turnstile_chain *tc;
564 
565 	tc = TC_LOOKUP(lock);
566 	mtx_lock_spin(&tc->tc_lock);
567 }
568 
569 struct turnstile *
570 turnstile_trywait(struct lock_object *lock)
571 {
572 	struct turnstile_chain *tc;
573 	struct turnstile *ts;
574 
575 	tc = TC_LOOKUP(lock);
576 	mtx_lock_spin(&tc->tc_lock);
577 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
578 		if (ts->ts_lockobj == lock) {
579 			mtx_lock_spin(&ts->ts_lock);
580 			return (ts);
581 		}
582 
583 	ts = curthread->td_turnstile;
584 	MPASS(ts != NULL);
585 	mtx_lock_spin(&ts->ts_lock);
586 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
587 	ts->ts_lockobj = lock;
588 
589 	return (ts);
590 }
591 
592 bool
593 turnstile_lock(struct turnstile *ts, struct lock_object **lockp,
594     struct thread **tdp)
595 {
596 	struct turnstile_chain *tc;
597 	struct lock_object *lock;
598 
599 	if ((lock = ts->ts_lockobj) == NULL)
600 		return (false);
601 	tc = TC_LOOKUP(lock);
602 	mtx_lock_spin(&tc->tc_lock);
603 	mtx_lock_spin(&ts->ts_lock);
604 	if (__predict_false(lock != ts->ts_lockobj)) {
605 		mtx_unlock_spin(&tc->tc_lock);
606 		mtx_unlock_spin(&ts->ts_lock);
607 		return (false);
608 	}
609 	*lockp = lock;
610 	*tdp = ts->ts_owner;
611 	return (true);
612 }
613 
614 void
615 turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
616 {
617 	struct turnstile_chain *tc;
618 
619 	mtx_assert(&ts->ts_lock, MA_OWNED);
620 	mtx_unlock_spin(&ts->ts_lock);
621 	if (ts == curthread->td_turnstile)
622 		ts->ts_lockobj = NULL;
623 	tc = TC_LOOKUP(lock);
624 	mtx_unlock_spin(&tc->tc_lock);
625 }
626 
627 void
628 turnstile_assert(struct turnstile *ts)
629 {
630 	MPASS(ts->ts_lockobj == NULL);
631 }
632 
633 void
634 turnstile_cancel(struct turnstile *ts)
635 {
636 	struct turnstile_chain *tc;
637 	struct lock_object *lock;
638 
639 	mtx_assert(&ts->ts_lock, MA_OWNED);
640 
641 	mtx_unlock_spin(&ts->ts_lock);
642 	lock = ts->ts_lockobj;
643 	if (ts == curthread->td_turnstile)
644 		ts->ts_lockobj = NULL;
645 	tc = TC_LOOKUP(lock);
646 	mtx_unlock_spin(&tc->tc_lock);
647 }
648 
649 /*
650  * Look up the turnstile for a lock in the hash table locking the associated
651  * turnstile chain along the way.  If no turnstile is found in the hash
652  * table, NULL is returned.
653  */
654 struct turnstile *
655 turnstile_lookup(struct lock_object *lock)
656 {
657 	struct turnstile_chain *tc;
658 	struct turnstile *ts;
659 
660 	tc = TC_LOOKUP(lock);
661 	mtx_assert(&tc->tc_lock, MA_OWNED);
662 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
663 		if (ts->ts_lockobj == lock) {
664 			mtx_lock_spin(&ts->ts_lock);
665 			return (ts);
666 		}
667 	return (NULL);
668 }
669 
670 /*
671  * Unlock the turnstile chain associated with a given lock.
672  */
673 void
674 turnstile_chain_unlock(struct lock_object *lock)
675 {
676 	struct turnstile_chain *tc;
677 
678 	tc = TC_LOOKUP(lock);
679 	mtx_unlock_spin(&tc->tc_lock);
680 }
681 
682 /*
683  * Return a pointer to the thread waiting on this turnstile with the
684  * most important priority or NULL if the turnstile has no waiters.
685  */
686 static struct thread *
687 turnstile_first_waiter(struct turnstile *ts)
688 {
689 	struct thread *std, *xtd;
690 
691 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
692 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
693 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
694 		return (std);
695 	return (xtd);
696 }
697 
698 /*
699  * Take ownership of a turnstile and adjust the priority of the new
700  * owner appropriately.
701  */
702 void
703 turnstile_claim(struct turnstile *ts)
704 {
705 	struct thread *td, *owner;
706 	struct turnstile_chain *tc;
707 
708 	mtx_assert(&ts->ts_lock, MA_OWNED);
709 	MPASS(ts != curthread->td_turnstile);
710 
711 	owner = curthread;
712 	mtx_lock_spin(&td_contested_lock);
713 	turnstile_setowner(ts, owner);
714 	mtx_unlock_spin(&td_contested_lock);
715 
716 	td = turnstile_first_waiter(ts);
717 	MPASS(td != NULL);
718 	MPASS(td->td_proc->p_magic == P_MAGIC);
719 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
720 
721 	/*
722 	 * Update the priority of the new owner if needed.
723 	 */
724 	thread_lock(owner);
725 	if (td->td_priority < owner->td_priority)
726 		sched_lend_prio(owner, td->td_priority);
727 	thread_unlock(owner);
728 	tc = TC_LOOKUP(ts->ts_lockobj);
729 	mtx_unlock_spin(&ts->ts_lock);
730 	mtx_unlock_spin(&tc->tc_lock);
731 }
732 
733 /*
734  * Block the current thread on the turnstile assicated with 'lock'.  This
735  * function will context switch and not return until this thread has been
736  * woken back up.  This function must be called with the appropriate
737  * turnstile chain locked and will return with it unlocked.
738  */
739 void
740 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
741 {
742 	struct turnstile_chain *tc;
743 	struct thread *td, *td1;
744 	struct lock_object *lock;
745 
746 	td = curthread;
747 	mtx_assert(&ts->ts_lock, MA_OWNED);
748 	if (owner)
749 		MPASS(owner->td_proc->p_magic == P_MAGIC);
750 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
751 
752 	/*
753 	 * If the lock does not already have a turnstile, use this thread's
754 	 * turnstile.  Otherwise insert the current thread into the
755 	 * turnstile already in use by this lock.
756 	 */
757 	tc = TC_LOOKUP(ts->ts_lockobj);
758 	mtx_assert(&tc->tc_lock, MA_OWNED);
759 	if (ts == td->td_turnstile) {
760 #ifdef TURNSTILE_PROFILING
761 		tc->tc_depth++;
762 		if (tc->tc_depth > tc->tc_max_depth) {
763 			tc->tc_max_depth = tc->tc_depth;
764 			if (tc->tc_max_depth > turnstile_max_depth)
765 				turnstile_max_depth = tc->tc_max_depth;
766 		}
767 #endif
768 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
769 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
770 		    ("thread's turnstile has pending threads"));
771 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
772 		    ("thread's turnstile has exclusive waiters"));
773 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
774 		    ("thread's turnstile has shared waiters"));
775 		KASSERT(LIST_EMPTY(&ts->ts_free),
776 		    ("thread's turnstile has a non-empty free list"));
777 		MPASS(ts->ts_lockobj != NULL);
778 		mtx_lock_spin(&td_contested_lock);
779 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
780 		turnstile_setowner(ts, owner);
781 		mtx_unlock_spin(&td_contested_lock);
782 	} else {
783 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
784 			if (td1->td_priority > td->td_priority)
785 				break;
786 		mtx_lock_spin(&td_contested_lock);
787 		if (td1 != NULL)
788 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
789 		else
790 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
791 		MPASS(owner == ts->ts_owner);
792 		mtx_unlock_spin(&td_contested_lock);
793 		MPASS(td->td_turnstile != NULL);
794 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
795 	}
796 	thread_lock(td);
797 	thread_lock_set(td, &ts->ts_lock);
798 	td->td_turnstile = NULL;
799 
800 	/* Save who we are blocked on and switch. */
801 	lock = ts->ts_lockobj;
802 	td->td_tsqueue = queue;
803 	td->td_blocked = ts;
804 	td->td_lockname = lock->lo_name;
805 	td->td_blktick = ticks;
806 	TD_SET_LOCK(td);
807 	mtx_unlock_spin(&tc->tc_lock);
808 	propagate_priority(td);
809 
810 	if (LOCK_LOG_TEST(lock, 0))
811 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
812 		    td->td_tid, lock, lock->lo_name);
813 
814 	SDT_PROBE0(sched, , , sleep);
815 
816 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
817 	mi_switch(SW_VOL | SWT_TURNSTILE);
818 
819 	if (LOCK_LOG_TEST(lock, 0))
820 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
821 		    __func__, td->td_tid, lock, lock->lo_name);
822 }
823 
824 /*
825  * Pick the highest priority thread on this turnstile and put it on the
826  * pending list.  This must be called with the turnstile chain locked.
827  */
828 int
829 turnstile_signal(struct turnstile *ts, int queue)
830 {
831 	struct turnstile_chain *tc __unused;
832 	struct thread *td;
833 	int empty;
834 
835 	MPASS(ts != NULL);
836 	mtx_assert(&ts->ts_lock, MA_OWNED);
837 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
838 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
839 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
840 
841 	/*
842 	 * Pick the highest priority thread blocked on this lock and
843 	 * move it to the pending list.
844 	 */
845 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
846 	MPASS(td->td_proc->p_magic == P_MAGIC);
847 	mtx_lock_spin(&td_contested_lock);
848 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
849 	mtx_unlock_spin(&td_contested_lock);
850 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
851 
852 	/*
853 	 * If the turnstile is now empty, remove it from its chain and
854 	 * give it to the about-to-be-woken thread.  Otherwise take a
855 	 * turnstile from the free list and give it to the thread.
856 	 */
857 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
858 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
859 	if (empty) {
860 		tc = TC_LOOKUP(ts->ts_lockobj);
861 		mtx_assert(&tc->tc_lock, MA_OWNED);
862 		MPASS(LIST_EMPTY(&ts->ts_free));
863 #ifdef TURNSTILE_PROFILING
864 		tc->tc_depth--;
865 #endif
866 	} else
867 		ts = LIST_FIRST(&ts->ts_free);
868 	MPASS(ts != NULL);
869 	LIST_REMOVE(ts, ts_hash);
870 	td->td_turnstile = ts;
871 
872 	return (empty);
873 }
874 
875 /*
876  * Put all blocked threads on the pending list.  This must be called with
877  * the turnstile chain locked.
878  */
879 void
880 turnstile_broadcast(struct turnstile *ts, int queue)
881 {
882 	struct turnstile_chain *tc __unused;
883 	struct turnstile *ts1;
884 	struct thread *td;
885 
886 	MPASS(ts != NULL);
887 	mtx_assert(&ts->ts_lock, MA_OWNED);
888 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
889 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
890 	/*
891 	 * We must have the chain locked so that we can remove the empty
892 	 * turnstile from the hash queue.
893 	 */
894 	tc = TC_LOOKUP(ts->ts_lockobj);
895 	mtx_assert(&tc->tc_lock, MA_OWNED);
896 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
897 
898 	/*
899 	 * Transfer the blocked list to the pending list.
900 	 */
901 	mtx_lock_spin(&td_contested_lock);
902 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
903 	mtx_unlock_spin(&td_contested_lock);
904 
905 	/*
906 	 * Give a turnstile to each thread.  The last thread gets
907 	 * this turnstile if the turnstile is empty.
908 	 */
909 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
910 		if (LIST_EMPTY(&ts->ts_free)) {
911 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
912 			ts1 = ts;
913 #ifdef TURNSTILE_PROFILING
914 			tc->tc_depth--;
915 #endif
916 		} else
917 			ts1 = LIST_FIRST(&ts->ts_free);
918 		MPASS(ts1 != NULL);
919 		LIST_REMOVE(ts1, ts_hash);
920 		td->td_turnstile = ts1;
921 	}
922 }
923 
924 static u_char
925 turnstile_calc_unlend_prio_locked(struct thread *td)
926 {
927 	struct turnstile *nts;
928 	u_char cp, pri;
929 
930 	THREAD_LOCK_ASSERT(td, MA_OWNED);
931 	mtx_assert(&td_contested_lock, MA_OWNED);
932 
933 	pri = PRI_MAX;
934 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
935 		cp = turnstile_first_waiter(nts)->td_priority;
936 		if (cp < pri)
937 			pri = cp;
938 	}
939 	return (pri);
940 }
941 
942 /*
943  * Wakeup all threads on the pending list and adjust the priority of the
944  * current thread appropriately.  This must be called with the turnstile
945  * chain locked.
946  */
947 void
948 turnstile_unpend(struct turnstile *ts)
949 {
950 	TAILQ_HEAD( ,thread) pending_threads;
951 	struct thread *td;
952 	u_char pri;
953 
954 	MPASS(ts != NULL);
955 	mtx_assert(&ts->ts_lock, MA_OWNED);
956 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
957 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
958 
959 	/*
960 	 * Move the list of pending threads out of the turnstile and
961 	 * into a local variable.
962 	 */
963 	TAILQ_INIT(&pending_threads);
964 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
965 #ifdef INVARIANTS
966 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
967 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
968 		ts->ts_lockobj = NULL;
969 #endif
970 	/*
971 	 * Adjust the priority of curthread based on other contested
972 	 * locks it owns.  Don't lower the priority below the base
973 	 * priority however.
974 	 */
975 	td = curthread;
976 	thread_lock(td);
977 	mtx_lock_spin(&td_contested_lock);
978 	/*
979 	 * Remove the turnstile from this thread's list of contested locks
980 	 * since this thread doesn't own it anymore.  New threads will
981 	 * not be blocking on the turnstile until it is claimed by a new
982 	 * owner.  There might not be a current owner if this is a shared
983 	 * lock.
984 	 */
985 	if (ts->ts_owner != NULL) {
986 		ts->ts_owner = NULL;
987 		LIST_REMOVE(ts, ts_link);
988 	}
989 	pri = turnstile_calc_unlend_prio_locked(td);
990 	mtx_unlock_spin(&td_contested_lock);
991 	sched_unlend_prio(td, pri);
992 	thread_unlock(td);
993 	/*
994 	 * Wake up all the pending threads.  If a thread is not blocked
995 	 * on a lock, then it is currently executing on another CPU in
996 	 * turnstile_wait() or sitting on a run queue waiting to resume
997 	 * in turnstile_wait().  Set a flag to force it to try to acquire
998 	 * the lock again instead of blocking.
999 	 */
1000 	while (!TAILQ_EMPTY(&pending_threads)) {
1001 		td = TAILQ_FIRST(&pending_threads);
1002 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
1003 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
1004 		thread_lock_block_wait(td);
1005 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
1006 		MPASS(td->td_proc->p_magic == P_MAGIC);
1007 		MPASS(TD_ON_LOCK(td));
1008 		TD_CLR_LOCK(td);
1009 		MPASS(TD_CAN_RUN(td));
1010 		td->td_blocked = NULL;
1011 		td->td_lockname = NULL;
1012 		td->td_blktick = 0;
1013 #ifdef INVARIANTS
1014 		td->td_tsqueue = 0xff;
1015 #endif
1016 		sched_add(td, SRQ_HOLD | SRQ_BORING);
1017 	}
1018 	mtx_unlock_spin(&ts->ts_lock);
1019 }
1020 
1021 /*
1022  * Give up ownership of a turnstile.  This must be called with the
1023  * turnstile chain locked.
1024  */
1025 void
1026 turnstile_disown(struct turnstile *ts)
1027 {
1028 	struct thread *td;
1029 	u_char pri;
1030 
1031 	MPASS(ts != NULL);
1032 	mtx_assert(&ts->ts_lock, MA_OWNED);
1033 	MPASS(ts->ts_owner == curthread);
1034 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
1035 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
1036 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
1037 
1038 	/*
1039 	 * Remove the turnstile from this thread's list of contested locks
1040 	 * since this thread doesn't own it anymore.  New threads will
1041 	 * not be blocking on the turnstile until it is claimed by a new
1042 	 * owner.
1043 	 */
1044 	mtx_lock_spin(&td_contested_lock);
1045 	ts->ts_owner = NULL;
1046 	LIST_REMOVE(ts, ts_link);
1047 	mtx_unlock_spin(&td_contested_lock);
1048 
1049 	/*
1050 	 * Adjust the priority of curthread based on other contested
1051 	 * locks it owns.  Don't lower the priority below the base
1052 	 * priority however.
1053 	 */
1054 	td = curthread;
1055 	thread_lock(td);
1056 	mtx_unlock_spin(&ts->ts_lock);
1057 	mtx_lock_spin(&td_contested_lock);
1058 	pri = turnstile_calc_unlend_prio_locked(td);
1059 	mtx_unlock_spin(&td_contested_lock);
1060 	sched_unlend_prio(td, pri);
1061 	thread_unlock(td);
1062 }
1063 
1064 /*
1065  * Return the first thread in a turnstile.
1066  */
1067 struct thread *
1068 turnstile_head(struct turnstile *ts, int queue)
1069 {
1070 #ifdef INVARIANTS
1071 
1072 	MPASS(ts != NULL);
1073 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1074 	mtx_assert(&ts->ts_lock, MA_OWNED);
1075 #endif
1076 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1077 }
1078 
1079 /*
1080  * Returns true if a sub-queue of a turnstile is empty.
1081  */
1082 int
1083 turnstile_empty(struct turnstile *ts, int queue)
1084 {
1085 #ifdef INVARIANTS
1086 
1087 	MPASS(ts != NULL);
1088 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1089 	mtx_assert(&ts->ts_lock, MA_OWNED);
1090 #endif
1091 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1092 }
1093 
1094 #ifdef DDB
1095 static void
1096 print_thread(struct thread *td, const char *prefix)
1097 {
1098 
1099 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1100 	    td->td_proc->p_pid, td->td_name);
1101 }
1102 
1103 static void
1104 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1105 {
1106 	struct thread *td;
1107 
1108 	db_printf("%s:\n", header);
1109 	if (TAILQ_EMPTY(queue)) {
1110 		db_printf("%sempty\n", prefix);
1111 		return;
1112 	}
1113 	TAILQ_FOREACH(td, queue, td_lockq) {
1114 		print_thread(td, prefix);
1115 	}
1116 }
1117 
1118 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1119 {
1120 	struct turnstile_chain *tc;
1121 	struct turnstile *ts;
1122 	struct lock_object *lock;
1123 	int i;
1124 
1125 	if (!have_addr)
1126 		return;
1127 
1128 	/*
1129 	 * First, see if there is an active turnstile for the lock indicated
1130 	 * by the address.
1131 	 */
1132 	lock = (struct lock_object *)addr;
1133 	tc = TC_LOOKUP(lock);
1134 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1135 		if (ts->ts_lockobj == lock)
1136 			goto found;
1137 
1138 	/*
1139 	 * Second, see if there is an active turnstile at the address
1140 	 * indicated.
1141 	 */
1142 	for (i = 0; i < TC_TABLESIZE; i++)
1143 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1144 			if (ts == (struct turnstile *)addr)
1145 				goto found;
1146 		}
1147 
1148 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1149 	return;
1150 found:
1151 	lock = ts->ts_lockobj;
1152 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1153 	    lock->lo_name);
1154 	if (ts->ts_owner)
1155 		print_thread(ts->ts_owner, "Lock Owner: ");
1156 	else
1157 		db_printf("Lock Owner: none\n");
1158 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1159 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1160 	    "\t");
1161 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1162 
1163 }
1164 
1165 /*
1166  * Show all the threads a particular thread is waiting on based on
1167  * non-spin locks.
1168  */
1169 static void
1170 print_lockchain(struct thread *td, const char *prefix)
1171 {
1172 	struct lock_object *lock;
1173 	struct lock_class *class;
1174 	struct turnstile *ts;
1175 	struct thread *owner;
1176 
1177 	/*
1178 	 * Follow the chain.  We keep walking as long as the thread is
1179 	 * blocked on a lock that has an owner.
1180 	 */
1181 	while (!db_pager_quit) {
1182 		if (td == (void *)LK_KERNPROC) {
1183 			db_printf("%sdisowned (LK_KERNPROC)\n", prefix);
1184 			return;
1185 		}
1186 		db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid,
1187 		    td->td_proc->p_pid, td->td_name);
1188 		switch (td->td_state) {
1189 		case TDS_INACTIVE:
1190 			db_printf("inactive\n");
1191 			return;
1192 		case TDS_CAN_RUN:
1193 			db_printf("runnable\n");
1194 			return;
1195 		case TDS_RUNQ:
1196 			db_printf("on a run queue\n");
1197 			return;
1198 		case TDS_RUNNING:
1199 			db_printf("running on CPU %d\n", td->td_oncpu);
1200 			return;
1201 		case TDS_INHIBITED:
1202 			if (TD_ON_LOCK(td)) {
1203 				ts = td->td_blocked;
1204 				lock = ts->ts_lockobj;
1205 				class = LOCK_CLASS(lock);
1206 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1207 				    lock, class->lc_name, lock->lo_name);
1208 				if (ts->ts_owner == NULL)
1209 					return;
1210 				td = ts->ts_owner;
1211 				break;
1212 			} else if (TD_ON_SLEEPQ(td)) {
1213 				if (!lockmgr_chain(td, &owner) &&
1214 				    !sx_chain(td, &owner)) {
1215 					db_printf("sleeping on %p \"%s\"\n",
1216 					    td->td_wchan, td->td_wmesg);
1217 					return;
1218 				}
1219 				if (owner == NULL)
1220 					return;
1221 				td = owner;
1222 				break;
1223 			}
1224 			db_printf("inhibited: %s\n", KTDSTATE(td));
1225 			return;
1226 		default:
1227 			db_printf("??? (%#x)\n", td->td_state);
1228 			return;
1229 		}
1230 	}
1231 }
1232 
1233 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1234 {
1235 	struct thread *td;
1236 
1237 	/* Figure out which thread to start with. */
1238 	if (have_addr)
1239 		td = db_lookup_thread(addr, true);
1240 	else
1241 		td = kdb_thread;
1242 
1243 	print_lockchain(td, "");
1244 }
1245 DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1246 
1247 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1248 {
1249 	struct thread *td;
1250 	struct proc *p;
1251 	int i;
1252 
1253 	i = 1;
1254 	FOREACH_PROC_IN_SYSTEM(p) {
1255 		FOREACH_THREAD_IN_PROC(p, td) {
1256 			if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1257 			    || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1258 				db_printf("chain %d:\n", i++);
1259 				print_lockchain(td, " ");
1260 			}
1261 			if (db_pager_quit)
1262 				return;
1263 		}
1264 	}
1265 }
1266 DB_SHOW_ALIAS(allchains, db_show_allchains)
1267 
1268 static void	print_waiters(struct turnstile *ts, int indent);
1269 
1270 static void
1271 print_waiter(struct thread *td, int indent)
1272 {
1273 	struct turnstile *ts;
1274 	int i;
1275 
1276 	if (db_pager_quit)
1277 		return;
1278 	for (i = 0; i < indent; i++)
1279 		db_printf(" ");
1280 	print_thread(td, "thread ");
1281 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1282 		print_waiters(ts, indent + 1);
1283 }
1284 
1285 static void
1286 print_waiters(struct turnstile *ts, int indent)
1287 {
1288 	struct lock_object *lock;
1289 	struct lock_class *class;
1290 	struct thread *td;
1291 	int i;
1292 
1293 	if (db_pager_quit)
1294 		return;
1295 	lock = ts->ts_lockobj;
1296 	class = LOCK_CLASS(lock);
1297 	for (i = 0; i < indent; i++)
1298 		db_printf(" ");
1299 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1300 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1301 		print_waiter(td, indent + 1);
1302 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1303 		print_waiter(td, indent + 1);
1304 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1305 		print_waiter(td, indent + 1);
1306 }
1307 
1308 DB_SHOW_COMMAND(locktree, db_show_locktree)
1309 {
1310 	struct lock_object *lock;
1311 	struct lock_class *class;
1312 	struct turnstile_chain *tc;
1313 	struct turnstile *ts;
1314 
1315 	if (!have_addr)
1316 		return;
1317 	lock = (struct lock_object *)addr;
1318 	tc = TC_LOOKUP(lock);
1319 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1320 		if (ts->ts_lockobj == lock)
1321 			break;
1322 	if (ts == NULL) {
1323 		class = LOCK_CLASS(lock);
1324 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1325 		    lock->lo_name);
1326 	} else
1327 		print_waiters(ts, 0);
1328 }
1329 #endif
1330