xref: /freebsd/sys/kern/subr_turnstile.c (revision 4f52dfbb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Implementation of turnstiles used to hold queue of threads blocked on
36  * non-sleepable locks.  Sleepable locks use condition variables to
37  * implement their queues.  Turnstiles differ from a sleep queue in that
38  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
39  * when one thread is enqueued onto a turnstile, it can lend its priority
40  * to the owning thread.
41  *
42  * We wish to avoid bloating locks with an embedded turnstile and we do not
43  * want to use back-pointers in the locks for the same reason.  Thus, we
44  * use a similar approach to that of Solaris 7 as described in Solaris
45  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
46  * in a hash table based on the address of the lock.  Each entry in the
47  * hash table is a linked-lists of turnstiles and is called a turnstile
48  * chain.  Each chain contains a spin mutex that protects all of the
49  * turnstiles in the chain.
50  *
51  * Each time a thread is created, a turnstile is allocated from a UMA zone
52  * and attached to that thread.  When a thread blocks on a lock, if it is the
53  * first thread to block, it lends its turnstile to the lock.  If the lock
54  * already has a turnstile, then it gives its turnstile to the lock's
55  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
56  * the free list if there are any other waiters.  If it is the only thread
57  * blocked on the lock, then it reclaims the turnstile associated with the lock
58  * and removes it from the hash table.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_ddb.h"
65 #include "opt_turnstile_profiling.h"
66 #include "opt_sched.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kdb.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/queue.h>
77 #include <sys/sched.h>
78 #include <sys/sdt.h>
79 #include <sys/sysctl.h>
80 #include <sys/turnstile.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #include <sys/lockmgr.h>
87 #include <sys/sx.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
92  * number chosen because the sleep queue's use the same value for the
93  * shift.  Basically, we ignore the lower 8 bits of the address.
94  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
95  */
96 #define	TC_TABLESIZE	128			/* Must be power of 2. */
97 #define	TC_MASK		(TC_TABLESIZE - 1)
98 #define	TC_SHIFT	8
99 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
100 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
101 
102 /*
103  * There are three different lists of turnstiles as follows.  The list
104  * connected by ts_link entries is a per-thread list of all the turnstiles
105  * attached to locks that we own.  This is used to fixup our priority when
106  * a lock is released.  The other two lists use the ts_hash entries.  The
107  * first of these two is the turnstile chain list that a turnstile is on
108  * when it is attached to a lock.  The second list to use ts_hash is the
109  * free list hung off of a turnstile that is attached to a lock.
110  *
111  * Each turnstile contains three lists of threads.  The two ts_blocked lists
112  * are linked list of threads blocked on the turnstile's lock.  One list is
113  * for exclusive waiters, and the other is for shared waiters.  The
114  * ts_pending list is a linked list of threads previously awakened by
115  * turnstile_signal() or turnstile_wait() that are waiting to be put on
116  * the run queue.
117  *
118  * Locking key:
119  *  c - turnstile chain lock
120  *  q - td_contested lock
121  */
122 struct turnstile {
123 	struct mtx ts_lock;			/* Spin lock for self. */
124 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
125 	struct threadqueue ts_pending;		/* (c) Pending threads. */
126 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
127 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
128 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
129 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
130 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
131 };
132 
133 struct turnstile_chain {
134 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
135 	struct mtx tc_lock;			/* Spin lock for this chain. */
136 #ifdef TURNSTILE_PROFILING
137 	u_int	tc_depth;			/* Length of tc_queues. */
138 	u_int	tc_max_depth;			/* Max length of tc_queues. */
139 #endif
140 };
141 
142 #ifdef TURNSTILE_PROFILING
143 u_int turnstile_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
145     "turnstile profiling");
146 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
147     "turnstile chain stats");
148 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
149     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
150 #endif
151 static struct mtx td_contested_lock;
152 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
153 static uma_zone_t turnstile_zone;
154 
155 /*
156  * Prototypes for non-exported routines.
157  */
158 static void	init_turnstile0(void *dummy);
159 #ifdef TURNSTILE_PROFILING
160 static void	init_turnstile_profiling(void *arg);
161 #endif
162 static void	propagate_priority(struct thread *td);
163 static int	turnstile_adjust_thread(struct turnstile *ts,
164 		    struct thread *td);
165 static struct thread *turnstile_first_waiter(struct turnstile *ts);
166 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
167 #ifdef INVARIANTS
168 static void	turnstile_dtor(void *mem, int size, void *arg);
169 #endif
170 static int	turnstile_init(void *mem, int size, int flags);
171 static void	turnstile_fini(void *mem, int size);
172 
173 SDT_PROVIDER_DECLARE(sched);
174 SDT_PROBE_DEFINE(sched, , , sleep);
175 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
176     "struct proc *");
177 
178 /*
179  * Walks the chain of turnstiles and their owners to propagate the priority
180  * of the thread being blocked to all the threads holding locks that have to
181  * release their locks before this thread can run again.
182  */
183 static void
184 propagate_priority(struct thread *td)
185 {
186 	struct turnstile *ts;
187 	int pri;
188 
189 	THREAD_LOCK_ASSERT(td, MA_OWNED);
190 	pri = td->td_priority;
191 	ts = td->td_blocked;
192 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
193 	/*
194 	 * Grab a recursive lock on this turnstile chain so it stays locked
195 	 * for the whole operation.  The caller expects us to return with
196 	 * the original lock held.  We only ever lock down the chain so
197 	 * the lock order is constant.
198 	 */
199 	mtx_lock_spin(&ts->ts_lock);
200 	for (;;) {
201 		td = ts->ts_owner;
202 
203 		if (td == NULL) {
204 			/*
205 			 * This might be a read lock with no owner.  There's
206 			 * not much we can do, so just bail.
207 			 */
208 			mtx_unlock_spin(&ts->ts_lock);
209 			return;
210 		}
211 
212 		thread_lock_flags(td, MTX_DUPOK);
213 		mtx_unlock_spin(&ts->ts_lock);
214 		MPASS(td->td_proc != NULL);
215 		MPASS(td->td_proc->p_magic == P_MAGIC);
216 
217 		/*
218 		 * If the thread is asleep, then we are probably about
219 		 * to deadlock.  To make debugging this easier, show
220 		 * backtrace of misbehaving thread and panic to not
221 		 * leave the kernel deadlocked.
222 		 */
223 		if (TD_IS_SLEEPING(td)) {
224 			printf(
225 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
226 			    td->td_tid, td->td_proc->p_pid);
227 			kdb_backtrace_thread(td);
228 			panic("sleeping thread");
229 		}
230 
231 		/*
232 		 * If this thread already has higher priority than the
233 		 * thread that is being blocked, we are finished.
234 		 */
235 		if (td->td_priority <= pri) {
236 			thread_unlock(td);
237 			return;
238 		}
239 
240 		/*
241 		 * Bump this thread's priority.
242 		 */
243 		sched_lend_prio(td, pri);
244 
245 		/*
246 		 * If lock holder is actually running or on the run queue
247 		 * then we are done.
248 		 */
249 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
250 			MPASS(td->td_blocked == NULL);
251 			thread_unlock(td);
252 			return;
253 		}
254 
255 #ifndef SMP
256 		/*
257 		 * For UP, we check to see if td is curthread (this shouldn't
258 		 * ever happen however as it would mean we are in a deadlock.)
259 		 */
260 		KASSERT(td != curthread, ("Deadlock detected"));
261 #endif
262 
263 		/*
264 		 * If we aren't blocked on a lock, we should be.
265 		 */
266 		KASSERT(TD_ON_LOCK(td), (
267 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
268 		    td->td_tid, td->td_name, td->td_state,
269 		    ts->ts_lockobj->lo_name));
270 
271 		/*
272 		 * Pick up the lock that td is blocked on.
273 		 */
274 		ts = td->td_blocked;
275 		MPASS(ts != NULL);
276 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
277 		/* Resort td on the list if needed. */
278 		if (!turnstile_adjust_thread(ts, td)) {
279 			mtx_unlock_spin(&ts->ts_lock);
280 			return;
281 		}
282 		/* The thread lock is released as ts lock above. */
283 	}
284 }
285 
286 /*
287  * Adjust the thread's position on a turnstile after its priority has been
288  * changed.
289  */
290 static int
291 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
292 {
293 	struct thread *td1, *td2;
294 	int queue;
295 
296 	THREAD_LOCK_ASSERT(td, MA_OWNED);
297 	MPASS(TD_ON_LOCK(td));
298 
299 	/*
300 	 * This thread may not be blocked on this turnstile anymore
301 	 * but instead might already be woken up on another CPU
302 	 * that is waiting on the thread lock in turnstile_unpend() to
303 	 * finish waking this thread up.  We can detect this case
304 	 * by checking to see if this thread has been given a
305 	 * turnstile by either turnstile_signal() or
306 	 * turnstile_broadcast().  In this case, treat the thread as
307 	 * if it was already running.
308 	 */
309 	if (td->td_turnstile != NULL)
310 		return (0);
311 
312 	/*
313 	 * Check if the thread needs to be moved on the blocked chain.
314 	 * It needs to be moved if either its priority is lower than
315 	 * the previous thread or higher than the next thread.
316 	 */
317 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
318 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
319 	td2 = TAILQ_NEXT(td, td_lockq);
320 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
321 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
322 
323 		/*
324 		 * Remove thread from blocked chain and determine where
325 		 * it should be moved to.
326 		 */
327 		queue = td->td_tsqueue;
328 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
329 		mtx_lock_spin(&td_contested_lock);
330 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
331 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
332 			MPASS(td1->td_proc->p_magic == P_MAGIC);
333 			if (td1->td_priority > td->td_priority)
334 				break;
335 		}
336 
337 		if (td1 == NULL)
338 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
339 		else
340 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
341 		mtx_unlock_spin(&td_contested_lock);
342 		if (td1 == NULL)
343 			CTR3(KTR_LOCK,
344 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
345 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
346 		else
347 			CTR4(KTR_LOCK,
348 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
349 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
350 			    ts->ts_lockobj->lo_name);
351 	}
352 	return (1);
353 }
354 
355 /*
356  * Early initialization of turnstiles.  This is not done via a SYSINIT()
357  * since this needs to be initialized very early when mutexes are first
358  * initialized.
359  */
360 void
361 init_turnstiles(void)
362 {
363 	int i;
364 
365 	for (i = 0; i < TC_TABLESIZE; i++) {
366 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
367 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
368 		    NULL, MTX_SPIN);
369 	}
370 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
371 	LIST_INIT(&thread0.td_contested);
372 	thread0.td_turnstile = NULL;
373 }
374 
375 #ifdef TURNSTILE_PROFILING
376 static void
377 init_turnstile_profiling(void *arg)
378 {
379 	struct sysctl_oid *chain_oid;
380 	char chain_name[10];
381 	int i;
382 
383 	for (i = 0; i < TC_TABLESIZE; i++) {
384 		snprintf(chain_name, sizeof(chain_name), "%d", i);
385 		chain_oid = SYSCTL_ADD_NODE(NULL,
386 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
387 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
388 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
389 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
390 		    NULL);
391 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
392 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
393 		    0, NULL);
394 	}
395 }
396 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
397     init_turnstile_profiling, NULL);
398 #endif
399 
400 static void
401 init_turnstile0(void *dummy)
402 {
403 
404 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
405 	    NULL,
406 #ifdef INVARIANTS
407 	    turnstile_dtor,
408 #else
409 	    NULL,
410 #endif
411 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
412 	thread0.td_turnstile = turnstile_alloc();
413 }
414 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
415 
416 /*
417  * Update a thread on the turnstile list after it's priority has been changed.
418  * The old priority is passed in as an argument.
419  */
420 void
421 turnstile_adjust(struct thread *td, u_char oldpri)
422 {
423 	struct turnstile *ts;
424 
425 	MPASS(TD_ON_LOCK(td));
426 
427 	/*
428 	 * Pick up the lock that td is blocked on.
429 	 */
430 	ts = td->td_blocked;
431 	MPASS(ts != NULL);
432 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
433 	mtx_assert(&ts->ts_lock, MA_OWNED);
434 
435 	/* Resort the turnstile on the list. */
436 	if (!turnstile_adjust_thread(ts, td))
437 		return;
438 	/*
439 	 * If our priority was lowered and we are at the head of the
440 	 * turnstile, then propagate our new priority up the chain.
441 	 * Note that we currently don't try to revoke lent priorities
442 	 * when our priority goes up.
443 	 */
444 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
445 	    td->td_tsqueue == TS_SHARED_QUEUE);
446 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
447 	    td->td_priority < oldpri) {
448 		propagate_priority(td);
449 	}
450 }
451 
452 /*
453  * Set the owner of the lock this turnstile is attached to.
454  */
455 static void
456 turnstile_setowner(struct turnstile *ts, struct thread *owner)
457 {
458 
459 	mtx_assert(&td_contested_lock, MA_OWNED);
460 	MPASS(ts->ts_owner == NULL);
461 
462 	/* A shared lock might not have an owner. */
463 	if (owner == NULL)
464 		return;
465 
466 	MPASS(owner->td_proc->p_magic == P_MAGIC);
467 	ts->ts_owner = owner;
468 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
469 }
470 
471 #ifdef INVARIANTS
472 /*
473  * UMA zone item deallocator.
474  */
475 static void
476 turnstile_dtor(void *mem, int size, void *arg)
477 {
478 	struct turnstile *ts;
479 
480 	ts = mem;
481 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
482 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
483 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
484 }
485 #endif
486 
487 /*
488  * UMA zone item initializer.
489  */
490 static int
491 turnstile_init(void *mem, int size, int flags)
492 {
493 	struct turnstile *ts;
494 
495 	bzero(mem, size);
496 	ts = mem;
497 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
498 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
499 	TAILQ_INIT(&ts->ts_pending);
500 	LIST_INIT(&ts->ts_free);
501 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
502 	return (0);
503 }
504 
505 static void
506 turnstile_fini(void *mem, int size)
507 {
508 	struct turnstile *ts;
509 
510 	ts = mem;
511 	mtx_destroy(&ts->ts_lock);
512 }
513 
514 /*
515  * Get a turnstile for a new thread.
516  */
517 struct turnstile *
518 turnstile_alloc(void)
519 {
520 
521 	return (uma_zalloc(turnstile_zone, M_WAITOK));
522 }
523 
524 /*
525  * Free a turnstile when a thread is destroyed.
526  */
527 void
528 turnstile_free(struct turnstile *ts)
529 {
530 
531 	uma_zfree(turnstile_zone, ts);
532 }
533 
534 /*
535  * Lock the turnstile chain associated with the specified lock.
536  */
537 void
538 turnstile_chain_lock(struct lock_object *lock)
539 {
540 	struct turnstile_chain *tc;
541 
542 	tc = TC_LOOKUP(lock);
543 	mtx_lock_spin(&tc->tc_lock);
544 }
545 
546 struct turnstile *
547 turnstile_trywait(struct lock_object *lock)
548 {
549 	struct turnstile_chain *tc;
550 	struct turnstile *ts;
551 
552 	tc = TC_LOOKUP(lock);
553 	mtx_lock_spin(&tc->tc_lock);
554 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
555 		if (ts->ts_lockobj == lock) {
556 			mtx_lock_spin(&ts->ts_lock);
557 			return (ts);
558 		}
559 
560 	ts = curthread->td_turnstile;
561 	MPASS(ts != NULL);
562 	mtx_lock_spin(&ts->ts_lock);
563 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
564 	ts->ts_lockobj = lock;
565 
566 	return (ts);
567 }
568 
569 void
570 turnstile_cancel(struct turnstile *ts)
571 {
572 	struct turnstile_chain *tc;
573 	struct lock_object *lock;
574 
575 	mtx_assert(&ts->ts_lock, MA_OWNED);
576 
577 	mtx_unlock_spin(&ts->ts_lock);
578 	lock = ts->ts_lockobj;
579 	if (ts == curthread->td_turnstile)
580 		ts->ts_lockobj = NULL;
581 	tc = TC_LOOKUP(lock);
582 	mtx_unlock_spin(&tc->tc_lock);
583 }
584 
585 /*
586  * Look up the turnstile for a lock in the hash table locking the associated
587  * turnstile chain along the way.  If no turnstile is found in the hash
588  * table, NULL is returned.
589  */
590 struct turnstile *
591 turnstile_lookup(struct lock_object *lock)
592 {
593 	struct turnstile_chain *tc;
594 	struct turnstile *ts;
595 
596 	tc = TC_LOOKUP(lock);
597 	mtx_assert(&tc->tc_lock, MA_OWNED);
598 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
599 		if (ts->ts_lockobj == lock) {
600 			mtx_lock_spin(&ts->ts_lock);
601 			return (ts);
602 		}
603 	return (NULL);
604 }
605 
606 /*
607  * Unlock the turnstile chain associated with a given lock.
608  */
609 void
610 turnstile_chain_unlock(struct lock_object *lock)
611 {
612 	struct turnstile_chain *tc;
613 
614 	tc = TC_LOOKUP(lock);
615 	mtx_unlock_spin(&tc->tc_lock);
616 }
617 
618 /*
619  * Return a pointer to the thread waiting on this turnstile with the
620  * most important priority or NULL if the turnstile has no waiters.
621  */
622 static struct thread *
623 turnstile_first_waiter(struct turnstile *ts)
624 {
625 	struct thread *std, *xtd;
626 
627 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
628 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
629 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
630 		return (std);
631 	return (xtd);
632 }
633 
634 /*
635  * Take ownership of a turnstile and adjust the priority of the new
636  * owner appropriately.
637  */
638 void
639 turnstile_claim(struct turnstile *ts)
640 {
641 	struct thread *td, *owner;
642 	struct turnstile_chain *tc;
643 
644 	mtx_assert(&ts->ts_lock, MA_OWNED);
645 	MPASS(ts != curthread->td_turnstile);
646 
647 	owner = curthread;
648 	mtx_lock_spin(&td_contested_lock);
649 	turnstile_setowner(ts, owner);
650 	mtx_unlock_spin(&td_contested_lock);
651 
652 	td = turnstile_first_waiter(ts);
653 	MPASS(td != NULL);
654 	MPASS(td->td_proc->p_magic == P_MAGIC);
655 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
656 
657 	/*
658 	 * Update the priority of the new owner if needed.
659 	 */
660 	thread_lock(owner);
661 	if (td->td_priority < owner->td_priority)
662 		sched_lend_prio(owner, td->td_priority);
663 	thread_unlock(owner);
664 	tc = TC_LOOKUP(ts->ts_lockobj);
665 	mtx_unlock_spin(&ts->ts_lock);
666 	mtx_unlock_spin(&tc->tc_lock);
667 }
668 
669 /*
670  * Block the current thread on the turnstile assicated with 'lock'.  This
671  * function will context switch and not return until this thread has been
672  * woken back up.  This function must be called with the appropriate
673  * turnstile chain locked and will return with it unlocked.
674  */
675 void
676 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
677 {
678 	struct turnstile_chain *tc;
679 	struct thread *td, *td1;
680 	struct lock_object *lock;
681 
682 	td = curthread;
683 	mtx_assert(&ts->ts_lock, MA_OWNED);
684 	if (owner)
685 		MPASS(owner->td_proc->p_magic == P_MAGIC);
686 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
687 
688 	/*
689 	 * If the lock does not already have a turnstile, use this thread's
690 	 * turnstile.  Otherwise insert the current thread into the
691 	 * turnstile already in use by this lock.
692 	 */
693 	tc = TC_LOOKUP(ts->ts_lockobj);
694 	mtx_assert(&tc->tc_lock, MA_OWNED);
695 	if (ts == td->td_turnstile) {
696 #ifdef TURNSTILE_PROFILING
697 		tc->tc_depth++;
698 		if (tc->tc_depth > tc->tc_max_depth) {
699 			tc->tc_max_depth = tc->tc_depth;
700 			if (tc->tc_max_depth > turnstile_max_depth)
701 				turnstile_max_depth = tc->tc_max_depth;
702 		}
703 #endif
704 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
705 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
706 		    ("thread's turnstile has pending threads"));
707 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
708 		    ("thread's turnstile has exclusive waiters"));
709 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
710 		    ("thread's turnstile has shared waiters"));
711 		KASSERT(LIST_EMPTY(&ts->ts_free),
712 		    ("thread's turnstile has a non-empty free list"));
713 		MPASS(ts->ts_lockobj != NULL);
714 		mtx_lock_spin(&td_contested_lock);
715 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
716 		turnstile_setowner(ts, owner);
717 		mtx_unlock_spin(&td_contested_lock);
718 	} else {
719 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
720 			if (td1->td_priority > td->td_priority)
721 				break;
722 		mtx_lock_spin(&td_contested_lock);
723 		if (td1 != NULL)
724 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
725 		else
726 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
727 		MPASS(owner == ts->ts_owner);
728 		mtx_unlock_spin(&td_contested_lock);
729 		MPASS(td->td_turnstile != NULL);
730 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
731 	}
732 	thread_lock(td);
733 	thread_lock_set(td, &ts->ts_lock);
734 	td->td_turnstile = NULL;
735 
736 	/* Save who we are blocked on and switch. */
737 	lock = ts->ts_lockobj;
738 	td->td_tsqueue = queue;
739 	td->td_blocked = ts;
740 	td->td_lockname = lock->lo_name;
741 	td->td_blktick = ticks;
742 	TD_SET_LOCK(td);
743 	mtx_unlock_spin(&tc->tc_lock);
744 	propagate_priority(td);
745 
746 	if (LOCK_LOG_TEST(lock, 0))
747 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
748 		    td->td_tid, lock, lock->lo_name);
749 
750 	SDT_PROBE0(sched, , , sleep);
751 
752 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
753 	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
754 
755 	if (LOCK_LOG_TEST(lock, 0))
756 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
757 		    __func__, td->td_tid, lock, lock->lo_name);
758 	thread_unlock(td);
759 }
760 
761 /*
762  * Pick the highest priority thread on this turnstile and put it on the
763  * pending list.  This must be called with the turnstile chain locked.
764  */
765 int
766 turnstile_signal(struct turnstile *ts, int queue)
767 {
768 	struct turnstile_chain *tc;
769 	struct thread *td;
770 	int empty;
771 
772 	MPASS(ts != NULL);
773 	mtx_assert(&ts->ts_lock, MA_OWNED);
774 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
775 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
776 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
777 
778 	/*
779 	 * Pick the highest priority thread blocked on this lock and
780 	 * move it to the pending list.
781 	 */
782 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
783 	MPASS(td->td_proc->p_magic == P_MAGIC);
784 	mtx_lock_spin(&td_contested_lock);
785 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
786 	mtx_unlock_spin(&td_contested_lock);
787 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
788 
789 	/*
790 	 * If the turnstile is now empty, remove it from its chain and
791 	 * give it to the about-to-be-woken thread.  Otherwise take a
792 	 * turnstile from the free list and give it to the thread.
793 	 */
794 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
795 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
796 	if (empty) {
797 		tc = TC_LOOKUP(ts->ts_lockobj);
798 		mtx_assert(&tc->tc_lock, MA_OWNED);
799 		MPASS(LIST_EMPTY(&ts->ts_free));
800 #ifdef TURNSTILE_PROFILING
801 		tc->tc_depth--;
802 #endif
803 	} else
804 		ts = LIST_FIRST(&ts->ts_free);
805 	MPASS(ts != NULL);
806 	LIST_REMOVE(ts, ts_hash);
807 	td->td_turnstile = ts;
808 
809 	return (empty);
810 }
811 
812 /*
813  * Put all blocked threads on the pending list.  This must be called with
814  * the turnstile chain locked.
815  */
816 void
817 turnstile_broadcast(struct turnstile *ts, int queue)
818 {
819 	struct turnstile_chain *tc;
820 	struct turnstile *ts1;
821 	struct thread *td;
822 
823 	MPASS(ts != NULL);
824 	mtx_assert(&ts->ts_lock, MA_OWNED);
825 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
826 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
827 	/*
828 	 * We must have the chain locked so that we can remove the empty
829 	 * turnstile from the hash queue.
830 	 */
831 	tc = TC_LOOKUP(ts->ts_lockobj);
832 	mtx_assert(&tc->tc_lock, MA_OWNED);
833 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
834 
835 	/*
836 	 * Transfer the blocked list to the pending list.
837 	 */
838 	mtx_lock_spin(&td_contested_lock);
839 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
840 	mtx_unlock_spin(&td_contested_lock);
841 
842 	/*
843 	 * Give a turnstile to each thread.  The last thread gets
844 	 * this turnstile if the turnstile is empty.
845 	 */
846 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
847 		if (LIST_EMPTY(&ts->ts_free)) {
848 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
849 			ts1 = ts;
850 #ifdef TURNSTILE_PROFILING
851 			tc->tc_depth--;
852 #endif
853 		} else
854 			ts1 = LIST_FIRST(&ts->ts_free);
855 		MPASS(ts1 != NULL);
856 		LIST_REMOVE(ts1, ts_hash);
857 		td->td_turnstile = ts1;
858 	}
859 }
860 
861 /*
862  * Wakeup all threads on the pending list and adjust the priority of the
863  * current thread appropriately.  This must be called with the turnstile
864  * chain locked.
865  */
866 void
867 turnstile_unpend(struct turnstile *ts, int owner_type)
868 {
869 	TAILQ_HEAD( ,thread) pending_threads;
870 	struct turnstile *nts;
871 	struct thread *td;
872 	u_char cp, pri;
873 
874 	MPASS(ts != NULL);
875 	mtx_assert(&ts->ts_lock, MA_OWNED);
876 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
877 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
878 
879 	/*
880 	 * Move the list of pending threads out of the turnstile and
881 	 * into a local variable.
882 	 */
883 	TAILQ_INIT(&pending_threads);
884 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
885 #ifdef INVARIANTS
886 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
887 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
888 		ts->ts_lockobj = NULL;
889 #endif
890 	/*
891 	 * Adjust the priority of curthread based on other contested
892 	 * locks it owns.  Don't lower the priority below the base
893 	 * priority however.
894 	 */
895 	td = curthread;
896 	pri = PRI_MAX;
897 	thread_lock(td);
898 	mtx_lock_spin(&td_contested_lock);
899 	/*
900 	 * Remove the turnstile from this thread's list of contested locks
901 	 * since this thread doesn't own it anymore.  New threads will
902 	 * not be blocking on the turnstile until it is claimed by a new
903 	 * owner.  There might not be a current owner if this is a shared
904 	 * lock.
905 	 */
906 	if (ts->ts_owner != NULL) {
907 		ts->ts_owner = NULL;
908 		LIST_REMOVE(ts, ts_link);
909 	}
910 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
911 		cp = turnstile_first_waiter(nts)->td_priority;
912 		if (cp < pri)
913 			pri = cp;
914 	}
915 	mtx_unlock_spin(&td_contested_lock);
916 	sched_unlend_prio(td, pri);
917 	thread_unlock(td);
918 	/*
919 	 * Wake up all the pending threads.  If a thread is not blocked
920 	 * on a lock, then it is currently executing on another CPU in
921 	 * turnstile_wait() or sitting on a run queue waiting to resume
922 	 * in turnstile_wait().  Set a flag to force it to try to acquire
923 	 * the lock again instead of blocking.
924 	 */
925 	while (!TAILQ_EMPTY(&pending_threads)) {
926 		td = TAILQ_FIRST(&pending_threads);
927 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
928 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
929 		thread_lock(td);
930 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
931 		MPASS(td->td_proc->p_magic == P_MAGIC);
932 		MPASS(TD_ON_LOCK(td));
933 		TD_CLR_LOCK(td);
934 		MPASS(TD_CAN_RUN(td));
935 		td->td_blocked = NULL;
936 		td->td_lockname = NULL;
937 		td->td_blktick = 0;
938 #ifdef INVARIANTS
939 		td->td_tsqueue = 0xff;
940 #endif
941 		sched_add(td, SRQ_BORING);
942 		thread_unlock(td);
943 	}
944 	mtx_unlock_spin(&ts->ts_lock);
945 }
946 
947 /*
948  * Give up ownership of a turnstile.  This must be called with the
949  * turnstile chain locked.
950  */
951 void
952 turnstile_disown(struct turnstile *ts)
953 {
954 	struct thread *td;
955 	u_char cp, pri;
956 
957 	MPASS(ts != NULL);
958 	mtx_assert(&ts->ts_lock, MA_OWNED);
959 	MPASS(ts->ts_owner == curthread);
960 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
961 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
962 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
963 
964 	/*
965 	 * Remove the turnstile from this thread's list of contested locks
966 	 * since this thread doesn't own it anymore.  New threads will
967 	 * not be blocking on the turnstile until it is claimed by a new
968 	 * owner.
969 	 */
970 	mtx_lock_spin(&td_contested_lock);
971 	ts->ts_owner = NULL;
972 	LIST_REMOVE(ts, ts_link);
973 	mtx_unlock_spin(&td_contested_lock);
974 
975 	/*
976 	 * Adjust the priority of curthread based on other contested
977 	 * locks it owns.  Don't lower the priority below the base
978 	 * priority however.
979 	 */
980 	td = curthread;
981 	pri = PRI_MAX;
982 	thread_lock(td);
983 	mtx_unlock_spin(&ts->ts_lock);
984 	mtx_lock_spin(&td_contested_lock);
985 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
986 		cp = turnstile_first_waiter(ts)->td_priority;
987 		if (cp < pri)
988 			pri = cp;
989 	}
990 	mtx_unlock_spin(&td_contested_lock);
991 	sched_unlend_prio(td, pri);
992 	thread_unlock(td);
993 }
994 
995 /*
996  * Return the first thread in a turnstile.
997  */
998 struct thread *
999 turnstile_head(struct turnstile *ts, int queue)
1000 {
1001 #ifdef INVARIANTS
1002 
1003 	MPASS(ts != NULL);
1004 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1005 	mtx_assert(&ts->ts_lock, MA_OWNED);
1006 #endif
1007 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1008 }
1009 
1010 /*
1011  * Returns true if a sub-queue of a turnstile is empty.
1012  */
1013 int
1014 turnstile_empty(struct turnstile *ts, int queue)
1015 {
1016 #ifdef INVARIANTS
1017 
1018 	MPASS(ts != NULL);
1019 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1020 	mtx_assert(&ts->ts_lock, MA_OWNED);
1021 #endif
1022 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1023 }
1024 
1025 #ifdef DDB
1026 static void
1027 print_thread(struct thread *td, const char *prefix)
1028 {
1029 
1030 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1031 	    td->td_proc->p_pid, td->td_name);
1032 }
1033 
1034 static void
1035 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1036 {
1037 	struct thread *td;
1038 
1039 	db_printf("%s:\n", header);
1040 	if (TAILQ_EMPTY(queue)) {
1041 		db_printf("%sempty\n", prefix);
1042 		return;
1043 	}
1044 	TAILQ_FOREACH(td, queue, td_lockq) {
1045 		print_thread(td, prefix);
1046 	}
1047 }
1048 
1049 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1050 {
1051 	struct turnstile_chain *tc;
1052 	struct turnstile *ts;
1053 	struct lock_object *lock;
1054 	int i;
1055 
1056 	if (!have_addr)
1057 		return;
1058 
1059 	/*
1060 	 * First, see if there is an active turnstile for the lock indicated
1061 	 * by the address.
1062 	 */
1063 	lock = (struct lock_object *)addr;
1064 	tc = TC_LOOKUP(lock);
1065 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1066 		if (ts->ts_lockobj == lock)
1067 			goto found;
1068 
1069 	/*
1070 	 * Second, see if there is an active turnstile at the address
1071 	 * indicated.
1072 	 */
1073 	for (i = 0; i < TC_TABLESIZE; i++)
1074 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1075 			if (ts == (struct turnstile *)addr)
1076 				goto found;
1077 		}
1078 
1079 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1080 	return;
1081 found:
1082 	lock = ts->ts_lockobj;
1083 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1084 	    lock->lo_name);
1085 	if (ts->ts_owner)
1086 		print_thread(ts->ts_owner, "Lock Owner: ");
1087 	else
1088 		db_printf("Lock Owner: none\n");
1089 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1090 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1091 	    "\t");
1092 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1093 
1094 }
1095 
1096 /*
1097  * Show all the threads a particular thread is waiting on based on
1098  * non-spin locks.
1099  */
1100 static void
1101 print_lockchain(struct thread *td, const char *prefix)
1102 {
1103 	struct lock_object *lock;
1104 	struct lock_class *class;
1105 	struct turnstile *ts;
1106 	struct thread *owner;
1107 
1108 	/*
1109 	 * Follow the chain.  We keep walking as long as the thread is
1110 	 * blocked on a lock that has an owner.
1111 	 */
1112 	while (!db_pager_quit) {
1113 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1114 		    td->td_proc->p_pid, td->td_name);
1115 		switch (td->td_state) {
1116 		case TDS_INACTIVE:
1117 			db_printf("is inactive\n");
1118 			return;
1119 		case TDS_CAN_RUN:
1120 			db_printf("can run\n");
1121 			return;
1122 		case TDS_RUNQ:
1123 			db_printf("is on a run queue\n");
1124 			return;
1125 		case TDS_RUNNING:
1126 			db_printf("running on CPU %d\n", td->td_oncpu);
1127 			return;
1128 		case TDS_INHIBITED:
1129 			if (TD_ON_LOCK(td)) {
1130 				ts = td->td_blocked;
1131 				lock = ts->ts_lockobj;
1132 				class = LOCK_CLASS(lock);
1133 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1134 				    lock, class->lc_name, lock->lo_name);
1135 				if (ts->ts_owner == NULL)
1136 					return;
1137 				td = ts->ts_owner;
1138 				break;
1139 			} else if (TD_ON_SLEEPQ(td)) {
1140 				if (!lockmgr_chain(td, &owner) &&
1141 				    !sx_chain(td, &owner)) {
1142 					db_printf("sleeping on %p \"%s\"\n",
1143 					    td->td_wchan, td->td_wmesg);
1144 					return;
1145 				}
1146 				if (owner == NULL)
1147 					return;
1148 				td = owner;
1149 				break;
1150 			}
1151 			db_printf("inhibited\n");
1152 			return;
1153 		default:
1154 			db_printf("??? (%#x)\n", td->td_state);
1155 			return;
1156 		}
1157 	}
1158 }
1159 
1160 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1161 {
1162 	struct thread *td;
1163 
1164 	/* Figure out which thread to start with. */
1165 	if (have_addr)
1166 		td = db_lookup_thread(addr, true);
1167 	else
1168 		td = kdb_thread;
1169 
1170 	print_lockchain(td, "");
1171 }
1172 DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1173 
1174 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1175 {
1176 	struct thread *td;
1177 	struct proc *p;
1178 	int i;
1179 
1180 	i = 1;
1181 	FOREACH_PROC_IN_SYSTEM(p) {
1182 		FOREACH_THREAD_IN_PROC(p, td) {
1183 			if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1184 			    || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1185 				db_printf("chain %d:\n", i++);
1186 				print_lockchain(td, " ");
1187 			}
1188 			if (db_pager_quit)
1189 				return;
1190 		}
1191 	}
1192 }
1193 DB_SHOW_ALIAS(allchains, db_show_allchains)
1194 
1195 static void	print_waiters(struct turnstile *ts, int indent);
1196 
1197 static void
1198 print_waiter(struct thread *td, int indent)
1199 {
1200 	struct turnstile *ts;
1201 	int i;
1202 
1203 	if (db_pager_quit)
1204 		return;
1205 	for (i = 0; i < indent; i++)
1206 		db_printf(" ");
1207 	print_thread(td, "thread ");
1208 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1209 		print_waiters(ts, indent + 1);
1210 }
1211 
1212 static void
1213 print_waiters(struct turnstile *ts, int indent)
1214 {
1215 	struct lock_object *lock;
1216 	struct lock_class *class;
1217 	struct thread *td;
1218 	int i;
1219 
1220 	if (db_pager_quit)
1221 		return;
1222 	lock = ts->ts_lockobj;
1223 	class = LOCK_CLASS(lock);
1224 	for (i = 0; i < indent; i++)
1225 		db_printf(" ");
1226 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1227 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1228 		print_waiter(td, indent + 1);
1229 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1230 		print_waiter(td, indent + 1);
1231 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1232 		print_waiter(td, indent + 1);
1233 }
1234 
1235 DB_SHOW_COMMAND(locktree, db_show_locktree)
1236 {
1237 	struct lock_object *lock;
1238 	struct lock_class *class;
1239 	struct turnstile_chain *tc;
1240 	struct turnstile *ts;
1241 
1242 	if (!have_addr)
1243 		return;
1244 	lock = (struct lock_object *)addr;
1245 	tc = TC_LOOKUP(lock);
1246 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1247 		if (ts->ts_lockobj == lock)
1248 			break;
1249 	if (ts == NULL) {
1250 		class = LOCK_CLASS(lock);
1251 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1252 		    lock->lo_name);
1253 	} else
1254 		print_waiters(ts, 0);
1255 }
1256 #endif
1257