xref: /freebsd/sys/kern/sys_pipe.c (revision 41840d75)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119 
120 #include <security/mac/mac_framework.h>
121 
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131 
132 /*
133  * Use this define if you want to disable *fancy* VM things.  Expect an
134  * approx 30% decrease in transfer rate.  This could be useful for
135  * NetBSD or OpenBSD.
136  */
137 /* #define PIPE_NODIRECT */
138 
139 #define PIPE_PEER(pipe)	\
140 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141 
142 /*
143  * interfaces to the outside world
144  */
145 static fo_rdwr_t	pipe_read;
146 static fo_rdwr_t	pipe_write;
147 static fo_truncate_t	pipe_truncate;
148 static fo_ioctl_t	pipe_ioctl;
149 static fo_poll_t	pipe_poll;
150 static fo_kqfilter_t	pipe_kqfilter;
151 static fo_stat_t	pipe_stat;
152 static fo_close_t	pipe_close;
153 static fo_chmod_t	pipe_chmod;
154 static fo_chown_t	pipe_chown;
155 
156 struct fileops pipeops = {
157 	.fo_read = pipe_read,
158 	.fo_write = pipe_write,
159 	.fo_truncate = pipe_truncate,
160 	.fo_ioctl = pipe_ioctl,
161 	.fo_poll = pipe_poll,
162 	.fo_kqfilter = pipe_kqfilter,
163 	.fo_stat = pipe_stat,
164 	.fo_close = pipe_close,
165 	.fo_chmod = pipe_chmod,
166 	.fo_chown = pipe_chown,
167 	.fo_flags = DFLAG_PASSABLE
168 };
169 
170 static void	filt_pipedetach(struct knote *kn);
171 static void	filt_pipedetach_notsup(struct knote *kn);
172 static int	filt_pipenotsup(struct knote *kn, long hint);
173 static int	filt_piperead(struct knote *kn, long hint);
174 static int	filt_pipewrite(struct knote *kn, long hint);
175 
176 static struct filterops pipe_nfiltops = {
177 	.f_isfd = 1,
178 	.f_detach = filt_pipedetach_notsup,
179 	.f_event = filt_pipenotsup
180 };
181 static struct filterops pipe_rfiltops = {
182 	.f_isfd = 1,
183 	.f_detach = filt_pipedetach,
184 	.f_event = filt_piperead
185 };
186 static struct filterops pipe_wfiltops = {
187 	.f_isfd = 1,
188 	.f_detach = filt_pipedetach,
189 	.f_event = filt_pipewrite
190 };
191 
192 /*
193  * Default pipe buffer size(s), this can be kind-of large now because pipe
194  * space is pageable.  The pipe code will try to maintain locality of
195  * reference for performance reasons, so small amounts of outstanding I/O
196  * will not wipe the cache.
197  */
198 #define MINPIPESIZE (PIPE_SIZE/3)
199 #define MAXPIPESIZE (2*PIPE_SIZE/3)
200 
201 static long amountpipekva;
202 static int pipefragretry;
203 static int pipeallocfail;
204 static int piperesizefail;
205 static int piperesizeallowed = 1;
206 
207 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
208 	   &maxpipekva, 0, "Pipe KVA limit");
209 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
210 	   &amountpipekva, 0, "Pipe KVA usage");
211 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
212 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
213 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
214 	  &pipeallocfail, 0, "Pipe allocation failures");
215 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
216 	  &piperesizefail, 0, "Pipe resize failures");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
218 	  &piperesizeallowed, 0, "Pipe resizing allowed");
219 
220 static void pipeinit(void *dummy __unused);
221 static void pipeclose(struct pipe *cpipe);
222 static void pipe_free_kmem(struct pipe *cpipe);
223 static int pipe_create(struct pipe *pipe, int backing);
224 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
225 static __inline int pipelock(struct pipe *cpipe, int catch);
226 static __inline void pipeunlock(struct pipe *cpipe);
227 #ifndef PIPE_NODIRECT
228 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
229 static void pipe_destroy_write_buffer(struct pipe *wpipe);
230 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
231 static void pipe_clone_write_buffer(struct pipe *wpipe);
232 #endif
233 static int pipespace(struct pipe *cpipe, int size);
234 static int pipespace_new(struct pipe *cpipe, int size);
235 
236 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
237 static int	pipe_zone_init(void *mem, int size, int flags);
238 static void	pipe_zone_fini(void *mem, int size);
239 
240 static uma_zone_t pipe_zone;
241 static struct unrhdr *pipeino_unr;
242 static dev_t pipedev_ino;
243 
244 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
245 
246 static void
247 pipeinit(void *dummy __unused)
248 {
249 
250 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
251 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
252 	    UMA_ALIGN_PTR, 0);
253 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
254 	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
255 	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
256 	pipedev_ino = devfs_alloc_cdp_inode();
257 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
258 }
259 
260 static int
261 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
262 {
263 	struct pipepair *pp;
264 	struct pipe *rpipe, *wpipe;
265 
266 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
267 
268 	pp = (struct pipepair *)mem;
269 
270 	/*
271 	 * We zero both pipe endpoints to make sure all the kmem pointers
272 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
273 	 * endpoints with the same time.
274 	 */
275 	rpipe = &pp->pp_rpipe;
276 	bzero(rpipe, sizeof(*rpipe));
277 	vfs_timestamp(&rpipe->pipe_ctime);
278 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
279 
280 	wpipe = &pp->pp_wpipe;
281 	bzero(wpipe, sizeof(*wpipe));
282 	wpipe->pipe_ctime = rpipe->pipe_ctime;
283 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
284 
285 	rpipe->pipe_peer = wpipe;
286 	rpipe->pipe_pair = pp;
287 	wpipe->pipe_peer = rpipe;
288 	wpipe->pipe_pair = pp;
289 
290 	/*
291 	 * Mark both endpoints as present; they will later get free'd
292 	 * one at a time.  When both are free'd, then the whole pair
293 	 * is released.
294 	 */
295 	rpipe->pipe_present = PIPE_ACTIVE;
296 	wpipe->pipe_present = PIPE_ACTIVE;
297 
298 	/*
299 	 * Eventually, the MAC Framework may initialize the label
300 	 * in ctor or init, but for now we do it elswhere to avoid
301 	 * blocking in ctor or init.
302 	 */
303 	pp->pp_label = NULL;
304 
305 	return (0);
306 }
307 
308 static int
309 pipe_zone_init(void *mem, int size, int flags)
310 {
311 	struct pipepair *pp;
312 
313 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
314 
315 	pp = (struct pipepair *)mem;
316 
317 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
318 	return (0);
319 }
320 
321 static void
322 pipe_zone_fini(void *mem, int size)
323 {
324 	struct pipepair *pp;
325 
326 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
327 
328 	pp = (struct pipepair *)mem;
329 
330 	mtx_destroy(&pp->pp_mtx);
331 }
332 
333 static int
334 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
335 {
336 	struct pipepair *pp;
337 	struct pipe *rpipe, *wpipe;
338 	int error;
339 
340 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341 #ifdef MAC
342 	/*
343 	 * The MAC label is shared between the connected endpoints.  As a
344 	 * result mac_pipe_init() and mac_pipe_create() are called once
345 	 * for the pair, and not on the endpoints.
346 	 */
347 	mac_pipe_init(pp);
348 	mac_pipe_create(td->td_ucred, pp);
349 #endif
350 	rpipe = &pp->pp_rpipe;
351 	wpipe = &pp->pp_wpipe;
352 
353 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355 
356 	/* Only the forward direction pipe is backed by default */
357 	if ((error = pipe_create(rpipe, 1)) != 0 ||
358 	    (error = pipe_create(wpipe, 0)) != 0) {
359 		pipeclose(rpipe);
360 		pipeclose(wpipe);
361 		return (error);
362 	}
363 
364 	rpipe->pipe_state |= PIPE_DIRECTOK;
365 	wpipe->pipe_state |= PIPE_DIRECTOK;
366 	return (0);
367 }
368 
369 int
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372 	struct pipepair *pp;
373 	int error;
374 
375 	error = pipe_paircreate(td, &pp);
376 	if (error != 0)
377 		return (error);
378 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
379 	*ppipe = &pp->pp_rpipe;
380 	return (0);
381 }
382 
383 void
384 pipe_dtor(struct pipe *dpipe)
385 {
386 	ino_t ino;
387 
388 	ino = dpipe->pipe_ino;
389 	funsetown(&dpipe->pipe_sigio);
390 	pipeclose(dpipe);
391 	if (dpipe->pipe_state & PIPE_NAMED) {
392 		dpipe = dpipe->pipe_peer;
393 		funsetown(&dpipe->pipe_sigio);
394 		pipeclose(dpipe);
395 	}
396 	if (ino != 0 && ino != (ino_t)-1)
397 		free_unr(pipeino_unr, ino);
398 }
399 
400 /*
401  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
402  * the zone pick up the pieces via pipeclose().
403  */
404 int
405 kern_pipe(struct thread *td, int fildes[2])
406 {
407 
408 	return (kern_pipe2(td, fildes, 0));
409 }
410 
411 int
412 kern_pipe2(struct thread *td, int fildes[2], int flags)
413 {
414 	struct filedesc *fdp;
415 	struct file *rf, *wf;
416 	struct pipe *rpipe, *wpipe;
417 	struct pipepair *pp;
418 	int fd, fflags, error;
419 
420 	fdp = td->td_proc->p_fd;
421 	error = pipe_paircreate(td, &pp);
422 	if (error != 0)
423 		return (error);
424 	rpipe = &pp->pp_rpipe;
425 	wpipe = &pp->pp_wpipe;
426 	error = falloc(td, &rf, &fd, flags);
427 	if (error) {
428 		pipeclose(rpipe);
429 		pipeclose(wpipe);
430 		return (error);
431 	}
432 	/* An extra reference on `rf' has been held for us by falloc(). */
433 	fildes[0] = fd;
434 
435 	fflags = FREAD | FWRITE;
436 	if ((flags & O_NONBLOCK) != 0)
437 		fflags |= FNONBLOCK;
438 
439 	/*
440 	 * Warning: once we've gotten past allocation of the fd for the
441 	 * read-side, we can only drop the read side via fdrop() in order
442 	 * to avoid races against processes which manage to dup() the read
443 	 * side while we are blocked trying to allocate the write side.
444 	 */
445 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
446 	error = falloc(td, &wf, &fd, flags);
447 	if (error) {
448 		fdclose(fdp, rf, fildes[0], td);
449 		fdrop(rf, td);
450 		/* rpipe has been closed by fdrop(). */
451 		pipeclose(wpipe);
452 		return (error);
453 	}
454 	/* An extra reference on `wf' has been held for us by falloc(). */
455 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
456 	fdrop(wf, td);
457 	fildes[1] = fd;
458 	fdrop(rf, td);
459 
460 	return (0);
461 }
462 
463 /* ARGSUSED */
464 int
465 sys_pipe(struct thread *td, struct pipe_args *uap)
466 {
467 	int error;
468 	int fildes[2];
469 
470 	error = kern_pipe(td, fildes);
471 	if (error)
472 		return (error);
473 
474 	td->td_retval[0] = fildes[0];
475 	td->td_retval[1] = fildes[1];
476 
477 	return (0);
478 }
479 
480 int
481 sys_pipe2(struct thread *td, struct pipe2_args *uap)
482 {
483 	int error, fildes[2];
484 
485 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
486 		return (EINVAL);
487 	error = kern_pipe2(td, fildes, uap->flags);
488 	if (error)
489 		return (error);
490 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
491 	if (error) {
492 		(void)kern_close(td, fildes[0]);
493 		(void)kern_close(td, fildes[1]);
494 	}
495 	return (error);
496 }
497 
498 /*
499  * Allocate kva for pipe circular buffer, the space is pageable
500  * This routine will 'realloc' the size of a pipe safely, if it fails
501  * it will retain the old buffer.
502  * If it fails it will return ENOMEM.
503  */
504 static int
505 pipespace_new(cpipe, size)
506 	struct pipe *cpipe;
507 	int size;
508 {
509 	caddr_t buffer;
510 	int error, cnt, firstseg;
511 	static int curfail = 0;
512 	static struct timeval lastfail;
513 
514 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
515 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
516 		("pipespace: resize of direct writes not allowed"));
517 retry:
518 	cnt = cpipe->pipe_buffer.cnt;
519 	if (cnt > size)
520 		size = cnt;
521 
522 	size = round_page(size);
523 	buffer = (caddr_t) vm_map_min(pipe_map);
524 
525 	error = vm_map_find(pipe_map, NULL, 0,
526 		(vm_offset_t *) &buffer, size, 1,
527 		VM_PROT_ALL, VM_PROT_ALL, 0);
528 	if (error != KERN_SUCCESS) {
529 		if ((cpipe->pipe_buffer.buffer == NULL) &&
530 			(size > SMALL_PIPE_SIZE)) {
531 			size = SMALL_PIPE_SIZE;
532 			pipefragretry++;
533 			goto retry;
534 		}
535 		if (cpipe->pipe_buffer.buffer == NULL) {
536 			pipeallocfail++;
537 			if (ppsratecheck(&lastfail, &curfail, 1))
538 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
539 		} else {
540 			piperesizefail++;
541 		}
542 		return (ENOMEM);
543 	}
544 
545 	/* copy data, then free old resources if we're resizing */
546 	if (cnt > 0) {
547 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
548 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
549 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
550 				buffer, firstseg);
551 			if ((cnt - firstseg) > 0)
552 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
553 					cpipe->pipe_buffer.in);
554 		} else {
555 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
556 				buffer, cnt);
557 		}
558 	}
559 	pipe_free_kmem(cpipe);
560 	cpipe->pipe_buffer.buffer = buffer;
561 	cpipe->pipe_buffer.size = size;
562 	cpipe->pipe_buffer.in = cnt;
563 	cpipe->pipe_buffer.out = 0;
564 	cpipe->pipe_buffer.cnt = cnt;
565 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
566 	return (0);
567 }
568 
569 /*
570  * Wrapper for pipespace_new() that performs locking assertions.
571  */
572 static int
573 pipespace(cpipe, size)
574 	struct pipe *cpipe;
575 	int size;
576 {
577 
578 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
579 		("Unlocked pipe passed to pipespace"));
580 	return (pipespace_new(cpipe, size));
581 }
582 
583 /*
584  * lock a pipe for I/O, blocking other access
585  */
586 static __inline int
587 pipelock(cpipe, catch)
588 	struct pipe *cpipe;
589 	int catch;
590 {
591 	int error;
592 
593 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
594 	while (cpipe->pipe_state & PIPE_LOCKFL) {
595 		cpipe->pipe_state |= PIPE_LWANT;
596 		error = msleep(cpipe, PIPE_MTX(cpipe),
597 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
598 		    "pipelk", 0);
599 		if (error != 0)
600 			return (error);
601 	}
602 	cpipe->pipe_state |= PIPE_LOCKFL;
603 	return (0);
604 }
605 
606 /*
607  * unlock a pipe I/O lock
608  */
609 static __inline void
610 pipeunlock(cpipe)
611 	struct pipe *cpipe;
612 {
613 
614 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
615 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
616 		("Unlocked pipe passed to pipeunlock"));
617 	cpipe->pipe_state &= ~PIPE_LOCKFL;
618 	if (cpipe->pipe_state & PIPE_LWANT) {
619 		cpipe->pipe_state &= ~PIPE_LWANT;
620 		wakeup(cpipe);
621 	}
622 }
623 
624 void
625 pipeselwakeup(cpipe)
626 	struct pipe *cpipe;
627 {
628 
629 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
630 	if (cpipe->pipe_state & PIPE_SEL) {
631 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
632 		if (!SEL_WAITING(&cpipe->pipe_sel))
633 			cpipe->pipe_state &= ~PIPE_SEL;
634 	}
635 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
636 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
637 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
638 }
639 
640 /*
641  * Initialize and allocate VM and memory for pipe.  The structure
642  * will start out zero'd from the ctor, so we just manage the kmem.
643  */
644 static int
645 pipe_create(pipe, backing)
646 	struct pipe *pipe;
647 	int backing;
648 {
649 	int error;
650 
651 	if (backing) {
652 		if (amountpipekva > maxpipekva / 2)
653 			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
654 		else
655 			error = pipespace_new(pipe, PIPE_SIZE);
656 	} else {
657 		/* If we're not backing this pipe, no need to do anything. */
658 		error = 0;
659 	}
660 	pipe->pipe_ino = -1;
661 	return (error);
662 }
663 
664 /* ARGSUSED */
665 static int
666 pipe_read(fp, uio, active_cred, flags, td)
667 	struct file *fp;
668 	struct uio *uio;
669 	struct ucred *active_cred;
670 	struct thread *td;
671 	int flags;
672 {
673 	struct pipe *rpipe;
674 	int error;
675 	int nread = 0;
676 	int size;
677 
678 	rpipe = fp->f_data;
679 	PIPE_LOCK(rpipe);
680 	++rpipe->pipe_busy;
681 	error = pipelock(rpipe, 1);
682 	if (error)
683 		goto unlocked_error;
684 
685 #ifdef MAC
686 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
687 	if (error)
688 		goto locked_error;
689 #endif
690 	if (amountpipekva > (3 * maxpipekva) / 4) {
691 		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
692 			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
693 			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
694 			(piperesizeallowed == 1)) {
695 			PIPE_UNLOCK(rpipe);
696 			pipespace(rpipe, SMALL_PIPE_SIZE);
697 			PIPE_LOCK(rpipe);
698 		}
699 	}
700 
701 	while (uio->uio_resid) {
702 		/*
703 		 * normal pipe buffer receive
704 		 */
705 		if (rpipe->pipe_buffer.cnt > 0) {
706 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
707 			if (size > rpipe->pipe_buffer.cnt)
708 				size = rpipe->pipe_buffer.cnt;
709 			if (size > uio->uio_resid)
710 				size = uio->uio_resid;
711 
712 			PIPE_UNLOCK(rpipe);
713 			error = uiomove(
714 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
715 			    size, uio);
716 			PIPE_LOCK(rpipe);
717 			if (error)
718 				break;
719 
720 			rpipe->pipe_buffer.out += size;
721 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
722 				rpipe->pipe_buffer.out = 0;
723 
724 			rpipe->pipe_buffer.cnt -= size;
725 
726 			/*
727 			 * If there is no more to read in the pipe, reset
728 			 * its pointers to the beginning.  This improves
729 			 * cache hit stats.
730 			 */
731 			if (rpipe->pipe_buffer.cnt == 0) {
732 				rpipe->pipe_buffer.in = 0;
733 				rpipe->pipe_buffer.out = 0;
734 			}
735 			nread += size;
736 #ifndef PIPE_NODIRECT
737 		/*
738 		 * Direct copy, bypassing a kernel buffer.
739 		 */
740 		} else if ((size = rpipe->pipe_map.cnt) &&
741 			   (rpipe->pipe_state & PIPE_DIRECTW)) {
742 			if (size > uio->uio_resid)
743 				size = (u_int) uio->uio_resid;
744 
745 			PIPE_UNLOCK(rpipe);
746 			error = uiomove_fromphys(rpipe->pipe_map.ms,
747 			    rpipe->pipe_map.pos, size, uio);
748 			PIPE_LOCK(rpipe);
749 			if (error)
750 				break;
751 			nread += size;
752 			rpipe->pipe_map.pos += size;
753 			rpipe->pipe_map.cnt -= size;
754 			if (rpipe->pipe_map.cnt == 0) {
755 				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
756 				wakeup(rpipe);
757 			}
758 #endif
759 		} else {
760 			/*
761 			 * detect EOF condition
762 			 * read returns 0 on EOF, no need to set error
763 			 */
764 			if (rpipe->pipe_state & PIPE_EOF)
765 				break;
766 
767 			/*
768 			 * If the "write-side" has been blocked, wake it up now.
769 			 */
770 			if (rpipe->pipe_state & PIPE_WANTW) {
771 				rpipe->pipe_state &= ~PIPE_WANTW;
772 				wakeup(rpipe);
773 			}
774 
775 			/*
776 			 * Break if some data was read.
777 			 */
778 			if (nread > 0)
779 				break;
780 
781 			/*
782 			 * Unlock the pipe buffer for our remaining processing.
783 			 * We will either break out with an error or we will
784 			 * sleep and relock to loop.
785 			 */
786 			pipeunlock(rpipe);
787 
788 			/*
789 			 * Handle non-blocking mode operation or
790 			 * wait for more data.
791 			 */
792 			if (fp->f_flag & FNONBLOCK) {
793 				error = EAGAIN;
794 			} else {
795 				rpipe->pipe_state |= PIPE_WANTR;
796 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
797 				    PRIBIO | PCATCH,
798 				    "piperd", 0)) == 0)
799 					error = pipelock(rpipe, 1);
800 			}
801 			if (error)
802 				goto unlocked_error;
803 		}
804 	}
805 #ifdef MAC
806 locked_error:
807 #endif
808 	pipeunlock(rpipe);
809 
810 	/* XXX: should probably do this before getting any locks. */
811 	if (error == 0)
812 		vfs_timestamp(&rpipe->pipe_atime);
813 unlocked_error:
814 	--rpipe->pipe_busy;
815 
816 	/*
817 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
818 	 */
819 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
820 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
821 		wakeup(rpipe);
822 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
823 		/*
824 		 * Handle write blocking hysteresis.
825 		 */
826 		if (rpipe->pipe_state & PIPE_WANTW) {
827 			rpipe->pipe_state &= ~PIPE_WANTW;
828 			wakeup(rpipe);
829 		}
830 	}
831 
832 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
833 		pipeselwakeup(rpipe);
834 
835 	PIPE_UNLOCK(rpipe);
836 	return (error);
837 }
838 
839 #ifndef PIPE_NODIRECT
840 /*
841  * Map the sending processes' buffer into kernel space and wire it.
842  * This is similar to a physical write operation.
843  */
844 static int
845 pipe_build_write_buffer(wpipe, uio)
846 	struct pipe *wpipe;
847 	struct uio *uio;
848 {
849 	u_int size;
850 	int i;
851 
852 	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
853 	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
854 		("Clone attempt on non-direct write pipe!"));
855 
856 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
857                 size = wpipe->pipe_buffer.size;
858 	else
859                 size = uio->uio_iov->iov_len;
860 
861 	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
862 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
863 	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
864 		return (EFAULT);
865 
866 /*
867  * set up the control block
868  */
869 	wpipe->pipe_map.npages = i;
870 	wpipe->pipe_map.pos =
871 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
872 	wpipe->pipe_map.cnt = size;
873 
874 /*
875  * and update the uio data
876  */
877 
878 	uio->uio_iov->iov_len -= size;
879 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
880 	if (uio->uio_iov->iov_len == 0)
881 		uio->uio_iov++;
882 	uio->uio_resid -= size;
883 	uio->uio_offset += size;
884 	return (0);
885 }
886 
887 /*
888  * unmap and unwire the process buffer
889  */
890 static void
891 pipe_destroy_write_buffer(wpipe)
892 	struct pipe *wpipe;
893 {
894 
895 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
896 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
897 	wpipe->pipe_map.npages = 0;
898 }
899 
900 /*
901  * In the case of a signal, the writing process might go away.  This
902  * code copies the data into the circular buffer so that the source
903  * pages can be freed without loss of data.
904  */
905 static void
906 pipe_clone_write_buffer(wpipe)
907 	struct pipe *wpipe;
908 {
909 	struct uio uio;
910 	struct iovec iov;
911 	int size;
912 	int pos;
913 
914 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
915 	size = wpipe->pipe_map.cnt;
916 	pos = wpipe->pipe_map.pos;
917 
918 	wpipe->pipe_buffer.in = size;
919 	wpipe->pipe_buffer.out = 0;
920 	wpipe->pipe_buffer.cnt = size;
921 	wpipe->pipe_state &= ~PIPE_DIRECTW;
922 
923 	PIPE_UNLOCK(wpipe);
924 	iov.iov_base = wpipe->pipe_buffer.buffer;
925 	iov.iov_len = size;
926 	uio.uio_iov = &iov;
927 	uio.uio_iovcnt = 1;
928 	uio.uio_offset = 0;
929 	uio.uio_resid = size;
930 	uio.uio_segflg = UIO_SYSSPACE;
931 	uio.uio_rw = UIO_READ;
932 	uio.uio_td = curthread;
933 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
934 	PIPE_LOCK(wpipe);
935 	pipe_destroy_write_buffer(wpipe);
936 }
937 
938 /*
939  * This implements the pipe buffer write mechanism.  Note that only
940  * a direct write OR a normal pipe write can be pending at any given time.
941  * If there are any characters in the pipe buffer, the direct write will
942  * be deferred until the receiving process grabs all of the bytes from
943  * the pipe buffer.  Then the direct mapping write is set-up.
944  */
945 static int
946 pipe_direct_write(wpipe, uio)
947 	struct pipe *wpipe;
948 	struct uio *uio;
949 {
950 	int error;
951 
952 retry:
953 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
954 	error = pipelock(wpipe, 1);
955 	if (wpipe->pipe_state & PIPE_EOF)
956 		error = EPIPE;
957 	if (error) {
958 		pipeunlock(wpipe);
959 		goto error1;
960 	}
961 	while (wpipe->pipe_state & PIPE_DIRECTW) {
962 		if (wpipe->pipe_state & PIPE_WANTR) {
963 			wpipe->pipe_state &= ~PIPE_WANTR;
964 			wakeup(wpipe);
965 		}
966 		pipeselwakeup(wpipe);
967 		wpipe->pipe_state |= PIPE_WANTW;
968 		pipeunlock(wpipe);
969 		error = msleep(wpipe, PIPE_MTX(wpipe),
970 		    PRIBIO | PCATCH, "pipdww", 0);
971 		if (error)
972 			goto error1;
973 		else
974 			goto retry;
975 	}
976 	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
977 	if (wpipe->pipe_buffer.cnt > 0) {
978 		if (wpipe->pipe_state & PIPE_WANTR) {
979 			wpipe->pipe_state &= ~PIPE_WANTR;
980 			wakeup(wpipe);
981 		}
982 		pipeselwakeup(wpipe);
983 		wpipe->pipe_state |= PIPE_WANTW;
984 		pipeunlock(wpipe);
985 		error = msleep(wpipe, PIPE_MTX(wpipe),
986 		    PRIBIO | PCATCH, "pipdwc", 0);
987 		if (error)
988 			goto error1;
989 		else
990 			goto retry;
991 	}
992 
993 	wpipe->pipe_state |= PIPE_DIRECTW;
994 
995 	PIPE_UNLOCK(wpipe);
996 	error = pipe_build_write_buffer(wpipe, uio);
997 	PIPE_LOCK(wpipe);
998 	if (error) {
999 		wpipe->pipe_state &= ~PIPE_DIRECTW;
1000 		pipeunlock(wpipe);
1001 		goto error1;
1002 	}
1003 
1004 	error = 0;
1005 	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1006 		if (wpipe->pipe_state & PIPE_EOF) {
1007 			pipe_destroy_write_buffer(wpipe);
1008 			pipeselwakeup(wpipe);
1009 			pipeunlock(wpipe);
1010 			error = EPIPE;
1011 			goto error1;
1012 		}
1013 		if (wpipe->pipe_state & PIPE_WANTR) {
1014 			wpipe->pipe_state &= ~PIPE_WANTR;
1015 			wakeup(wpipe);
1016 		}
1017 		pipeselwakeup(wpipe);
1018 		wpipe->pipe_state |= PIPE_WANTW;
1019 		pipeunlock(wpipe);
1020 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1021 		    "pipdwt", 0);
1022 		pipelock(wpipe, 0);
1023 	}
1024 
1025 	if (wpipe->pipe_state & PIPE_EOF)
1026 		error = EPIPE;
1027 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1028 		/*
1029 		 * this bit of trickery substitutes a kernel buffer for
1030 		 * the process that might be going away.
1031 		 */
1032 		pipe_clone_write_buffer(wpipe);
1033 	} else {
1034 		pipe_destroy_write_buffer(wpipe);
1035 	}
1036 	pipeunlock(wpipe);
1037 	return (error);
1038 
1039 error1:
1040 	wakeup(wpipe);
1041 	return (error);
1042 }
1043 #endif
1044 
1045 static int
1046 pipe_write(fp, uio, active_cred, flags, td)
1047 	struct file *fp;
1048 	struct uio *uio;
1049 	struct ucred *active_cred;
1050 	struct thread *td;
1051 	int flags;
1052 {
1053 	int error = 0;
1054 	int desiredsize;
1055 	ssize_t orig_resid;
1056 	struct pipe *wpipe, *rpipe;
1057 
1058 	rpipe = fp->f_data;
1059 	wpipe = PIPE_PEER(rpipe);
1060 	PIPE_LOCK(rpipe);
1061 	error = pipelock(wpipe, 1);
1062 	if (error) {
1063 		PIPE_UNLOCK(rpipe);
1064 		return (error);
1065 	}
1066 	/*
1067 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1068 	 */
1069 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1070 	    (wpipe->pipe_state & PIPE_EOF)) {
1071 		pipeunlock(wpipe);
1072 		PIPE_UNLOCK(rpipe);
1073 		return (EPIPE);
1074 	}
1075 #ifdef MAC
1076 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1077 	if (error) {
1078 		pipeunlock(wpipe);
1079 		PIPE_UNLOCK(rpipe);
1080 		return (error);
1081 	}
1082 #endif
1083 	++wpipe->pipe_busy;
1084 
1085 	/* Choose a larger size if it's advantageous */
1086 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1087 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1088 		if (piperesizeallowed != 1)
1089 			break;
1090 		if (amountpipekva > maxpipekva / 2)
1091 			break;
1092 		if (desiredsize == BIG_PIPE_SIZE)
1093 			break;
1094 		desiredsize = desiredsize * 2;
1095 	}
1096 
1097 	/* Choose a smaller size if we're in a OOM situation */
1098 	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1099 		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1100 		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1101 		(piperesizeallowed == 1))
1102 		desiredsize = SMALL_PIPE_SIZE;
1103 
1104 	/* Resize if the above determined that a new size was necessary */
1105 	if ((desiredsize != wpipe->pipe_buffer.size) &&
1106 		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1107 		PIPE_UNLOCK(wpipe);
1108 		pipespace(wpipe, desiredsize);
1109 		PIPE_LOCK(wpipe);
1110 	}
1111 	if (wpipe->pipe_buffer.size == 0) {
1112 		/*
1113 		 * This can only happen for reverse direction use of pipes
1114 		 * in a complete OOM situation.
1115 		 */
1116 		error = ENOMEM;
1117 		--wpipe->pipe_busy;
1118 		pipeunlock(wpipe);
1119 		PIPE_UNLOCK(wpipe);
1120 		return (error);
1121 	}
1122 
1123 	pipeunlock(wpipe);
1124 
1125 	orig_resid = uio->uio_resid;
1126 
1127 	while (uio->uio_resid) {
1128 		int space;
1129 
1130 		pipelock(wpipe, 0);
1131 		if (wpipe->pipe_state & PIPE_EOF) {
1132 			pipeunlock(wpipe);
1133 			error = EPIPE;
1134 			break;
1135 		}
1136 #ifndef PIPE_NODIRECT
1137 		/*
1138 		 * If the transfer is large, we can gain performance if
1139 		 * we do process-to-process copies directly.
1140 		 * If the write is non-blocking, we don't use the
1141 		 * direct write mechanism.
1142 		 *
1143 		 * The direct write mechanism will detect the reader going
1144 		 * away on us.
1145 		 */
1146 		if (uio->uio_segflg == UIO_USERSPACE &&
1147 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1148 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1149 		    (fp->f_flag & FNONBLOCK) == 0) {
1150 			pipeunlock(wpipe);
1151 			error = pipe_direct_write(wpipe, uio);
1152 			if (error)
1153 				break;
1154 			continue;
1155 		}
1156 #endif
1157 
1158 		/*
1159 		 * Pipe buffered writes cannot be coincidental with
1160 		 * direct writes.  We wait until the currently executing
1161 		 * direct write is completed before we start filling the
1162 		 * pipe buffer.  We break out if a signal occurs or the
1163 		 * reader goes away.
1164 		 */
1165 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1166 			if (wpipe->pipe_state & PIPE_WANTR) {
1167 				wpipe->pipe_state &= ~PIPE_WANTR;
1168 				wakeup(wpipe);
1169 			}
1170 			pipeselwakeup(wpipe);
1171 			wpipe->pipe_state |= PIPE_WANTW;
1172 			pipeunlock(wpipe);
1173 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1174 			    "pipbww", 0);
1175 			if (error)
1176 				break;
1177 			else
1178 				continue;
1179 		}
1180 
1181 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1182 
1183 		/* Writes of size <= PIPE_BUF must be atomic. */
1184 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1185 			space = 0;
1186 
1187 		if (space > 0) {
1188 			int size;	/* Transfer size */
1189 			int segsize;	/* first segment to transfer */
1190 
1191 			/*
1192 			 * Transfer size is minimum of uio transfer
1193 			 * and free space in pipe buffer.
1194 			 */
1195 			if (space > uio->uio_resid)
1196 				size = uio->uio_resid;
1197 			else
1198 				size = space;
1199 			/*
1200 			 * First segment to transfer is minimum of
1201 			 * transfer size and contiguous space in
1202 			 * pipe buffer.  If first segment to transfer
1203 			 * is less than the transfer size, we've got
1204 			 * a wraparound in the buffer.
1205 			 */
1206 			segsize = wpipe->pipe_buffer.size -
1207 				wpipe->pipe_buffer.in;
1208 			if (segsize > size)
1209 				segsize = size;
1210 
1211 			/* Transfer first segment */
1212 
1213 			PIPE_UNLOCK(rpipe);
1214 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1215 					segsize, uio);
1216 			PIPE_LOCK(rpipe);
1217 
1218 			if (error == 0 && segsize < size) {
1219 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1220 					wpipe->pipe_buffer.size,
1221 					("Pipe buffer wraparound disappeared"));
1222 				/*
1223 				 * Transfer remaining part now, to
1224 				 * support atomic writes.  Wraparound
1225 				 * happened.
1226 				 */
1227 
1228 				PIPE_UNLOCK(rpipe);
1229 				error = uiomove(
1230 				    &wpipe->pipe_buffer.buffer[0],
1231 				    size - segsize, uio);
1232 				PIPE_LOCK(rpipe);
1233 			}
1234 			if (error == 0) {
1235 				wpipe->pipe_buffer.in += size;
1236 				if (wpipe->pipe_buffer.in >=
1237 				    wpipe->pipe_buffer.size) {
1238 					KASSERT(wpipe->pipe_buffer.in ==
1239 						size - segsize +
1240 						wpipe->pipe_buffer.size,
1241 						("Expected wraparound bad"));
1242 					wpipe->pipe_buffer.in = size - segsize;
1243 				}
1244 
1245 				wpipe->pipe_buffer.cnt += size;
1246 				KASSERT(wpipe->pipe_buffer.cnt <=
1247 					wpipe->pipe_buffer.size,
1248 					("Pipe buffer overflow"));
1249 			}
1250 			pipeunlock(wpipe);
1251 			if (error != 0)
1252 				break;
1253 		} else {
1254 			/*
1255 			 * If the "read-side" has been blocked, wake it up now.
1256 			 */
1257 			if (wpipe->pipe_state & PIPE_WANTR) {
1258 				wpipe->pipe_state &= ~PIPE_WANTR;
1259 				wakeup(wpipe);
1260 			}
1261 
1262 			/*
1263 			 * don't block on non-blocking I/O
1264 			 */
1265 			if (fp->f_flag & FNONBLOCK) {
1266 				error = EAGAIN;
1267 				pipeunlock(wpipe);
1268 				break;
1269 			}
1270 
1271 			/*
1272 			 * We have no more space and have something to offer,
1273 			 * wake up select/poll.
1274 			 */
1275 			pipeselwakeup(wpipe);
1276 
1277 			wpipe->pipe_state |= PIPE_WANTW;
1278 			pipeunlock(wpipe);
1279 			error = msleep(wpipe, PIPE_MTX(rpipe),
1280 			    PRIBIO | PCATCH, "pipewr", 0);
1281 			if (error != 0)
1282 				break;
1283 		}
1284 	}
1285 
1286 	pipelock(wpipe, 0);
1287 	--wpipe->pipe_busy;
1288 
1289 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1290 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1291 		wakeup(wpipe);
1292 	} else if (wpipe->pipe_buffer.cnt > 0) {
1293 		/*
1294 		 * If we have put any characters in the buffer, we wake up
1295 		 * the reader.
1296 		 */
1297 		if (wpipe->pipe_state & PIPE_WANTR) {
1298 			wpipe->pipe_state &= ~PIPE_WANTR;
1299 			wakeup(wpipe);
1300 		}
1301 	}
1302 
1303 	/*
1304 	 * Don't return EPIPE if I/O was successful
1305 	 */
1306 	if ((wpipe->pipe_buffer.cnt == 0) &&
1307 	    (uio->uio_resid == 0) &&
1308 	    (error == EPIPE)) {
1309 		error = 0;
1310 	}
1311 
1312 	if (error == 0)
1313 		vfs_timestamp(&wpipe->pipe_mtime);
1314 
1315 	/*
1316 	 * We have something to offer,
1317 	 * wake up select/poll.
1318 	 */
1319 	if (wpipe->pipe_buffer.cnt)
1320 		pipeselwakeup(wpipe);
1321 
1322 	pipeunlock(wpipe);
1323 	PIPE_UNLOCK(rpipe);
1324 	return (error);
1325 }
1326 
1327 /* ARGSUSED */
1328 static int
1329 pipe_truncate(fp, length, active_cred, td)
1330 	struct file *fp;
1331 	off_t length;
1332 	struct ucred *active_cred;
1333 	struct thread *td;
1334 {
1335 
1336 	/* For named pipes call the vnode operation. */
1337 	if (fp->f_vnode != NULL)
1338 		return (vnops.fo_truncate(fp, length, active_cred, td));
1339 	return (EINVAL);
1340 }
1341 
1342 /*
1343  * we implement a very minimal set of ioctls for compatibility with sockets.
1344  */
1345 static int
1346 pipe_ioctl(fp, cmd, data, active_cred, td)
1347 	struct file *fp;
1348 	u_long cmd;
1349 	void *data;
1350 	struct ucred *active_cred;
1351 	struct thread *td;
1352 {
1353 	struct pipe *mpipe = fp->f_data;
1354 	int error;
1355 
1356 	PIPE_LOCK(mpipe);
1357 
1358 #ifdef MAC
1359 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1360 	if (error) {
1361 		PIPE_UNLOCK(mpipe);
1362 		return (error);
1363 	}
1364 #endif
1365 
1366 	error = 0;
1367 	switch (cmd) {
1368 
1369 	case FIONBIO:
1370 		break;
1371 
1372 	case FIOASYNC:
1373 		if (*(int *)data) {
1374 			mpipe->pipe_state |= PIPE_ASYNC;
1375 		} else {
1376 			mpipe->pipe_state &= ~PIPE_ASYNC;
1377 		}
1378 		break;
1379 
1380 	case FIONREAD:
1381 		if (!(fp->f_flag & FREAD)) {
1382 			*(int *)data = 0;
1383 			PIPE_UNLOCK(mpipe);
1384 			return (0);
1385 		}
1386 		if (mpipe->pipe_state & PIPE_DIRECTW)
1387 			*(int *)data = mpipe->pipe_map.cnt;
1388 		else
1389 			*(int *)data = mpipe->pipe_buffer.cnt;
1390 		break;
1391 
1392 	case FIOSETOWN:
1393 		PIPE_UNLOCK(mpipe);
1394 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1395 		goto out_unlocked;
1396 
1397 	case FIOGETOWN:
1398 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1399 		break;
1400 
1401 	/* This is deprecated, FIOSETOWN should be used instead. */
1402 	case TIOCSPGRP:
1403 		PIPE_UNLOCK(mpipe);
1404 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1405 		goto out_unlocked;
1406 
1407 	/* This is deprecated, FIOGETOWN should be used instead. */
1408 	case TIOCGPGRP:
1409 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1410 		break;
1411 
1412 	default:
1413 		error = ENOTTY;
1414 		break;
1415 	}
1416 	PIPE_UNLOCK(mpipe);
1417 out_unlocked:
1418 	return (error);
1419 }
1420 
1421 static int
1422 pipe_poll(fp, events, active_cred, td)
1423 	struct file *fp;
1424 	int events;
1425 	struct ucred *active_cred;
1426 	struct thread *td;
1427 {
1428 	struct pipe *rpipe;
1429 	struct pipe *wpipe;
1430 	int levents, revents;
1431 #ifdef MAC
1432 	int error;
1433 #endif
1434 
1435 	revents = 0;
1436 	rpipe = fp->f_data;
1437 	wpipe = PIPE_PEER(rpipe);
1438 	PIPE_LOCK(rpipe);
1439 #ifdef MAC
1440 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1441 	if (error)
1442 		goto locked_error;
1443 #endif
1444 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1445 		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1446 		    (rpipe->pipe_buffer.cnt > 0))
1447 			revents |= events & (POLLIN | POLLRDNORM);
1448 
1449 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1450 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1451 		    (wpipe->pipe_state & PIPE_EOF) ||
1452 		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1453 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1454 			 wpipe->pipe_buffer.size == 0)))
1455 			revents |= events & (POLLOUT | POLLWRNORM);
1456 
1457 	levents = events &
1458 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1459 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1460 	    fp->f_seqcount == rpipe->pipe_wgen)
1461 		events |= POLLINIGNEOF;
1462 
1463 	if ((events & POLLINIGNEOF) == 0) {
1464 		if (rpipe->pipe_state & PIPE_EOF) {
1465 			revents |= (events & (POLLIN | POLLRDNORM));
1466 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1467 			    (wpipe->pipe_state & PIPE_EOF))
1468 				revents |= POLLHUP;
1469 		}
1470 	}
1471 
1472 	if (revents == 0) {
1473 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1474 			selrecord(td, &rpipe->pipe_sel);
1475 			if (SEL_WAITING(&rpipe->pipe_sel))
1476 				rpipe->pipe_state |= PIPE_SEL;
1477 		}
1478 
1479 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1480 			selrecord(td, &wpipe->pipe_sel);
1481 			if (SEL_WAITING(&wpipe->pipe_sel))
1482 				wpipe->pipe_state |= PIPE_SEL;
1483 		}
1484 	}
1485 #ifdef MAC
1486 locked_error:
1487 #endif
1488 	PIPE_UNLOCK(rpipe);
1489 
1490 	return (revents);
1491 }
1492 
1493 /*
1494  * We shouldn't need locks here as we're doing a read and this should
1495  * be a natural race.
1496  */
1497 static int
1498 pipe_stat(fp, ub, active_cred, td)
1499 	struct file *fp;
1500 	struct stat *ub;
1501 	struct ucred *active_cred;
1502 	struct thread *td;
1503 {
1504 	struct pipe *pipe;
1505 	int new_unr;
1506 #ifdef MAC
1507 	int error;
1508 #endif
1509 
1510 	pipe = fp->f_data;
1511 	PIPE_LOCK(pipe);
1512 #ifdef MAC
1513 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1514 	if (error) {
1515 		PIPE_UNLOCK(pipe);
1516 		return (error);
1517 	}
1518 #endif
1519 
1520 	/* For named pipes ask the underlying filesystem. */
1521 	if (pipe->pipe_state & PIPE_NAMED) {
1522 		PIPE_UNLOCK(pipe);
1523 		return (vnops.fo_stat(fp, ub, active_cred, td));
1524 	}
1525 
1526 	/*
1527 	 * Lazily allocate an inode number for the pipe.  Most pipe
1528 	 * users do not call fstat(2) on the pipe, which means that
1529 	 * postponing the inode allocation until it is must be
1530 	 * returned to userland is useful.  If alloc_unr failed,
1531 	 * assign st_ino zero instead of returning an error.
1532 	 * Special pipe_ino values:
1533 	 *  -1 - not yet initialized;
1534 	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1535 	 */
1536 	if (pipe->pipe_ino == (ino_t)-1) {
1537 		new_unr = alloc_unr(pipeino_unr);
1538 		if (new_unr != -1)
1539 			pipe->pipe_ino = new_unr;
1540 		else
1541 			pipe->pipe_ino = 0;
1542 	}
1543 	PIPE_UNLOCK(pipe);
1544 
1545 	bzero(ub, sizeof(*ub));
1546 	ub->st_mode = S_IFIFO;
1547 	ub->st_blksize = PAGE_SIZE;
1548 	if (pipe->pipe_state & PIPE_DIRECTW)
1549 		ub->st_size = pipe->pipe_map.cnt;
1550 	else
1551 		ub->st_size = pipe->pipe_buffer.cnt;
1552 	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1553 	ub->st_atim = pipe->pipe_atime;
1554 	ub->st_mtim = pipe->pipe_mtime;
1555 	ub->st_ctim = pipe->pipe_ctime;
1556 	ub->st_uid = fp->f_cred->cr_uid;
1557 	ub->st_gid = fp->f_cred->cr_gid;
1558 	ub->st_dev = pipedev_ino;
1559 	ub->st_ino = pipe->pipe_ino;
1560 	/*
1561 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1562 	 */
1563 	return (0);
1564 }
1565 
1566 /* ARGSUSED */
1567 static int
1568 pipe_close(fp, td)
1569 	struct file *fp;
1570 	struct thread *td;
1571 {
1572 
1573 	if (fp->f_vnode != NULL)
1574 		return vnops.fo_close(fp, td);
1575 	fp->f_ops = &badfileops;
1576 	pipe_dtor(fp->f_data);
1577 	fp->f_data = NULL;
1578 	return (0);
1579 }
1580 
1581 static int
1582 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1583 {
1584 	struct pipe *cpipe;
1585 	int error;
1586 
1587 	cpipe = fp->f_data;
1588 	if (cpipe->pipe_state & PIPE_NAMED)
1589 		error = vn_chmod(fp, mode, active_cred, td);
1590 	else
1591 		error = invfo_chmod(fp, mode, active_cred, td);
1592 	return (error);
1593 }
1594 
1595 static int
1596 pipe_chown(fp, uid, gid, active_cred, td)
1597 	struct file *fp;
1598 	uid_t uid;
1599 	gid_t gid;
1600 	struct ucred *active_cred;
1601 	struct thread *td;
1602 {
1603 	struct pipe *cpipe;
1604 	int error;
1605 
1606 	cpipe = fp->f_data;
1607 	if (cpipe->pipe_state & PIPE_NAMED)
1608 		error = vn_chown(fp, uid, gid, active_cred, td);
1609 	else
1610 		error = invfo_chown(fp, uid, gid, active_cred, td);
1611 	return (error);
1612 }
1613 
1614 static void
1615 pipe_free_kmem(cpipe)
1616 	struct pipe *cpipe;
1617 {
1618 
1619 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1620 	    ("pipe_free_kmem: pipe mutex locked"));
1621 
1622 	if (cpipe->pipe_buffer.buffer != NULL) {
1623 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1624 		vm_map_remove(pipe_map,
1625 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1626 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1627 		cpipe->pipe_buffer.buffer = NULL;
1628 	}
1629 #ifndef PIPE_NODIRECT
1630 	{
1631 		cpipe->pipe_map.cnt = 0;
1632 		cpipe->pipe_map.pos = 0;
1633 		cpipe->pipe_map.npages = 0;
1634 	}
1635 #endif
1636 }
1637 
1638 /*
1639  * shutdown the pipe
1640  */
1641 static void
1642 pipeclose(cpipe)
1643 	struct pipe *cpipe;
1644 {
1645 	struct pipepair *pp;
1646 	struct pipe *ppipe;
1647 
1648 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1649 
1650 	PIPE_LOCK(cpipe);
1651 	pipelock(cpipe, 0);
1652 	pp = cpipe->pipe_pair;
1653 
1654 	pipeselwakeup(cpipe);
1655 
1656 	/*
1657 	 * If the other side is blocked, wake it up saying that
1658 	 * we want to close it down.
1659 	 */
1660 	cpipe->pipe_state |= PIPE_EOF;
1661 	while (cpipe->pipe_busy) {
1662 		wakeup(cpipe);
1663 		cpipe->pipe_state |= PIPE_WANT;
1664 		pipeunlock(cpipe);
1665 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1666 		pipelock(cpipe, 0);
1667 	}
1668 
1669 
1670 	/*
1671 	 * Disconnect from peer, if any.
1672 	 */
1673 	ppipe = cpipe->pipe_peer;
1674 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1675 		pipeselwakeup(ppipe);
1676 
1677 		ppipe->pipe_state |= PIPE_EOF;
1678 		wakeup(ppipe);
1679 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1680 	}
1681 
1682 	/*
1683 	 * Mark this endpoint as free.  Release kmem resources.  We
1684 	 * don't mark this endpoint as unused until we've finished
1685 	 * doing that, or the pipe might disappear out from under
1686 	 * us.
1687 	 */
1688 	PIPE_UNLOCK(cpipe);
1689 	pipe_free_kmem(cpipe);
1690 	PIPE_LOCK(cpipe);
1691 	cpipe->pipe_present = PIPE_CLOSING;
1692 	pipeunlock(cpipe);
1693 
1694 	/*
1695 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1696 	 * PIPE_FINALIZED, that allows other end to free the
1697 	 * pipe_pair, only after the knotes are completely dismantled.
1698 	 */
1699 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1700 	cpipe->pipe_present = PIPE_FINALIZED;
1701 	seldrain(&cpipe->pipe_sel);
1702 	knlist_destroy(&cpipe->pipe_sel.si_note);
1703 
1704 	/*
1705 	 * If both endpoints are now closed, release the memory for the
1706 	 * pipe pair.  If not, unlock.
1707 	 */
1708 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1709 		PIPE_UNLOCK(cpipe);
1710 #ifdef MAC
1711 		mac_pipe_destroy(pp);
1712 #endif
1713 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1714 	} else
1715 		PIPE_UNLOCK(cpipe);
1716 }
1717 
1718 /*ARGSUSED*/
1719 static int
1720 pipe_kqfilter(struct file *fp, struct knote *kn)
1721 {
1722 	struct pipe *cpipe;
1723 
1724 	/*
1725 	 * If a filter is requested that is not supported by this file
1726 	 * descriptor, don't return an error, but also don't ever generate an
1727 	 * event.
1728 	 */
1729 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1730 		kn->kn_fop = &pipe_nfiltops;
1731 		return (0);
1732 	}
1733 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1734 		kn->kn_fop = &pipe_nfiltops;
1735 		return (0);
1736 	}
1737 	cpipe = fp->f_data;
1738 	PIPE_LOCK(cpipe);
1739 	switch (kn->kn_filter) {
1740 	case EVFILT_READ:
1741 		kn->kn_fop = &pipe_rfiltops;
1742 		break;
1743 	case EVFILT_WRITE:
1744 		kn->kn_fop = &pipe_wfiltops;
1745 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1746 			/* other end of pipe has been closed */
1747 			PIPE_UNLOCK(cpipe);
1748 			return (EPIPE);
1749 		}
1750 		cpipe = PIPE_PEER(cpipe);
1751 		break;
1752 	default:
1753 		PIPE_UNLOCK(cpipe);
1754 		return (EINVAL);
1755 	}
1756 
1757 	kn->kn_hook = cpipe;
1758 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1759 	PIPE_UNLOCK(cpipe);
1760 	return (0);
1761 }
1762 
1763 static void
1764 filt_pipedetach(struct knote *kn)
1765 {
1766 	struct pipe *cpipe = kn->kn_hook;
1767 
1768 	PIPE_LOCK(cpipe);
1769 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1770 	PIPE_UNLOCK(cpipe);
1771 }
1772 
1773 /*ARGSUSED*/
1774 static int
1775 filt_piperead(struct knote *kn, long hint)
1776 {
1777 	struct pipe *rpipe = kn->kn_hook;
1778 	struct pipe *wpipe = rpipe->pipe_peer;
1779 	int ret;
1780 
1781 	PIPE_LOCK(rpipe);
1782 	kn->kn_data = rpipe->pipe_buffer.cnt;
1783 	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1784 		kn->kn_data = rpipe->pipe_map.cnt;
1785 
1786 	if ((rpipe->pipe_state & PIPE_EOF) ||
1787 	    wpipe->pipe_present != PIPE_ACTIVE ||
1788 	    (wpipe->pipe_state & PIPE_EOF)) {
1789 		kn->kn_flags |= EV_EOF;
1790 		PIPE_UNLOCK(rpipe);
1791 		return (1);
1792 	}
1793 	ret = kn->kn_data > 0;
1794 	PIPE_UNLOCK(rpipe);
1795 	return ret;
1796 }
1797 
1798 /*ARGSUSED*/
1799 static int
1800 filt_pipewrite(struct knote *kn, long hint)
1801 {
1802 	struct pipe *wpipe;
1803 
1804 	wpipe = kn->kn_hook;
1805 	PIPE_LOCK(wpipe);
1806 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1807 	    (wpipe->pipe_state & PIPE_EOF)) {
1808 		kn->kn_data = 0;
1809 		kn->kn_flags |= EV_EOF;
1810 		PIPE_UNLOCK(wpipe);
1811 		return (1);
1812 	}
1813 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1814 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1815 	if (wpipe->pipe_state & PIPE_DIRECTW)
1816 		kn->kn_data = 0;
1817 
1818 	PIPE_UNLOCK(wpipe);
1819 	return (kn->kn_data >= PIPE_BUF);
1820 }
1821 
1822 static void
1823 filt_pipedetach_notsup(struct knote *kn)
1824 {
1825 
1826 }
1827 
1828 static int
1829 filt_pipenotsup(struct knote *kn, long hint)
1830 {
1831 
1832 	return (0);
1833 }
1834