xref: /freebsd/sys/kern/sys_process.c (revision 19261079)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1994, Sean Eric Fagan
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Sean Eric Fagan.
18  * 4. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/ktr.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/reg.h>
44 #include <sys/syscallsubr.h>
45 #include <sys/sysent.h>
46 #include <sys/sysproto.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/vnode.h>
50 #include <sys/ptrace.h>
51 #include <sys/rwlock.h>
52 #include <sys/sx.h>
53 #include <sys/malloc.h>
54 #include <sys/signalvar.h>
55 #include <sys/caprights.h>
56 #include <sys/filedesc.h>
57 
58 #include <security/audit/audit.h>
59 
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_param.h>
68 
69 #ifdef COMPAT_FREEBSD32
70 #include <sys/procfs.h>
71 #endif
72 
73 /*
74  * Functions implemented using PROC_ACTION():
75  *
76  * proc_read_regs(proc, regs)
77  *	Get the current user-visible register set from the process
78  *	and copy it into the regs structure (<machine/reg.h>).
79  *	The process is stopped at the time read_regs is called.
80  *
81  * proc_write_regs(proc, regs)
82  *	Update the current register set from the passed in regs
83  *	structure.  Take care to avoid clobbering special CPU
84  *	registers or privileged bits in the PSL.
85  *	Depending on the architecture this may have fix-up work to do,
86  *	especially if the IAR or PCW are modified.
87  *	The process is stopped at the time write_regs is called.
88  *
89  * proc_read_fpregs, proc_write_fpregs
90  *	deal with the floating point register set, otherwise as above.
91  *
92  * proc_read_dbregs, proc_write_dbregs
93  *	deal with the processor debug register set, otherwise as above.
94  *
95  * proc_sstep(proc)
96  *	Arrange for the process to trap after executing a single instruction.
97  */
98 
99 #define	PROC_ACTION(action) do {					\
100 	int error;							\
101 									\
102 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);			\
103 	if ((td->td_proc->p_flag & P_INMEM) == 0)			\
104 		error = EIO;						\
105 	else								\
106 		error = (action);					\
107 	return (error);							\
108 } while (0)
109 
110 int
111 proc_read_regs(struct thread *td, struct reg *regs)
112 {
113 
114 	PROC_ACTION(fill_regs(td, regs));
115 }
116 
117 int
118 proc_write_regs(struct thread *td, struct reg *regs)
119 {
120 
121 	PROC_ACTION(set_regs(td, regs));
122 }
123 
124 int
125 proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
126 {
127 
128 	PROC_ACTION(fill_dbregs(td, dbregs));
129 }
130 
131 int
132 proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
133 {
134 
135 	PROC_ACTION(set_dbregs(td, dbregs));
136 }
137 
138 /*
139  * Ptrace doesn't support fpregs at all, and there are no security holes
140  * or translations for fpregs, so we can just copy them.
141  */
142 int
143 proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
144 {
145 
146 	PROC_ACTION(fill_fpregs(td, fpregs));
147 }
148 
149 int
150 proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
151 {
152 
153 	PROC_ACTION(set_fpregs(td, fpregs));
154 }
155 
156 #ifdef COMPAT_FREEBSD32
157 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
158 int
159 proc_read_regs32(struct thread *td, struct reg32 *regs32)
160 {
161 
162 	PROC_ACTION(fill_regs32(td, regs32));
163 }
164 
165 int
166 proc_write_regs32(struct thread *td, struct reg32 *regs32)
167 {
168 
169 	PROC_ACTION(set_regs32(td, regs32));
170 }
171 
172 int
173 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
174 {
175 
176 	PROC_ACTION(fill_dbregs32(td, dbregs32));
177 }
178 
179 int
180 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
181 {
182 
183 	PROC_ACTION(set_dbregs32(td, dbregs32));
184 }
185 
186 int
187 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
188 {
189 
190 	PROC_ACTION(fill_fpregs32(td, fpregs32));
191 }
192 
193 int
194 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
195 {
196 
197 	PROC_ACTION(set_fpregs32(td, fpregs32));
198 }
199 #endif
200 
201 int
202 proc_sstep(struct thread *td)
203 {
204 
205 	PROC_ACTION(ptrace_single_step(td));
206 }
207 
208 int
209 proc_rwmem(struct proc *p, struct uio *uio)
210 {
211 	vm_map_t map;
212 	vm_offset_t pageno;		/* page number */
213 	vm_prot_t reqprot;
214 	int error, fault_flags, page_offset, writing;
215 
216 	/*
217 	 * Assert that someone has locked this vmspace.  (Should be
218 	 * curthread but we can't assert that.)  This keeps the process
219 	 * from exiting out from under us until this operation completes.
220 	 */
221 	PROC_ASSERT_HELD(p);
222 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
223 
224 	/*
225 	 * The map we want...
226 	 */
227 	map = &p->p_vmspace->vm_map;
228 
229 	/*
230 	 * If we are writing, then we request vm_fault() to create a private
231 	 * copy of each page.  Since these copies will not be writeable by the
232 	 * process, we must explicity request that they be dirtied.
233 	 */
234 	writing = uio->uio_rw == UIO_WRITE;
235 	reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
236 	fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
237 
238 	/*
239 	 * Only map in one page at a time.  We don't have to, but it
240 	 * makes things easier.  This way is trivial - right?
241 	 */
242 	do {
243 		vm_offset_t uva;
244 		u_int len;
245 		vm_page_t m;
246 
247 		uva = (vm_offset_t)uio->uio_offset;
248 
249 		/*
250 		 * Get the page number of this segment.
251 		 */
252 		pageno = trunc_page(uva);
253 		page_offset = uva - pageno;
254 
255 		/*
256 		 * How many bytes to copy
257 		 */
258 		len = min(PAGE_SIZE - page_offset, uio->uio_resid);
259 
260 		/*
261 		 * Fault and hold the page on behalf of the process.
262 		 */
263 		error = vm_fault(map, pageno, reqprot, fault_flags, &m);
264 		if (error != KERN_SUCCESS) {
265 			if (error == KERN_RESOURCE_SHORTAGE)
266 				error = ENOMEM;
267 			else
268 				error = EFAULT;
269 			break;
270 		}
271 
272 		/*
273 		 * Now do the i/o move.
274 		 */
275 		error = uiomove_fromphys(&m, page_offset, len, uio);
276 
277 		/* Make the I-cache coherent for breakpoints. */
278 		if (writing && error == 0) {
279 			vm_map_lock_read(map);
280 			if (vm_map_check_protection(map, pageno, pageno +
281 			    PAGE_SIZE, VM_PROT_EXECUTE))
282 				vm_sync_icache(map, uva, len);
283 			vm_map_unlock_read(map);
284 		}
285 
286 		/*
287 		 * Release the page.
288 		 */
289 		vm_page_unwire(m, PQ_ACTIVE);
290 
291 	} while (error == 0 && uio->uio_resid > 0);
292 
293 	return (error);
294 }
295 
296 static ssize_t
297 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
298     size_t len, enum uio_rw rw)
299 {
300 	struct iovec iov;
301 	struct uio uio;
302 	ssize_t slen;
303 
304 	MPASS(len < SSIZE_MAX);
305 	slen = (ssize_t)len;
306 
307 	iov.iov_base = (caddr_t)buf;
308 	iov.iov_len = len;
309 	uio.uio_iov = &iov;
310 	uio.uio_iovcnt = 1;
311 	uio.uio_offset = va;
312 	uio.uio_resid = slen;
313 	uio.uio_segflg = UIO_SYSSPACE;
314 	uio.uio_rw = rw;
315 	uio.uio_td = td;
316 	proc_rwmem(p, &uio);
317 	if (uio.uio_resid == slen)
318 		return (-1);
319 	return (slen - uio.uio_resid);
320 }
321 
322 ssize_t
323 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
324     size_t len)
325 {
326 
327 	return (proc_iop(td, p, va, buf, len, UIO_READ));
328 }
329 
330 ssize_t
331 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
332     size_t len)
333 {
334 
335 	return (proc_iop(td, p, va, buf, len, UIO_WRITE));
336 }
337 
338 static int
339 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
340 {
341 	struct vattr vattr;
342 	vm_map_t map;
343 	vm_map_entry_t entry;
344 	vm_object_t obj, tobj, lobj;
345 	struct vmspace *vm;
346 	struct vnode *vp;
347 	char *freepath, *fullpath;
348 	u_int pathlen;
349 	int error, index;
350 
351 	error = 0;
352 	obj = NULL;
353 
354 	vm = vmspace_acquire_ref(p);
355 	map = &vm->vm_map;
356 	vm_map_lock_read(map);
357 
358 	do {
359 		KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
360 		    ("Submap in map header"));
361 		index = 0;
362 		VM_MAP_ENTRY_FOREACH(entry, map) {
363 			if (index >= pve->pve_entry &&
364 			    (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
365 				break;
366 			index++;
367 		}
368 		if (index < pve->pve_entry) {
369 			error = EINVAL;
370 			break;
371 		}
372 		if (entry == &map->header) {
373 			error = ENOENT;
374 			break;
375 		}
376 
377 		/* We got an entry. */
378 		pve->pve_entry = index + 1;
379 		pve->pve_timestamp = map->timestamp;
380 		pve->pve_start = entry->start;
381 		pve->pve_end = entry->end - 1;
382 		pve->pve_offset = entry->offset;
383 		pve->pve_prot = entry->protection;
384 
385 		/* Backing object's path needed? */
386 		if (pve->pve_pathlen == 0)
387 			break;
388 
389 		pathlen = pve->pve_pathlen;
390 		pve->pve_pathlen = 0;
391 
392 		obj = entry->object.vm_object;
393 		if (obj != NULL)
394 			VM_OBJECT_RLOCK(obj);
395 	} while (0);
396 
397 	vm_map_unlock_read(map);
398 
399 	pve->pve_fsid = VNOVAL;
400 	pve->pve_fileid = VNOVAL;
401 
402 	if (error == 0 && obj != NULL) {
403 		lobj = obj;
404 		for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
405 			if (tobj != obj)
406 				VM_OBJECT_RLOCK(tobj);
407 			if (lobj != obj)
408 				VM_OBJECT_RUNLOCK(lobj);
409 			lobj = tobj;
410 			pve->pve_offset += tobj->backing_object_offset;
411 		}
412 		vp = vm_object_vnode(lobj);
413 		if (vp != NULL)
414 			vref(vp);
415 		if (lobj != obj)
416 			VM_OBJECT_RUNLOCK(lobj);
417 		VM_OBJECT_RUNLOCK(obj);
418 
419 		if (vp != NULL) {
420 			freepath = NULL;
421 			fullpath = NULL;
422 			vn_fullpath(vp, &fullpath, &freepath);
423 			vn_lock(vp, LK_SHARED | LK_RETRY);
424 			if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
425 				pve->pve_fileid = vattr.va_fileid;
426 				pve->pve_fsid = vattr.va_fsid;
427 			}
428 			vput(vp);
429 
430 			if (fullpath != NULL) {
431 				pve->pve_pathlen = strlen(fullpath) + 1;
432 				if (pve->pve_pathlen <= pathlen) {
433 					error = copyout(fullpath, pve->pve_path,
434 					    pve->pve_pathlen);
435 				} else
436 					error = ENAMETOOLONG;
437 			}
438 			if (freepath != NULL)
439 				free(freepath, M_TEMP);
440 		}
441 	}
442 	vmspace_free(vm);
443 	if (error == 0)
444 		CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
445 		    p->p_pid, pve->pve_entry, pve->pve_start);
446 
447 	return (error);
448 }
449 
450 /*
451  * Process debugging system call.
452  */
453 #ifndef _SYS_SYSPROTO_H_
454 struct ptrace_args {
455 	int	req;
456 	pid_t	pid;
457 	caddr_t	addr;
458 	int	data;
459 };
460 #endif
461 
462 int
463 sys_ptrace(struct thread *td, struct ptrace_args *uap)
464 {
465 	/*
466 	 * XXX this obfuscation is to reduce stack usage, but the register
467 	 * structs may be too large to put on the stack anyway.
468 	 */
469 	union {
470 		struct ptrace_io_desc piod;
471 		struct ptrace_lwpinfo pl;
472 		struct ptrace_vm_entry pve;
473 		struct ptrace_coredump pc;
474 		struct dbreg dbreg;
475 		struct fpreg fpreg;
476 		struct reg reg;
477 		char args[sizeof(td->td_sa.args)];
478 		struct ptrace_sc_ret psr;
479 		int ptevents;
480 	} r;
481 	void *addr;
482 	int error = 0;
483 
484 	AUDIT_ARG_PID(uap->pid);
485 	AUDIT_ARG_CMD(uap->req);
486 	AUDIT_ARG_VALUE(uap->data);
487 	addr = &r;
488 	switch (uap->req) {
489 	case PT_GET_EVENT_MASK:
490 	case PT_LWPINFO:
491 	case PT_GET_SC_ARGS:
492 	case PT_GET_SC_RET:
493 		break;
494 	case PT_GETREGS:
495 		bzero(&r.reg, sizeof(r.reg));
496 		break;
497 	case PT_GETFPREGS:
498 		bzero(&r.fpreg, sizeof(r.fpreg));
499 		break;
500 	case PT_GETDBREGS:
501 		bzero(&r.dbreg, sizeof(r.dbreg));
502 		break;
503 	case PT_SETREGS:
504 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
505 		break;
506 	case PT_SETFPREGS:
507 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
508 		break;
509 	case PT_SETDBREGS:
510 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
511 		break;
512 	case PT_SET_EVENT_MASK:
513 		if (uap->data != sizeof(r.ptevents))
514 			error = EINVAL;
515 		else
516 			error = copyin(uap->addr, &r.ptevents, uap->data);
517 		break;
518 	case PT_IO:
519 		error = copyin(uap->addr, &r.piod, sizeof(r.piod));
520 		break;
521 	case PT_VM_ENTRY:
522 		error = copyin(uap->addr, &r.pve, sizeof(r.pve));
523 		break;
524 	case PT_COREDUMP:
525 		if (uap->data != sizeof(r.pc))
526 			error = EINVAL;
527 		else
528 			error = copyin(uap->addr, &r.pc, uap->data);
529 		break;
530 	default:
531 		addr = uap->addr;
532 		break;
533 	}
534 	if (error)
535 		return (error);
536 
537 	error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
538 	if (error)
539 		return (error);
540 
541 	switch (uap->req) {
542 	case PT_VM_ENTRY:
543 		error = copyout(&r.pve, uap->addr, sizeof(r.pve));
544 		break;
545 	case PT_IO:
546 		error = copyout(&r.piod, uap->addr, sizeof(r.piod));
547 		break;
548 	case PT_GETREGS:
549 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
550 		break;
551 	case PT_GETFPREGS:
552 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
553 		break;
554 	case PT_GETDBREGS:
555 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
556 		break;
557 	case PT_GET_EVENT_MASK:
558 		/* NB: The size in uap->data is validated in kern_ptrace(). */
559 		error = copyout(&r.ptevents, uap->addr, uap->data);
560 		break;
561 	case PT_LWPINFO:
562 		/* NB: The size in uap->data is validated in kern_ptrace(). */
563 		error = copyout(&r.pl, uap->addr, uap->data);
564 		break;
565 	case PT_GET_SC_ARGS:
566 		error = copyout(r.args, uap->addr, MIN(uap->data,
567 		    sizeof(r.args)));
568 		break;
569 	case PT_GET_SC_RET:
570 		error = copyout(&r.psr, uap->addr, MIN(uap->data,
571 		    sizeof(r.psr)));
572 		break;
573 	}
574 
575 	return (error);
576 }
577 
578 #ifdef COMPAT_FREEBSD32
579 /*
580  *   PROC_READ(regs, td2, addr);
581  * becomes either:
582  *   proc_read_regs(td2, addr);
583  * or
584  *   proc_read_regs32(td2, addr);
585  * .. except this is done at runtime.  There is an additional
586  * complication in that PROC_WRITE disallows 32 bit consumers
587  * from writing to 64 bit address space targets.
588  */
589 #define	PROC_READ(w, t, a)	wrap32 ? \
590 	proc_read_ ## w ## 32(t, a) : \
591 	proc_read_ ## w (t, a)
592 #define	PROC_WRITE(w, t, a)	wrap32 ? \
593 	(safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
594 	proc_write_ ## w (t, a)
595 #else
596 #define	PROC_READ(w, t, a)	proc_read_ ## w (t, a)
597 #define	PROC_WRITE(w, t, a)	proc_write_ ## w (t, a)
598 #endif
599 
600 void
601 proc_set_traced(struct proc *p, bool stop)
602 {
603 
604 	sx_assert(&proctree_lock, SX_XLOCKED);
605 	PROC_LOCK_ASSERT(p, MA_OWNED);
606 	p->p_flag |= P_TRACED;
607 	if (stop)
608 		p->p_flag2 |= P2_PTRACE_FSTP;
609 	p->p_ptevents = PTRACE_DEFAULT;
610 }
611 
612 void
613 ptrace_unsuspend(struct proc *p)
614 {
615 	PROC_LOCK_ASSERT(p, MA_OWNED);
616 
617 	PROC_SLOCK(p);
618 	p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED);
619 	thread_unsuspend(p);
620 	PROC_SUNLOCK(p);
621 	itimer_proc_continue(p);
622 	kqtimer_proc_continue(p);
623 }
624 
625 static int
626 proc_can_ptrace(struct thread *td, struct proc *p)
627 {
628 	int error;
629 
630 	PROC_LOCK_ASSERT(p, MA_OWNED);
631 
632 	if ((p->p_flag & P_WEXIT) != 0)
633 		return (ESRCH);
634 
635 	if ((error = p_cansee(td, p)) != 0)
636 		return (error);
637 	if ((error = p_candebug(td, p)) != 0)
638 		return (error);
639 
640 	/* not being traced... */
641 	if ((p->p_flag & P_TRACED) == 0)
642 		return (EPERM);
643 
644 	/* not being traced by YOU */
645 	if (p->p_pptr != td->td_proc)
646 		return (EBUSY);
647 
648 	/* not currently stopped */
649 	if ((p->p_flag & P_STOPPED_TRACE) == 0 ||
650 	    p->p_suspcount != p->p_numthreads  ||
651 	    (p->p_flag & P_WAITED) == 0)
652 		return (EBUSY);
653 
654 	return (0);
655 }
656 
657 static struct thread *
658 ptrace_sel_coredump_thread(struct proc *p)
659 {
660 	struct thread *td2;
661 
662 	PROC_LOCK_ASSERT(p, MA_OWNED);
663 	MPASS((p->p_flag & P_STOPPED_TRACE) != 0);
664 
665 	FOREACH_THREAD_IN_PROC(p, td2) {
666 		if ((td2->td_dbgflags & TDB_SSWITCH) != 0)
667 			return (td2);
668 	}
669 	return (NULL);
670 }
671 
672 int
673 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
674 {
675 	struct iovec iov;
676 	struct uio uio;
677 	struct proc *curp, *p, *pp;
678 	struct thread *td2 = NULL, *td3;
679 	struct ptrace_io_desc *piod = NULL;
680 	struct ptrace_lwpinfo *pl;
681 	struct ptrace_sc_ret *psr;
682 	struct file *fp;
683 	struct ptrace_coredump *pc;
684 	struct thr_coredump_req *tcq;
685 	int error, num, tmp;
686 	lwpid_t tid = 0, *buf;
687 #ifdef COMPAT_FREEBSD32
688 	int wrap32 = 0, safe = 0;
689 #endif
690 	bool proctree_locked, p2_req_set;
691 
692 	curp = td->td_proc;
693 	proctree_locked = false;
694 	p2_req_set = false;
695 
696 	/* Lock proctree before locking the process. */
697 	switch (req) {
698 	case PT_TRACE_ME:
699 	case PT_ATTACH:
700 	case PT_STEP:
701 	case PT_CONTINUE:
702 	case PT_TO_SCE:
703 	case PT_TO_SCX:
704 	case PT_SYSCALL:
705 	case PT_FOLLOW_FORK:
706 	case PT_LWP_EVENTS:
707 	case PT_GET_EVENT_MASK:
708 	case PT_SET_EVENT_MASK:
709 	case PT_DETACH:
710 	case PT_GET_SC_ARGS:
711 		sx_xlock(&proctree_lock);
712 		proctree_locked = true;
713 		break;
714 	default:
715 		break;
716 	}
717 
718 	if (req == PT_TRACE_ME) {
719 		p = td->td_proc;
720 		PROC_LOCK(p);
721 	} else {
722 		if (pid <= PID_MAX) {
723 			if ((p = pfind(pid)) == NULL) {
724 				if (proctree_locked)
725 					sx_xunlock(&proctree_lock);
726 				return (ESRCH);
727 			}
728 		} else {
729 			td2 = tdfind(pid, -1);
730 			if (td2 == NULL) {
731 				if (proctree_locked)
732 					sx_xunlock(&proctree_lock);
733 				return (ESRCH);
734 			}
735 			p = td2->td_proc;
736 			tid = pid;
737 			pid = p->p_pid;
738 		}
739 	}
740 	AUDIT_ARG_PROCESS(p);
741 
742 	if ((p->p_flag & P_WEXIT) != 0) {
743 		error = ESRCH;
744 		goto fail;
745 	}
746 	if ((error = p_cansee(td, p)) != 0)
747 		goto fail;
748 
749 	if ((error = p_candebug(td, p)) != 0)
750 		goto fail;
751 
752 	/*
753 	 * System processes can't be debugged.
754 	 */
755 	if ((p->p_flag & P_SYSTEM) != 0) {
756 		error = EINVAL;
757 		goto fail;
758 	}
759 
760 	if (tid == 0) {
761 		if ((p->p_flag & P_STOPPED_TRACE) != 0) {
762 			KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
763 			td2 = p->p_xthread;
764 		} else {
765 			td2 = FIRST_THREAD_IN_PROC(p);
766 		}
767 		tid = td2->td_tid;
768 	}
769 
770 #ifdef COMPAT_FREEBSD32
771 	/*
772 	 * Test if we're a 32 bit client and what the target is.
773 	 * Set the wrap controls accordingly.
774 	 */
775 	if (SV_CURPROC_FLAG(SV_ILP32)) {
776 		if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
777 			safe = 1;
778 		wrap32 = 1;
779 	}
780 #endif
781 	/*
782 	 * Permissions check
783 	 */
784 	switch (req) {
785 	case PT_TRACE_ME:
786 		/*
787 		 * Always legal, when there is a parent process which
788 		 * could trace us.  Otherwise, reject.
789 		 */
790 		if ((p->p_flag & P_TRACED) != 0) {
791 			error = EBUSY;
792 			goto fail;
793 		}
794 		if (p->p_pptr == initproc) {
795 			error = EPERM;
796 			goto fail;
797 		}
798 		break;
799 
800 	case PT_ATTACH:
801 		/* Self */
802 		if (p == td->td_proc) {
803 			error = EINVAL;
804 			goto fail;
805 		}
806 
807 		/* Already traced */
808 		if (p->p_flag & P_TRACED) {
809 			error = EBUSY;
810 			goto fail;
811 		}
812 
813 		/* Can't trace an ancestor if you're being traced. */
814 		if (curp->p_flag & P_TRACED) {
815 			for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
816 				if (pp == p) {
817 					error = EINVAL;
818 					goto fail;
819 				}
820 			}
821 		}
822 
823 		/* OK */
824 		break;
825 
826 	case PT_CLEARSTEP:
827 		/* Allow thread to clear single step for itself */
828 		if (td->td_tid == tid)
829 			break;
830 
831 		/* FALLTHROUGH */
832 	default:
833 		/*
834 		 * Check for ptrace eligibility before waiting for
835 		 * holds to drain.
836 		 */
837 		error = proc_can_ptrace(td, p);
838 		if (error != 0)
839 			goto fail;
840 
841 		/*
842 		 * Block parallel ptrace requests.  Most important, do
843 		 * not allow other thread in debugger to continue the
844 		 * debuggee until coredump finished.
845 		 */
846 		while ((p->p_flag2 & P2_PTRACEREQ) != 0) {
847 			if (proctree_locked)
848 				sx_xunlock(&proctree_lock);
849 			error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH |
850 			    (proctree_locked ? PDROP : 0), "pptrace", 0);
851 			if (proctree_locked) {
852 				sx_xlock(&proctree_lock);
853 				PROC_LOCK(p);
854 			}
855 			if (error == 0 && td2->td_proc != p)
856 				error = ESRCH;
857 			if (error == 0)
858 				error = proc_can_ptrace(td, p);
859 			if (error != 0)
860 				goto fail;
861 		}
862 
863 		/* Ok */
864 		break;
865 	}
866 
867 	/*
868 	 * Keep this process around and request parallel ptrace()
869 	 * request to wait until we finish this request.
870 	 */
871 	MPASS((p->p_flag2 & P2_PTRACEREQ) == 0);
872 	p->p_flag2 |= P2_PTRACEREQ;
873 	p2_req_set = true;
874 	_PHOLD(p);
875 
876 	/*
877 	 * Actually do the requests
878 	 */
879 
880 	td->td_retval[0] = 0;
881 
882 	switch (req) {
883 	case PT_TRACE_ME:
884 		/* set my trace flag and "owner" so it can read/write me */
885 		proc_set_traced(p, false);
886 		if (p->p_flag & P_PPWAIT)
887 			p->p_flag |= P_PPTRACE;
888 		CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
889 		break;
890 
891 	case PT_ATTACH:
892 		/* security check done above */
893 		/*
894 		 * It would be nice if the tracing relationship was separate
895 		 * from the parent relationship but that would require
896 		 * another set of links in the proc struct or for "wait"
897 		 * to scan the entire proc table.  To make life easier,
898 		 * we just re-parent the process we're trying to trace.
899 		 * The old parent is remembered so we can put things back
900 		 * on a "detach".
901 		 */
902 		proc_set_traced(p, true);
903 		proc_reparent(p, td->td_proc, false);
904 		CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
905 		    p->p_oppid);
906 
907 		sx_xunlock(&proctree_lock);
908 		proctree_locked = false;
909 		MPASS(p->p_xthread == NULL);
910 		MPASS((p->p_flag & P_STOPPED_TRACE) == 0);
911 
912 		/*
913 		 * If already stopped due to a stop signal, clear the
914 		 * existing stop before triggering a traced SIGSTOP.
915 		 */
916 		if ((p->p_flag & P_STOPPED_SIG) != 0) {
917 			PROC_SLOCK(p);
918 			p->p_flag &= ~(P_STOPPED_SIG | P_WAITED);
919 			thread_unsuspend(p);
920 			PROC_SUNLOCK(p);
921 		}
922 
923 		kern_psignal(p, SIGSTOP);
924 		break;
925 
926 	case PT_CLEARSTEP:
927 		CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
928 		    p->p_pid);
929 		error = ptrace_clear_single_step(td2);
930 		break;
931 
932 	case PT_SETSTEP:
933 		CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
934 		    p->p_pid);
935 		error = ptrace_single_step(td2);
936 		break;
937 
938 	case PT_SUSPEND:
939 		CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
940 		    p->p_pid);
941 		td2->td_dbgflags |= TDB_SUSPEND;
942 		thread_lock(td2);
943 		td2->td_flags |= TDF_NEEDSUSPCHK;
944 		thread_unlock(td2);
945 		break;
946 
947 	case PT_RESUME:
948 		CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
949 		    p->p_pid);
950 		td2->td_dbgflags &= ~TDB_SUSPEND;
951 		break;
952 
953 	case PT_FOLLOW_FORK:
954 		CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
955 		    p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled",
956 		    data ? "enabled" : "disabled");
957 		if (data)
958 			p->p_ptevents |= PTRACE_FORK;
959 		else
960 			p->p_ptevents &= ~PTRACE_FORK;
961 		break;
962 
963 	case PT_LWP_EVENTS:
964 		CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid,
965 		    p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled",
966 		    data ? "enabled" : "disabled");
967 		if (data)
968 			p->p_ptevents |= PTRACE_LWP;
969 		else
970 			p->p_ptevents &= ~PTRACE_LWP;
971 		break;
972 
973 	case PT_GET_EVENT_MASK:
974 		if (data != sizeof(p->p_ptevents)) {
975 			error = EINVAL;
976 			break;
977 		}
978 		CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid,
979 		    p->p_ptevents);
980 		*(int *)addr = p->p_ptevents;
981 		break;
982 
983 	case PT_SET_EVENT_MASK:
984 		if (data != sizeof(p->p_ptevents)) {
985 			error = EINVAL;
986 			break;
987 		}
988 		tmp = *(int *)addr;
989 		if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX |
990 		    PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) {
991 			error = EINVAL;
992 			break;
993 		}
994 		CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x",
995 		    p->p_pid, p->p_ptevents, tmp);
996 		p->p_ptevents = tmp;
997 		break;
998 
999 	case PT_GET_SC_ARGS:
1000 		CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid);
1001 		if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0
1002 #ifdef COMPAT_FREEBSD32
1003 		    || (wrap32 && !safe)
1004 #endif
1005 		    ) {
1006 			error = EINVAL;
1007 			break;
1008 		}
1009 		bzero(addr, sizeof(td2->td_sa.args));
1010 		bcopy(td2->td_sa.args, addr, td2->td_sa.callp->sy_narg *
1011 		    sizeof(register_t));
1012 		break;
1013 
1014 	case PT_GET_SC_RET:
1015 		if ((td2->td_dbgflags & (TDB_SCX)) == 0
1016 #ifdef COMPAT_FREEBSD32
1017 		    || (wrap32 && !safe)
1018 #endif
1019 		    ) {
1020 			error = EINVAL;
1021 			break;
1022 		}
1023 		psr = addr;
1024 		bzero(psr, sizeof(*psr));
1025 		psr->sr_error = td2->td_errno;
1026 		if (psr->sr_error == 0) {
1027 			psr->sr_retval[0] = td2->td_retval[0];
1028 			psr->sr_retval[1] = td2->td_retval[1];
1029 		}
1030 		CTR4(KTR_PTRACE,
1031 		    "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx",
1032 		    p->p_pid, psr->sr_error, psr->sr_retval[0],
1033 		    psr->sr_retval[1]);
1034 		break;
1035 
1036 	case PT_STEP:
1037 	case PT_CONTINUE:
1038 	case PT_TO_SCE:
1039 	case PT_TO_SCX:
1040 	case PT_SYSCALL:
1041 	case PT_DETACH:
1042 		/* Zero means do not send any signal */
1043 		if (data < 0 || data > _SIG_MAXSIG) {
1044 			error = EINVAL;
1045 			break;
1046 		}
1047 
1048 		switch (req) {
1049 		case PT_STEP:
1050 			CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d",
1051 			    td2->td_tid, p->p_pid, data);
1052 			error = ptrace_single_step(td2);
1053 			if (error)
1054 				goto out;
1055 			break;
1056 		case PT_CONTINUE:
1057 		case PT_TO_SCE:
1058 		case PT_TO_SCX:
1059 		case PT_SYSCALL:
1060 			if (addr != (void *)1) {
1061 				error = ptrace_set_pc(td2,
1062 				    (u_long)(uintfptr_t)addr);
1063 				if (error)
1064 					goto out;
1065 			}
1066 			switch (req) {
1067 			case PT_TO_SCE:
1068 				p->p_ptevents |= PTRACE_SCE;
1069 				CTR4(KTR_PTRACE,
1070 		    "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d",
1071 				    p->p_pid, p->p_ptevents,
1072 				    (u_long)(uintfptr_t)addr, data);
1073 				break;
1074 			case PT_TO_SCX:
1075 				p->p_ptevents |= PTRACE_SCX;
1076 				CTR4(KTR_PTRACE,
1077 		    "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d",
1078 				    p->p_pid, p->p_ptevents,
1079 				    (u_long)(uintfptr_t)addr, data);
1080 				break;
1081 			case PT_SYSCALL:
1082 				p->p_ptevents |= PTRACE_SYSCALL;
1083 				CTR4(KTR_PTRACE,
1084 		    "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d",
1085 				    p->p_pid, p->p_ptevents,
1086 				    (u_long)(uintfptr_t)addr, data);
1087 				break;
1088 			case PT_CONTINUE:
1089 				CTR3(KTR_PTRACE,
1090 				    "PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
1091 				    p->p_pid, (u_long)(uintfptr_t)addr, data);
1092 				break;
1093 			}
1094 			break;
1095 		case PT_DETACH:
1096 			/*
1097 			 * Clear P_TRACED before reparenting
1098 			 * a detached process back to its original
1099 			 * parent.  Otherwise the debugee will be set
1100 			 * as an orphan of the debugger.
1101 			 */
1102 			p->p_flag &= ~(P_TRACED | P_WAITED);
1103 
1104 			/*
1105 			 * Reset the process parent.
1106 			 */
1107 			if (p->p_oppid != p->p_pptr->p_pid) {
1108 				PROC_LOCK(p->p_pptr);
1109 				sigqueue_take(p->p_ksi);
1110 				PROC_UNLOCK(p->p_pptr);
1111 
1112 				pp = proc_realparent(p);
1113 				proc_reparent(p, pp, false);
1114 				if (pp == initproc)
1115 					p->p_sigparent = SIGCHLD;
1116 				CTR3(KTR_PTRACE,
1117 			    "PT_DETACH: pid %d reparented to pid %d, sig %d",
1118 				    p->p_pid, pp->p_pid, data);
1119 			} else {
1120 				CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
1121 				    p->p_pid, data);
1122 			}
1123 
1124 			p->p_ptevents = 0;
1125 			FOREACH_THREAD_IN_PROC(p, td3) {
1126 				if ((td3->td_dbgflags & TDB_FSTP) != 0) {
1127 					sigqueue_delete(&td3->td_sigqueue,
1128 					    SIGSTOP);
1129 				}
1130 				td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP |
1131 				    TDB_SUSPEND);
1132 			}
1133 
1134 			if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) {
1135 				sigqueue_delete(&p->p_sigqueue, SIGSTOP);
1136 				p->p_flag2 &= ~P2_PTRACE_FSTP;
1137 			}
1138 
1139 			/* should we send SIGCHLD? */
1140 			/* childproc_continued(p); */
1141 			break;
1142 		}
1143 
1144 		sx_xunlock(&proctree_lock);
1145 		proctree_locked = false;
1146 
1147 	sendsig:
1148 		MPASS(!proctree_locked);
1149 
1150 		/*
1151 		 * Clear the pending event for the thread that just
1152 		 * reported its event (p_xthread).  This may not be
1153 		 * the thread passed to PT_CONTINUE, PT_STEP, etc. if
1154 		 * the debugger is resuming a different thread.
1155 		 *
1156 		 * Deliver any pending signal via the reporting thread.
1157 		 */
1158 		MPASS(p->p_xthread != NULL);
1159 		p->p_xthread->td_dbgflags &= ~TDB_XSIG;
1160 		p->p_xthread->td_xsig = data;
1161 		p->p_xthread = NULL;
1162 		p->p_xsig = data;
1163 
1164 		/*
1165 		 * P_WKILLED is insurance that a PT_KILL/SIGKILL
1166 		 * always works immediately, even if another thread is
1167 		 * unsuspended first and attempts to handle a
1168 		 * different signal or if the POSIX.1b style signal
1169 		 * queue cannot accommodate any new signals.
1170 		 */
1171 		if (data == SIGKILL)
1172 			proc_wkilled(p);
1173 
1174 		/*
1175 		 * Unsuspend all threads.  To leave a thread
1176 		 * suspended, use PT_SUSPEND to suspend it before
1177 		 * continuing the process.
1178 		 */
1179 		ptrace_unsuspend(p);
1180 		break;
1181 
1182 	case PT_WRITE_I:
1183 	case PT_WRITE_D:
1184 		td2->td_dbgflags |= TDB_USERWR;
1185 		PROC_UNLOCK(p);
1186 		error = 0;
1187 		if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data,
1188 		    sizeof(int)) != sizeof(int))
1189 			error = ENOMEM;
1190 		else
1191 			CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
1192 			    p->p_pid, addr, data);
1193 		PROC_LOCK(p);
1194 		break;
1195 
1196 	case PT_READ_I:
1197 	case PT_READ_D:
1198 		PROC_UNLOCK(p);
1199 		error = tmp = 0;
1200 		if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp,
1201 		    sizeof(int)) != sizeof(int))
1202 			error = ENOMEM;
1203 		else
1204 			CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
1205 			    p->p_pid, addr, tmp);
1206 		td->td_retval[0] = tmp;
1207 		PROC_LOCK(p);
1208 		break;
1209 
1210 	case PT_IO:
1211 		piod = addr;
1212 		iov.iov_base = piod->piod_addr;
1213 		iov.iov_len = piod->piod_len;
1214 		uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
1215 		uio.uio_resid = piod->piod_len;
1216 		uio.uio_iov = &iov;
1217 		uio.uio_iovcnt = 1;
1218 		uio.uio_segflg = UIO_USERSPACE;
1219 		uio.uio_td = td;
1220 		switch (piod->piod_op) {
1221 		case PIOD_READ_D:
1222 		case PIOD_READ_I:
1223 			CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
1224 			    p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1225 			uio.uio_rw = UIO_READ;
1226 			break;
1227 		case PIOD_WRITE_D:
1228 		case PIOD_WRITE_I:
1229 			CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
1230 			    p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1231 			td2->td_dbgflags |= TDB_USERWR;
1232 			uio.uio_rw = UIO_WRITE;
1233 			break;
1234 		default:
1235 			error = EINVAL;
1236 			goto out;
1237 		}
1238 		PROC_UNLOCK(p);
1239 		error = proc_rwmem(p, &uio);
1240 		piod->piod_len -= uio.uio_resid;
1241 		PROC_LOCK(p);
1242 		break;
1243 
1244 	case PT_KILL:
1245 		CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
1246 		data = SIGKILL;
1247 		goto sendsig;	/* in PT_CONTINUE above */
1248 
1249 	case PT_SETREGS:
1250 		CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
1251 		    p->p_pid);
1252 		td2->td_dbgflags |= TDB_USERWR;
1253 		error = PROC_WRITE(regs, td2, addr);
1254 		break;
1255 
1256 	case PT_GETREGS:
1257 		CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
1258 		    p->p_pid);
1259 		error = PROC_READ(regs, td2, addr);
1260 		break;
1261 
1262 	case PT_SETFPREGS:
1263 		CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
1264 		    p->p_pid);
1265 		td2->td_dbgflags |= TDB_USERWR;
1266 		error = PROC_WRITE(fpregs, td2, addr);
1267 		break;
1268 
1269 	case PT_GETFPREGS:
1270 		CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
1271 		    p->p_pid);
1272 		error = PROC_READ(fpregs, td2, addr);
1273 		break;
1274 
1275 	case PT_SETDBREGS:
1276 		CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
1277 		    p->p_pid);
1278 		td2->td_dbgflags |= TDB_USERWR;
1279 		error = PROC_WRITE(dbregs, td2, addr);
1280 		break;
1281 
1282 	case PT_GETDBREGS:
1283 		CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
1284 		    p->p_pid);
1285 		error = PROC_READ(dbregs, td2, addr);
1286 		break;
1287 
1288 	case PT_LWPINFO:
1289 		if (data <= 0 || data > sizeof(*pl)) {
1290 			error = EINVAL;
1291 			break;
1292 		}
1293 		pl = addr;
1294 		bzero(pl, sizeof(*pl));
1295 		pl->pl_lwpid = td2->td_tid;
1296 		pl->pl_event = PL_EVENT_NONE;
1297 		pl->pl_flags = 0;
1298 		if (td2->td_dbgflags & TDB_XSIG) {
1299 			pl->pl_event = PL_EVENT_SIGNAL;
1300 			if (td2->td_si.si_signo != 0 &&
1301 			    data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
1302 			    + sizeof(pl->pl_siginfo)){
1303 				pl->pl_flags |= PL_FLAG_SI;
1304 				pl->pl_siginfo = td2->td_si;
1305 			}
1306 		}
1307 		if (td2->td_dbgflags & TDB_SCE)
1308 			pl->pl_flags |= PL_FLAG_SCE;
1309 		else if (td2->td_dbgflags & TDB_SCX)
1310 			pl->pl_flags |= PL_FLAG_SCX;
1311 		if (td2->td_dbgflags & TDB_EXEC)
1312 			pl->pl_flags |= PL_FLAG_EXEC;
1313 		if (td2->td_dbgflags & TDB_FORK) {
1314 			pl->pl_flags |= PL_FLAG_FORKED;
1315 			pl->pl_child_pid = td2->td_dbg_forked;
1316 			if (td2->td_dbgflags & TDB_VFORK)
1317 				pl->pl_flags |= PL_FLAG_VFORKED;
1318 		} else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) ==
1319 		    TDB_VFORK)
1320 			pl->pl_flags |= PL_FLAG_VFORK_DONE;
1321 		if (td2->td_dbgflags & TDB_CHILD)
1322 			pl->pl_flags |= PL_FLAG_CHILD;
1323 		if (td2->td_dbgflags & TDB_BORN)
1324 			pl->pl_flags |= PL_FLAG_BORN;
1325 		if (td2->td_dbgflags & TDB_EXIT)
1326 			pl->pl_flags |= PL_FLAG_EXITED;
1327 		pl->pl_sigmask = td2->td_sigmask;
1328 		pl->pl_siglist = td2->td_siglist;
1329 		strcpy(pl->pl_tdname, td2->td_name);
1330 		if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
1331 			pl->pl_syscall_code = td2->td_sa.code;
1332 			pl->pl_syscall_narg = td2->td_sa.callp->sy_narg;
1333 		} else {
1334 			pl->pl_syscall_code = 0;
1335 			pl->pl_syscall_narg = 0;
1336 		}
1337 		CTR6(KTR_PTRACE,
1338     "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
1339 		    td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
1340 		    pl->pl_child_pid, pl->pl_syscall_code);
1341 		break;
1342 
1343 	case PT_GETNUMLWPS:
1344 		CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
1345 		    p->p_numthreads);
1346 		td->td_retval[0] = p->p_numthreads;
1347 		break;
1348 
1349 	case PT_GETLWPLIST:
1350 		CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
1351 		    p->p_pid, data, p->p_numthreads);
1352 		if (data <= 0) {
1353 			error = EINVAL;
1354 			break;
1355 		}
1356 		num = imin(p->p_numthreads, data);
1357 		PROC_UNLOCK(p);
1358 		buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
1359 		tmp = 0;
1360 		PROC_LOCK(p);
1361 		FOREACH_THREAD_IN_PROC(p, td2) {
1362 			if (tmp >= num)
1363 				break;
1364 			buf[tmp++] = td2->td_tid;
1365 		}
1366 		PROC_UNLOCK(p);
1367 		error = copyout(buf, addr, tmp * sizeof(lwpid_t));
1368 		free(buf, M_TEMP);
1369 		if (!error)
1370 			td->td_retval[0] = tmp;
1371 		PROC_LOCK(p);
1372 		break;
1373 
1374 	case PT_VM_TIMESTAMP:
1375 		CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
1376 		    p->p_pid, p->p_vmspace->vm_map.timestamp);
1377 		td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
1378 		break;
1379 
1380 	case PT_VM_ENTRY:
1381 		PROC_UNLOCK(p);
1382 		error = ptrace_vm_entry(td, p, addr);
1383 		PROC_LOCK(p);
1384 		break;
1385 
1386 	case PT_COREDUMP:
1387 		pc = addr;
1388 		CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d",
1389 		    p->p_pid, pc->pc_fd);
1390 
1391 		if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) {
1392 			error = EINVAL;
1393 			break;
1394 		}
1395 		PROC_UNLOCK(p);
1396 
1397 		tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO);
1398 		fp = NULL;
1399 		error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp);
1400 		if (error != 0)
1401 			goto coredump_cleanup_nofp;
1402 		if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) {
1403 			error = EPIPE;
1404 			goto coredump_cleanup;
1405 		}
1406 
1407 		PROC_LOCK(p);
1408 		error = proc_can_ptrace(td, p);
1409 		if (error != 0)
1410 			goto coredump_cleanup_locked;
1411 
1412 		td2 = ptrace_sel_coredump_thread(p);
1413 		if (td2 == NULL) {
1414 			error = EBUSY;
1415 			goto coredump_cleanup_locked;
1416 		}
1417 		KASSERT((td2->td_dbgflags & TDB_COREDUMPRQ) == 0,
1418 		    ("proc %d tid %d req coredump", p->p_pid, td2->td_tid));
1419 
1420 		tcq->tc_vp = fp->f_vnode;
1421 		tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit;
1422 		tcq->tc_flags = SVC_PT_COREDUMP;
1423 		if ((pc->pc_flags & PC_COMPRESS) == 0)
1424 			tcq->tc_flags |= SVC_NOCOMPRESS;
1425 		if ((pc->pc_flags & PC_ALL) != 0)
1426 			tcq->tc_flags |= SVC_ALL;
1427 		td2->td_coredump = tcq;
1428 		td2->td_dbgflags |= TDB_COREDUMPRQ;
1429 		thread_run_flash(td2);
1430 		while ((td2->td_dbgflags & TDB_COREDUMPRQ) != 0)
1431 			msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0);
1432 		error = tcq->tc_error;
1433 coredump_cleanup_locked:
1434 		PROC_UNLOCK(p);
1435 coredump_cleanup:
1436 		fdrop(fp, td);
1437 coredump_cleanup_nofp:
1438 		free(tcq, M_TEMP);
1439 		PROC_LOCK(p);
1440 		break;
1441 
1442 	default:
1443 #ifdef __HAVE_PTRACE_MACHDEP
1444 		if (req >= PT_FIRSTMACH) {
1445 			PROC_UNLOCK(p);
1446 			error = cpu_ptrace(td2, req, addr, data);
1447 			PROC_LOCK(p);
1448 		} else
1449 #endif
1450 			/* Unknown request. */
1451 			error = EINVAL;
1452 		break;
1453 	}
1454 out:
1455 	/* Drop our hold on this process now that the request has completed. */
1456 	_PRELE(p);
1457 fail:
1458 	if (p2_req_set) {
1459 		if ((p->p_flag2 & P2_PTRACEREQ) != 0)
1460 			wakeup(&p->p_flag2);
1461 		p->p_flag2 &= ~P2_PTRACEREQ;
1462 	}
1463 	PROC_UNLOCK(p);
1464 	if (proctree_locked)
1465 		sx_xunlock(&proctree_lock);
1466 	return (error);
1467 }
1468 #undef PROC_READ
1469 #undef PROC_WRITE
1470