xref: /freebsd/sys/kern/uipc_mbuf.c (revision 069ac184)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_param.h"
34 #include "opt_mbuf_stress_test.h"
35 #include "opt_mbuf_profiling.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/sysctl.h>
45 #include <sys/domain.h>
46 #include <sys/protosw.h>
47 #include <sys/uio.h>
48 #include <sys/vmmeter.h>
49 #include <sys/sbuf.h>
50 #include <sys/sdt.h>
51 #include <vm/vm.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 
55 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
56     "struct mbuf *", "mbufinfo_t *",
57     "uint32_t", "uint32_t",
58     "uint16_t", "uint16_t",
59     "uint32_t", "uint32_t",
60     "uint32_t", "uint32_t");
61 
62 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
63     "uint32_t", "uint32_t",
64     "uint16_t", "uint16_t",
65     "struct mbuf *", "mbufinfo_t *");
66 
67 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
68     "uint32_t", "uint32_t",
69     "uint16_t", "uint16_t",
70     "struct mbuf *", "mbufinfo_t *");
71 
72 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
73     "uint32_t", "uint32_t",
74     "uint16_t", "uint16_t",
75     "struct mbuf *", "mbufinfo_t *");
76 
77 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
78     "uint32_t", "uint32_t",
79     "uint16_t", "uint16_t",
80     "struct mbuf *", "mbufinfo_t *");
81 
82 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
83     "uint32_t", "uint32_t",
84     "uint16_t", "uint16_t",
85     "uint32_t", "uint32_t",
86     "struct mbuf *", "mbufinfo_t *");
87 
88 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
89     "uint32_t", "uint32_t",
90     "uint16_t", "uint16_t",
91     "uint32_t", "uint32_t",
92     "uint32_t", "uint32_t",
93     "struct mbuf *", "mbufinfo_t *");
94 
95 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
96     "struct mbuf *", "mbufinfo_t *",
97     "uint32_t", "uint32_t",
98     "uint32_t", "uint32_t");
99 
100 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
101     "struct mbuf *", "mbufinfo_t *",
102     "uint32_t", "uint32_t",
103     "uint32_t", "uint32_t",
104     "void*", "void*");
105 
106 SDT_PROBE_DEFINE(sdt, , , m__cljset);
107 
108 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
109         "struct mbuf *", "mbufinfo_t *");
110 
111 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
112     "struct mbuf *", "mbufinfo_t *");
113 
114 #include <security/mac/mac_framework.h>
115 
116 /*
117  * Provide minimum possible defaults for link and protocol header space,
118  * assuming IPv4 over Ethernet.  Enabling IPv6, IEEE802.11 or some other
119  * protocol may grow these values.
120  */
121 u_int	max_linkhdr = 16;
122 u_int	max_protohdr = 40;
123 u_int	max_hdr = 16 + 40;
124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
125 	   &max_linkhdr, 16, "Size of largest link layer header");
126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
127 	   &max_protohdr, 40, "Size of largest protocol layer header");
128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
129 	   &max_hdr, 16 + 40, "Size of largest link plus protocol header");
130 
131 static void
132 max_hdr_grow(void)
133 {
134 
135 	max_hdr = max_linkhdr + max_protohdr;
136 	MPASS(max_hdr <= MHLEN);
137 }
138 
139 void
140 max_linkhdr_grow(u_int new)
141 {
142 
143 	if (new > max_linkhdr) {
144 		max_linkhdr = new;
145 		max_hdr_grow();
146 	}
147 }
148 
149 void
150 max_protohdr_grow(u_int new)
151 {
152 
153 	if (new > max_protohdr) {
154 		max_protohdr = new;
155 		max_hdr_grow();
156 	}
157 }
158 
159 #ifdef MBUF_STRESS_TEST
160 int	m_defragpackets;
161 int	m_defragbytes;
162 int	m_defraguseless;
163 int	m_defragfailure;
164 int	m_defragrandomfailures;
165 
166 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
167 	   &m_defragpackets, 0, "");
168 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
169 	   &m_defragbytes, 0, "");
170 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
171 	   &m_defraguseless, 0, "");
172 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
173 	   &m_defragfailure, 0, "");
174 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
175 	   &m_defragrandomfailures, 0, "");
176 #endif
177 
178 /*
179  * Ensure the correct size of various mbuf parameters.  It could be off due
180  * to compiler-induced padding and alignment artifacts.
181  */
182 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
183 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
184 
185 /*
186  * mbuf data storage should be 64-bit aligned regardless of architectural
187  * pointer size; check this is the case with and without a packet header.
188  */
189 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
190 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
191 
192 /*
193  * While the specific values here don't matter too much (i.e., +/- a few
194  * words), we do want to ensure that changes to these values are carefully
195  * reasoned about and properly documented.  This is especially the case as
196  * network-protocol and device-driver modules encode these layouts, and must
197  * be recompiled if the structures change.  Check these values at compile time
198  * against the ones documented in comments in mbuf.h.
199  *
200  * NB: Possibly they should be documented there via #define's and not just
201  * comments.
202  */
203 #if defined(__LP64__)
204 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
205 CTASSERT(sizeof(struct pkthdr) == 64);
206 CTASSERT(sizeof(struct m_ext) == 160);
207 #else
208 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
209 CTASSERT(sizeof(struct pkthdr) == 56);
210 #if defined(__powerpc__) && defined(BOOKE)
211 /* PowerPC booke has 64-bit physical pointers. */
212 CTASSERT(sizeof(struct m_ext) == 176);
213 #else
214 CTASSERT(sizeof(struct m_ext) == 172);
215 #endif
216 #endif
217 
218 /*
219  * Assert that the queue(3) macros produce code of the same size as an old
220  * plain pointer does.
221  */
222 #ifdef INVARIANTS
223 static struct mbuf __used m_assertbuf;
224 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
225 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
226 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
227 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
228 #endif
229 
230 /*
231  * Attach the cluster from *m to *n, set up m_ext in *n
232  * and bump the refcount of the cluster.
233  */
234 void
235 mb_dupcl(struct mbuf *n, struct mbuf *m)
236 {
237 	volatile u_int *refcnt;
238 
239 	KASSERT(m->m_flags & (M_EXT | M_EXTPG),
240 	    ("%s: M_EXT | M_EXTPG not set on %p", __func__, m));
241 	KASSERT(!(n->m_flags & (M_EXT | M_EXTPG)),
242 	    ("%s: M_EXT | M_EXTPG set on %p", __func__, n));
243 
244 	/*
245 	 * Cache access optimization.
246 	 *
247 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
248 	 *   the holder of the 'ext_count' is responsible to carry the free
249 	 *   routine and its arguments.
250 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
251 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
252 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
253 	 *   special - it needs full copy of m_ext into each mbuf, since any
254 	 *   copy could end up as the last to free.
255 	 */
256 	if (m->m_flags & M_EXTPG) {
257 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
258 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
259 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
260 	} else if (m->m_ext.ext_type == EXT_EXTREF)
261 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
262 	else
263 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
264 
265 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
266 
267 	/* See if this is the mbuf that holds the embedded refcount. */
268 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
269 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
270 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
271 	} else {
272 		KASSERT(m->m_ext.ext_cnt != NULL,
273 		    ("%s: no refcounting pointer on %p", __func__, m));
274 		refcnt = m->m_ext.ext_cnt;
275 	}
276 
277 	if (*refcnt == 1)
278 		*refcnt += 1;
279 	else
280 		atomic_add_int(refcnt, 1);
281 }
282 
283 void
284 m_demote_pkthdr(struct mbuf *m)
285 {
286 
287 	M_ASSERTPKTHDR(m);
288 	M_ASSERT_NO_SND_TAG(m);
289 
290 	m_tag_delete_chain(m, NULL);
291 	m->m_flags &= ~M_PKTHDR;
292 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
293 }
294 
295 /*
296  * Clean up mbuf (chain) from any tags and packet headers.
297  * If "all" is set then the first mbuf in the chain will be
298  * cleaned too.
299  */
300 void
301 m_demote(struct mbuf *m0, int all, int flags)
302 {
303 	struct mbuf *m;
304 
305 	flags |= M_DEMOTEFLAGS;
306 
307 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
308 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
309 		    __func__, m, m0));
310 		if (m->m_flags & M_PKTHDR)
311 			m_demote_pkthdr(m);
312 		m->m_flags &= flags;
313 	}
314 }
315 
316 /*
317  * Sanity checks on mbuf (chain) for use in KASSERT() and general
318  * debugging.
319  * Returns 0 or panics when bad and 1 on all tests passed.
320  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
321  * blow up later.
322  */
323 int
324 m_sanity(struct mbuf *m0, int sanitize)
325 {
326 	struct mbuf *m;
327 	caddr_t a, b;
328 	int pktlen = 0;
329 
330 #ifdef INVARIANTS
331 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
332 #else
333 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
334 #endif
335 
336 	for (m = m0; m != NULL; m = m->m_next) {
337 		/*
338 		 * Basic pointer checks.  If any of these fails then some
339 		 * unrelated kernel memory before or after us is trashed.
340 		 * No way to recover from that.
341 		 */
342 		a = M_START(m);
343 		b = a + M_SIZE(m);
344 		if ((caddr_t)m->m_data < a)
345 			M_SANITY_ACTION("m_data outside mbuf data range left");
346 		if ((caddr_t)m->m_data > b)
347 			M_SANITY_ACTION("m_data outside mbuf data range right");
348 		if ((caddr_t)m->m_data + m->m_len > b)
349 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
350 
351 		/* m->m_nextpkt may only be set on first mbuf in chain. */
352 		if (m != m0 && m->m_nextpkt != NULL) {
353 			if (sanitize) {
354 				m_freem(m->m_nextpkt);
355 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
356 			} else
357 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
358 		}
359 
360 		/* packet length (not mbuf length!) calculation */
361 		if (m0->m_flags & M_PKTHDR)
362 			pktlen += m->m_len;
363 
364 		/* m_tags may only be attached to first mbuf in chain. */
365 		if (m != m0 && m->m_flags & M_PKTHDR &&
366 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
367 			if (sanitize) {
368 				m_tag_delete_chain(m, NULL);
369 				/* put in 0xDEADC0DE perhaps? */
370 			} else
371 				M_SANITY_ACTION("m_tags on in-chain mbuf");
372 		}
373 
374 		/* M_PKTHDR may only be set on first mbuf in chain */
375 		if (m != m0 && m->m_flags & M_PKTHDR) {
376 			if (sanitize) {
377 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
378 				m->m_flags &= ~M_PKTHDR;
379 				/* put in 0xDEADCODE and leave hdr flag in */
380 			} else
381 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
382 		}
383 	}
384 	m = m0;
385 	if (pktlen && pktlen != m->m_pkthdr.len) {
386 		if (sanitize)
387 			m->m_pkthdr.len = 0;
388 		else
389 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
390 	}
391 	return 1;
392 
393 #undef	M_SANITY_ACTION
394 }
395 
396 /*
397  * Non-inlined part of m_init().
398  */
399 int
400 m_pkthdr_init(struct mbuf *m, int how)
401 {
402 #ifdef MAC
403 	int error;
404 #endif
405 	m->m_data = m->m_pktdat;
406 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
407 #ifdef NUMA
408 	m->m_pkthdr.numa_domain = M_NODOM;
409 #endif
410 #ifdef MAC
411 	/* If the label init fails, fail the alloc */
412 	error = mac_mbuf_init(m, how);
413 	if (error)
414 		return (error);
415 #endif
416 
417 	return (0);
418 }
419 
420 /*
421  * "Move" mbuf pkthdr from "from" to "to".
422  * "from" must have M_PKTHDR set, and "to" must be empty.
423  */
424 void
425 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
426 {
427 
428 #if 0
429 	/* see below for why these are not enabled */
430 	M_ASSERTPKTHDR(to);
431 	/* Note: with MAC, this may not be a good assertion. */
432 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
433 	    ("m_move_pkthdr: to has tags"));
434 #endif
435 #ifdef MAC
436 	/*
437 	 * XXXMAC: It could be this should also occur for non-MAC?
438 	 */
439 	if (to->m_flags & M_PKTHDR)
440 		m_tag_delete_chain(to, NULL);
441 #endif
442 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
443 	    (to->m_flags & (M_EXT | M_EXTPG));
444 	if ((to->m_flags & M_EXT) == 0)
445 		to->m_data = to->m_pktdat;
446 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
447 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
448 	from->m_flags &= ~M_PKTHDR;
449 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
450 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
451 		from->m_pkthdr.snd_tag = NULL;
452 	}
453 }
454 
455 /*
456  * Duplicate "from"'s mbuf pkthdr in "to".
457  * "from" must have M_PKTHDR set, and "to" must be empty.
458  * In particular, this does a deep copy of the packet tags.
459  */
460 int
461 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
462 {
463 
464 #if 0
465 	/*
466 	 * The mbuf allocator only initializes the pkthdr
467 	 * when the mbuf is allocated with m_gethdr(). Many users
468 	 * (e.g. m_copy*, m_prepend) use m_get() and then
469 	 * smash the pkthdr as needed causing these
470 	 * assertions to trip.  For now just disable them.
471 	 */
472 	M_ASSERTPKTHDR(to);
473 	/* Note: with MAC, this may not be a good assertion. */
474 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
475 #endif
476 	MBUF_CHECKSLEEP(how);
477 #ifdef MAC
478 	if (to->m_flags & M_PKTHDR)
479 		m_tag_delete_chain(to, NULL);
480 #endif
481 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
482 	    (to->m_flags & (M_EXT | M_EXTPG));
483 	if ((to->m_flags & M_EXT) == 0)
484 		to->m_data = to->m_pktdat;
485 	to->m_pkthdr = from->m_pkthdr;
486 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
487 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
488 	SLIST_INIT(&to->m_pkthdr.tags);
489 	return (m_tag_copy_chain(to, from, how));
490 }
491 
492 /*
493  * Lesser-used path for M_PREPEND:
494  * allocate new mbuf to prepend to chain,
495  * copy junk along.
496  */
497 struct mbuf *
498 m_prepend(struct mbuf *m, int len, int how)
499 {
500 	struct mbuf *mn;
501 
502 	if (m->m_flags & M_PKTHDR)
503 		mn = m_gethdr(how, m->m_type);
504 	else
505 		mn = m_get(how, m->m_type);
506 	if (mn == NULL) {
507 		m_freem(m);
508 		return (NULL);
509 	}
510 	if (m->m_flags & M_PKTHDR)
511 		m_move_pkthdr(mn, m);
512 	mn->m_next = m;
513 	m = mn;
514 	if (len < M_SIZE(m))
515 		M_ALIGN(m, len);
516 	m->m_len = len;
517 	return (m);
518 }
519 
520 /*
521  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
522  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
523  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
524  * Note that the copy is read-only, because clusters are not copied,
525  * only their reference counts are incremented.
526  */
527 struct mbuf *
528 m_copym(struct mbuf *m, int off0, int len, int wait)
529 {
530 	struct mbuf *n, **np;
531 	int off = off0;
532 	struct mbuf *top;
533 	int copyhdr = 0;
534 
535 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
536 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
537 	MBUF_CHECKSLEEP(wait);
538 	if (off == 0 && m->m_flags & M_PKTHDR)
539 		copyhdr = 1;
540 	while (off > 0) {
541 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
542 		if (off < m->m_len)
543 			break;
544 		off -= m->m_len;
545 		m = m->m_next;
546 	}
547 	np = &top;
548 	top = NULL;
549 	while (len > 0) {
550 		if (m == NULL) {
551 			KASSERT(len == M_COPYALL,
552 			    ("m_copym, length > size of mbuf chain"));
553 			break;
554 		}
555 		if (copyhdr)
556 			n = m_gethdr(wait, m->m_type);
557 		else
558 			n = m_get(wait, m->m_type);
559 		*np = n;
560 		if (n == NULL)
561 			goto nospace;
562 		if (copyhdr) {
563 			if (!m_dup_pkthdr(n, m, wait))
564 				goto nospace;
565 			if (len == M_COPYALL)
566 				n->m_pkthdr.len -= off0;
567 			else
568 				n->m_pkthdr.len = len;
569 			copyhdr = 0;
570 		}
571 		n->m_len = min(len, m->m_len - off);
572 		if (m->m_flags & (M_EXT | M_EXTPG)) {
573 			n->m_data = m->m_data + off;
574 			mb_dupcl(n, m);
575 		} else
576 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
577 			    (u_int)n->m_len);
578 		if (len != M_COPYALL)
579 			len -= n->m_len;
580 		off = 0;
581 		m = m->m_next;
582 		np = &n->m_next;
583 	}
584 
585 	return (top);
586 nospace:
587 	m_freem(top);
588 	return (NULL);
589 }
590 
591 /*
592  * Copy an entire packet, including header (which must be present).
593  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
594  * Note that the copy is read-only, because clusters are not copied,
595  * only their reference counts are incremented.
596  * Preserve alignment of the first mbuf so if the creator has left
597  * some room at the beginning (e.g. for inserting protocol headers)
598  * the copies still have the room available.
599  */
600 struct mbuf *
601 m_copypacket(struct mbuf *m, int how)
602 {
603 	struct mbuf *top, *n, *o;
604 
605 	MBUF_CHECKSLEEP(how);
606 	n = m_get(how, m->m_type);
607 	top = n;
608 	if (n == NULL)
609 		goto nospace;
610 
611 	if (!m_dup_pkthdr(n, m, how))
612 		goto nospace;
613 	n->m_len = m->m_len;
614 	if (m->m_flags & (M_EXT | M_EXTPG)) {
615 		n->m_data = m->m_data;
616 		mb_dupcl(n, m);
617 	} else {
618 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
619 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
620 	}
621 
622 	m = m->m_next;
623 	while (m) {
624 		o = m_get(how, m->m_type);
625 		if (o == NULL)
626 			goto nospace;
627 
628 		n->m_next = o;
629 		n = n->m_next;
630 
631 		n->m_len = m->m_len;
632 		if (m->m_flags & (M_EXT | M_EXTPG)) {
633 			n->m_data = m->m_data;
634 			mb_dupcl(n, m);
635 		} else {
636 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
637 		}
638 
639 		m = m->m_next;
640 	}
641 	return top;
642 nospace:
643 	m_freem(top);
644 	return (NULL);
645 }
646 
647 static void
648 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
649 {
650 	struct iovec iov;
651 	struct uio uio;
652 	int error __diagused;
653 
654 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
655 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
656 	KASSERT(off < m->m_len,
657 	    ("m_copyfromunmapped: len exceeds mbuf length"));
658 	iov.iov_base = cp;
659 	iov.iov_len = len;
660 	uio.uio_resid = len;
661 	uio.uio_iov = &iov;
662 	uio.uio_segflg = UIO_SYSSPACE;
663 	uio.uio_iovcnt = 1;
664 	uio.uio_offset = 0;
665 	uio.uio_rw = UIO_READ;
666 	error = m_unmapped_uiomove(m, off, &uio, len);
667 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
668 	   len));
669 }
670 
671 /*
672  * Copy data from an mbuf chain starting "off" bytes from the beginning,
673  * continuing for "len" bytes, into the indicated buffer.
674  */
675 void
676 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
677 {
678 	u_int count;
679 
680 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
681 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
682 	while (off > 0) {
683 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
684 		if (off < m->m_len)
685 			break;
686 		off -= m->m_len;
687 		m = m->m_next;
688 	}
689 	while (len > 0) {
690 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
691 		count = min(m->m_len - off, len);
692 		if ((m->m_flags & M_EXTPG) != 0)
693 			m_copyfromunmapped(m, off, count, cp);
694 		else
695 			bcopy(mtod(m, caddr_t) + off, cp, count);
696 		len -= count;
697 		cp += count;
698 		off = 0;
699 		m = m->m_next;
700 	}
701 }
702 
703 /*
704  * Copy a packet header mbuf chain into a completely new chain, including
705  * copying any mbuf clusters.  Use this instead of m_copypacket() when
706  * you need a writable copy of an mbuf chain.
707  */
708 struct mbuf *
709 m_dup(const struct mbuf *m, int how)
710 {
711 	struct mbuf **p, *top = NULL;
712 	int remain, moff, nsize;
713 
714 	MBUF_CHECKSLEEP(how);
715 	/* Sanity check */
716 	if (m == NULL)
717 		return (NULL);
718 	M_ASSERTPKTHDR(m);
719 
720 	/* While there's more data, get a new mbuf, tack it on, and fill it */
721 	remain = m->m_pkthdr.len;
722 	moff = 0;
723 	p = &top;
724 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
725 		struct mbuf *n;
726 
727 		/* Get the next new mbuf */
728 		if (remain >= MINCLSIZE) {
729 			n = m_getcl(how, m->m_type, 0);
730 			nsize = MCLBYTES;
731 		} else {
732 			n = m_get(how, m->m_type);
733 			nsize = MLEN;
734 		}
735 		if (n == NULL)
736 			goto nospace;
737 
738 		if (top == NULL) {		/* First one, must be PKTHDR */
739 			if (!m_dup_pkthdr(n, m, how)) {
740 				m_free(n);
741 				goto nospace;
742 			}
743 			if ((n->m_flags & M_EXT) == 0)
744 				nsize = MHLEN;
745 			n->m_flags &= ~M_RDONLY;
746 		}
747 		n->m_len = 0;
748 
749 		/* Link it into the new chain */
750 		*p = n;
751 		p = &n->m_next;
752 
753 		/* Copy data from original mbuf(s) into new mbuf */
754 		while (n->m_len < nsize && m != NULL) {
755 			int chunk = min(nsize - n->m_len, m->m_len - moff);
756 
757 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
758 			moff += chunk;
759 			n->m_len += chunk;
760 			remain -= chunk;
761 			if (moff == m->m_len) {
762 				m = m->m_next;
763 				moff = 0;
764 			}
765 		}
766 
767 		/* Check correct total mbuf length */
768 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
769 		    	("%s: bogus m_pkthdr.len", __func__));
770 	}
771 	return (top);
772 
773 nospace:
774 	m_freem(top);
775 	return (NULL);
776 }
777 
778 /*
779  * Concatenate mbuf chain n to m.
780  * Both chains must be of the same type (e.g. MT_DATA).
781  * Any m_pkthdr is not updated.
782  */
783 void
784 m_cat(struct mbuf *m, struct mbuf *n)
785 {
786 	while (m->m_next)
787 		m = m->m_next;
788 	while (n) {
789 		if (!M_WRITABLE(m) ||
790 		    (n->m_flags & M_EXTPG) != 0 ||
791 		    M_TRAILINGSPACE(m) < n->m_len) {
792 			/* just join the two chains */
793 			m->m_next = n;
794 			return;
795 		}
796 		/* splat the data from one into the other */
797 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
798 		    (u_int)n->m_len);
799 		m->m_len += n->m_len;
800 		n = m_free(n);
801 	}
802 }
803 
804 /*
805  * Concatenate two pkthdr mbuf chains.
806  */
807 void
808 m_catpkt(struct mbuf *m, struct mbuf *n)
809 {
810 
811 	M_ASSERTPKTHDR(m);
812 	M_ASSERTPKTHDR(n);
813 
814 	m->m_pkthdr.len += n->m_pkthdr.len;
815 	m_demote(n, 1, 0);
816 
817 	m_cat(m, n);
818 }
819 
820 void
821 m_adj(struct mbuf *mp, int req_len)
822 {
823 	int len = req_len;
824 	struct mbuf *m;
825 	int count;
826 
827 	if ((m = mp) == NULL)
828 		return;
829 	if (len >= 0) {
830 		/*
831 		 * Trim from head.
832 		 */
833 		while (m != NULL && len > 0) {
834 			if (m->m_len <= len) {
835 				len -= m->m_len;
836 				m->m_len = 0;
837 				m = m->m_next;
838 			} else {
839 				m->m_len -= len;
840 				m->m_data += len;
841 				len = 0;
842 			}
843 		}
844 		if (mp->m_flags & M_PKTHDR)
845 			mp->m_pkthdr.len -= (req_len - len);
846 	} else {
847 		/*
848 		 * Trim from tail.  Scan the mbuf chain,
849 		 * calculating its length and finding the last mbuf.
850 		 * If the adjustment only affects this mbuf, then just
851 		 * adjust and return.  Otherwise, rescan and truncate
852 		 * after the remaining size.
853 		 */
854 		len = -len;
855 		count = 0;
856 		for (;;) {
857 			count += m->m_len;
858 			if (m->m_next == (struct mbuf *)0)
859 				break;
860 			m = m->m_next;
861 		}
862 		if (m->m_len >= len) {
863 			m->m_len -= len;
864 			if (mp->m_flags & M_PKTHDR)
865 				mp->m_pkthdr.len -= len;
866 			return;
867 		}
868 		count -= len;
869 		if (count < 0)
870 			count = 0;
871 		/*
872 		 * Correct length for chain is "count".
873 		 * Find the mbuf with last data, adjust its length,
874 		 * and toss data from remaining mbufs on chain.
875 		 */
876 		m = mp;
877 		if (m->m_flags & M_PKTHDR)
878 			m->m_pkthdr.len = count;
879 		for (; m; m = m->m_next) {
880 			if (m->m_len >= count) {
881 				m->m_len = count;
882 				if (m->m_next != NULL) {
883 					m_freem(m->m_next);
884 					m->m_next = NULL;
885 				}
886 				break;
887 			}
888 			count -= m->m_len;
889 		}
890 	}
891 }
892 
893 void
894 m_adj_decap(struct mbuf *mp, int len)
895 {
896 	uint8_t rsstype;
897 
898 	m_adj(mp, len);
899 	if ((mp->m_flags & M_PKTHDR) != 0) {
900 		/*
901 		 * If flowid was calculated by card from the inner
902 		 * headers, move flowid to the decapsulated mbuf
903 		 * chain, otherwise clear.  This depends on the
904 		 * internals of m_adj, which keeps pkthdr as is, in
905 		 * particular not changing rsstype and flowid.
906 		 */
907 		rsstype = mp->m_pkthdr.rsstype;
908 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
909 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
910 		} else {
911 			M_HASHTYPE_CLEAR(mp);
912 		}
913 	}
914 }
915 
916 /*
917  * Rearange an mbuf chain so that len bytes are contiguous
918  * and in the data area of an mbuf (so that mtod will work
919  * for a structure of size len).  Returns the resulting
920  * mbuf chain on success, frees it and returns null on failure.
921  * If there is room, it will add up to max_protohdr-len extra bytes to the
922  * contiguous region in an attempt to avoid being called next time.
923  */
924 struct mbuf *
925 m_pullup(struct mbuf *n, int len)
926 {
927 	struct mbuf *m;
928 	int count;
929 	int space;
930 
931 	KASSERT((n->m_flags & M_EXTPG) == 0,
932 	    ("%s: unmapped mbuf %p", __func__, n));
933 
934 	/*
935 	 * If first mbuf has no cluster, and has room for len bytes
936 	 * without shifting current data, pullup into it,
937 	 * otherwise allocate a new mbuf to prepend to the chain.
938 	 */
939 	if ((n->m_flags & M_EXT) == 0 &&
940 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
941 		if (n->m_len >= len)
942 			return (n);
943 		m = n;
944 		n = n->m_next;
945 		len -= m->m_len;
946 	} else {
947 		if (len > MHLEN)
948 			goto bad;
949 		m = m_get(M_NOWAIT, n->m_type);
950 		if (m == NULL)
951 			goto bad;
952 		if (n->m_flags & M_PKTHDR)
953 			m_move_pkthdr(m, n);
954 	}
955 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
956 	do {
957 		count = min(min(max(len, max_protohdr), space), n->m_len);
958 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
959 		  (u_int)count);
960 		len -= count;
961 		m->m_len += count;
962 		n->m_len -= count;
963 		space -= count;
964 		if (n->m_len)
965 			n->m_data += count;
966 		else
967 			n = m_free(n);
968 	} while (len > 0 && n);
969 	if (len > 0) {
970 		(void) m_free(m);
971 		goto bad;
972 	}
973 	m->m_next = n;
974 	return (m);
975 bad:
976 	m_freem(n);
977 	return (NULL);
978 }
979 
980 /*
981  * Like m_pullup(), except a new mbuf is always allocated, and we allow
982  * the amount of empty space before the data in the new mbuf to be specified
983  * (in the event that the caller expects to prepend later).
984  */
985 struct mbuf *
986 m_copyup(struct mbuf *n, int len, int dstoff)
987 {
988 	struct mbuf *m;
989 	int count, space;
990 
991 	if (len > (MHLEN - dstoff))
992 		goto bad;
993 	m = m_get(M_NOWAIT, n->m_type);
994 	if (m == NULL)
995 		goto bad;
996 	if (n->m_flags & M_PKTHDR)
997 		m_move_pkthdr(m, n);
998 	m->m_data += dstoff;
999 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1000 	do {
1001 		count = min(min(max(len, max_protohdr), space), n->m_len);
1002 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1003 		    (unsigned)count);
1004 		len -= count;
1005 		m->m_len += count;
1006 		n->m_len -= count;
1007 		space -= count;
1008 		if (n->m_len)
1009 			n->m_data += count;
1010 		else
1011 			n = m_free(n);
1012 	} while (len > 0 && n);
1013 	if (len > 0) {
1014 		(void) m_free(m);
1015 		goto bad;
1016 	}
1017 	m->m_next = n;
1018 	return (m);
1019  bad:
1020 	m_freem(n);
1021 	return (NULL);
1022 }
1023 
1024 /*
1025  * Partition an mbuf chain in two pieces, returning the tail --
1026  * all but the first len0 bytes.  In case of failure, it returns NULL and
1027  * attempts to restore the chain to its original state.
1028  *
1029  * Note that the resulting mbufs might be read-only, because the new
1030  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1031  * the "breaking point" happens to lie within a cluster mbuf. Use the
1032  * M_WRITABLE() macro to check for this case.
1033  */
1034 struct mbuf *
1035 m_split(struct mbuf *m0, int len0, int wait)
1036 {
1037 	struct mbuf *m, *n;
1038 	u_int len = len0, remain;
1039 
1040 	MBUF_CHECKSLEEP(wait);
1041 	for (m = m0; m && len > m->m_len; m = m->m_next)
1042 		len -= m->m_len;
1043 	if (m == NULL)
1044 		return (NULL);
1045 	remain = m->m_len - len;
1046 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1047 		n = m_gethdr(wait, m0->m_type);
1048 		if (n == NULL)
1049 			return (NULL);
1050 		n->m_next = m->m_next;
1051 		m->m_next = NULL;
1052 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1053 			n->m_pkthdr.snd_tag =
1054 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1055 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1056 		} else
1057 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1058 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1059 		m0->m_pkthdr.len = len0;
1060 		return (n);
1061 	} else if (m0->m_flags & M_PKTHDR) {
1062 		n = m_gethdr(wait, m0->m_type);
1063 		if (n == NULL)
1064 			return (NULL);
1065 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1066 			n->m_pkthdr.snd_tag =
1067 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1068 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1069 		} else
1070 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1071 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1072 		m0->m_pkthdr.len = len0;
1073 		if (m->m_flags & (M_EXT | M_EXTPG))
1074 			goto extpacket;
1075 		if (remain > MHLEN) {
1076 			/* m can't be the lead packet */
1077 			M_ALIGN(n, 0);
1078 			n->m_next = m_split(m, len, wait);
1079 			if (n->m_next == NULL) {
1080 				(void) m_free(n);
1081 				return (NULL);
1082 			} else {
1083 				n->m_len = 0;
1084 				return (n);
1085 			}
1086 		} else
1087 			M_ALIGN(n, remain);
1088 	} else if (remain == 0) {
1089 		n = m->m_next;
1090 		m->m_next = NULL;
1091 		return (n);
1092 	} else {
1093 		n = m_get(wait, m->m_type);
1094 		if (n == NULL)
1095 			return (NULL);
1096 		M_ALIGN(n, remain);
1097 	}
1098 extpacket:
1099 	if (m->m_flags & (M_EXT | M_EXTPG)) {
1100 		n->m_data = m->m_data + len;
1101 		mb_dupcl(n, m);
1102 	} else {
1103 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1104 	}
1105 	n->m_len = remain;
1106 	m->m_len = len;
1107 	n->m_next = m->m_next;
1108 	m->m_next = NULL;
1109 	return (n);
1110 }
1111 /*
1112  * Routine to copy from device local memory into mbufs.
1113  * Note that `off' argument is offset into first mbuf of target chain from
1114  * which to begin copying the data to.
1115  */
1116 struct mbuf *
1117 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1118     void (*copy)(char *from, caddr_t to, u_int len))
1119 {
1120 	struct mbuf *m;
1121 	struct mbuf *top = NULL, **mp = &top;
1122 	int len;
1123 
1124 	if (off < 0 || off > MHLEN)
1125 		return (NULL);
1126 
1127 	while (totlen > 0) {
1128 		if (top == NULL) {	/* First one, must be PKTHDR */
1129 			if (totlen + off >= MINCLSIZE) {
1130 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1131 				len = MCLBYTES;
1132 			} else {
1133 				m = m_gethdr(M_NOWAIT, MT_DATA);
1134 				len = MHLEN;
1135 
1136 				/* Place initial small packet/header at end of mbuf */
1137 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1138 					m->m_data += max_linkhdr;
1139 					len -= max_linkhdr;
1140 				}
1141 			}
1142 			if (m == NULL)
1143 				return NULL;
1144 			m->m_pkthdr.rcvif = ifp;
1145 			m->m_pkthdr.len = totlen;
1146 		} else {
1147 			if (totlen + off >= MINCLSIZE) {
1148 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1149 				len = MCLBYTES;
1150 			} else {
1151 				m = m_get(M_NOWAIT, MT_DATA);
1152 				len = MLEN;
1153 			}
1154 			if (m == NULL) {
1155 				m_freem(top);
1156 				return NULL;
1157 			}
1158 		}
1159 		if (off) {
1160 			m->m_data += off;
1161 			len -= off;
1162 			off = 0;
1163 		}
1164 		m->m_len = len = min(totlen, len);
1165 		if (copy)
1166 			copy(buf, mtod(m, caddr_t), (u_int)len);
1167 		else
1168 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1169 		buf += len;
1170 		*mp = m;
1171 		mp = &m->m_next;
1172 		totlen -= len;
1173 	}
1174 	return (top);
1175 }
1176 
1177 static void
1178 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
1179 {
1180 	struct iovec iov;
1181 	struct uio uio;
1182 	int error __diagused;
1183 
1184 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
1185 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
1186 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
1187 	iov.iov_base = __DECONST(caddr_t, cp);
1188 	iov.iov_len = len;
1189 	uio.uio_resid = len;
1190 	uio.uio_iov = &iov;
1191 	uio.uio_segflg = UIO_SYSSPACE;
1192 	uio.uio_iovcnt = 1;
1193 	uio.uio_offset = 0;
1194 	uio.uio_rw = UIO_WRITE;
1195 	error = m_unmapped_uiomove(m, off, &uio, len);
1196 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
1197 	   len));
1198 }
1199 
1200 /*
1201  * Copy data from a buffer back into the indicated mbuf chain,
1202  * starting "off" bytes from the beginning, extending the mbuf
1203  * chain if necessary.
1204  */
1205 void
1206 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1207 {
1208 	int mlen;
1209 	struct mbuf *m = m0, *n;
1210 	int totlen = 0;
1211 
1212 	if (m0 == NULL)
1213 		return;
1214 	while (off > (mlen = m->m_len)) {
1215 		off -= mlen;
1216 		totlen += mlen;
1217 		if (m->m_next == NULL) {
1218 			n = m_get(M_NOWAIT, m->m_type);
1219 			if (n == NULL)
1220 				goto out;
1221 			bzero(mtod(n, caddr_t), MLEN);
1222 			n->m_len = min(MLEN, len + off);
1223 			m->m_next = n;
1224 		}
1225 		m = m->m_next;
1226 	}
1227 	while (len > 0) {
1228 		if (m->m_next == NULL && (len > m->m_len - off)) {
1229 			m->m_len += min(len - (m->m_len - off),
1230 			    M_TRAILINGSPACE(m));
1231 		}
1232 		mlen = min (m->m_len - off, len);
1233 		if ((m->m_flags & M_EXTPG) != 0)
1234 			m_copytounmapped(m, off, mlen, cp);
1235 		else
1236 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1237 		cp += mlen;
1238 		len -= mlen;
1239 		mlen += off;
1240 		off = 0;
1241 		totlen += mlen;
1242 		if (len == 0)
1243 			break;
1244 		if (m->m_next == NULL) {
1245 			n = m_get(M_NOWAIT, m->m_type);
1246 			if (n == NULL)
1247 				break;
1248 			n->m_len = min(MLEN, len);
1249 			m->m_next = n;
1250 		}
1251 		m = m->m_next;
1252 	}
1253 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1254 		m->m_pkthdr.len = totlen;
1255 }
1256 
1257 /*
1258  * Append the specified data to the indicated mbuf chain,
1259  * Extend the mbuf chain if the new data does not fit in
1260  * existing space.
1261  *
1262  * Return 1 if able to complete the job; otherwise 0.
1263  */
1264 int
1265 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1266 {
1267 	struct mbuf *m, *n;
1268 	int remainder, space;
1269 
1270 	for (m = m0; m->m_next != NULL; m = m->m_next)
1271 		;
1272 	remainder = len;
1273 	space = M_TRAILINGSPACE(m);
1274 	if (space > 0) {
1275 		/*
1276 		 * Copy into available space.
1277 		 */
1278 		if (space > remainder)
1279 			space = remainder;
1280 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1281 		m->m_len += space;
1282 		cp += space, remainder -= space;
1283 	}
1284 	while (remainder > 0) {
1285 		/*
1286 		 * Allocate a new mbuf; could check space
1287 		 * and allocate a cluster instead.
1288 		 */
1289 		n = m_get(M_NOWAIT, m->m_type);
1290 		if (n == NULL)
1291 			break;
1292 		n->m_len = min(MLEN, remainder);
1293 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1294 		cp += n->m_len, remainder -= n->m_len;
1295 		m->m_next = n;
1296 		m = n;
1297 	}
1298 	if (m0->m_flags & M_PKTHDR)
1299 		m0->m_pkthdr.len += len - remainder;
1300 	return (remainder == 0);
1301 }
1302 
1303 static int
1304 m_apply_extpg_one(struct mbuf *m, int off, int len,
1305     int (*f)(void *, void *, u_int), void *arg)
1306 {
1307 	void *p;
1308 	u_int i, count, pgoff, pglen;
1309 	int rval;
1310 
1311 	KASSERT(PMAP_HAS_DMAP,
1312 	    ("m_apply_extpg_one does not support unmapped mbufs"));
1313 	off += mtod(m, vm_offset_t);
1314 	if (off < m->m_epg_hdrlen) {
1315 		count = min(m->m_epg_hdrlen - off, len);
1316 		rval = f(arg, m->m_epg_hdr + off, count);
1317 		if (rval)
1318 			return (rval);
1319 		len -= count;
1320 		off = 0;
1321 	} else
1322 		off -= m->m_epg_hdrlen;
1323 	pgoff = m->m_epg_1st_off;
1324 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1325 		pglen = m_epg_pagelen(m, i, pgoff);
1326 		if (off < pglen) {
1327 			count = min(pglen - off, len);
1328 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off);
1329 			rval = f(arg, p, count);
1330 			if (rval)
1331 				return (rval);
1332 			len -= count;
1333 			off = 0;
1334 		} else
1335 			off -= pglen;
1336 		pgoff = 0;
1337 	}
1338 	if (len > 0) {
1339 		KASSERT(off < m->m_epg_trllen,
1340 		    ("m_apply_extpg_one: offset beyond trailer"));
1341 		KASSERT(len <= m->m_epg_trllen - off,
1342 		    ("m_apply_extpg_one: length beyond trailer"));
1343 		return (f(arg, m->m_epg_trail + off, len));
1344 	}
1345 	return (0);
1346 }
1347 
1348 /* Apply function f to the data in a single mbuf. */
1349 static int
1350 m_apply_one(struct mbuf *m, int off, int len,
1351     int (*f)(void *, void *, u_int), void *arg)
1352 {
1353 	if ((m->m_flags & M_EXTPG) != 0)
1354 		return (m_apply_extpg_one(m, off, len, f, arg));
1355 	else
1356 		return (f(arg, mtod(m, caddr_t) + off, len));
1357 }
1358 
1359 /*
1360  * Apply function f to the data in an mbuf chain starting "off" bytes from
1361  * the beginning, continuing for "len" bytes.
1362  */
1363 int
1364 m_apply(struct mbuf *m, int off, int len,
1365     int (*f)(void *, void *, u_int), void *arg)
1366 {
1367 	u_int count;
1368 	int rval;
1369 
1370 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1371 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1372 	while (off > 0) {
1373 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1374 		if (off < m->m_len)
1375 			break;
1376 		off -= m->m_len;
1377 		m = m->m_next;
1378 	}
1379 	while (len > 0) {
1380 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1381 		count = min(m->m_len - off, len);
1382 		rval = m_apply_one(m, off, count, f, arg);
1383 		if (rval)
1384 			return (rval);
1385 		len -= count;
1386 		off = 0;
1387 		m = m->m_next;
1388 	}
1389 	return (0);
1390 }
1391 
1392 /*
1393  * Return a pointer to mbuf/offset of location in mbuf chain.
1394  */
1395 struct mbuf *
1396 m_getptr(struct mbuf *m, int loc, int *off)
1397 {
1398 
1399 	while (loc >= 0) {
1400 		/* Normal end of search. */
1401 		if (m->m_len > loc) {
1402 			*off = loc;
1403 			return (m);
1404 		} else {
1405 			loc -= m->m_len;
1406 			if (m->m_next == NULL) {
1407 				if (loc == 0) {
1408 					/* Point at the end of valid data. */
1409 					*off = m->m_len;
1410 					return (m);
1411 				}
1412 				return (NULL);
1413 			}
1414 			m = m->m_next;
1415 		}
1416 	}
1417 	return (NULL);
1418 }
1419 
1420 void
1421 m_print(const struct mbuf *m, int maxlen)
1422 {
1423 	int len;
1424 	int pdata;
1425 	const struct mbuf *m2;
1426 
1427 	if (m == NULL) {
1428 		printf("mbuf: %p\n", m);
1429 		return;
1430 	}
1431 
1432 	if (m->m_flags & M_PKTHDR)
1433 		len = m->m_pkthdr.len;
1434 	else
1435 		len = -1;
1436 	m2 = m;
1437 	while (m2 != NULL && (len == -1 || len)) {
1438 		pdata = m2->m_len;
1439 		if (maxlen != -1 && pdata > maxlen)
1440 			pdata = maxlen;
1441 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1442 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1443 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1444 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1445 		if (pdata)
1446 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1447 		if (len != -1)
1448 			len -= m2->m_len;
1449 		m2 = m2->m_next;
1450 	}
1451 	if (len > 0)
1452 		printf("%d bytes unaccounted for.\n", len);
1453 	return;
1454 }
1455 
1456 u_int
1457 m_fixhdr(struct mbuf *m0)
1458 {
1459 	u_int len;
1460 
1461 	len = m_length(m0, NULL);
1462 	m0->m_pkthdr.len = len;
1463 	return (len);
1464 }
1465 
1466 u_int
1467 m_length(struct mbuf *m0, struct mbuf **last)
1468 {
1469 	struct mbuf *m;
1470 	u_int len;
1471 
1472 	len = 0;
1473 	for (m = m0; m != NULL; m = m->m_next) {
1474 		len += m->m_len;
1475 		if (m->m_next == NULL)
1476 			break;
1477 	}
1478 	if (last != NULL)
1479 		*last = m;
1480 	return (len);
1481 }
1482 
1483 /*
1484  * Defragment a mbuf chain, returning the shortest possible
1485  * chain of mbufs and clusters.  If allocation fails and
1486  * this cannot be completed, NULL will be returned, but
1487  * the passed in chain will be unchanged.  Upon success,
1488  * the original chain will be freed, and the new chain
1489  * will be returned.
1490  *
1491  * If a non-packet header is passed in, the original
1492  * mbuf (chain?) will be returned unharmed.
1493  */
1494 struct mbuf *
1495 m_defrag(struct mbuf *m0, int how)
1496 {
1497 	struct mbuf *m_new = NULL, *m_final = NULL;
1498 	int progress = 0, length;
1499 
1500 	MBUF_CHECKSLEEP(how);
1501 	if (!(m0->m_flags & M_PKTHDR))
1502 		return (m0);
1503 
1504 	m_fixhdr(m0); /* Needed sanity check */
1505 
1506 #ifdef MBUF_STRESS_TEST
1507 	if (m_defragrandomfailures) {
1508 		int temp = arc4random() & 0xff;
1509 		if (temp == 0xba)
1510 			goto nospace;
1511 	}
1512 #endif
1513 
1514 	if (m0->m_pkthdr.len > MHLEN)
1515 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1516 	else
1517 		m_final = m_gethdr(how, MT_DATA);
1518 
1519 	if (m_final == NULL)
1520 		goto nospace;
1521 
1522 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1523 		goto nospace;
1524 
1525 	m_new = m_final;
1526 
1527 	while (progress < m0->m_pkthdr.len) {
1528 		length = m0->m_pkthdr.len - progress;
1529 		if (length > MCLBYTES)
1530 			length = MCLBYTES;
1531 
1532 		if (m_new == NULL) {
1533 			if (length > MLEN)
1534 				m_new = m_getcl(how, MT_DATA, 0);
1535 			else
1536 				m_new = m_get(how, MT_DATA);
1537 			if (m_new == NULL)
1538 				goto nospace;
1539 		}
1540 
1541 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1542 		progress += length;
1543 		m_new->m_len = length;
1544 		if (m_new != m_final)
1545 			m_cat(m_final, m_new);
1546 		m_new = NULL;
1547 	}
1548 #ifdef MBUF_STRESS_TEST
1549 	if (m0->m_next == NULL)
1550 		m_defraguseless++;
1551 #endif
1552 	m_freem(m0);
1553 	m0 = m_final;
1554 #ifdef MBUF_STRESS_TEST
1555 	m_defragpackets++;
1556 	m_defragbytes += m0->m_pkthdr.len;
1557 #endif
1558 	return (m0);
1559 nospace:
1560 #ifdef MBUF_STRESS_TEST
1561 	m_defragfailure++;
1562 #endif
1563 	if (m_final)
1564 		m_freem(m_final);
1565 	return (NULL);
1566 }
1567 
1568 /*
1569  * Return the number of fragments an mbuf will use.  This is usually
1570  * used as a proxy for the number of scatter/gather elements needed by
1571  * a DMA engine to access an mbuf.  In general mapped mbufs are
1572  * assumed to be backed by physically contiguous buffers that only
1573  * need a single fragment.  Unmapped mbufs, on the other hand, can
1574  * span disjoint physical pages.
1575  */
1576 static int
1577 frags_per_mbuf(struct mbuf *m)
1578 {
1579 	int frags;
1580 
1581 	if ((m->m_flags & M_EXTPG) == 0)
1582 		return (1);
1583 
1584 	/*
1585 	 * The header and trailer are counted as a single fragment
1586 	 * each when present.
1587 	 *
1588 	 * XXX: This overestimates the number of fragments by assuming
1589 	 * all the backing physical pages are disjoint.
1590 	 */
1591 	frags = 0;
1592 	if (m->m_epg_hdrlen != 0)
1593 		frags++;
1594 	frags += m->m_epg_npgs;
1595 	if (m->m_epg_trllen != 0)
1596 		frags++;
1597 
1598 	return (frags);
1599 }
1600 
1601 /*
1602  * Defragment an mbuf chain, returning at most maxfrags separate
1603  * mbufs+clusters.  If this is not possible NULL is returned and
1604  * the original mbuf chain is left in its present (potentially
1605  * modified) state.  We use two techniques: collapsing consecutive
1606  * mbufs and replacing consecutive mbufs by a cluster.
1607  *
1608  * NB: this should really be named m_defrag but that name is taken
1609  */
1610 struct mbuf *
1611 m_collapse(struct mbuf *m0, int how, int maxfrags)
1612 {
1613 	struct mbuf *m, *n, *n2, **prev;
1614 	u_int curfrags;
1615 
1616 	/*
1617 	 * Calculate the current number of frags.
1618 	 */
1619 	curfrags = 0;
1620 	for (m = m0; m != NULL; m = m->m_next)
1621 		curfrags += frags_per_mbuf(m);
1622 	/*
1623 	 * First, try to collapse mbufs.  Note that we always collapse
1624 	 * towards the front so we don't need to deal with moving the
1625 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1626 	 * less data than the following.
1627 	 */
1628 	m = m0;
1629 again:
1630 	for (;;) {
1631 		n = m->m_next;
1632 		if (n == NULL)
1633 			break;
1634 		if (M_WRITABLE(m) &&
1635 		    n->m_len < M_TRAILINGSPACE(m)) {
1636 			m_copydata(n, 0, n->m_len,
1637 			    mtod(m, char *) + m->m_len);
1638 			m->m_len += n->m_len;
1639 			m->m_next = n->m_next;
1640 			curfrags -= frags_per_mbuf(n);
1641 			m_free(n);
1642 			if (curfrags <= maxfrags)
1643 				return m0;
1644 		} else
1645 			m = n;
1646 	}
1647 	KASSERT(maxfrags > 1,
1648 		("maxfrags %u, but normal collapse failed", maxfrags));
1649 	/*
1650 	 * Collapse consecutive mbufs to a cluster.
1651 	 */
1652 	prev = &m0->m_next;		/* NB: not the first mbuf */
1653 	while ((n = *prev) != NULL) {
1654 		if ((n2 = n->m_next) != NULL &&
1655 		    n->m_len + n2->m_len < MCLBYTES) {
1656 			m = m_getcl(how, MT_DATA, 0);
1657 			if (m == NULL)
1658 				goto bad;
1659 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1660 			m_copydata(n2, 0,  n2->m_len,
1661 			    mtod(m, char *) + n->m_len);
1662 			m->m_len = n->m_len + n2->m_len;
1663 			m->m_next = n2->m_next;
1664 			*prev = m;
1665 			curfrags += 1;  /* For the new cluster */
1666 			curfrags -= frags_per_mbuf(n);
1667 			curfrags -= frags_per_mbuf(n2);
1668 			m_free(n);
1669 			m_free(n2);
1670 			if (curfrags <= maxfrags)
1671 				return m0;
1672 			/*
1673 			 * Still not there, try the normal collapse
1674 			 * again before we allocate another cluster.
1675 			 */
1676 			goto again;
1677 		}
1678 		prev = &n->m_next;
1679 	}
1680 	/*
1681 	 * No place where we can collapse to a cluster; punt.
1682 	 * This can occur if, for example, you request 2 frags
1683 	 * but the packet requires that both be clusters (we
1684 	 * never reallocate the first mbuf to avoid moving the
1685 	 * packet header).
1686 	 */
1687 bad:
1688 	return NULL;
1689 }
1690 
1691 #ifdef MBUF_STRESS_TEST
1692 
1693 /*
1694  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1695  * this in normal usage, but it's great for stress testing various
1696  * mbuf consumers.
1697  *
1698  * If fragmentation is not possible, the original chain will be
1699  * returned.
1700  *
1701  * Possible length values:
1702  * 0	 no fragmentation will occur
1703  * > 0	each fragment will be of the specified length
1704  * -1	each fragment will be the same random value in length
1705  * -2	each fragment's length will be entirely random
1706  * (Random values range from 1 to 256)
1707  */
1708 struct mbuf *
1709 m_fragment(struct mbuf *m0, int how, int length)
1710 {
1711 	struct mbuf *m_first, *m_last;
1712 	int divisor = 255, progress = 0, fraglen;
1713 
1714 	if (!(m0->m_flags & M_PKTHDR))
1715 		return (m0);
1716 
1717 	if (length == 0 || length < -2)
1718 		return (m0);
1719 	if (length > MCLBYTES)
1720 		length = MCLBYTES;
1721 	if (length < 0 && divisor > MCLBYTES)
1722 		divisor = MCLBYTES;
1723 	if (length == -1)
1724 		length = 1 + (arc4random() % divisor);
1725 	if (length > 0)
1726 		fraglen = length;
1727 
1728 	m_fixhdr(m0); /* Needed sanity check */
1729 
1730 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1731 	if (m_first == NULL)
1732 		goto nospace;
1733 
1734 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1735 		goto nospace;
1736 
1737 	m_last = m_first;
1738 
1739 	while (progress < m0->m_pkthdr.len) {
1740 		if (length == -2)
1741 			fraglen = 1 + (arc4random() % divisor);
1742 		if (fraglen > m0->m_pkthdr.len - progress)
1743 			fraglen = m0->m_pkthdr.len - progress;
1744 
1745 		if (progress != 0) {
1746 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1747 			if (m_new == NULL)
1748 				goto nospace;
1749 
1750 			m_last->m_next = m_new;
1751 			m_last = m_new;
1752 		}
1753 
1754 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1755 		progress += fraglen;
1756 		m_last->m_len = fraglen;
1757 	}
1758 	m_freem(m0);
1759 	m0 = m_first;
1760 	return (m0);
1761 nospace:
1762 	if (m_first)
1763 		m_freem(m_first);
1764 	/* Return the original chain on failure */
1765 	return (m0);
1766 }
1767 
1768 #endif
1769 
1770 /*
1771  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1772  * vm_page_alloc() and aren't associated with any object.  Complement
1773  * to allocator from m_uiotombuf_nomap().
1774  */
1775 void
1776 mb_free_mext_pgs(struct mbuf *m)
1777 {
1778 	vm_page_t pg;
1779 
1780 	M_ASSERTEXTPG(m);
1781 	for (int i = 0; i < m->m_epg_npgs; i++) {
1782 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1783 		vm_page_unwire_noq(pg);
1784 		vm_page_free(pg);
1785 	}
1786 }
1787 
1788 static struct mbuf *
1789 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1790 {
1791 	struct mbuf *m, *mb, *prev;
1792 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1793 	int error, length, i, needed;
1794 	ssize_t total;
1795 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
1796 
1797 	MPASS((flags & M_PKTHDR) == 0);
1798 	MPASS((how & M_ZERO) == 0);
1799 
1800 	/*
1801 	 * len can be zero or an arbitrary large value bound by
1802 	 * the total data supplied by the uio.
1803 	 */
1804 	if (len > 0)
1805 		total = MIN(uio->uio_resid, len);
1806 	else
1807 		total = uio->uio_resid;
1808 
1809 	if (maxseg == 0)
1810 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1811 
1812 	/*
1813 	 * If total is zero, return an empty mbuf.  This can occur
1814 	 * for TLS 1.0 connections which send empty fragments as
1815 	 * a countermeasure against the known-IV weakness in CBC
1816 	 * ciphersuites.
1817 	 */
1818 	if (__predict_false(total == 0)) {
1819 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1820 		if (mb == NULL)
1821 			return (NULL);
1822 		mb->m_epg_flags = EPG_FLAG_ANON;
1823 		return (mb);
1824 	}
1825 
1826 	/*
1827 	 * Allocate the pages
1828 	 */
1829 	m = NULL;
1830 	while (total > 0) {
1831 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1832 		if (mb == NULL)
1833 			goto failed;
1834 		if (m == NULL)
1835 			m = mb;
1836 		else
1837 			prev->m_next = mb;
1838 		prev = mb;
1839 		mb->m_epg_flags = EPG_FLAG_ANON;
1840 		needed = length = MIN(maxseg, total);
1841 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1842 retry_page:
1843 			pg_array[i] = vm_page_alloc_noobj(pflags);
1844 			if (pg_array[i] == NULL) {
1845 				if (how & M_NOWAIT) {
1846 					goto failed;
1847 				} else {
1848 					vm_wait(NULL);
1849 					goto retry_page;
1850 				}
1851 			}
1852 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1853 			mb->m_epg_npgs++;
1854 		}
1855 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1856 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1857 		total -= length;
1858 		error = uiomove_fromphys(pg_array, 0, length, uio);
1859 		if (error != 0)
1860 			goto failed;
1861 		mb->m_len = length;
1862 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1863 		if (flags & M_PKTHDR)
1864 			m->m_pkthdr.len += length;
1865 	}
1866 	return (m);
1867 
1868 failed:
1869 	m_freem(m);
1870 	return (NULL);
1871 }
1872 
1873 /*
1874  * Copy the contents of uio into a properly sized mbuf chain.
1875  */
1876 struct mbuf *
1877 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1878 {
1879 	struct mbuf *m, *mb;
1880 	int error, length;
1881 	ssize_t total;
1882 	int progress = 0;
1883 
1884 	if (flags & M_EXTPG)
1885 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1886 
1887 	/*
1888 	 * len can be zero or an arbitrary large value bound by
1889 	 * the total data supplied by the uio.
1890 	 */
1891 	if (len > 0)
1892 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1893 	else
1894 		total = uio->uio_resid;
1895 
1896 	/*
1897 	 * The smallest unit returned by m_getm2() is a single mbuf
1898 	 * with pkthdr.  We can't align past it.
1899 	 */
1900 	if (align >= MHLEN)
1901 		return (NULL);
1902 
1903 	/*
1904 	 * Give us the full allocation or nothing.
1905 	 * If len is zero return the smallest empty mbuf.
1906 	 */
1907 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1908 	if (m == NULL)
1909 		return (NULL);
1910 	m->m_data += align;
1911 
1912 	/* Fill all mbufs with uio data and update header information. */
1913 	for (mb = m; mb != NULL; mb = mb->m_next) {
1914 		length = min(M_TRAILINGSPACE(mb), total - progress);
1915 
1916 		error = uiomove(mtod(mb, void *), length, uio);
1917 		if (error) {
1918 			m_freem(m);
1919 			return (NULL);
1920 		}
1921 
1922 		mb->m_len = length;
1923 		progress += length;
1924 		if (flags & M_PKTHDR) {
1925 			m->m_pkthdr.len += length;
1926 			m->m_pkthdr.memlen += MSIZE;
1927 			if (mb->m_flags & M_EXT)
1928 				m->m_pkthdr.memlen += mb->m_ext.ext_size;
1929 		}
1930 	}
1931 	KASSERT(progress == total, ("%s: progress != total", __func__));
1932 
1933 	return (m);
1934 }
1935 
1936 /*
1937  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
1938  */
1939 int
1940 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
1941 {
1942 	vm_page_t pg;
1943 	int error, i, off, pglen, pgoff, seglen, segoff;
1944 
1945 	M_ASSERTEXTPG(m);
1946 	error = 0;
1947 
1948 	/* Skip over any data removed from the front. */
1949 	off = mtod(m, vm_offset_t);
1950 
1951 	off += m_off;
1952 	if (m->m_epg_hdrlen != 0) {
1953 		if (off >= m->m_epg_hdrlen) {
1954 			off -= m->m_epg_hdrlen;
1955 		} else {
1956 			seglen = m->m_epg_hdrlen - off;
1957 			segoff = off;
1958 			seglen = min(seglen, len);
1959 			off = 0;
1960 			len -= seglen;
1961 			error = uiomove(__DECONST(void *,
1962 			    &m->m_epg_hdr[segoff]), seglen, uio);
1963 		}
1964 	}
1965 	pgoff = m->m_epg_1st_off;
1966 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1967 		pglen = m_epg_pagelen(m, i, pgoff);
1968 		if (off >= pglen) {
1969 			off -= pglen;
1970 			pgoff = 0;
1971 			continue;
1972 		}
1973 		seglen = pglen - off;
1974 		segoff = pgoff + off;
1975 		off = 0;
1976 		seglen = min(seglen, len);
1977 		len -= seglen;
1978 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1979 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1980 		pgoff = 0;
1981 	};
1982 	if (len != 0 && error == 0) {
1983 		KASSERT((off + len) <= m->m_epg_trllen,
1984 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1985 		    m->m_epg_trllen, m_off));
1986 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1987 		    len, uio);
1988 	}
1989 	return (error);
1990 }
1991 
1992 /*
1993  * Copy an mbuf chain into a uio limited by len if set.
1994  */
1995 int
1996 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1997 {
1998 	int error, length, total;
1999 	int progress = 0;
2000 
2001 	if (len > 0)
2002 		total = min(uio->uio_resid, len);
2003 	else
2004 		total = uio->uio_resid;
2005 
2006 	/* Fill the uio with data from the mbufs. */
2007 	for (; m != NULL; m = m->m_next) {
2008 		length = min(m->m_len, total - progress);
2009 
2010 		if ((m->m_flags & M_EXTPG) != 0)
2011 			error = m_unmapped_uiomove(m, 0, uio, length);
2012 		else
2013 			error = uiomove(mtod(m, void *), length, uio);
2014 		if (error)
2015 			return (error);
2016 
2017 		progress += length;
2018 	}
2019 
2020 	return (0);
2021 }
2022 
2023 /*
2024  * Create a writable copy of the mbuf chain.  While doing this
2025  * we compact the chain with a goal of producing a chain with
2026  * at most two mbufs.  The second mbuf in this chain is likely
2027  * to be a cluster.  The primary purpose of this work is to create
2028  * a writable packet for encryption, compression, etc.  The
2029  * secondary goal is to linearize the data so the data can be
2030  * passed to crypto hardware in the most efficient manner possible.
2031  */
2032 struct mbuf *
2033 m_unshare(struct mbuf *m0, int how)
2034 {
2035 	struct mbuf *m, *mprev;
2036 	struct mbuf *n, *mfirst, *mlast;
2037 	int len, off;
2038 
2039 	mprev = NULL;
2040 	for (m = m0; m != NULL; m = mprev->m_next) {
2041 		/*
2042 		 * Regular mbufs are ignored unless there's a cluster
2043 		 * in front of it that we can use to coalesce.  We do
2044 		 * the latter mainly so later clusters can be coalesced
2045 		 * also w/o having to handle them specially (i.e. convert
2046 		 * mbuf+cluster -> cluster).  This optimization is heavily
2047 		 * influenced by the assumption that we're running over
2048 		 * Ethernet where MCLBYTES is large enough that the max
2049 		 * packet size will permit lots of coalescing into a
2050 		 * single cluster.  This in turn permits efficient
2051 		 * crypto operations, especially when using hardware.
2052 		 */
2053 		if ((m->m_flags & M_EXT) == 0) {
2054 			if (mprev && (mprev->m_flags & M_EXT) &&
2055 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
2056 				/* XXX: this ignores mbuf types */
2057 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2058 				    mtod(m, caddr_t), m->m_len);
2059 				mprev->m_len += m->m_len;
2060 				mprev->m_next = m->m_next;	/* unlink from chain */
2061 				m_free(m);			/* reclaim mbuf */
2062 			} else {
2063 				mprev = m;
2064 			}
2065 			continue;
2066 		}
2067 		/*
2068 		 * Writable mbufs are left alone (for now).
2069 		 */
2070 		if (M_WRITABLE(m)) {
2071 			mprev = m;
2072 			continue;
2073 		}
2074 
2075 		/*
2076 		 * Not writable, replace with a copy or coalesce with
2077 		 * the previous mbuf if possible (since we have to copy
2078 		 * it anyway, we try to reduce the number of mbufs and
2079 		 * clusters so that future work is easier).
2080 		 */
2081 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2082 		/* NB: we only coalesce into a cluster or larger */
2083 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2084 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2085 			/* XXX: this ignores mbuf types */
2086 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2087 			    mtod(m, caddr_t), m->m_len);
2088 			mprev->m_len += m->m_len;
2089 			mprev->m_next = m->m_next;	/* unlink from chain */
2090 			m_free(m);			/* reclaim mbuf */
2091 			continue;
2092 		}
2093 
2094 		/*
2095 		 * Allocate new space to hold the copy and copy the data.
2096 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
2097 		 * splitting them into clusters.  We could just malloc a
2098 		 * buffer and make it external but too many device drivers
2099 		 * don't know how to break up the non-contiguous memory when
2100 		 * doing DMA.
2101 		 */
2102 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2103 		if (n == NULL) {
2104 			m_freem(m0);
2105 			return (NULL);
2106 		}
2107 		if (m->m_flags & M_PKTHDR) {
2108 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
2109 			    __func__, m0, m));
2110 			m_move_pkthdr(n, m);
2111 		}
2112 		len = m->m_len;
2113 		off = 0;
2114 		mfirst = n;
2115 		mlast = NULL;
2116 		for (;;) {
2117 			int cc = min(len, MCLBYTES);
2118 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2119 			n->m_len = cc;
2120 			if (mlast != NULL)
2121 				mlast->m_next = n;
2122 			mlast = n;
2123 #if 0
2124 			newipsecstat.ips_clcopied++;
2125 #endif
2126 
2127 			len -= cc;
2128 			if (len <= 0)
2129 				break;
2130 			off += cc;
2131 
2132 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2133 			if (n == NULL) {
2134 				m_freem(mfirst);
2135 				m_freem(m0);
2136 				return (NULL);
2137 			}
2138 		}
2139 		n->m_next = m->m_next;
2140 		if (mprev == NULL)
2141 			m0 = mfirst;		/* new head of chain */
2142 		else
2143 			mprev->m_next = mfirst;	/* replace old mbuf */
2144 		m_free(m);			/* release old mbuf */
2145 		mprev = mfirst;
2146 	}
2147 	return (m0);
2148 }
2149 
2150 #ifdef MBUF_PROFILING
2151 
2152 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2153 struct mbufprofile {
2154 	uintmax_t wasted[MP_BUCKETS];
2155 	uintmax_t used[MP_BUCKETS];
2156 	uintmax_t segments[MP_BUCKETS];
2157 } mbprof;
2158 
2159 void
2160 m_profile(struct mbuf *m)
2161 {
2162 	int segments = 0;
2163 	int used = 0;
2164 	int wasted = 0;
2165 
2166 	while (m) {
2167 		segments++;
2168 		used += m->m_len;
2169 		if (m->m_flags & M_EXT) {
2170 			wasted += MHLEN - sizeof(m->m_ext) +
2171 			    m->m_ext.ext_size - m->m_len;
2172 		} else {
2173 			if (m->m_flags & M_PKTHDR)
2174 				wasted += MHLEN - m->m_len;
2175 			else
2176 				wasted += MLEN - m->m_len;
2177 		}
2178 		m = m->m_next;
2179 	}
2180 	/* be paranoid.. it helps */
2181 	if (segments > MP_BUCKETS - 1)
2182 		segments = MP_BUCKETS - 1;
2183 	if (used > 100000)
2184 		used = 100000;
2185 	if (wasted > 100000)
2186 		wasted = 100000;
2187 	/* store in the appropriate bucket */
2188 	/* don't bother locking. if it's slightly off, so what? */
2189 	mbprof.segments[segments]++;
2190 	mbprof.used[fls(used)]++;
2191 	mbprof.wasted[fls(wasted)]++;
2192 }
2193 
2194 static int
2195 mbprof_handler(SYSCTL_HANDLER_ARGS)
2196 {
2197 	char buf[256];
2198 	struct sbuf sb;
2199 	int error;
2200 	uint64_t *p;
2201 
2202 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
2203 
2204 	p = &mbprof.wasted[0];
2205 	sbuf_printf(&sb,
2206 	    "wasted:\n"
2207 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2208 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2209 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2210 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2211 #ifdef BIG_ARRAY
2212 	p = &mbprof.wasted[16];
2213 	sbuf_printf(&sb,
2214 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2215 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2216 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2217 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2218 #endif
2219 	p = &mbprof.used[0];
2220 	sbuf_printf(&sb,
2221 	    "used:\n"
2222 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2223 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2224 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2225 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2226 #ifdef BIG_ARRAY
2227 	p = &mbprof.used[16];
2228 	sbuf_printf(&sb,
2229 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2230 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2231 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2232 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2233 #endif
2234 	p = &mbprof.segments[0];
2235 	sbuf_printf(&sb,
2236 	    "segments:\n"
2237 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2238 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2239 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2240 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2241 #ifdef BIG_ARRAY
2242 	p = &mbprof.segments[16];
2243 	sbuf_printf(&sb,
2244 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2245 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2246 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2247 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2248 #endif
2249 
2250 	error = sbuf_finish(&sb);
2251 	sbuf_delete(&sb);
2252 	return (error);
2253 }
2254 
2255 static int
2256 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2257 {
2258 	int clear, error;
2259 
2260 	clear = 0;
2261 	error = sysctl_handle_int(oidp, &clear, 0, req);
2262 	if (error || !req->newptr)
2263 		return (error);
2264 
2265 	if (clear) {
2266 		bzero(&mbprof, sizeof(mbprof));
2267 	}
2268 
2269 	return (error);
2270 }
2271 
2272 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2273     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2274     mbprof_handler, "A",
2275     "mbuf profiling statistics");
2276 
2277 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2278     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
2279     mbprof_clr_handler, "I",
2280     "clear mbuf profiling statistics");
2281 #endif
2282