xref: /freebsd/sys/kern/uipc_sockbuf.c (revision a0ee8cc6)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 
37 #include <sys/param.h>
38 #include <sys/aio.h> /* for aio_swake proto */
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sx.h>
50 #include <sys/sysctl.h>
51 
52 /*
53  * Function pointer set by the AIO routines so that the socket buffer code
54  * can call back into the AIO module if it is loaded.
55  */
56 void	(*aio_swake)(struct socket *, struct sockbuf *);
57 
58 /*
59  * Primitive routines for operating on socket buffers
60  */
61 
62 u_long	sb_max = SB_MAX;
63 u_long sb_max_adj =
64        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
65 
66 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67 
68 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
69 static void	sbflush_internal(struct sockbuf *sb);
70 
71 /*
72  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
73  */
74 static void
75 sbm_clrprotoflags(struct mbuf *m, int flags)
76 {
77 	int mask;
78 
79 	mask = ~M_PROTOFLAGS;
80 	if (flags & PRUS_NOTREADY)
81 		mask |= M_NOTREADY;
82 	while (m) {
83 		m->m_flags &= mask;
84 		m = m->m_next;
85 	}
86 }
87 
88 /*
89  * Mark ready "count" mbufs starting with "m".
90  */
91 int
92 sbready(struct sockbuf *sb, struct mbuf *m, int count)
93 {
94 	u_int blocker;
95 
96 	SOCKBUF_LOCK_ASSERT(sb);
97 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
98 
99 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
100 
101 	for (int i = 0; i < count; i++, m = m->m_next) {
102 		KASSERT(m->m_flags & M_NOTREADY,
103 		    ("%s: m %p !M_NOTREADY", __func__, m));
104 		m->m_flags &= ~(M_NOTREADY | blocker);
105 		if (blocker)
106 			sb->sb_acc += m->m_len;
107 	}
108 
109 	if (!blocker)
110 		return (EINPROGRESS);
111 
112 	/* This one was blocking all the queue. */
113 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
114 		KASSERT(m->m_flags & M_BLOCKED,
115 		    ("%s: m %p !M_BLOCKED", __func__, m));
116 		m->m_flags &= ~M_BLOCKED;
117 		sb->sb_acc += m->m_len;
118 	}
119 
120 	sb->sb_fnrdy = m;
121 
122 	return (0);
123 }
124 
125 /*
126  * Adjust sockbuf state reflecting allocation of m.
127  */
128 void
129 sballoc(struct sockbuf *sb, struct mbuf *m)
130 {
131 
132 	SOCKBUF_LOCK_ASSERT(sb);
133 
134 	sb->sb_ccc += m->m_len;
135 
136 	if (sb->sb_fnrdy == NULL) {
137 		if (m->m_flags & M_NOTREADY)
138 			sb->sb_fnrdy = m;
139 		else
140 			sb->sb_acc += m->m_len;
141 	} else
142 		m->m_flags |= M_BLOCKED;
143 
144 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
145 		sb->sb_ctl += m->m_len;
146 
147 	sb->sb_mbcnt += MSIZE;
148 	sb->sb_mcnt += 1;
149 
150 	if (m->m_flags & M_EXT) {
151 		sb->sb_mbcnt += m->m_ext.ext_size;
152 		sb->sb_ccnt += 1;
153 	}
154 }
155 
156 /*
157  * Adjust sockbuf state reflecting freeing of m.
158  */
159 void
160 sbfree(struct sockbuf *sb, struct mbuf *m)
161 {
162 
163 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
164 	SOCKBUF_LOCK_ASSERT(sb);
165 #endif
166 
167 	sb->sb_ccc -= m->m_len;
168 
169 	if (!(m->m_flags & M_NOTAVAIL))
170 		sb->sb_acc -= m->m_len;
171 
172 	if (m == sb->sb_fnrdy) {
173 		struct mbuf *n;
174 
175 		KASSERT(m->m_flags & M_NOTREADY,
176 		    ("%s: m %p !M_NOTREADY", __func__, m));
177 
178 		n = m->m_next;
179 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
180 			n->m_flags &= ~M_BLOCKED;
181 			sb->sb_acc += n->m_len;
182 			n = n->m_next;
183 		}
184 		sb->sb_fnrdy = n;
185 	}
186 
187 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
188 		sb->sb_ctl -= m->m_len;
189 
190 	sb->sb_mbcnt -= MSIZE;
191 	sb->sb_mcnt -= 1;
192 	if (m->m_flags & M_EXT) {
193 		sb->sb_mbcnt -= m->m_ext.ext_size;
194 		sb->sb_ccnt -= 1;
195 	}
196 
197 	if (sb->sb_sndptr == m) {
198 		sb->sb_sndptr = NULL;
199 		sb->sb_sndptroff = 0;
200 	}
201 	if (sb->sb_sndptroff != 0)
202 		sb->sb_sndptroff -= m->m_len;
203 }
204 
205 /*
206  * Socantsendmore indicates that no more data will be sent on the socket; it
207  * would normally be applied to a socket when the user informs the system
208  * that no more data is to be sent, by the protocol code (in case
209  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
210  * received, and will normally be applied to the socket by a protocol when it
211  * detects that the peer will send no more data.  Data queued for reading in
212  * the socket may yet be read.
213  */
214 void
215 socantsendmore_locked(struct socket *so)
216 {
217 
218 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
219 
220 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
221 	sowwakeup_locked(so);
222 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
223 }
224 
225 void
226 socantsendmore(struct socket *so)
227 {
228 
229 	SOCKBUF_LOCK(&so->so_snd);
230 	socantsendmore_locked(so);
231 	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
232 }
233 
234 void
235 socantrcvmore_locked(struct socket *so)
236 {
237 
238 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
239 
240 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
241 	sorwakeup_locked(so);
242 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
243 }
244 
245 void
246 socantrcvmore(struct socket *so)
247 {
248 
249 	SOCKBUF_LOCK(&so->so_rcv);
250 	socantrcvmore_locked(so);
251 	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
252 }
253 
254 /*
255  * Wait for data to arrive at/drain from a socket buffer.
256  */
257 int
258 sbwait(struct sockbuf *sb)
259 {
260 
261 	SOCKBUF_LOCK_ASSERT(sb);
262 
263 	sb->sb_flags |= SB_WAIT;
264 	return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
265 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
266 	    sb->sb_timeo, 0, 0));
267 }
268 
269 int
270 sblock(struct sockbuf *sb, int flags)
271 {
272 
273 	KASSERT((flags & SBL_VALID) == flags,
274 	    ("sblock: flags invalid (0x%x)", flags));
275 
276 	if (flags & SBL_WAIT) {
277 		if ((sb->sb_flags & SB_NOINTR) ||
278 		    (flags & SBL_NOINTR)) {
279 			sx_xlock(&sb->sb_sx);
280 			return (0);
281 		}
282 		return (sx_xlock_sig(&sb->sb_sx));
283 	} else {
284 		if (sx_try_xlock(&sb->sb_sx) == 0)
285 			return (EWOULDBLOCK);
286 		return (0);
287 	}
288 }
289 
290 void
291 sbunlock(struct sockbuf *sb)
292 {
293 
294 	sx_xunlock(&sb->sb_sx);
295 }
296 
297 /*
298  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
299  * via SIGIO if the socket has the SS_ASYNC flag set.
300  *
301  * Called with the socket buffer lock held; will release the lock by the end
302  * of the function.  This allows the caller to acquire the socket buffer lock
303  * while testing for the need for various sorts of wakeup and hold it through
304  * to the point where it's no longer required.  We currently hold the lock
305  * through calls out to other subsystems (with the exception of kqueue), and
306  * then release it to avoid lock order issues.  It's not clear that's
307  * correct.
308  */
309 void
310 sowakeup(struct socket *so, struct sockbuf *sb)
311 {
312 	int ret;
313 
314 	SOCKBUF_LOCK_ASSERT(sb);
315 
316 	selwakeuppri(&sb->sb_sel, PSOCK);
317 	if (!SEL_WAITING(&sb->sb_sel))
318 		sb->sb_flags &= ~SB_SEL;
319 	if (sb->sb_flags & SB_WAIT) {
320 		sb->sb_flags &= ~SB_WAIT;
321 		wakeup(&sb->sb_acc);
322 	}
323 	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
324 	if (sb->sb_upcall != NULL) {
325 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
326 		if (ret == SU_ISCONNECTED) {
327 			KASSERT(sb == &so->so_rcv,
328 			    ("SO_SND upcall returned SU_ISCONNECTED"));
329 			soupcall_clear(so, SO_RCV);
330 		}
331 	} else
332 		ret = SU_OK;
333 	if (sb->sb_flags & SB_AIO)
334 		aio_swake(so, sb);
335 	SOCKBUF_UNLOCK(sb);
336 	if (ret == SU_ISCONNECTED)
337 		soisconnected(so);
338 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
339 		pgsigio(&so->so_sigio, SIGIO, 0);
340 	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
341 }
342 
343 /*
344  * Socket buffer (struct sockbuf) utility routines.
345  *
346  * Each socket contains two socket buffers: one for sending data and one for
347  * receiving data.  Each buffer contains a queue of mbufs, information about
348  * the number of mbufs and amount of data in the queue, and other fields
349  * allowing select() statements and notification on data availability to be
350  * implemented.
351  *
352  * Data stored in a socket buffer is maintained as a list of records.  Each
353  * record is a list of mbufs chained together with the m_next field.  Records
354  * are chained together with the m_nextpkt field. The upper level routine
355  * soreceive() expects the following conventions to be observed when placing
356  * information in the receive buffer:
357  *
358  * 1. If the protocol requires each message be preceded by the sender's name,
359  *    then a record containing that name must be present before any
360  *    associated data (mbuf's must be of type MT_SONAME).
361  * 2. If the protocol supports the exchange of ``access rights'' (really just
362  *    additional data associated with the message), and there are ``rights''
363  *    to be received, then a record containing this data should be present
364  *    (mbuf's must be of type MT_RIGHTS).
365  * 3. If a name or rights record exists, then it must be followed by a data
366  *    record, perhaps of zero length.
367  *
368  * Before using a new socket structure it is first necessary to reserve
369  * buffer space to the socket, by calling sbreserve().  This should commit
370  * some of the available buffer space in the system buffer pool for the
371  * socket (currently, it does nothing but enforce limits).  The space should
372  * be released by calling sbrelease() when the socket is destroyed.
373  */
374 int
375 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
376 {
377 	struct thread *td = curthread;
378 
379 	SOCKBUF_LOCK(&so->so_snd);
380 	SOCKBUF_LOCK(&so->so_rcv);
381 	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
382 		goto bad;
383 	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
384 		goto bad2;
385 	if (so->so_rcv.sb_lowat == 0)
386 		so->so_rcv.sb_lowat = 1;
387 	if (so->so_snd.sb_lowat == 0)
388 		so->so_snd.sb_lowat = MCLBYTES;
389 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
390 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
391 	SOCKBUF_UNLOCK(&so->so_rcv);
392 	SOCKBUF_UNLOCK(&so->so_snd);
393 	return (0);
394 bad2:
395 	sbrelease_locked(&so->so_snd, so);
396 bad:
397 	SOCKBUF_UNLOCK(&so->so_rcv);
398 	SOCKBUF_UNLOCK(&so->so_snd);
399 	return (ENOBUFS);
400 }
401 
402 static int
403 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
404 {
405 	int error = 0;
406 	u_long tmp_sb_max = sb_max;
407 
408 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
409 	if (error || !req->newptr)
410 		return (error);
411 	if (tmp_sb_max < MSIZE + MCLBYTES)
412 		return (EINVAL);
413 	sb_max = tmp_sb_max;
414 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
415 	return (0);
416 }
417 
418 /*
419  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
420  * become limiting if buffering efficiency is near the normal case.
421  */
422 int
423 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
424     struct thread *td)
425 {
426 	rlim_t sbsize_limit;
427 
428 	SOCKBUF_LOCK_ASSERT(sb);
429 
430 	/*
431 	 * When a thread is passed, we take into account the thread's socket
432 	 * buffer size limit.  The caller will generally pass curthread, but
433 	 * in the TCP input path, NULL will be passed to indicate that no
434 	 * appropriate thread resource limits are available.  In that case,
435 	 * we don't apply a process limit.
436 	 */
437 	if (cc > sb_max_adj)
438 		return (0);
439 	if (td != NULL) {
440 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
441 	} else
442 		sbsize_limit = RLIM_INFINITY;
443 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
444 	    sbsize_limit))
445 		return (0);
446 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
447 	if (sb->sb_lowat > sb->sb_hiwat)
448 		sb->sb_lowat = sb->sb_hiwat;
449 	return (1);
450 }
451 
452 int
453 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
454     struct thread *td)
455 {
456 	int error;
457 
458 	SOCKBUF_LOCK(sb);
459 	error = sbreserve_locked(sb, cc, so, td);
460 	SOCKBUF_UNLOCK(sb);
461 	return (error);
462 }
463 
464 /*
465  * Free mbufs held by a socket, and reserved mbuf space.
466  */
467 void
468 sbrelease_internal(struct sockbuf *sb, struct socket *so)
469 {
470 
471 	sbflush_internal(sb);
472 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
473 	    RLIM_INFINITY);
474 	sb->sb_mbmax = 0;
475 }
476 
477 void
478 sbrelease_locked(struct sockbuf *sb, struct socket *so)
479 {
480 
481 	SOCKBUF_LOCK_ASSERT(sb);
482 
483 	sbrelease_internal(sb, so);
484 }
485 
486 void
487 sbrelease(struct sockbuf *sb, struct socket *so)
488 {
489 
490 	SOCKBUF_LOCK(sb);
491 	sbrelease_locked(sb, so);
492 	SOCKBUF_UNLOCK(sb);
493 }
494 
495 void
496 sbdestroy(struct sockbuf *sb, struct socket *so)
497 {
498 
499 	sbrelease_internal(sb, so);
500 }
501 
502 /*
503  * Routines to add and remove data from an mbuf queue.
504  *
505  * The routines sbappend() or sbappendrecord() are normally called to append
506  * new mbufs to a socket buffer, after checking that adequate space is
507  * available, comparing the function sbspace() with the amount of data to be
508  * added.  sbappendrecord() differs from sbappend() in that data supplied is
509  * treated as the beginning of a new record.  To place a sender's address,
510  * optional access rights, and data in a socket receive buffer,
511  * sbappendaddr() should be used.  To place access rights and data in a
512  * socket receive buffer, sbappendrights() should be used.  In either case,
513  * the new data begins a new record.  Note that unlike sbappend() and
514  * sbappendrecord(), these routines check for the caller that there will be
515  * enough space to store the data.  Each fails if there is not enough space,
516  * or if it cannot find mbufs to store additional information in.
517  *
518  * Reliable protocols may use the socket send buffer to hold data awaiting
519  * acknowledgement.  Data is normally copied from a socket send buffer in a
520  * protocol with m_copy for output to a peer, and then removing the data from
521  * the socket buffer with sbdrop() or sbdroprecord() when the data is
522  * acknowledged by the peer.
523  */
524 #ifdef SOCKBUF_DEBUG
525 void
526 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
527 {
528 	struct mbuf *m = sb->sb_mb;
529 
530 	SOCKBUF_LOCK_ASSERT(sb);
531 
532 	while (m && m->m_nextpkt)
533 		m = m->m_nextpkt;
534 
535 	if (m != sb->sb_lastrecord) {
536 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
537 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
538 		printf("packet chain:\n");
539 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
540 			printf("\t%p\n", m);
541 		panic("%s from %s:%u", __func__, file, line);
542 	}
543 }
544 
545 void
546 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
547 {
548 	struct mbuf *m = sb->sb_mb;
549 	struct mbuf *n;
550 
551 	SOCKBUF_LOCK_ASSERT(sb);
552 
553 	while (m && m->m_nextpkt)
554 		m = m->m_nextpkt;
555 
556 	while (m && m->m_next)
557 		m = m->m_next;
558 
559 	if (m != sb->sb_mbtail) {
560 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
561 			__func__, sb->sb_mb, sb->sb_mbtail, m);
562 		printf("packet tree:\n");
563 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
564 			printf("\t");
565 			for (n = m; n != NULL; n = n->m_next)
566 				printf("%p ", n);
567 			printf("\n");
568 		}
569 		panic("%s from %s:%u", __func__, file, line);
570 	}
571 }
572 #endif /* SOCKBUF_DEBUG */
573 
574 #define SBLINKRECORD(sb, m0) do {					\
575 	SOCKBUF_LOCK_ASSERT(sb);					\
576 	if ((sb)->sb_lastrecord != NULL)				\
577 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
578 	else								\
579 		(sb)->sb_mb = (m0);					\
580 	(sb)->sb_lastrecord = (m0);					\
581 } while (/*CONSTCOND*/0)
582 
583 /*
584  * Append mbuf chain m to the last record in the socket buffer sb.  The
585  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
586  * are discarded and mbufs are compacted where possible.
587  */
588 void
589 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
590 {
591 	struct mbuf *n;
592 
593 	SOCKBUF_LOCK_ASSERT(sb);
594 
595 	if (m == 0)
596 		return;
597 	sbm_clrprotoflags(m, flags);
598 	SBLASTRECORDCHK(sb);
599 	n = sb->sb_mb;
600 	if (n) {
601 		while (n->m_nextpkt)
602 			n = n->m_nextpkt;
603 		do {
604 			if (n->m_flags & M_EOR) {
605 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
606 				return;
607 			}
608 		} while (n->m_next && (n = n->m_next));
609 	} else {
610 		/*
611 		 * XXX Would like to simply use sb_mbtail here, but
612 		 * XXX I need to verify that I won't miss an EOR that
613 		 * XXX way.
614 		 */
615 		if ((n = sb->sb_lastrecord) != NULL) {
616 			do {
617 				if (n->m_flags & M_EOR) {
618 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
619 					return;
620 				}
621 			} while (n->m_next && (n = n->m_next));
622 		} else {
623 			/*
624 			 * If this is the first record in the socket buffer,
625 			 * it's also the last record.
626 			 */
627 			sb->sb_lastrecord = m;
628 		}
629 	}
630 	sbcompress(sb, m, n);
631 	SBLASTRECORDCHK(sb);
632 }
633 
634 /*
635  * Append mbuf chain m to the last record in the socket buffer sb.  The
636  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
637  * are discarded and mbufs are compacted where possible.
638  */
639 void
640 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
641 {
642 
643 	SOCKBUF_LOCK(sb);
644 	sbappend_locked(sb, m, flags);
645 	SOCKBUF_UNLOCK(sb);
646 }
647 
648 /*
649  * This version of sbappend() should only be used when the caller absolutely
650  * knows that there will never be more than one record in the socket buffer,
651  * that is, a stream protocol (such as TCP).
652  */
653 void
654 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
655 {
656 	SOCKBUF_LOCK_ASSERT(sb);
657 
658 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
659 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
660 
661 	SBLASTMBUFCHK(sb);
662 
663 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
664 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
665 
666 	sbcompress(sb, m, sb->sb_mbtail);
667 
668 	sb->sb_lastrecord = sb->sb_mb;
669 	SBLASTRECORDCHK(sb);
670 }
671 
672 /*
673  * This version of sbappend() should only be used when the caller absolutely
674  * knows that there will never be more than one record in the socket buffer,
675  * that is, a stream protocol (such as TCP).
676  */
677 void
678 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
679 {
680 
681 	SOCKBUF_LOCK(sb);
682 	sbappendstream_locked(sb, m, flags);
683 	SOCKBUF_UNLOCK(sb);
684 }
685 
686 #ifdef SOCKBUF_DEBUG
687 void
688 sbcheck(struct sockbuf *sb, const char *file, int line)
689 {
690 	struct mbuf *m, *n, *fnrdy;
691 	u_long acc, ccc, mbcnt;
692 
693 	SOCKBUF_LOCK_ASSERT(sb);
694 
695 	acc = ccc = mbcnt = 0;
696 	fnrdy = NULL;
697 
698 	for (m = sb->sb_mb; m; m = n) {
699 	    n = m->m_nextpkt;
700 	    for (; m; m = m->m_next) {
701 		if (m->m_len == 0) {
702 			printf("sb %p empty mbuf %p\n", sb, m);
703 			goto fail;
704 		}
705 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
706 			if (m != sb->sb_fnrdy) {
707 				printf("sb %p: fnrdy %p != m %p\n",
708 				    sb, sb->sb_fnrdy, m);
709 				goto fail;
710 			}
711 			fnrdy = m;
712 		}
713 		if (fnrdy) {
714 			if (!(m->m_flags & M_NOTAVAIL)) {
715 				printf("sb %p: fnrdy %p, m %p is avail\n",
716 				    sb, sb->sb_fnrdy, m);
717 				goto fail;
718 			}
719 		} else
720 			acc += m->m_len;
721 		ccc += m->m_len;
722 		mbcnt += MSIZE;
723 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
724 			mbcnt += m->m_ext.ext_size;
725 	    }
726 	}
727 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
728 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
729 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
730 		goto fail;
731 	}
732 	return;
733 fail:
734 	panic("%s from %s:%u", __func__, file, line);
735 }
736 #endif
737 
738 /*
739  * As above, except the mbuf chain begins a new record.
740  */
741 void
742 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
743 {
744 	struct mbuf *m;
745 
746 	SOCKBUF_LOCK_ASSERT(sb);
747 
748 	if (m0 == 0)
749 		return;
750 	m_clrprotoflags(m0);
751 	/*
752 	 * Put the first mbuf on the queue.  Note this permits zero length
753 	 * records.
754 	 */
755 	sballoc(sb, m0);
756 	SBLASTRECORDCHK(sb);
757 	SBLINKRECORD(sb, m0);
758 	sb->sb_mbtail = m0;
759 	m = m0->m_next;
760 	m0->m_next = 0;
761 	if (m && (m0->m_flags & M_EOR)) {
762 		m0->m_flags &= ~M_EOR;
763 		m->m_flags |= M_EOR;
764 	}
765 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
766 	sbcompress(sb, m, m0);
767 }
768 
769 /*
770  * As above, except the mbuf chain begins a new record.
771  */
772 void
773 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
774 {
775 
776 	SOCKBUF_LOCK(sb);
777 	sbappendrecord_locked(sb, m0);
778 	SOCKBUF_UNLOCK(sb);
779 }
780 
781 /* Helper routine that appends data, control, and address to a sockbuf. */
782 static int
783 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
784     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
785 {
786 	struct mbuf *m, *n, *nlast;
787 #if MSIZE <= 256
788 	if (asa->sa_len > MLEN)
789 		return (0);
790 #endif
791 	m = m_get(M_NOWAIT, MT_SONAME);
792 	if (m == NULL)
793 		return (0);
794 	m->m_len = asa->sa_len;
795 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
796 	if (m0)
797 		m_clrprotoflags(m0);
798 	if (ctrl_last)
799 		ctrl_last->m_next = m0;	/* concatenate data to control */
800 	else
801 		control = m0;
802 	m->m_next = control;
803 	for (n = m; n->m_next != NULL; n = n->m_next)
804 		sballoc(sb, n);
805 	sballoc(sb, n);
806 	nlast = n;
807 	SBLINKRECORD(sb, m);
808 
809 	sb->sb_mbtail = nlast;
810 	SBLASTMBUFCHK(sb);
811 
812 	SBLASTRECORDCHK(sb);
813 	return (1);
814 }
815 
816 /*
817  * Append address and data, and optionally, control (ancillary) data to the
818  * receive queue of a socket.  If present, m0 must include a packet header
819  * with total length.  Returns 0 if no space in sockbuf or insufficient
820  * mbufs.
821  */
822 int
823 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
824     struct mbuf *m0, struct mbuf *control)
825 {
826 	struct mbuf *ctrl_last;
827 	int space = asa->sa_len;
828 
829 	SOCKBUF_LOCK_ASSERT(sb);
830 
831 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
832 		panic("sbappendaddr_locked");
833 	if (m0)
834 		space += m0->m_pkthdr.len;
835 	space += m_length(control, &ctrl_last);
836 
837 	if (space > sbspace(sb))
838 		return (0);
839 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
840 }
841 
842 /*
843  * Append address and data, and optionally, control (ancillary) data to the
844  * receive queue of a socket.  If present, m0 must include a packet header
845  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
846  * on the receiving sockbuf.
847  */
848 int
849 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
850     struct mbuf *m0, struct mbuf *control)
851 {
852 	struct mbuf *ctrl_last;
853 
854 	SOCKBUF_LOCK_ASSERT(sb);
855 
856 	ctrl_last = (control == NULL) ? NULL : m_last(control);
857 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
858 }
859 
860 /*
861  * Append address and data, and optionally, control (ancillary) data to the
862  * receive queue of a socket.  If present, m0 must include a packet header
863  * with total length.  Returns 0 if no space in sockbuf or insufficient
864  * mbufs.
865  */
866 int
867 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
868     struct mbuf *m0, struct mbuf *control)
869 {
870 	int retval;
871 
872 	SOCKBUF_LOCK(sb);
873 	retval = sbappendaddr_locked(sb, asa, m0, control);
874 	SOCKBUF_UNLOCK(sb);
875 	return (retval);
876 }
877 
878 int
879 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
880     struct mbuf *control)
881 {
882 	struct mbuf *m, *n, *mlast;
883 	int space;
884 
885 	SOCKBUF_LOCK_ASSERT(sb);
886 
887 	if (control == 0)
888 		panic("sbappendcontrol_locked");
889 	space = m_length(control, &n) + m_length(m0, NULL);
890 
891 	if (space > sbspace(sb))
892 		return (0);
893 	m_clrprotoflags(m0);
894 	n->m_next = m0;			/* concatenate data to control */
895 
896 	SBLASTRECORDCHK(sb);
897 
898 	for (m = control; m->m_next; m = m->m_next)
899 		sballoc(sb, m);
900 	sballoc(sb, m);
901 	mlast = m;
902 	SBLINKRECORD(sb, control);
903 
904 	sb->sb_mbtail = mlast;
905 	SBLASTMBUFCHK(sb);
906 
907 	SBLASTRECORDCHK(sb);
908 	return (1);
909 }
910 
911 int
912 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
913 {
914 	int retval;
915 
916 	SOCKBUF_LOCK(sb);
917 	retval = sbappendcontrol_locked(sb, m0, control);
918 	SOCKBUF_UNLOCK(sb);
919 	return (retval);
920 }
921 
922 /*
923  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
924  * (n).  If (n) is NULL, the buffer is presumed empty.
925  *
926  * When the data is compressed, mbufs in the chain may be handled in one of
927  * three ways:
928  *
929  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
930  *     record boundary, and no change in data type).
931  *
932  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
933  *     an mbuf already in the socket buffer.  This can occur if an
934  *     appropriate mbuf exists, there is room, both mbufs are not marked as
935  *     not ready, and no merging of data types will occur.
936  *
937  * (3) The mbuf may be appended to the end of the existing mbuf chain.
938  *
939  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
940  * end-of-record.
941  */
942 void
943 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
944 {
945 	int eor = 0;
946 	struct mbuf *o;
947 
948 	SOCKBUF_LOCK_ASSERT(sb);
949 
950 	while (m) {
951 		eor |= m->m_flags & M_EOR;
952 		if (m->m_len == 0 &&
953 		    (eor == 0 ||
954 		     (((o = m->m_next) || (o = n)) &&
955 		      o->m_type == m->m_type))) {
956 			if (sb->sb_lastrecord == m)
957 				sb->sb_lastrecord = m->m_next;
958 			m = m_free(m);
959 			continue;
960 		}
961 		if (n && (n->m_flags & M_EOR) == 0 &&
962 		    M_WRITABLE(n) &&
963 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
964 		    !(m->m_flags & M_NOTREADY) &&
965 		    !(n->m_flags & M_NOTREADY) &&
966 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
967 		    m->m_len <= M_TRAILINGSPACE(n) &&
968 		    n->m_type == m->m_type) {
969 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
970 			    (unsigned)m->m_len);
971 			n->m_len += m->m_len;
972 			sb->sb_ccc += m->m_len;
973 			if (sb->sb_fnrdy == NULL)
974 				sb->sb_acc += m->m_len;
975 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
976 				/* XXX: Probably don't need.*/
977 				sb->sb_ctl += m->m_len;
978 			m = m_free(m);
979 			continue;
980 		}
981 		if (n)
982 			n->m_next = m;
983 		else
984 			sb->sb_mb = m;
985 		sb->sb_mbtail = m;
986 		sballoc(sb, m);
987 		n = m;
988 		m->m_flags &= ~M_EOR;
989 		m = m->m_next;
990 		n->m_next = 0;
991 	}
992 	if (eor) {
993 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
994 		n->m_flags |= eor;
995 	}
996 	SBLASTMBUFCHK(sb);
997 }
998 
999 /*
1000  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1001  */
1002 static void
1003 sbflush_internal(struct sockbuf *sb)
1004 {
1005 
1006 	while (sb->sb_mbcnt) {
1007 		/*
1008 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1009 		 * we would loop forever. Panic instead.
1010 		 */
1011 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1012 			break;
1013 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1014 	}
1015 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1016 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1017 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1018 }
1019 
1020 void
1021 sbflush_locked(struct sockbuf *sb)
1022 {
1023 
1024 	SOCKBUF_LOCK_ASSERT(sb);
1025 	sbflush_internal(sb);
1026 }
1027 
1028 void
1029 sbflush(struct sockbuf *sb)
1030 {
1031 
1032 	SOCKBUF_LOCK(sb);
1033 	sbflush_locked(sb);
1034 	SOCKBUF_UNLOCK(sb);
1035 }
1036 
1037 /*
1038  * Cut data from (the front of) a sockbuf.
1039  */
1040 static struct mbuf *
1041 sbcut_internal(struct sockbuf *sb, int len)
1042 {
1043 	struct mbuf *m, *next, *mfree;
1044 
1045 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1046 	mfree = NULL;
1047 
1048 	while (len > 0) {
1049 		if (m == NULL) {
1050 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1051 			m = next;
1052 			next = m->m_nextpkt;
1053 		}
1054 		if (m->m_len > len) {
1055 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1056 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1057 			m->m_len -= len;
1058 			m->m_data += len;
1059 			sb->sb_ccc -= len;
1060 			sb->sb_acc -= len;
1061 			if (sb->sb_sndptroff != 0)
1062 				sb->sb_sndptroff -= len;
1063 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1064 				sb->sb_ctl -= len;
1065 			break;
1066 		}
1067 		len -= m->m_len;
1068 		sbfree(sb, m);
1069 		/*
1070 		 * Do not put M_NOTREADY buffers to the free list, they
1071 		 * are referenced from outside.
1072 		 */
1073 		if (m->m_flags & M_NOTREADY)
1074 			m = m->m_next;
1075 		else {
1076 			struct mbuf *n;
1077 
1078 			n = m->m_next;
1079 			m->m_next = mfree;
1080 			mfree = m;
1081 			m = n;
1082 		}
1083 	}
1084 	/*
1085 	 * Free any zero-length mbufs from the buffer.
1086 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1087 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1088 	 * when sosend_generic() needs to send only control data.
1089 	 */
1090 	while (m && m->m_len == 0) {
1091 		struct mbuf *n;
1092 
1093 		sbfree(sb, m);
1094 		n = m->m_next;
1095 		m->m_next = mfree;
1096 		mfree = m;
1097 		m = n;
1098 	}
1099 	if (m) {
1100 		sb->sb_mb = m;
1101 		m->m_nextpkt = next;
1102 	} else
1103 		sb->sb_mb = next;
1104 	/*
1105 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1106 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1107 	 */
1108 	m = sb->sb_mb;
1109 	if (m == NULL) {
1110 		sb->sb_mbtail = NULL;
1111 		sb->sb_lastrecord = NULL;
1112 	} else if (m->m_nextpkt == NULL) {
1113 		sb->sb_lastrecord = m;
1114 	}
1115 
1116 	return (mfree);
1117 }
1118 
1119 /*
1120  * Drop data from (the front of) a sockbuf.
1121  */
1122 void
1123 sbdrop_locked(struct sockbuf *sb, int len)
1124 {
1125 
1126 	SOCKBUF_LOCK_ASSERT(sb);
1127 	m_freem(sbcut_internal(sb, len));
1128 }
1129 
1130 /*
1131  * Drop data from (the front of) a sockbuf,
1132  * and return it to caller.
1133  */
1134 struct mbuf *
1135 sbcut_locked(struct sockbuf *sb, int len)
1136 {
1137 
1138 	SOCKBUF_LOCK_ASSERT(sb);
1139 	return (sbcut_internal(sb, len));
1140 }
1141 
1142 void
1143 sbdrop(struct sockbuf *sb, int len)
1144 {
1145 	struct mbuf *mfree;
1146 
1147 	SOCKBUF_LOCK(sb);
1148 	mfree = sbcut_internal(sb, len);
1149 	SOCKBUF_UNLOCK(sb);
1150 
1151 	m_freem(mfree);
1152 }
1153 
1154 /*
1155  * Maintain a pointer and offset pair into the socket buffer mbuf chain to
1156  * avoid traversal of the entire socket buffer for larger offsets.
1157  */
1158 struct mbuf *
1159 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
1160 {
1161 	struct mbuf *m, *ret;
1162 
1163 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1164 	KASSERT(off + len <= sb->sb_acc, ("%s: beyond sb", __func__));
1165 	KASSERT(sb->sb_sndptroff <= sb->sb_acc, ("%s: sndptroff broken", __func__));
1166 
1167 	/*
1168 	 * Is off below stored offset? Happens on retransmits.
1169 	 * Just return, we can't help here.
1170 	 */
1171 	if (sb->sb_sndptroff > off) {
1172 		*moff = off;
1173 		return (sb->sb_mb);
1174 	}
1175 
1176 	/* Return closest mbuf in chain for current offset. */
1177 	*moff = off - sb->sb_sndptroff;
1178 	m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
1179 	if (*moff == m->m_len) {
1180 		*moff = 0;
1181 		sb->sb_sndptroff += m->m_len;
1182 		m = ret = m->m_next;
1183 		KASSERT(ret->m_len > 0,
1184 		    ("mbuf %p in sockbuf %p chain has no valid data", ret, sb));
1185 	}
1186 
1187 	/* Advance by len to be as close as possible for the next transmit. */
1188 	for (off = off - sb->sb_sndptroff + len - 1;
1189 	     off > 0 && m != NULL && off >= m->m_len;
1190 	     m = m->m_next) {
1191 		sb->sb_sndptroff += m->m_len;
1192 		off -= m->m_len;
1193 	}
1194 	if (off > 0 && m == NULL)
1195 		panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
1196 	sb->sb_sndptr = m;
1197 
1198 	return (ret);
1199 }
1200 
1201 /*
1202  * Return the first mbuf and the mbuf data offset for the provided
1203  * send offset without changing the "sb_sndptroff" field.
1204  */
1205 struct mbuf *
1206 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1207 {
1208 	struct mbuf *m;
1209 
1210 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1211 
1212 	/*
1213 	 * If the "off" is below the stored offset, which happens on
1214 	 * retransmits, just use "sb_mb":
1215 	 */
1216 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1217 		m = sb->sb_mb;
1218 	} else {
1219 		m = sb->sb_sndptr;
1220 		off -= sb->sb_sndptroff;
1221 	}
1222 	while (off > 0 && m != NULL) {
1223 		if (off < m->m_len)
1224 			break;
1225 		off -= m->m_len;
1226 		m = m->m_next;
1227 	}
1228 	*moff = off;
1229 	return (m);
1230 }
1231 
1232 /*
1233  * Drop a record off the front of a sockbuf and move the next record to the
1234  * front.
1235  */
1236 void
1237 sbdroprecord_locked(struct sockbuf *sb)
1238 {
1239 	struct mbuf *m;
1240 
1241 	SOCKBUF_LOCK_ASSERT(sb);
1242 
1243 	m = sb->sb_mb;
1244 	if (m) {
1245 		sb->sb_mb = m->m_nextpkt;
1246 		do {
1247 			sbfree(sb, m);
1248 			m = m_free(m);
1249 		} while (m);
1250 	}
1251 	SB_EMPTY_FIXUP(sb);
1252 }
1253 
1254 /*
1255  * Drop a record off the front of a sockbuf and move the next record to the
1256  * front.
1257  */
1258 void
1259 sbdroprecord(struct sockbuf *sb)
1260 {
1261 
1262 	SOCKBUF_LOCK(sb);
1263 	sbdroprecord_locked(sb);
1264 	SOCKBUF_UNLOCK(sb);
1265 }
1266 
1267 /*
1268  * Create a "control" mbuf containing the specified data with the specified
1269  * type for presentation on a socket buffer.
1270  */
1271 struct mbuf *
1272 sbcreatecontrol(caddr_t p, int size, int type, int level)
1273 {
1274 	struct cmsghdr *cp;
1275 	struct mbuf *m;
1276 
1277 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1278 		return ((struct mbuf *) NULL);
1279 	if (CMSG_SPACE((u_int)size) > MLEN)
1280 		m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
1281 	else
1282 		m = m_get(M_NOWAIT, MT_CONTROL);
1283 	if (m == NULL)
1284 		return ((struct mbuf *) NULL);
1285 	cp = mtod(m, struct cmsghdr *);
1286 	m->m_len = 0;
1287 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1288 	    ("sbcreatecontrol: short mbuf"));
1289 	/*
1290 	 * Don't leave the padding between the msg header and the
1291 	 * cmsg data and the padding after the cmsg data un-initialized.
1292 	 */
1293 	bzero(cp, CMSG_SPACE((u_int)size));
1294 	if (p != NULL)
1295 		(void)memcpy(CMSG_DATA(cp), p, size);
1296 	m->m_len = CMSG_SPACE(size);
1297 	cp->cmsg_len = CMSG_LEN(size);
1298 	cp->cmsg_level = level;
1299 	cp->cmsg_type = type;
1300 	return (m);
1301 }
1302 
1303 /*
1304  * This does the same for socket buffers that sotoxsocket does for sockets:
1305  * generate an user-format data structure describing the socket buffer.  Note
1306  * that the xsockbuf structure, since it is always embedded in a socket, does
1307  * not include a self pointer nor a length.  We make this entry point public
1308  * in case some other mechanism needs it.
1309  */
1310 void
1311 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1312 {
1313 
1314 	xsb->sb_cc = sb->sb_ccc;
1315 	xsb->sb_hiwat = sb->sb_hiwat;
1316 	xsb->sb_mbcnt = sb->sb_mbcnt;
1317 	xsb->sb_mcnt = sb->sb_mcnt;
1318 	xsb->sb_ccnt = sb->sb_ccnt;
1319 	xsb->sb_mbmax = sb->sb_mbmax;
1320 	xsb->sb_lowat = sb->sb_lowat;
1321 	xsb->sb_flags = sb->sb_flags;
1322 	xsb->sb_timeo = sb->sb_timeo;
1323 }
1324 
1325 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1326 static int dummy;
1327 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1328 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1329     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1330 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1331     &sb_efficiency, 0, "Socket buffer size waste factor");
1332