xref: /freebsd/sys/kern/vfs_aio.c (revision d184218c)
1 /*-
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  */
16 
17 /*
18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_compat.h"
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/bio.h>
30 #include <sys/buf.h>
31 #include <sys/capability.h>
32 #include <sys/eventhandler.h>
33 #include <sys/sysproto.h>
34 #include <sys/filedesc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kthread.h>
38 #include <sys/fcntl.h>
39 #include <sys/file.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/unistd.h>
44 #include <sys/posix4.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/protosw.h>
49 #include <sys/rwlock.h>
50 #include <sys/sema.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syscall.h>
54 #include <sys/sysent.h>
55 #include <sys/sysctl.h>
56 #include <sys/sx.h>
57 #include <sys/taskqueue.h>
58 #include <sys/vnode.h>
59 #include <sys/conf.h>
60 #include <sys/event.h>
61 #include <sys/mount.h>
62 
63 #include <machine/atomic.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/uma.h>
71 #include <sys/aio.h>
72 
73 #include "opt_vfs_aio.h"
74 
75 /*
76  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
77  * overflow. (XXX will be removed soon.)
78  */
79 static u_long jobrefid;
80 
81 /*
82  * Counter for aio_fsync.
83  */
84 static uint64_t jobseqno;
85 
86 #define JOBST_NULL		0
87 #define JOBST_JOBQSOCK		1
88 #define JOBST_JOBQGLOBAL	2
89 #define JOBST_JOBRUNNING	3
90 #define JOBST_JOBFINISHED	4
91 #define JOBST_JOBQBUF		5
92 #define JOBST_JOBQSYNC		6
93 
94 #ifndef MAX_AIO_PER_PROC
95 #define MAX_AIO_PER_PROC	32
96 #endif
97 
98 #ifndef MAX_AIO_QUEUE_PER_PROC
99 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
100 #endif
101 
102 #ifndef MAX_AIO_PROCS
103 #define MAX_AIO_PROCS		32
104 #endif
105 
106 #ifndef MAX_AIO_QUEUE
107 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
108 #endif
109 
110 #ifndef TARGET_AIO_PROCS
111 #define TARGET_AIO_PROCS	4
112 #endif
113 
114 #ifndef MAX_BUF_AIO
115 #define MAX_BUF_AIO		16
116 #endif
117 
118 #ifndef AIOD_TIMEOUT_DEFAULT
119 #define	AIOD_TIMEOUT_DEFAULT	(10 * hz)
120 #endif
121 
122 #ifndef AIOD_LIFETIME_DEFAULT
123 #define AIOD_LIFETIME_DEFAULT	(30 * hz)
124 #endif
125 
126 FEATURE(aio, "Asynchronous I/O");
127 
128 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
129 
130 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
131 
132 static int max_aio_procs = MAX_AIO_PROCS;
133 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
134 	CTLFLAG_RW, &max_aio_procs, 0,
135 	"Maximum number of kernel threads to use for handling async IO ");
136 
137 static int num_aio_procs = 0;
138 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
139 	CTLFLAG_RD, &num_aio_procs, 0,
140 	"Number of presently active kernel threads for async IO");
141 
142 /*
143  * The code will adjust the actual number of AIO processes towards this
144  * number when it gets a chance.
145  */
146 static int target_aio_procs = TARGET_AIO_PROCS;
147 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
148 	0, "Preferred number of ready kernel threads for async IO");
149 
150 static int max_queue_count = MAX_AIO_QUEUE;
151 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
152     "Maximum number of aio requests to queue, globally");
153 
154 static int num_queue_count = 0;
155 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
156     "Number of queued aio requests");
157 
158 static int num_buf_aio = 0;
159 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
160     "Number of aio requests presently handled by the buf subsystem");
161 
162 /* Number of async I/O thread in the process of being started */
163 /* XXX This should be local to aio_aqueue() */
164 static int num_aio_resv_start = 0;
165 
166 static int aiod_timeout;
167 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
168     "Timeout value for synchronous aio operations");
169 
170 static int aiod_lifetime;
171 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
172     "Maximum lifetime for idle aiod");
173 
174 static int unloadable = 0;
175 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
176     "Allow unload of aio (not recommended)");
177 
178 
179 static int max_aio_per_proc = MAX_AIO_PER_PROC;
180 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
181     0, "Maximum active aio requests per process (stored in the process)");
182 
183 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
184 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
185     &max_aio_queue_per_proc, 0,
186     "Maximum queued aio requests per process (stored in the process)");
187 
188 static int max_buf_aio = MAX_BUF_AIO;
189 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
190     "Maximum buf aio requests per process (stored in the process)");
191 
192 typedef struct oaiocb {
193 	int	aio_fildes;		/* File descriptor */
194 	off_t	aio_offset;		/* File offset for I/O */
195 	volatile void *aio_buf;         /* I/O buffer in process space */
196 	size_t	aio_nbytes;		/* Number of bytes for I/O */
197 	struct	osigevent aio_sigevent;	/* Signal to deliver */
198 	int	aio_lio_opcode;		/* LIO opcode */
199 	int	aio_reqprio;		/* Request priority -- ignored */
200 	struct	__aiocb_private	_aiocb_private;
201 } oaiocb_t;
202 
203 /*
204  * Below is a key of locks used to protect each member of struct aiocblist
205  * aioliojob and kaioinfo and any backends.
206  *
207  * * - need not protected
208  * a - locked by kaioinfo lock
209  * b - locked by backend lock, the backend lock can be null in some cases,
210  *     for example, BIO belongs to this type, in this case, proc lock is
211  *     reused.
212  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
213  */
214 
215 /*
216  * Current, there is only two backends: BIO and generic file I/O.
217  * socket I/O is served by generic file I/O, this is not a good idea, since
218  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
219  * threads, if there is no thread to serve socket I/O, the socket I/O will be
220  * delayed too long or starved, we should create some threads dedicated to
221  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
222  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
223  * structure is not safe because there is race between userland and aio
224  * daemons.
225  */
226 
227 struct aiocblist {
228 	TAILQ_ENTRY(aiocblist) list;	/* (b) internal list of for backend */
229 	TAILQ_ENTRY(aiocblist) plist;	/* (a) list of jobs for each backend */
230 	TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
231 	int	jobflags;		/* (a) job flags */
232 	int	jobstate;		/* (b) job state */
233 	int	inputcharge;		/* (*) input blockes */
234 	int	outputcharge;		/* (*) output blockes */
235 	struct	buf *bp;		/* (*) private to BIO backend,
236 				  	 * buffer pointer
237 					 */
238 	struct	proc *userproc;		/* (*) user process */
239 	struct  ucred *cred;		/* (*) active credential when created */
240 	struct	file *fd_file;		/* (*) pointer to file structure */
241 	struct	aioliojob *lio;		/* (*) optional lio job */
242 	struct	aiocb *uuaiocb;		/* (*) pointer in userspace of aiocb */
243 	struct	knlist klist;		/* (a) list of knotes */
244 	struct	aiocb uaiocb;		/* (*) kernel I/O control block */
245 	ksiginfo_t ksi;			/* (a) realtime signal info */
246 	struct	task biotask;		/* (*) private to BIO backend */
247 	uint64_t seqno;			/* (*) job number */
248 	int	pending;		/* (a) number of pending I/O, aio_fsync only */
249 };
250 
251 /* jobflags */
252 #define AIOCBLIST_DONE		0x01
253 #define AIOCBLIST_BUFDONE	0x02
254 #define AIOCBLIST_RUNDOWN	0x04
255 #define AIOCBLIST_CHECKSYNC	0x08
256 
257 /*
258  * AIO process info
259  */
260 #define AIOP_FREE	0x1			/* proc on free queue */
261 
262 struct aiothreadlist {
263 	int aiothreadflags;			/* (c) AIO proc flags */
264 	TAILQ_ENTRY(aiothreadlist) list;	/* (c) list of processes */
265 	struct thread *aiothread;		/* (*) the AIO thread */
266 };
267 
268 /*
269  * data-structure for lio signal management
270  */
271 struct aioliojob {
272 	int	lioj_flags;			/* (a) listio flags */
273 	int	lioj_count;			/* (a) listio flags */
274 	int	lioj_finished_count;		/* (a) listio flags */
275 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
276 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
277 	struct  knlist klist;			/* (a) list of knotes */
278 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
279 };
280 
281 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
282 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
283 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
284 
285 /*
286  * per process aio data structure
287  */
288 struct kaioinfo {
289 	struct mtx	kaio_mtx;	/* the lock to protect this struct */
290 	int	kaio_flags;		/* (a) per process kaio flags */
291 	int	kaio_maxactive_count;	/* (*) maximum number of AIOs */
292 	int	kaio_active_count;	/* (c) number of currently used AIOs */
293 	int	kaio_qallowed_count;	/* (*) maxiumu size of AIO queue */
294 	int	kaio_count;		/* (a) size of AIO queue */
295 	int	kaio_ballowed_count;	/* (*) maximum number of buffers */
296 	int	kaio_buffer_count;	/* (a) number of physio buffers */
297 	TAILQ_HEAD(,aiocblist) kaio_all;	/* (a) all AIOs in the process */
298 	TAILQ_HEAD(,aiocblist) kaio_done;	/* (a) done queue for process */
299 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
300 	TAILQ_HEAD(,aiocblist) kaio_jobqueue;	/* (a) job queue for process */
301 	TAILQ_HEAD(,aiocblist) kaio_bufqueue;	/* (a) buffer job queue for process */
302 	TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
303 						 *  NOT USED YET.
304 						 */
305 	TAILQ_HEAD(,aiocblist) kaio_syncqueue;	/* (a) queue for aio_fsync */
306 	struct	task	kaio_task;	/* (*) task to kick aio threads */
307 };
308 
309 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
310 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
311 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
312 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
313 
314 #define KAIO_RUNDOWN	0x1	/* process is being run down */
315 #define KAIO_WAKEUP	0x2	/* wakeup process when there is a significant event */
316 
317 /*
318  * Operations used to interact with userland aio control blocks.
319  * Different ABIs provide their own operations.
320  */
321 struct aiocb_ops {
322 	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
323 	long	(*fetch_status)(struct aiocb *ujob);
324 	long	(*fetch_error)(struct aiocb *ujob);
325 	int	(*store_status)(struct aiocb *ujob, long status);
326 	int	(*store_error)(struct aiocb *ujob, long error);
327 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
328 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
329 };
330 
331 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;		/* (c) Idle daemons */
332 static struct sema aio_newproc_sem;
333 static struct mtx aio_job_mtx;
334 static struct mtx aio_sock_mtx;
335 static TAILQ_HEAD(,aiocblist) aio_jobs;			/* (c) Async job list */
336 static struct unrhdr *aiod_unr;
337 
338 void		aio_init_aioinfo(struct proc *p);
339 static int	aio_onceonly(void);
340 static int	aio_free_entry(struct aiocblist *aiocbe);
341 static void	aio_process(struct aiocblist *aiocbe);
342 static int	aio_newproc(int *);
343 int		aio_aqueue(struct thread *td, struct aiocb *job,
344 			struct aioliojob *lio, int type, struct aiocb_ops *ops);
345 static void	aio_physwakeup(struct buf *bp);
346 static void	aio_proc_rundown(void *arg, struct proc *p);
347 static void	aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
348 static int	aio_qphysio(struct proc *p, struct aiocblist *iocb);
349 static void	biohelper(void *, int);
350 static void	aio_daemon(void *param);
351 static void	aio_swake_cb(struct socket *, struct sockbuf *);
352 static int	aio_unload(void);
353 static void	aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
354 #define DONE_BUF	1
355 #define DONE_QUEUE	2
356 static int	aio_kick(struct proc *userp);
357 static void	aio_kick_nowait(struct proc *userp);
358 static void	aio_kick_helper(void *context, int pending);
359 static int	filt_aioattach(struct knote *kn);
360 static void	filt_aiodetach(struct knote *kn);
361 static int	filt_aio(struct knote *kn, long hint);
362 static int	filt_lioattach(struct knote *kn);
363 static void	filt_liodetach(struct knote *kn);
364 static int	filt_lio(struct knote *kn, long hint);
365 
366 /*
367  * Zones for:
368  * 	kaio	Per process async io info
369  *	aiop	async io thread data
370  *	aiocb	async io jobs
371  *	aiol	list io job pointer - internal to aio_suspend XXX
372  *	aiolio	list io jobs
373  */
374 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
375 
376 /* kqueue filters for aio */
377 static struct filterops aio_filtops = {
378 	.f_isfd = 0,
379 	.f_attach = filt_aioattach,
380 	.f_detach = filt_aiodetach,
381 	.f_event = filt_aio,
382 };
383 static struct filterops lio_filtops = {
384 	.f_isfd = 0,
385 	.f_attach = filt_lioattach,
386 	.f_detach = filt_liodetach,
387 	.f_event = filt_lio
388 };
389 
390 static eventhandler_tag exit_tag, exec_tag;
391 
392 TASKQUEUE_DEFINE_THREAD(aiod_bio);
393 
394 /*
395  * Main operations function for use as a kernel module.
396  */
397 static int
398 aio_modload(struct module *module, int cmd, void *arg)
399 {
400 	int error = 0;
401 
402 	switch (cmd) {
403 	case MOD_LOAD:
404 		aio_onceonly();
405 		break;
406 	case MOD_UNLOAD:
407 		error = aio_unload();
408 		break;
409 	case MOD_SHUTDOWN:
410 		break;
411 	default:
412 		error = EINVAL;
413 		break;
414 	}
415 	return (error);
416 }
417 
418 static moduledata_t aio_mod = {
419 	"aio",
420 	&aio_modload,
421 	NULL
422 };
423 
424 static struct syscall_helper_data aio_syscalls[] = {
425 	SYSCALL_INIT_HELPER(aio_cancel),
426 	SYSCALL_INIT_HELPER(aio_error),
427 	SYSCALL_INIT_HELPER(aio_fsync),
428 	SYSCALL_INIT_HELPER(aio_read),
429 	SYSCALL_INIT_HELPER(aio_return),
430 	SYSCALL_INIT_HELPER(aio_suspend),
431 	SYSCALL_INIT_HELPER(aio_waitcomplete),
432 	SYSCALL_INIT_HELPER(aio_write),
433 	SYSCALL_INIT_HELPER(lio_listio),
434 	SYSCALL_INIT_HELPER(oaio_read),
435 	SYSCALL_INIT_HELPER(oaio_write),
436 	SYSCALL_INIT_HELPER(olio_listio),
437 	SYSCALL_INIT_LAST
438 };
439 
440 #ifdef COMPAT_FREEBSD32
441 #include <sys/mount.h>
442 #include <sys/socket.h>
443 #include <compat/freebsd32/freebsd32.h>
444 #include <compat/freebsd32/freebsd32_proto.h>
445 #include <compat/freebsd32/freebsd32_signal.h>
446 #include <compat/freebsd32/freebsd32_syscall.h>
447 #include <compat/freebsd32/freebsd32_util.h>
448 
449 static struct syscall_helper_data aio32_syscalls[] = {
450 	SYSCALL32_INIT_HELPER(freebsd32_aio_return),
451 	SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
452 	SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
453 	SYSCALL32_INIT_HELPER(freebsd32_aio_error),
454 	SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
455 	SYSCALL32_INIT_HELPER(freebsd32_aio_read),
456 	SYSCALL32_INIT_HELPER(freebsd32_aio_write),
457 	SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
458 	SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
459 	SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
460 	SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
461 	SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
462 	SYSCALL_INIT_LAST
463 };
464 #endif
465 
466 DECLARE_MODULE(aio, aio_mod,
467 	SI_SUB_VFS, SI_ORDER_ANY);
468 MODULE_VERSION(aio, 1);
469 
470 /*
471  * Startup initialization
472  */
473 static int
474 aio_onceonly(void)
475 {
476 	int error;
477 
478 	/* XXX: should probably just use so->callback */
479 	aio_swake = &aio_swake_cb;
480 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
481 	    EVENTHANDLER_PRI_ANY);
482 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
483 	    EVENTHANDLER_PRI_ANY);
484 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
485 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
486 	TAILQ_INIT(&aio_freeproc);
487 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
488 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
489 	mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
490 	TAILQ_INIT(&aio_jobs);
491 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
492 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
493 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
494 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
495 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
496 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
497 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
498 	aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
499 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
500 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
501 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
502 	aiod_timeout = AIOD_TIMEOUT_DEFAULT;
503 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
504 	jobrefid = 1;
505 	async_io_version = _POSIX_VERSION;
506 	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
507 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
508 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
509 
510 	error = syscall_helper_register(aio_syscalls);
511 	if (error)
512 		return (error);
513 #ifdef COMPAT_FREEBSD32
514 	error = syscall32_helper_register(aio32_syscalls);
515 	if (error)
516 		return (error);
517 #endif
518 	return (0);
519 }
520 
521 /*
522  * Callback for unload of AIO when used as a module.
523  */
524 static int
525 aio_unload(void)
526 {
527 	int error;
528 
529 	/*
530 	 * XXX: no unloads by default, it's too dangerous.
531 	 * perhaps we could do it if locked out callers and then
532 	 * did an aio_proc_rundown() on each process.
533 	 *
534 	 * jhb: aio_proc_rundown() needs to run on curproc though,
535 	 * so I don't think that would fly.
536 	 */
537 	if (!unloadable)
538 		return (EOPNOTSUPP);
539 
540 #ifdef COMPAT_FREEBSD32
541 	syscall32_helper_unregister(aio32_syscalls);
542 #endif
543 	syscall_helper_unregister(aio_syscalls);
544 
545 	error = kqueue_del_filteropts(EVFILT_AIO);
546 	if (error)
547 		return error;
548 	error = kqueue_del_filteropts(EVFILT_LIO);
549 	if (error)
550 		return error;
551 	async_io_version = 0;
552 	aio_swake = NULL;
553 	taskqueue_free(taskqueue_aiod_bio);
554 	delete_unrhdr(aiod_unr);
555 	uma_zdestroy(kaio_zone);
556 	uma_zdestroy(aiop_zone);
557 	uma_zdestroy(aiocb_zone);
558 	uma_zdestroy(aiol_zone);
559 	uma_zdestroy(aiolio_zone);
560 	EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
561 	EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
562 	mtx_destroy(&aio_job_mtx);
563 	mtx_destroy(&aio_sock_mtx);
564 	sema_destroy(&aio_newproc_sem);
565 	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
566 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
567 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
568 	return (0);
569 }
570 
571 /*
572  * Init the per-process aioinfo structure.  The aioinfo limits are set
573  * per-process for user limit (resource) management.
574  */
575 void
576 aio_init_aioinfo(struct proc *p)
577 {
578 	struct kaioinfo *ki;
579 
580 	ki = uma_zalloc(kaio_zone, M_WAITOK);
581 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
582 	ki->kaio_flags = 0;
583 	ki->kaio_maxactive_count = max_aio_per_proc;
584 	ki->kaio_active_count = 0;
585 	ki->kaio_qallowed_count = max_aio_queue_per_proc;
586 	ki->kaio_count = 0;
587 	ki->kaio_ballowed_count = max_buf_aio;
588 	ki->kaio_buffer_count = 0;
589 	TAILQ_INIT(&ki->kaio_all);
590 	TAILQ_INIT(&ki->kaio_done);
591 	TAILQ_INIT(&ki->kaio_jobqueue);
592 	TAILQ_INIT(&ki->kaio_bufqueue);
593 	TAILQ_INIT(&ki->kaio_liojoblist);
594 	TAILQ_INIT(&ki->kaio_sockqueue);
595 	TAILQ_INIT(&ki->kaio_syncqueue);
596 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
597 	PROC_LOCK(p);
598 	if (p->p_aioinfo == NULL) {
599 		p->p_aioinfo = ki;
600 		PROC_UNLOCK(p);
601 	} else {
602 		PROC_UNLOCK(p);
603 		mtx_destroy(&ki->kaio_mtx);
604 		uma_zfree(kaio_zone, ki);
605 	}
606 
607 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
608 		aio_newproc(NULL);
609 }
610 
611 static int
612 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
613 {
614 	struct thread *td;
615 	int error;
616 
617 	error = sigev_findtd(p, sigev, &td);
618 	if (error)
619 		return (error);
620 	if (!KSI_ONQ(ksi)) {
621 		ksiginfo_set_sigev(ksi, sigev);
622 		ksi->ksi_code = SI_ASYNCIO;
623 		ksi->ksi_flags |= KSI_EXT | KSI_INS;
624 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
625 	}
626 	PROC_UNLOCK(p);
627 	return (error);
628 }
629 
630 /*
631  * Free a job entry.  Wait for completion if it is currently active, but don't
632  * delay forever.  If we delay, we return a flag that says that we have to
633  * restart the queue scan.
634  */
635 static int
636 aio_free_entry(struct aiocblist *aiocbe)
637 {
638 	struct kaioinfo *ki;
639 	struct aioliojob *lj;
640 	struct proc *p;
641 
642 	p = aiocbe->userproc;
643 	MPASS(curproc == p);
644 	ki = p->p_aioinfo;
645 	MPASS(ki != NULL);
646 
647 	AIO_LOCK_ASSERT(ki, MA_OWNED);
648 	MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
649 
650 	atomic_subtract_int(&num_queue_count, 1);
651 
652 	ki->kaio_count--;
653 	MPASS(ki->kaio_count >= 0);
654 
655 	TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
656 	TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
657 
658 	lj = aiocbe->lio;
659 	if (lj) {
660 		lj->lioj_count--;
661 		lj->lioj_finished_count--;
662 
663 		if (lj->lioj_count == 0) {
664 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
665 			/* lio is going away, we need to destroy any knotes */
666 			knlist_delete(&lj->klist, curthread, 1);
667 			PROC_LOCK(p);
668 			sigqueue_take(&lj->lioj_ksi);
669 			PROC_UNLOCK(p);
670 			uma_zfree(aiolio_zone, lj);
671 		}
672 	}
673 
674 	/* aiocbe is going away, we need to destroy any knotes */
675 	knlist_delete(&aiocbe->klist, curthread, 1);
676 	PROC_LOCK(p);
677 	sigqueue_take(&aiocbe->ksi);
678 	PROC_UNLOCK(p);
679 
680 	MPASS(aiocbe->bp == NULL);
681 	aiocbe->jobstate = JOBST_NULL;
682 	AIO_UNLOCK(ki);
683 
684 	/*
685 	 * The thread argument here is used to find the owning process
686 	 * and is also passed to fo_close() which may pass it to various
687 	 * places such as devsw close() routines.  Because of that, we
688 	 * need a thread pointer from the process owning the job that is
689 	 * persistent and won't disappear out from under us or move to
690 	 * another process.
691 	 *
692 	 * Currently, all the callers of this function call it to remove
693 	 * an aiocblist from the current process' job list either via a
694 	 * syscall or due to the current process calling exit() or
695 	 * execve().  Thus, we know that p == curproc.  We also know that
696 	 * curthread can't exit since we are curthread.
697 	 *
698 	 * Therefore, we use curthread as the thread to pass to
699 	 * knlist_delete().  This does mean that it is possible for the
700 	 * thread pointer at close time to differ from the thread pointer
701 	 * at open time, but this is already true of file descriptors in
702 	 * a multithreaded process.
703 	 */
704 	fdrop(aiocbe->fd_file, curthread);
705 	crfree(aiocbe->cred);
706 	uma_zfree(aiocb_zone, aiocbe);
707 	AIO_LOCK(ki);
708 
709 	return (0);
710 }
711 
712 static void
713 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
714 {
715    	aio_proc_rundown(arg, p);
716 }
717 
718 /*
719  * Rundown the jobs for a given process.
720  */
721 static void
722 aio_proc_rundown(void *arg, struct proc *p)
723 {
724 	struct kaioinfo *ki;
725 	struct aioliojob *lj;
726 	struct aiocblist *cbe, *cbn;
727 	struct file *fp;
728 	struct socket *so;
729 	int remove;
730 
731 	KASSERT(curthread->td_proc == p,
732 	    ("%s: called on non-curproc", __func__));
733 	ki = p->p_aioinfo;
734 	if (ki == NULL)
735 		return;
736 
737 	AIO_LOCK(ki);
738 	ki->kaio_flags |= KAIO_RUNDOWN;
739 
740 restart:
741 
742 	/*
743 	 * Try to cancel all pending requests. This code simulates
744 	 * aio_cancel on all pending I/O requests.
745 	 */
746 	TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
747 		remove = 0;
748 		mtx_lock(&aio_job_mtx);
749 		if (cbe->jobstate == JOBST_JOBQGLOBAL) {
750 			TAILQ_REMOVE(&aio_jobs, cbe, list);
751 			remove = 1;
752 		} else if (cbe->jobstate == JOBST_JOBQSOCK) {
753 			fp = cbe->fd_file;
754 			MPASS(fp->f_type == DTYPE_SOCKET);
755 			so = fp->f_data;
756 			TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
757 			remove = 1;
758 		} else if (cbe->jobstate == JOBST_JOBQSYNC) {
759 			TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
760 			remove = 1;
761 		}
762 		mtx_unlock(&aio_job_mtx);
763 
764 		if (remove) {
765 			cbe->jobstate = JOBST_JOBFINISHED;
766 			cbe->uaiocb._aiocb_private.status = -1;
767 			cbe->uaiocb._aiocb_private.error = ECANCELED;
768 			TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
769 			aio_bio_done_notify(p, cbe, DONE_QUEUE);
770 		}
771 	}
772 
773 	/* Wait for all running I/O to be finished */
774 	if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
775 	    TAILQ_FIRST(&ki->kaio_jobqueue)) {
776 		ki->kaio_flags |= KAIO_WAKEUP;
777 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
778 		goto restart;
779 	}
780 
781 	/* Free all completed I/O requests. */
782 	while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
783 		aio_free_entry(cbe);
784 
785 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
786 		if (lj->lioj_count == 0) {
787 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
788 			knlist_delete(&lj->klist, curthread, 1);
789 			PROC_LOCK(p);
790 			sigqueue_take(&lj->lioj_ksi);
791 			PROC_UNLOCK(p);
792 			uma_zfree(aiolio_zone, lj);
793 		} else {
794 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
795 			    lj->lioj_count, lj->lioj_finished_count);
796 		}
797 	}
798 	AIO_UNLOCK(ki);
799 	taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
800 	mtx_destroy(&ki->kaio_mtx);
801 	uma_zfree(kaio_zone, ki);
802 	p->p_aioinfo = NULL;
803 }
804 
805 /*
806  * Select a job to run (called by an AIO daemon).
807  */
808 static struct aiocblist *
809 aio_selectjob(struct aiothreadlist *aiop)
810 {
811 	struct aiocblist *aiocbe;
812 	struct kaioinfo *ki;
813 	struct proc *userp;
814 
815 	mtx_assert(&aio_job_mtx, MA_OWNED);
816 	TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
817 		userp = aiocbe->userproc;
818 		ki = userp->p_aioinfo;
819 
820 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
821 			TAILQ_REMOVE(&aio_jobs, aiocbe, list);
822 			/* Account for currently active jobs. */
823 			ki->kaio_active_count++;
824 			aiocbe->jobstate = JOBST_JOBRUNNING;
825 			break;
826 		}
827 	}
828 	return (aiocbe);
829 }
830 
831 /*
832  *  Move all data to a permanent storage device, this code
833  *  simulates fsync syscall.
834  */
835 static int
836 aio_fsync_vnode(struct thread *td, struct vnode *vp)
837 {
838 	struct mount *mp;
839 	int error;
840 
841 	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
842 		goto drop;
843 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
844 	if (vp->v_object != NULL) {
845 		VM_OBJECT_WLOCK(vp->v_object);
846 		vm_object_page_clean(vp->v_object, 0, 0, 0);
847 		VM_OBJECT_WUNLOCK(vp->v_object);
848 	}
849 	error = VOP_FSYNC(vp, MNT_WAIT, td);
850 
851 	VOP_UNLOCK(vp, 0);
852 	vn_finished_write(mp);
853 drop:
854 	return (error);
855 }
856 
857 /*
858  * The AIO processing activity.  This is the code that does the I/O request for
859  * the non-physio version of the operations.  The normal vn operations are used,
860  * and this code should work in all instances for every type of file, including
861  * pipes, sockets, fifos, and regular files.
862  *
863  * XXX I don't think it works well for socket, pipe, and fifo.
864  */
865 static void
866 aio_process(struct aiocblist *aiocbe)
867 {
868 	struct ucred *td_savedcred;
869 	struct thread *td;
870 	struct aiocb *cb;
871 	struct file *fp;
872 	struct socket *so;
873 	struct uio auio;
874 	struct iovec aiov;
875 	int cnt;
876 	int error;
877 	int oublock_st, oublock_end;
878 	int inblock_st, inblock_end;
879 
880 	td = curthread;
881 	td_savedcred = td->td_ucred;
882 	td->td_ucred = aiocbe->cred;
883 	cb = &aiocbe->uaiocb;
884 	fp = aiocbe->fd_file;
885 
886 	if (cb->aio_lio_opcode == LIO_SYNC) {
887 		error = 0;
888 		cnt = 0;
889 		if (fp->f_vnode != NULL)
890 			error = aio_fsync_vnode(td, fp->f_vnode);
891 		cb->_aiocb_private.error = error;
892 		cb->_aiocb_private.status = 0;
893 		td->td_ucred = td_savedcred;
894 		return;
895 	}
896 
897 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
898 	aiov.iov_len = cb->aio_nbytes;
899 
900 	auio.uio_iov = &aiov;
901 	auio.uio_iovcnt = 1;
902 	auio.uio_offset = cb->aio_offset;
903 	auio.uio_resid = cb->aio_nbytes;
904 	cnt = cb->aio_nbytes;
905 	auio.uio_segflg = UIO_USERSPACE;
906 	auio.uio_td = td;
907 
908 	inblock_st = td->td_ru.ru_inblock;
909 	oublock_st = td->td_ru.ru_oublock;
910 	/*
911 	 * aio_aqueue() acquires a reference to the file that is
912 	 * released in aio_free_entry().
913 	 */
914 	if (cb->aio_lio_opcode == LIO_READ) {
915 		auio.uio_rw = UIO_READ;
916 		if (auio.uio_resid == 0)
917 			error = 0;
918 		else
919 			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
920 	} else {
921 		if (fp->f_type == DTYPE_VNODE)
922 			bwillwrite();
923 		auio.uio_rw = UIO_WRITE;
924 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
925 	}
926 	inblock_end = td->td_ru.ru_inblock;
927 	oublock_end = td->td_ru.ru_oublock;
928 
929 	aiocbe->inputcharge = inblock_end - inblock_st;
930 	aiocbe->outputcharge = oublock_end - oublock_st;
931 
932 	if ((error) && (auio.uio_resid != cnt)) {
933 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
934 			error = 0;
935 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
936 			int sigpipe = 1;
937 			if (fp->f_type == DTYPE_SOCKET) {
938 				so = fp->f_data;
939 				if (so->so_options & SO_NOSIGPIPE)
940 					sigpipe = 0;
941 			}
942 			if (sigpipe) {
943 				PROC_LOCK(aiocbe->userproc);
944 				kern_psignal(aiocbe->userproc, SIGPIPE);
945 				PROC_UNLOCK(aiocbe->userproc);
946 			}
947 		}
948 	}
949 
950 	cnt -= auio.uio_resid;
951 	cb->_aiocb_private.error = error;
952 	cb->_aiocb_private.status = cnt;
953 	td->td_ucred = td_savedcred;
954 }
955 
956 static void
957 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
958 {
959 	struct aioliojob *lj;
960 	struct kaioinfo *ki;
961 	struct aiocblist *scb, *scbn;
962 	int lj_done;
963 
964 	ki = userp->p_aioinfo;
965 	AIO_LOCK_ASSERT(ki, MA_OWNED);
966 	lj = aiocbe->lio;
967 	lj_done = 0;
968 	if (lj) {
969 		lj->lioj_finished_count++;
970 		if (lj->lioj_count == lj->lioj_finished_count)
971 			lj_done = 1;
972 	}
973 	if (type == DONE_QUEUE) {
974 		aiocbe->jobflags |= AIOCBLIST_DONE;
975 	} else {
976 		aiocbe->jobflags |= AIOCBLIST_BUFDONE;
977 	}
978 	TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
979 	aiocbe->jobstate = JOBST_JOBFINISHED;
980 
981 	if (ki->kaio_flags & KAIO_RUNDOWN)
982 		goto notification_done;
983 
984 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
985 	    aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
986 		aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
987 
988 	KNOTE_LOCKED(&aiocbe->klist, 1);
989 
990 	if (lj_done) {
991 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
992 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
993 			KNOTE_LOCKED(&lj->klist, 1);
994 		}
995 		if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
996 		    == LIOJ_SIGNAL
997 		    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
998 		        lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
999 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
1000 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
1001 		}
1002 	}
1003 
1004 notification_done:
1005 	if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
1006 		TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
1007 			if (aiocbe->fd_file == scb->fd_file &&
1008 			    aiocbe->seqno < scb->seqno) {
1009 				if (--scb->pending == 0) {
1010 					mtx_lock(&aio_job_mtx);
1011 					scb->jobstate = JOBST_JOBQGLOBAL;
1012 					TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
1013 					TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
1014 					aio_kick_nowait(userp);
1015 					mtx_unlock(&aio_job_mtx);
1016 				}
1017 			}
1018 		}
1019 	}
1020 	if (ki->kaio_flags & KAIO_WAKEUP) {
1021 		ki->kaio_flags &= ~KAIO_WAKEUP;
1022 		wakeup(&userp->p_aioinfo);
1023 	}
1024 }
1025 
1026 /*
1027  * The AIO daemon, most of the actual work is done in aio_process,
1028  * but the setup (and address space mgmt) is done in this routine.
1029  */
1030 static void
1031 aio_daemon(void *_id)
1032 {
1033 	struct aiocblist *aiocbe;
1034 	struct aiothreadlist *aiop;
1035 	struct kaioinfo *ki;
1036 	struct proc *curcp, *mycp, *userp;
1037 	struct vmspace *myvm, *tmpvm;
1038 	struct thread *td = curthread;
1039 	int id = (intptr_t)_id;
1040 
1041 	/*
1042 	 * Local copies of curproc (cp) and vmspace (myvm)
1043 	 */
1044 	mycp = td->td_proc;
1045 	myvm = mycp->p_vmspace;
1046 
1047 	KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
1048 
1049 	/*
1050 	 * Allocate and ready the aio control info.  There is one aiop structure
1051 	 * per daemon.
1052 	 */
1053 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1054 	aiop->aiothread = td;
1055 	aiop->aiothreadflags = 0;
1056 
1057 	/* The daemon resides in its own pgrp. */
1058 	sys_setsid(td, NULL);
1059 
1060 	/*
1061 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1062 	 * and creating too many daemons.)
1063 	 */
1064 	sema_post(&aio_newproc_sem);
1065 
1066 	mtx_lock(&aio_job_mtx);
1067 	for (;;) {
1068 		/*
1069 		 * curcp is the current daemon process context.
1070 		 * userp is the current user process context.
1071 		 */
1072 		curcp = mycp;
1073 
1074 		/*
1075 		 * Take daemon off of free queue
1076 		 */
1077 		if (aiop->aiothreadflags & AIOP_FREE) {
1078 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1079 			aiop->aiothreadflags &= ~AIOP_FREE;
1080 		}
1081 
1082 		/*
1083 		 * Check for jobs.
1084 		 */
1085 		while ((aiocbe = aio_selectjob(aiop)) != NULL) {
1086 			mtx_unlock(&aio_job_mtx);
1087 			userp = aiocbe->userproc;
1088 
1089 			/*
1090 			 * Connect to process address space for user program.
1091 			 */
1092 			if (userp != curcp) {
1093 				/*
1094 				 * Save the current address space that we are
1095 				 * connected to.
1096 				 */
1097 				tmpvm = mycp->p_vmspace;
1098 
1099 				/*
1100 				 * Point to the new user address space, and
1101 				 * refer to it.
1102 				 */
1103 				mycp->p_vmspace = userp->p_vmspace;
1104 				atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
1105 
1106 				/* Activate the new mapping. */
1107 				pmap_activate(FIRST_THREAD_IN_PROC(mycp));
1108 
1109 				/*
1110 				 * If the old address space wasn't the daemons
1111 				 * own address space, then we need to remove the
1112 				 * daemon's reference from the other process
1113 				 * that it was acting on behalf of.
1114 				 */
1115 				if (tmpvm != myvm) {
1116 					vmspace_free(tmpvm);
1117 				}
1118 				curcp = userp;
1119 			}
1120 
1121 			ki = userp->p_aioinfo;
1122 
1123 			/* Do the I/O function. */
1124 			aio_process(aiocbe);
1125 
1126 			mtx_lock(&aio_job_mtx);
1127 			/* Decrement the active job count. */
1128 			ki->kaio_active_count--;
1129 			mtx_unlock(&aio_job_mtx);
1130 
1131 			AIO_LOCK(ki);
1132 			TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
1133 			aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
1134 			AIO_UNLOCK(ki);
1135 
1136 			mtx_lock(&aio_job_mtx);
1137 		}
1138 
1139 		/*
1140 		 * Disconnect from user address space.
1141 		 */
1142 		if (curcp != mycp) {
1143 
1144 			mtx_unlock(&aio_job_mtx);
1145 
1146 			/* Get the user address space to disconnect from. */
1147 			tmpvm = mycp->p_vmspace;
1148 
1149 			/* Get original address space for daemon. */
1150 			mycp->p_vmspace = myvm;
1151 
1152 			/* Activate the daemon's address space. */
1153 			pmap_activate(FIRST_THREAD_IN_PROC(mycp));
1154 #ifdef DIAGNOSTIC
1155 			if (tmpvm == myvm) {
1156 				printf("AIOD: vmspace problem -- %d\n",
1157 				    mycp->p_pid);
1158 			}
1159 #endif
1160 			/* Remove our vmspace reference. */
1161 			vmspace_free(tmpvm);
1162 
1163 			curcp = mycp;
1164 
1165 			mtx_lock(&aio_job_mtx);
1166 			/*
1167 			 * We have to restart to avoid race, we only sleep if
1168 			 * no job can be selected, that should be
1169 			 * curcp == mycp.
1170 			 */
1171 			continue;
1172 		}
1173 
1174 		mtx_assert(&aio_job_mtx, MA_OWNED);
1175 
1176 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1177 		aiop->aiothreadflags |= AIOP_FREE;
1178 
1179 		/*
1180 		 * If daemon is inactive for a long time, allow it to exit,
1181 		 * thereby freeing resources.
1182 		 */
1183 		if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
1184 		    aiod_lifetime)) {
1185 			if (TAILQ_EMPTY(&aio_jobs)) {
1186 				if ((aiop->aiothreadflags & AIOP_FREE) &&
1187 				    (num_aio_procs > target_aio_procs)) {
1188 					TAILQ_REMOVE(&aio_freeproc, aiop, list);
1189 					num_aio_procs--;
1190 					mtx_unlock(&aio_job_mtx);
1191 					uma_zfree(aiop_zone, aiop);
1192 					free_unr(aiod_unr, id);
1193 #ifdef DIAGNOSTIC
1194 					if (mycp->p_vmspace->vm_refcnt <= 1) {
1195 						printf("AIOD: bad vm refcnt for"
1196 						    " exiting daemon: %d\n",
1197 						    mycp->p_vmspace->vm_refcnt);
1198 					}
1199 #endif
1200 					kproc_exit(0);
1201 				}
1202 			}
1203 		}
1204 	}
1205 	mtx_unlock(&aio_job_mtx);
1206 	panic("shouldn't be here\n");
1207 }
1208 
1209 /*
1210  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1211  * AIO daemon modifies its environment itself.
1212  */
1213 static int
1214 aio_newproc(int *start)
1215 {
1216 	int error;
1217 	struct proc *p;
1218 	int id;
1219 
1220 	id = alloc_unr(aiod_unr);
1221 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1222 		RFNOWAIT, 0, "aiod%d", id);
1223 	if (error == 0) {
1224 		/*
1225 		 * Wait until daemon is started.
1226 		 */
1227 		sema_wait(&aio_newproc_sem);
1228 		mtx_lock(&aio_job_mtx);
1229 		num_aio_procs++;
1230 		if (start != NULL)
1231 			(*start)--;
1232 		mtx_unlock(&aio_job_mtx);
1233 	} else {
1234 		free_unr(aiod_unr, id);
1235 	}
1236 	return (error);
1237 }
1238 
1239 /*
1240  * Try the high-performance, low-overhead physio method for eligible
1241  * VCHR devices.  This method doesn't use an aio helper thread, and
1242  * thus has very low overhead.
1243  *
1244  * Assumes that the caller, aio_aqueue(), has incremented the file
1245  * structure's reference count, preventing its deallocation for the
1246  * duration of this call.
1247  */
1248 static int
1249 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
1250 {
1251 	struct aiocb *cb;
1252 	struct file *fp;
1253 	struct buf *bp;
1254 	struct vnode *vp;
1255 	struct cdevsw *csw;
1256 	struct cdev *dev;
1257 	struct kaioinfo *ki;
1258 	struct aioliojob *lj;
1259 	int error, ref;
1260 
1261 	cb = &aiocbe->uaiocb;
1262 	fp = aiocbe->fd_file;
1263 
1264 	if (fp->f_type != DTYPE_VNODE)
1265 		return (-1);
1266 
1267 	vp = fp->f_vnode;
1268 
1269 	/*
1270 	 * If its not a disk, we don't want to return a positive error.
1271 	 * It causes the aio code to not fall through to try the thread
1272 	 * way when you're talking to a regular file.
1273 	 */
1274 	if (!vn_isdisk(vp, &error)) {
1275 		if (error == ENOTBLK)
1276 			return (-1);
1277 		else
1278 			return (error);
1279 	}
1280 
1281 	if (vp->v_bufobj.bo_bsize == 0)
1282 		return (-1);
1283 
1284  	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
1285 		return (-1);
1286 
1287 	if (cb->aio_nbytes >
1288 	    MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
1289 		return (-1);
1290 
1291 	ki = p->p_aioinfo;
1292 	if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
1293 		return (-1);
1294 
1295 	ref = 0;
1296 	csw = devvn_refthread(vp, &dev, &ref);
1297 	if (csw == NULL)
1298 		return (ENXIO);
1299 	if (cb->aio_nbytes > dev->si_iosize_max) {
1300 		error = -1;
1301 		goto unref;
1302 	}
1303 
1304 	/* Create and build a buffer header for a transfer. */
1305 	bp = (struct buf *)getpbuf(NULL);
1306 	BUF_KERNPROC(bp);
1307 
1308 	AIO_LOCK(ki);
1309 	ki->kaio_count++;
1310 	ki->kaio_buffer_count++;
1311 	lj = aiocbe->lio;
1312 	if (lj)
1313 		lj->lioj_count++;
1314 	AIO_UNLOCK(ki);
1315 
1316 	/*
1317 	 * Get a copy of the kva from the physical buffer.
1318 	 */
1319 	error = 0;
1320 
1321 	bp->b_bcount = cb->aio_nbytes;
1322 	bp->b_bufsize = cb->aio_nbytes;
1323 	bp->b_iodone = aio_physwakeup;
1324 	bp->b_saveaddr = bp->b_data;
1325 	bp->b_data = (void *)(uintptr_t)cb->aio_buf;
1326 	bp->b_offset = cb->aio_offset;
1327 	bp->b_iooffset = cb->aio_offset;
1328 	bp->b_blkno = btodb(cb->aio_offset);
1329 	bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
1330 
1331 	/*
1332 	 * Bring buffer into kernel space.
1333 	 */
1334 	if (vmapbuf(bp, (csw->d_flags & D_UNMAPPED_IO) == 0) < 0) {
1335 		error = EFAULT;
1336 		goto doerror;
1337 	}
1338 
1339 	AIO_LOCK(ki);
1340 	aiocbe->bp = bp;
1341 	bp->b_caller1 = (void *)aiocbe;
1342 	TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
1343 	TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1344 	aiocbe->jobstate = JOBST_JOBQBUF;
1345 	cb->_aiocb_private.status = cb->aio_nbytes;
1346 	AIO_UNLOCK(ki);
1347 
1348 	atomic_add_int(&num_queue_count, 1);
1349 	atomic_add_int(&num_buf_aio, 1);
1350 
1351 	bp->b_error = 0;
1352 
1353 	TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
1354 
1355 	/* Perform transfer. */
1356 	dev_strategy_csw(dev, csw, bp);
1357 	dev_relthread(dev, ref);
1358 	return (0);
1359 
1360 doerror:
1361 	AIO_LOCK(ki);
1362 	ki->kaio_count--;
1363 	ki->kaio_buffer_count--;
1364 	if (lj)
1365 		lj->lioj_count--;
1366 	aiocbe->bp = NULL;
1367 	AIO_UNLOCK(ki);
1368 	relpbuf(bp, NULL);
1369 unref:
1370 	dev_relthread(dev, ref);
1371 	return (error);
1372 }
1373 
1374 /*
1375  * Wake up aio requests that may be serviceable now.
1376  */
1377 static void
1378 aio_swake_cb(struct socket *so, struct sockbuf *sb)
1379 {
1380 	struct aiocblist *cb, *cbn;
1381 	int opcode;
1382 
1383 	SOCKBUF_LOCK_ASSERT(sb);
1384 	if (sb == &so->so_snd)
1385 		opcode = LIO_WRITE;
1386 	else
1387 		opcode = LIO_READ;
1388 
1389 	sb->sb_flags &= ~SB_AIO;
1390 	mtx_lock(&aio_job_mtx);
1391 	TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
1392 		if (opcode == cb->uaiocb.aio_lio_opcode) {
1393 			if (cb->jobstate != JOBST_JOBQSOCK)
1394 				panic("invalid queue value");
1395 			/* XXX
1396 			 * We don't have actual sockets backend yet,
1397 			 * so we simply move the requests to the generic
1398 			 * file I/O backend.
1399 			 */
1400 			TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1401 			TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1402 			aio_kick_nowait(cb->userproc);
1403 		}
1404 	}
1405 	mtx_unlock(&aio_job_mtx);
1406 }
1407 
1408 static int
1409 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1410 {
1411 
1412 	/*
1413 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1414 	 * supported by AIO with the old sigevent structure.
1415 	 */
1416 	nsig->sigev_notify = osig->sigev_notify;
1417 	switch (nsig->sigev_notify) {
1418 	case SIGEV_NONE:
1419 		break;
1420 	case SIGEV_SIGNAL:
1421 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1422 		break;
1423 	case SIGEV_KEVENT:
1424 		nsig->sigev_notify_kqueue =
1425 		    osig->__sigev_u.__sigev_notify_kqueue;
1426 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1427 		break;
1428 	default:
1429 		return (EINVAL);
1430 	}
1431 	return (0);
1432 }
1433 
1434 static int
1435 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
1436 {
1437 	struct oaiocb *ojob;
1438 	int error;
1439 
1440 	bzero(kjob, sizeof(struct aiocb));
1441 	error = copyin(ujob, kjob, sizeof(struct oaiocb));
1442 	if (error)
1443 		return (error);
1444 	ojob = (struct oaiocb *)kjob;
1445 	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
1446 }
1447 
1448 static int
1449 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
1450 {
1451 
1452 	return (copyin(ujob, kjob, sizeof(struct aiocb)));
1453 }
1454 
1455 static long
1456 aiocb_fetch_status(struct aiocb *ujob)
1457 {
1458 
1459 	return (fuword(&ujob->_aiocb_private.status));
1460 }
1461 
1462 static long
1463 aiocb_fetch_error(struct aiocb *ujob)
1464 {
1465 
1466 	return (fuword(&ujob->_aiocb_private.error));
1467 }
1468 
1469 static int
1470 aiocb_store_status(struct aiocb *ujob, long status)
1471 {
1472 
1473 	return (suword(&ujob->_aiocb_private.status, status));
1474 }
1475 
1476 static int
1477 aiocb_store_error(struct aiocb *ujob, long error)
1478 {
1479 
1480 	return (suword(&ujob->_aiocb_private.error, error));
1481 }
1482 
1483 static int
1484 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1485 {
1486 
1487 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1488 }
1489 
1490 static int
1491 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1492 {
1493 
1494 	return (suword(ujobp, (long)ujob));
1495 }
1496 
1497 static struct aiocb_ops aiocb_ops = {
1498 	.copyin = aiocb_copyin,
1499 	.fetch_status = aiocb_fetch_status,
1500 	.fetch_error = aiocb_fetch_error,
1501 	.store_status = aiocb_store_status,
1502 	.store_error = aiocb_store_error,
1503 	.store_kernelinfo = aiocb_store_kernelinfo,
1504 	.store_aiocb = aiocb_store_aiocb,
1505 };
1506 
1507 static struct aiocb_ops aiocb_ops_osigevent = {
1508 	.copyin = aiocb_copyin_old_sigevent,
1509 	.fetch_status = aiocb_fetch_status,
1510 	.fetch_error = aiocb_fetch_error,
1511 	.store_status = aiocb_store_status,
1512 	.store_error = aiocb_store_error,
1513 	.store_kernelinfo = aiocb_store_kernelinfo,
1514 	.store_aiocb = aiocb_store_aiocb,
1515 };
1516 
1517 /*
1518  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1519  * technique is done in this code.
1520  */
1521 int
1522 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
1523 	int type, struct aiocb_ops *ops)
1524 {
1525 	struct proc *p = td->td_proc;
1526 	struct file *fp;
1527 	struct socket *so;
1528 	struct aiocblist *aiocbe, *cb;
1529 	struct kaioinfo *ki;
1530 	struct kevent kev;
1531 	struct sockbuf *sb;
1532 	int opcode;
1533 	int error;
1534 	int fd, kqfd;
1535 	int jid;
1536 	u_short evflags;
1537 
1538 	if (p->p_aioinfo == NULL)
1539 		aio_init_aioinfo(p);
1540 
1541 	ki = p->p_aioinfo;
1542 
1543 	ops->store_status(job, -1);
1544 	ops->store_error(job, 0);
1545 	ops->store_kernelinfo(job, -1);
1546 
1547 	if (num_queue_count >= max_queue_count ||
1548 	    ki->kaio_count >= ki->kaio_qallowed_count) {
1549 		ops->store_error(job, EAGAIN);
1550 		return (EAGAIN);
1551 	}
1552 
1553 	aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1554 	aiocbe->inputcharge = 0;
1555 	aiocbe->outputcharge = 0;
1556 	knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
1557 
1558 	error = ops->copyin(job, &aiocbe->uaiocb);
1559 	if (error) {
1560 		ops->store_error(job, error);
1561 		uma_zfree(aiocb_zone, aiocbe);
1562 		return (error);
1563 	}
1564 
1565 	/* XXX: aio_nbytes is later casted to signed types. */
1566 	if (aiocbe->uaiocb.aio_nbytes > INT_MAX) {
1567 		uma_zfree(aiocb_zone, aiocbe);
1568 		return (EINVAL);
1569 	}
1570 
1571 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1572 	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1573 	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1574 	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1575 		ops->store_error(job, EINVAL);
1576 		uma_zfree(aiocb_zone, aiocbe);
1577 		return (EINVAL);
1578 	}
1579 
1580 	if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1581 	     aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1582 		!_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1583 		uma_zfree(aiocb_zone, aiocbe);
1584 		return (EINVAL);
1585 	}
1586 
1587 	ksiginfo_init(&aiocbe->ksi);
1588 
1589 	/* Save userspace address of the job info. */
1590 	aiocbe->uuaiocb = job;
1591 
1592 	/* Get the opcode. */
1593 	if (type != LIO_NOP)
1594 		aiocbe->uaiocb.aio_lio_opcode = type;
1595 	opcode = aiocbe->uaiocb.aio_lio_opcode;
1596 
1597 	/*
1598 	 * Validate the opcode and fetch the file object for the specified
1599 	 * file descriptor.
1600 	 *
1601 	 * XXXRW: Moved the opcode validation up here so that we don't
1602 	 * retrieve a file descriptor without knowing what the capabiltity
1603 	 * should be.
1604 	 */
1605 	fd = aiocbe->uaiocb.aio_fildes;
1606 	switch (opcode) {
1607 	case LIO_WRITE:
1608 		error = fget_write(td, fd, CAP_PWRITE, &fp);
1609 		break;
1610 	case LIO_READ:
1611 		error = fget_read(td, fd, CAP_PREAD, &fp);
1612 		break;
1613 	case LIO_SYNC:
1614 		error = fget(td, fd, CAP_FSYNC, &fp);
1615 		break;
1616 	case LIO_NOP:
1617 		error = fget(td, fd, CAP_NONE, &fp);
1618 		break;
1619 	default:
1620 		error = EINVAL;
1621 	}
1622 	if (error) {
1623 		uma_zfree(aiocb_zone, aiocbe);
1624 		ops->store_error(job, error);
1625 		return (error);
1626 	}
1627 
1628 	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
1629 		error = EINVAL;
1630 		goto aqueue_fail;
1631 	}
1632 
1633 	if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
1634 		error = EINVAL;
1635 		goto aqueue_fail;
1636 	}
1637 
1638 	aiocbe->fd_file = fp;
1639 
1640 	mtx_lock(&aio_job_mtx);
1641 	jid = jobrefid++;
1642 	aiocbe->seqno = jobseqno++;
1643 	mtx_unlock(&aio_job_mtx);
1644 	error = ops->store_kernelinfo(job, jid);
1645 	if (error) {
1646 		error = EINVAL;
1647 		goto aqueue_fail;
1648 	}
1649 	aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1650 
1651 	if (opcode == LIO_NOP) {
1652 		fdrop(fp, td);
1653 		uma_zfree(aiocb_zone, aiocbe);
1654 		return (0);
1655 	}
1656 
1657 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1658 		goto no_kqueue;
1659 	evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1660 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1661 		error = EINVAL;
1662 		goto aqueue_fail;
1663 	}
1664 	kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1665 	kev.ident = (uintptr_t)aiocbe->uuaiocb;
1666 	kev.filter = EVFILT_AIO;
1667 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1668 	kev.data = (intptr_t)aiocbe;
1669 	kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1670 	error = kqfd_register(kqfd, &kev, td, 1);
1671 aqueue_fail:
1672 	if (error) {
1673 		fdrop(fp, td);
1674 		uma_zfree(aiocb_zone, aiocbe);
1675 		ops->store_error(job, error);
1676 		goto done;
1677 	}
1678 no_kqueue:
1679 
1680 	ops->store_error(job, EINPROGRESS);
1681 	aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1682 	aiocbe->userproc = p;
1683 	aiocbe->cred = crhold(td->td_ucred);
1684 	aiocbe->jobflags = 0;
1685 	aiocbe->lio = lj;
1686 
1687 	if (opcode == LIO_SYNC)
1688 		goto queueit;
1689 
1690 	if (fp->f_type == DTYPE_SOCKET) {
1691 		/*
1692 		 * Alternate queueing for socket ops: Reach down into the
1693 		 * descriptor to get the socket data.  Then check to see if the
1694 		 * socket is ready to be read or written (based on the requested
1695 		 * operation).
1696 		 *
1697 		 * If it is not ready for io, then queue the aiocbe on the
1698 		 * socket, and set the flags so we get a call when sbnotify()
1699 		 * happens.
1700 		 *
1701 		 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
1702 		 * and unlock the snd sockbuf for no reason.
1703 		 */
1704 		so = fp->f_data;
1705 		sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
1706 		SOCKBUF_LOCK(sb);
1707 		if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1708 		    LIO_WRITE) && (!sowriteable(so)))) {
1709 			sb->sb_flags |= SB_AIO;
1710 
1711 			mtx_lock(&aio_job_mtx);
1712 			TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1713 			mtx_unlock(&aio_job_mtx);
1714 
1715 			AIO_LOCK(ki);
1716 			TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1717 			TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1718 			aiocbe->jobstate = JOBST_JOBQSOCK;
1719 			ki->kaio_count++;
1720 			if (lj)
1721 				lj->lioj_count++;
1722 			AIO_UNLOCK(ki);
1723 			SOCKBUF_UNLOCK(sb);
1724 			atomic_add_int(&num_queue_count, 1);
1725 			error = 0;
1726 			goto done;
1727 		}
1728 		SOCKBUF_UNLOCK(sb);
1729 	}
1730 
1731 	if ((error = aio_qphysio(p, aiocbe)) == 0)
1732 		goto done;
1733 #if 0
1734 	if (error > 0) {
1735 		aiocbe->uaiocb._aiocb_private.error = error;
1736 		ops->store_error(job, error);
1737 		goto done;
1738 	}
1739 #endif
1740 queueit:
1741 	/* No buffer for daemon I/O. */
1742 	aiocbe->bp = NULL;
1743 	atomic_add_int(&num_queue_count, 1);
1744 
1745 	AIO_LOCK(ki);
1746 	ki->kaio_count++;
1747 	if (lj)
1748 		lj->lioj_count++;
1749 	TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1750 	TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1751 	if (opcode == LIO_SYNC) {
1752 		TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
1753 			if (cb->fd_file == aiocbe->fd_file &&
1754 			    cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
1755 			    cb->seqno < aiocbe->seqno) {
1756 				cb->jobflags |= AIOCBLIST_CHECKSYNC;
1757 				aiocbe->pending++;
1758 			}
1759 		}
1760 		TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
1761 			if (cb->fd_file == aiocbe->fd_file &&
1762 			    cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
1763 			    cb->seqno < aiocbe->seqno) {
1764 				cb->jobflags |= AIOCBLIST_CHECKSYNC;
1765 				aiocbe->pending++;
1766 			}
1767 		}
1768 		if (aiocbe->pending != 0) {
1769 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
1770 			aiocbe->jobstate = JOBST_JOBQSYNC;
1771 			AIO_UNLOCK(ki);
1772 			goto done;
1773 		}
1774 	}
1775 	mtx_lock(&aio_job_mtx);
1776 	TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1777 	aiocbe->jobstate = JOBST_JOBQGLOBAL;
1778 	aio_kick_nowait(p);
1779 	mtx_unlock(&aio_job_mtx);
1780 	AIO_UNLOCK(ki);
1781 	error = 0;
1782 done:
1783 	return (error);
1784 }
1785 
1786 static void
1787 aio_kick_nowait(struct proc *userp)
1788 {
1789 	struct kaioinfo *ki = userp->p_aioinfo;
1790 	struct aiothreadlist *aiop;
1791 
1792 	mtx_assert(&aio_job_mtx, MA_OWNED);
1793 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1794 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1795 		aiop->aiothreadflags &= ~AIOP_FREE;
1796 		wakeup(aiop->aiothread);
1797 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1798 	    ((ki->kaio_active_count + num_aio_resv_start) <
1799 	    ki->kaio_maxactive_count)) {
1800 		taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
1801 	}
1802 }
1803 
1804 static int
1805 aio_kick(struct proc *userp)
1806 {
1807 	struct kaioinfo *ki = userp->p_aioinfo;
1808 	struct aiothreadlist *aiop;
1809 	int error, ret = 0;
1810 
1811 	mtx_assert(&aio_job_mtx, MA_OWNED);
1812 retryproc:
1813 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1814 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1815 		aiop->aiothreadflags &= ~AIOP_FREE;
1816 		wakeup(aiop->aiothread);
1817 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1818 	    ((ki->kaio_active_count + num_aio_resv_start) <
1819 	    ki->kaio_maxactive_count)) {
1820 		num_aio_resv_start++;
1821 		mtx_unlock(&aio_job_mtx);
1822 		error = aio_newproc(&num_aio_resv_start);
1823 		mtx_lock(&aio_job_mtx);
1824 		if (error) {
1825 			num_aio_resv_start--;
1826 			goto retryproc;
1827 		}
1828 	} else {
1829 		ret = -1;
1830 	}
1831 	return (ret);
1832 }
1833 
1834 static void
1835 aio_kick_helper(void *context, int pending)
1836 {
1837 	struct proc *userp = context;
1838 
1839 	mtx_lock(&aio_job_mtx);
1840 	while (--pending >= 0) {
1841 		if (aio_kick(userp))
1842 			break;
1843 	}
1844 	mtx_unlock(&aio_job_mtx);
1845 }
1846 
1847 /*
1848  * Support the aio_return system call, as a side-effect, kernel resources are
1849  * released.
1850  */
1851 static int
1852 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
1853 {
1854 	struct proc *p = td->td_proc;
1855 	struct aiocblist *cb;
1856 	struct kaioinfo *ki;
1857 	int status, error;
1858 
1859 	ki = p->p_aioinfo;
1860 	if (ki == NULL)
1861 		return (EINVAL);
1862 	AIO_LOCK(ki);
1863 	TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
1864 		if (cb->uuaiocb == uaiocb)
1865 			break;
1866 	}
1867 	if (cb != NULL) {
1868 		MPASS(cb->jobstate == JOBST_JOBFINISHED);
1869 		status = cb->uaiocb._aiocb_private.status;
1870 		error = cb->uaiocb._aiocb_private.error;
1871 		td->td_retval[0] = status;
1872 		if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1873 			td->td_ru.ru_oublock += cb->outputcharge;
1874 			cb->outputcharge = 0;
1875 		} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1876 			td->td_ru.ru_inblock += cb->inputcharge;
1877 			cb->inputcharge = 0;
1878 		}
1879 		aio_free_entry(cb);
1880 		AIO_UNLOCK(ki);
1881 		ops->store_error(uaiocb, error);
1882 		ops->store_status(uaiocb, status);
1883 	} else {
1884 		error = EINVAL;
1885 		AIO_UNLOCK(ki);
1886 	}
1887 	return (error);
1888 }
1889 
1890 int
1891 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1892 {
1893 
1894 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1895 }
1896 
1897 /*
1898  * Allow a process to wakeup when any of the I/O requests are completed.
1899  */
1900 static int
1901 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1902     struct timespec *ts)
1903 {
1904 	struct proc *p = td->td_proc;
1905 	struct timeval atv;
1906 	struct kaioinfo *ki;
1907 	struct aiocblist *cb, *cbfirst;
1908 	int error, i, timo;
1909 
1910 	timo = 0;
1911 	if (ts) {
1912 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1913 			return (EINVAL);
1914 
1915 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1916 		if (itimerfix(&atv))
1917 			return (EINVAL);
1918 		timo = tvtohz(&atv);
1919 	}
1920 
1921 	ki = p->p_aioinfo;
1922 	if (ki == NULL)
1923 		return (EAGAIN);
1924 
1925 	if (njoblist == 0)
1926 		return (0);
1927 
1928 	AIO_LOCK(ki);
1929 	for (;;) {
1930 		cbfirst = NULL;
1931 		error = 0;
1932 		TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
1933 			for (i = 0; i < njoblist; i++) {
1934 				if (cb->uuaiocb == ujoblist[i]) {
1935 					if (cbfirst == NULL)
1936 						cbfirst = cb;
1937 					if (cb->jobstate == JOBST_JOBFINISHED)
1938 						goto RETURN;
1939 				}
1940 			}
1941 		}
1942 		/* All tasks were finished. */
1943 		if (cbfirst == NULL)
1944 			break;
1945 
1946 		ki->kaio_flags |= KAIO_WAKEUP;
1947 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1948 		    "aiospn", timo);
1949 		if (error == ERESTART)
1950 			error = EINTR;
1951 		if (error)
1952 			break;
1953 	}
1954 RETURN:
1955 	AIO_UNLOCK(ki);
1956 	return (error);
1957 }
1958 
1959 int
1960 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1961 {
1962 	struct timespec ts, *tsp;
1963 	struct aiocb **ujoblist;
1964 	int error;
1965 
1966 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
1967 		return (EINVAL);
1968 
1969 	if (uap->timeout) {
1970 		/* Get timespec struct. */
1971 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1972 			return (error);
1973 		tsp = &ts;
1974 	} else
1975 		tsp = NULL;
1976 
1977 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
1978 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
1979 	if (error == 0)
1980 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
1981 	uma_zfree(aiol_zone, ujoblist);
1982 	return (error);
1983 }
1984 
1985 /*
1986  * aio_cancel cancels any non-physio aio operations not currently in
1987  * progress.
1988  */
1989 int
1990 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
1991 {
1992 	struct proc *p = td->td_proc;
1993 	struct kaioinfo *ki;
1994 	struct aiocblist *cbe, *cbn;
1995 	struct file *fp;
1996 	struct socket *so;
1997 	int error;
1998 	int remove;
1999 	int cancelled = 0;
2000 	int notcancelled = 0;
2001 	struct vnode *vp;
2002 
2003 	/* Lookup file object. */
2004 	error = fget(td, uap->fd, 0, &fp);
2005 	if (error)
2006 		return (error);
2007 
2008 	ki = p->p_aioinfo;
2009 	if (ki == NULL)
2010 		goto done;
2011 
2012 	if (fp->f_type == DTYPE_VNODE) {
2013 		vp = fp->f_vnode;
2014 		if (vn_isdisk(vp, &error)) {
2015 			fdrop(fp, td);
2016 			td->td_retval[0] = AIO_NOTCANCELED;
2017 			return (0);
2018 		}
2019 	}
2020 
2021 	AIO_LOCK(ki);
2022 	TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
2023 		if ((uap->fd == cbe->uaiocb.aio_fildes) &&
2024 		    ((uap->aiocbp == NULL) ||
2025 		     (uap->aiocbp == cbe->uuaiocb))) {
2026 			remove = 0;
2027 
2028 			mtx_lock(&aio_job_mtx);
2029 			if (cbe->jobstate == JOBST_JOBQGLOBAL) {
2030 				TAILQ_REMOVE(&aio_jobs, cbe, list);
2031 				remove = 1;
2032 			} else if (cbe->jobstate == JOBST_JOBQSOCK) {
2033 				MPASS(fp->f_type == DTYPE_SOCKET);
2034 				so = fp->f_data;
2035 				TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
2036 				remove = 1;
2037 			} else if (cbe->jobstate == JOBST_JOBQSYNC) {
2038 				TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
2039 				remove = 1;
2040 			}
2041 			mtx_unlock(&aio_job_mtx);
2042 
2043 			if (remove) {
2044 				TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
2045 				cbe->uaiocb._aiocb_private.status = -1;
2046 				cbe->uaiocb._aiocb_private.error = ECANCELED;
2047 				aio_bio_done_notify(p, cbe, DONE_QUEUE);
2048 				cancelled++;
2049 			} else {
2050 				notcancelled++;
2051 			}
2052 			if (uap->aiocbp != NULL)
2053 				break;
2054 		}
2055 	}
2056 	AIO_UNLOCK(ki);
2057 
2058 done:
2059 	fdrop(fp, td);
2060 
2061 	if (uap->aiocbp != NULL) {
2062 		if (cancelled) {
2063 			td->td_retval[0] = AIO_CANCELED;
2064 			return (0);
2065 		}
2066 	}
2067 
2068 	if (notcancelled) {
2069 		td->td_retval[0] = AIO_NOTCANCELED;
2070 		return (0);
2071 	}
2072 
2073 	if (cancelled) {
2074 		td->td_retval[0] = AIO_CANCELED;
2075 		return (0);
2076 	}
2077 
2078 	td->td_retval[0] = AIO_ALLDONE;
2079 
2080 	return (0);
2081 }
2082 
2083 /*
2084  * aio_error is implemented in the kernel level for compatibility purposes
2085  * only.  For a user mode async implementation, it would be best to do it in
2086  * a userland subroutine.
2087  */
2088 static int
2089 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
2090 {
2091 	struct proc *p = td->td_proc;
2092 	struct aiocblist *cb;
2093 	struct kaioinfo *ki;
2094 	int status;
2095 
2096 	ki = p->p_aioinfo;
2097 	if (ki == NULL) {
2098 		td->td_retval[0] = EINVAL;
2099 		return (0);
2100 	}
2101 
2102 	AIO_LOCK(ki);
2103 	TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
2104 		if (cb->uuaiocb == aiocbp) {
2105 			if (cb->jobstate == JOBST_JOBFINISHED)
2106 				td->td_retval[0] =
2107 					cb->uaiocb._aiocb_private.error;
2108 			else
2109 				td->td_retval[0] = EINPROGRESS;
2110 			AIO_UNLOCK(ki);
2111 			return (0);
2112 		}
2113 	}
2114 	AIO_UNLOCK(ki);
2115 
2116 	/*
2117 	 * Hack for failure of aio_aqueue.
2118 	 */
2119 	status = ops->fetch_status(aiocbp);
2120 	if (status == -1) {
2121 		td->td_retval[0] = ops->fetch_error(aiocbp);
2122 		return (0);
2123 	}
2124 
2125 	td->td_retval[0] = EINVAL;
2126 	return (0);
2127 }
2128 
2129 int
2130 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2131 {
2132 
2133 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2134 }
2135 
2136 /* syscall - asynchronous read from a file (REALTIME) */
2137 int
2138 sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
2139 {
2140 
2141 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2142 	    &aiocb_ops_osigevent));
2143 }
2144 
2145 int
2146 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2147 {
2148 
2149 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2150 }
2151 
2152 /* syscall - asynchronous write to a file (REALTIME) */
2153 int
2154 sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
2155 {
2156 
2157 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2158 	    &aiocb_ops_osigevent));
2159 }
2160 
2161 int
2162 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2163 {
2164 
2165 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2166 }
2167 
2168 static int
2169 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2170     struct aiocb **acb_list, int nent, struct sigevent *sig,
2171     struct aiocb_ops *ops)
2172 {
2173 	struct proc *p = td->td_proc;
2174 	struct aiocb *iocb;
2175 	struct kaioinfo *ki;
2176 	struct aioliojob *lj;
2177 	struct kevent kev;
2178 	int error;
2179 	int nerror;
2180 	int i;
2181 
2182 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2183 		return (EINVAL);
2184 
2185 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2186 		return (EINVAL);
2187 
2188 	if (p->p_aioinfo == NULL)
2189 		aio_init_aioinfo(p);
2190 
2191 	ki = p->p_aioinfo;
2192 
2193 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2194 	lj->lioj_flags = 0;
2195 	lj->lioj_count = 0;
2196 	lj->lioj_finished_count = 0;
2197 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2198 	ksiginfo_init(&lj->lioj_ksi);
2199 
2200 	/*
2201 	 * Setup signal.
2202 	 */
2203 	if (sig && (mode == LIO_NOWAIT)) {
2204 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2205 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2206 			/* Assume only new style KEVENT */
2207 			kev.filter = EVFILT_LIO;
2208 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2209 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2210 			kev.data = (intptr_t)lj;
2211 			/* pass user defined sigval data */
2212 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2213 			error = kqfd_register(
2214 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
2215 			if (error) {
2216 				uma_zfree(aiolio_zone, lj);
2217 				return (error);
2218 			}
2219 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2220 			;
2221 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2222 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2223 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2224 					uma_zfree(aiolio_zone, lj);
2225 					return EINVAL;
2226 				}
2227 				lj->lioj_flags |= LIOJ_SIGNAL;
2228 		} else {
2229 			uma_zfree(aiolio_zone, lj);
2230 			return EINVAL;
2231 		}
2232 	}
2233 
2234 	AIO_LOCK(ki);
2235 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2236 	/*
2237 	 * Add extra aiocb count to avoid the lio to be freed
2238 	 * by other threads doing aio_waitcomplete or aio_return,
2239 	 * and prevent event from being sent until we have queued
2240 	 * all tasks.
2241 	 */
2242 	lj->lioj_count = 1;
2243 	AIO_UNLOCK(ki);
2244 
2245 	/*
2246 	 * Get pointers to the list of I/O requests.
2247 	 */
2248 	nerror = 0;
2249 	for (i = 0; i < nent; i++) {
2250 		iocb = acb_list[i];
2251 		if (iocb != NULL) {
2252 			error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
2253 			if (error != 0)
2254 				nerror++;
2255 		}
2256 	}
2257 
2258 	error = 0;
2259 	AIO_LOCK(ki);
2260 	if (mode == LIO_WAIT) {
2261 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2262 			ki->kaio_flags |= KAIO_WAKEUP;
2263 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2264 			    PRIBIO | PCATCH, "aiospn", 0);
2265 			if (error == ERESTART)
2266 				error = EINTR;
2267 			if (error)
2268 				break;
2269 		}
2270 	} else {
2271 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2272 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2273 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2274 				KNOTE_LOCKED(&lj->klist, 1);
2275 			}
2276 			if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
2277 			    == LIOJ_SIGNAL
2278 			    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2279 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2280 				aio_sendsig(p, &lj->lioj_signal,
2281 					    &lj->lioj_ksi);
2282 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2283 			}
2284 		}
2285 	}
2286 	lj->lioj_count--;
2287 	if (lj->lioj_count == 0) {
2288 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2289 		knlist_delete(&lj->klist, curthread, 1);
2290 		PROC_LOCK(p);
2291 		sigqueue_take(&lj->lioj_ksi);
2292 		PROC_UNLOCK(p);
2293 		AIO_UNLOCK(ki);
2294 		uma_zfree(aiolio_zone, lj);
2295 	} else
2296 		AIO_UNLOCK(ki);
2297 
2298 	if (nerror)
2299 		return (EIO);
2300 	return (error);
2301 }
2302 
2303 /* syscall - list directed I/O (REALTIME) */
2304 int
2305 sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
2306 {
2307 	struct aiocb **acb_list;
2308 	struct sigevent *sigp, sig;
2309 	struct osigevent osig;
2310 	int error, nent;
2311 
2312 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2313 		return (EINVAL);
2314 
2315 	nent = uap->nent;
2316 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2317 		return (EINVAL);
2318 
2319 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2320 		error = copyin(uap->sig, &osig, sizeof(osig));
2321 		if (error)
2322 			return (error);
2323 		error = convert_old_sigevent(&osig, &sig);
2324 		if (error)
2325 			return (error);
2326 		sigp = &sig;
2327 	} else
2328 		sigp = NULL;
2329 
2330 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2331 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2332 	if (error == 0)
2333 		error = kern_lio_listio(td, uap->mode,
2334 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2335 		    &aiocb_ops_osigevent);
2336 	free(acb_list, M_LIO);
2337 	return (error);
2338 }
2339 
2340 /* syscall - list directed I/O (REALTIME) */
2341 int
2342 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2343 {
2344 	struct aiocb **acb_list;
2345 	struct sigevent *sigp, sig;
2346 	int error, nent;
2347 
2348 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2349 		return (EINVAL);
2350 
2351 	nent = uap->nent;
2352 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2353 		return (EINVAL);
2354 
2355 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2356 		error = copyin(uap->sig, &sig, sizeof(sig));
2357 		if (error)
2358 			return (error);
2359 		sigp = &sig;
2360 	} else
2361 		sigp = NULL;
2362 
2363 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2364 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2365 	if (error == 0)
2366 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2367 		    nent, sigp, &aiocb_ops);
2368 	free(acb_list, M_LIO);
2369 	return (error);
2370 }
2371 
2372 /*
2373  * Called from interrupt thread for physio, we should return as fast
2374  * as possible, so we schedule a biohelper task.
2375  */
2376 static void
2377 aio_physwakeup(struct buf *bp)
2378 {
2379 	struct aiocblist *aiocbe;
2380 
2381 	aiocbe = (struct aiocblist *)bp->b_caller1;
2382 	taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
2383 }
2384 
2385 /*
2386  * Task routine to perform heavy tasks, process wakeup, and signals.
2387  */
2388 static void
2389 biohelper(void *context, int pending)
2390 {
2391 	struct aiocblist *aiocbe = context;
2392 	struct buf *bp;
2393 	struct proc *userp;
2394 	struct kaioinfo *ki;
2395 	int nblks;
2396 
2397 	bp = aiocbe->bp;
2398 	userp = aiocbe->userproc;
2399 	ki = userp->p_aioinfo;
2400 	AIO_LOCK(ki);
2401 	aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
2402 	aiocbe->uaiocb._aiocb_private.error = 0;
2403 	if (bp->b_ioflags & BIO_ERROR)
2404 		aiocbe->uaiocb._aiocb_private.error = bp->b_error;
2405 	nblks = btodb(aiocbe->uaiocb.aio_nbytes);
2406 	if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
2407 		aiocbe->outputcharge += nblks;
2408 	else
2409 		aiocbe->inputcharge += nblks;
2410 	aiocbe->bp = NULL;
2411 	TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
2412 	ki->kaio_buffer_count--;
2413 	aio_bio_done_notify(userp, aiocbe, DONE_BUF);
2414 	AIO_UNLOCK(ki);
2415 
2416 	/* Release mapping into kernel space. */
2417 	vunmapbuf(bp);
2418 	relpbuf(bp, NULL);
2419 	atomic_subtract_int(&num_buf_aio, 1);
2420 }
2421 
2422 /* syscall - wait for the next completion of an aio request */
2423 static int
2424 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
2425     struct timespec *ts, struct aiocb_ops *ops)
2426 {
2427 	struct proc *p = td->td_proc;
2428 	struct timeval atv;
2429 	struct kaioinfo *ki;
2430 	struct aiocblist *cb;
2431 	struct aiocb *uuaiocb;
2432 	int error, status, timo;
2433 
2434 	ops->store_aiocb(aiocbp, NULL);
2435 
2436 	timo = 0;
2437 	if (ts) {
2438 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2439 			return (EINVAL);
2440 
2441 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2442 		if (itimerfix(&atv))
2443 			return (EINVAL);
2444 		timo = tvtohz(&atv);
2445 	}
2446 
2447 	if (p->p_aioinfo == NULL)
2448 		aio_init_aioinfo(p);
2449 	ki = p->p_aioinfo;
2450 
2451 	error = 0;
2452 	cb = NULL;
2453 	AIO_LOCK(ki);
2454 	while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2455 		ki->kaio_flags |= KAIO_WAKEUP;
2456 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2457 		    "aiowc", timo);
2458 		if (timo && error == ERESTART)
2459 			error = EINTR;
2460 		if (error)
2461 			break;
2462 	}
2463 
2464 	if (cb != NULL) {
2465 		MPASS(cb->jobstate == JOBST_JOBFINISHED);
2466 		uuaiocb = cb->uuaiocb;
2467 		status = cb->uaiocb._aiocb_private.status;
2468 		error = cb->uaiocb._aiocb_private.error;
2469 		td->td_retval[0] = status;
2470 		if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2471 			td->td_ru.ru_oublock += cb->outputcharge;
2472 			cb->outputcharge = 0;
2473 		} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2474 			td->td_ru.ru_inblock += cb->inputcharge;
2475 			cb->inputcharge = 0;
2476 		}
2477 		aio_free_entry(cb);
2478 		AIO_UNLOCK(ki);
2479 		ops->store_aiocb(aiocbp, uuaiocb);
2480 		ops->store_error(uuaiocb, error);
2481 		ops->store_status(uuaiocb, status);
2482 	} else
2483 		AIO_UNLOCK(ki);
2484 
2485 	return (error);
2486 }
2487 
2488 int
2489 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2490 {
2491 	struct timespec ts, *tsp;
2492 	int error;
2493 
2494 	if (uap->timeout) {
2495 		/* Get timespec struct. */
2496 		error = copyin(uap->timeout, &ts, sizeof(ts));
2497 		if (error)
2498 			return (error);
2499 		tsp = &ts;
2500 	} else
2501 		tsp = NULL;
2502 
2503 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2504 }
2505 
2506 static int
2507 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
2508     struct aiocb_ops *ops)
2509 {
2510 	struct proc *p = td->td_proc;
2511 	struct kaioinfo *ki;
2512 
2513 	if (op != O_SYNC) /* XXX lack of O_DSYNC */
2514 		return (EINVAL);
2515 	ki = p->p_aioinfo;
2516 	if (ki == NULL)
2517 		aio_init_aioinfo(p);
2518 	return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
2519 }
2520 
2521 int
2522 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2523 {
2524 
2525 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2526 }
2527 
2528 /* kqueue attach function */
2529 static int
2530 filt_aioattach(struct knote *kn)
2531 {
2532 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2533 
2534 	/*
2535 	 * The aiocbe pointer must be validated before using it, so
2536 	 * registration is restricted to the kernel; the user cannot
2537 	 * set EV_FLAG1.
2538 	 */
2539 	if ((kn->kn_flags & EV_FLAG1) == 0)
2540 		return (EPERM);
2541 	kn->kn_ptr.p_aio = aiocbe;
2542 	kn->kn_flags &= ~EV_FLAG1;
2543 
2544 	knlist_add(&aiocbe->klist, kn, 0);
2545 
2546 	return (0);
2547 }
2548 
2549 /* kqueue detach function */
2550 static void
2551 filt_aiodetach(struct knote *kn)
2552 {
2553 	struct knlist *knl;
2554 
2555 	knl = &kn->kn_ptr.p_aio->klist;
2556 	knl->kl_lock(knl->kl_lockarg);
2557 	if (!knlist_empty(knl))
2558 		knlist_remove(knl, kn, 1);
2559 	knl->kl_unlock(knl->kl_lockarg);
2560 }
2561 
2562 /* kqueue filter function */
2563 /*ARGSUSED*/
2564 static int
2565 filt_aio(struct knote *kn, long hint)
2566 {
2567 	struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
2568 
2569 	kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2570 	if (aiocbe->jobstate != JOBST_JOBFINISHED)
2571 		return (0);
2572 	kn->kn_flags |= EV_EOF;
2573 	return (1);
2574 }
2575 
2576 /* kqueue attach function */
2577 static int
2578 filt_lioattach(struct knote *kn)
2579 {
2580 	struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
2581 
2582 	/*
2583 	 * The aioliojob pointer must be validated before using it, so
2584 	 * registration is restricted to the kernel; the user cannot
2585 	 * set EV_FLAG1.
2586 	 */
2587 	if ((kn->kn_flags & EV_FLAG1) == 0)
2588 		return (EPERM);
2589 	kn->kn_ptr.p_lio = lj;
2590 	kn->kn_flags &= ~EV_FLAG1;
2591 
2592 	knlist_add(&lj->klist, kn, 0);
2593 
2594 	return (0);
2595 }
2596 
2597 /* kqueue detach function */
2598 static void
2599 filt_liodetach(struct knote *kn)
2600 {
2601 	struct knlist *knl;
2602 
2603 	knl = &kn->kn_ptr.p_lio->klist;
2604 	knl->kl_lock(knl->kl_lockarg);
2605 	if (!knlist_empty(knl))
2606 		knlist_remove(knl, kn, 1);
2607 	knl->kl_unlock(knl->kl_lockarg);
2608 }
2609 
2610 /* kqueue filter function */
2611 /*ARGSUSED*/
2612 static int
2613 filt_lio(struct knote *kn, long hint)
2614 {
2615 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2616 
2617 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2618 }
2619 
2620 #ifdef COMPAT_FREEBSD32
2621 
2622 struct __aiocb_private32 {
2623 	int32_t	status;
2624 	int32_t	error;
2625 	uint32_t kernelinfo;
2626 };
2627 
2628 typedef struct oaiocb32 {
2629 	int	aio_fildes;		/* File descriptor */
2630 	uint64_t aio_offset __packed;	/* File offset for I/O */
2631 	uint32_t aio_buf;		/* I/O buffer in process space */
2632 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2633 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2634 	int	aio_lio_opcode;		/* LIO opcode */
2635 	int	aio_reqprio;		/* Request priority -- ignored */
2636 	struct	__aiocb_private32 _aiocb_private;
2637 } oaiocb32_t;
2638 
2639 typedef struct aiocb32 {
2640 	int32_t	aio_fildes;		/* File descriptor */
2641 	uint64_t aio_offset __packed;	/* File offset for I/O */
2642 	uint32_t aio_buf;		/* I/O buffer in process space */
2643 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2644 	int	__spare__[2];
2645 	uint32_t __spare2__;
2646 	int	aio_lio_opcode;		/* LIO opcode */
2647 	int	aio_reqprio;		/* Request priority -- ignored */
2648 	struct __aiocb_private32 _aiocb_private;
2649 	struct sigevent32 aio_sigevent;	/* Signal to deliver */
2650 } aiocb32_t;
2651 
2652 static int
2653 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2654 {
2655 
2656 	/*
2657 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2658 	 * supported by AIO with the old sigevent structure.
2659 	 */
2660 	CP(*osig, *nsig, sigev_notify);
2661 	switch (nsig->sigev_notify) {
2662 	case SIGEV_NONE:
2663 		break;
2664 	case SIGEV_SIGNAL:
2665 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2666 		break;
2667 	case SIGEV_KEVENT:
2668 		nsig->sigev_notify_kqueue =
2669 		    osig->__sigev_u.__sigev_notify_kqueue;
2670 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2671 		break;
2672 	default:
2673 		return (EINVAL);
2674 	}
2675 	return (0);
2676 }
2677 
2678 static int
2679 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
2680 {
2681 	struct oaiocb32 job32;
2682 	int error;
2683 
2684 	bzero(kjob, sizeof(struct aiocb));
2685 	error = copyin(ujob, &job32, sizeof(job32));
2686 	if (error)
2687 		return (error);
2688 
2689 	CP(job32, *kjob, aio_fildes);
2690 	CP(job32, *kjob, aio_offset);
2691 	PTRIN_CP(job32, *kjob, aio_buf);
2692 	CP(job32, *kjob, aio_nbytes);
2693 	CP(job32, *kjob, aio_lio_opcode);
2694 	CP(job32, *kjob, aio_reqprio);
2695 	CP(job32, *kjob, _aiocb_private.status);
2696 	CP(job32, *kjob, _aiocb_private.error);
2697 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2698 	return (convert_old_sigevent32(&job32.aio_sigevent,
2699 	    &kjob->aio_sigevent));
2700 }
2701 
2702 static int
2703 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
2704 {
2705 
2706 	CP(*sig32, *sig, sigev_notify);
2707 	switch (sig->sigev_notify) {
2708 	case SIGEV_NONE:
2709 		break;
2710 	case SIGEV_THREAD_ID:
2711 		CP(*sig32, *sig, sigev_notify_thread_id);
2712 		/* FALLTHROUGH */
2713 	case SIGEV_SIGNAL:
2714 		CP(*sig32, *sig, sigev_signo);
2715 		break;
2716 	case SIGEV_KEVENT:
2717 		CP(*sig32, *sig, sigev_notify_kqueue);
2718 		CP(*sig32, *sig, sigev_notify_kevent_flags);
2719 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
2720 		break;
2721 	default:
2722 		return (EINVAL);
2723 	}
2724 	return (0);
2725 }
2726 
2727 static int
2728 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
2729 {
2730 	struct aiocb32 job32;
2731 	int error;
2732 
2733 	error = copyin(ujob, &job32, sizeof(job32));
2734 	if (error)
2735 		return (error);
2736 	CP(job32, *kjob, aio_fildes);
2737 	CP(job32, *kjob, aio_offset);
2738 	PTRIN_CP(job32, *kjob, aio_buf);
2739 	CP(job32, *kjob, aio_nbytes);
2740 	CP(job32, *kjob, aio_lio_opcode);
2741 	CP(job32, *kjob, aio_reqprio);
2742 	CP(job32, *kjob, _aiocb_private.status);
2743 	CP(job32, *kjob, _aiocb_private.error);
2744 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2745 	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
2746 }
2747 
2748 static long
2749 aiocb32_fetch_status(struct aiocb *ujob)
2750 {
2751 	struct aiocb32 *ujob32;
2752 
2753 	ujob32 = (struct aiocb32 *)ujob;
2754 	return (fuword32(&ujob32->_aiocb_private.status));
2755 }
2756 
2757 static long
2758 aiocb32_fetch_error(struct aiocb *ujob)
2759 {
2760 	struct aiocb32 *ujob32;
2761 
2762 	ujob32 = (struct aiocb32 *)ujob;
2763 	return (fuword32(&ujob32->_aiocb_private.error));
2764 }
2765 
2766 static int
2767 aiocb32_store_status(struct aiocb *ujob, long status)
2768 {
2769 	struct aiocb32 *ujob32;
2770 
2771 	ujob32 = (struct aiocb32 *)ujob;
2772 	return (suword32(&ujob32->_aiocb_private.status, status));
2773 }
2774 
2775 static int
2776 aiocb32_store_error(struct aiocb *ujob, long error)
2777 {
2778 	struct aiocb32 *ujob32;
2779 
2780 	ujob32 = (struct aiocb32 *)ujob;
2781 	return (suword32(&ujob32->_aiocb_private.error, error));
2782 }
2783 
2784 static int
2785 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2786 {
2787 	struct aiocb32 *ujob32;
2788 
2789 	ujob32 = (struct aiocb32 *)ujob;
2790 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2791 }
2792 
2793 static int
2794 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2795 {
2796 
2797 	return (suword32(ujobp, (long)ujob));
2798 }
2799 
2800 static struct aiocb_ops aiocb32_ops = {
2801 	.copyin = aiocb32_copyin,
2802 	.fetch_status = aiocb32_fetch_status,
2803 	.fetch_error = aiocb32_fetch_error,
2804 	.store_status = aiocb32_store_status,
2805 	.store_error = aiocb32_store_error,
2806 	.store_kernelinfo = aiocb32_store_kernelinfo,
2807 	.store_aiocb = aiocb32_store_aiocb,
2808 };
2809 
2810 static struct aiocb_ops aiocb32_ops_osigevent = {
2811 	.copyin = aiocb32_copyin_old_sigevent,
2812 	.fetch_status = aiocb32_fetch_status,
2813 	.fetch_error = aiocb32_fetch_error,
2814 	.store_status = aiocb32_store_status,
2815 	.store_error = aiocb32_store_error,
2816 	.store_kernelinfo = aiocb32_store_kernelinfo,
2817 	.store_aiocb = aiocb32_store_aiocb,
2818 };
2819 
2820 int
2821 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2822 {
2823 
2824 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2825 }
2826 
2827 int
2828 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2829 {
2830 	struct timespec32 ts32;
2831 	struct timespec ts, *tsp;
2832 	struct aiocb **ujoblist;
2833 	uint32_t *ujoblist32;
2834 	int error, i;
2835 
2836 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2837 		return (EINVAL);
2838 
2839 	if (uap->timeout) {
2840 		/* Get timespec struct. */
2841 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2842 			return (error);
2843 		CP(ts32, ts, tv_sec);
2844 		CP(ts32, ts, tv_nsec);
2845 		tsp = &ts;
2846 	} else
2847 		tsp = NULL;
2848 
2849 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2850 	ujoblist32 = (uint32_t *)ujoblist;
2851 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2852 	    sizeof(ujoblist32[0]));
2853 	if (error == 0) {
2854 		for (i = uap->nent; i > 0; i--)
2855 			ujoblist[i] = PTRIN(ujoblist32[i]);
2856 
2857 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2858 	}
2859 	uma_zfree(aiol_zone, ujoblist);
2860 	return (error);
2861 }
2862 
2863 int
2864 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
2865 {
2866 
2867 	return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
2868 }
2869 
2870 int
2871 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2872 {
2873 
2874 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2875 }
2876 
2877 int
2878 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
2879 {
2880 
2881 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2882 	    &aiocb32_ops_osigevent));
2883 }
2884 
2885 int
2886 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2887 {
2888 
2889 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2890 	    &aiocb32_ops));
2891 }
2892 
2893 int
2894 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
2895 {
2896 
2897 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2898 	    &aiocb32_ops_osigevent));
2899 }
2900 
2901 int
2902 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2903 {
2904 
2905 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2906 	    &aiocb32_ops));
2907 }
2908 
2909 int
2910 freebsd32_aio_waitcomplete(struct thread *td,
2911     struct freebsd32_aio_waitcomplete_args *uap)
2912 {
2913 	struct timespec32 ts32;
2914 	struct timespec ts, *tsp;
2915 	int error;
2916 
2917 	if (uap->timeout) {
2918 		/* Get timespec struct. */
2919 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2920 		if (error)
2921 			return (error);
2922 		CP(ts32, ts, tv_sec);
2923 		CP(ts32, ts, tv_nsec);
2924 		tsp = &ts;
2925 	} else
2926 		tsp = NULL;
2927 
2928 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
2929 	    &aiocb32_ops));
2930 }
2931 
2932 int
2933 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
2934 {
2935 
2936 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
2937 	    &aiocb32_ops));
2938 }
2939 
2940 int
2941 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
2942 {
2943 	struct aiocb **acb_list;
2944 	struct sigevent *sigp, sig;
2945 	struct osigevent32 osig;
2946 	uint32_t *acb_list32;
2947 	int error, i, nent;
2948 
2949 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2950 		return (EINVAL);
2951 
2952 	nent = uap->nent;
2953 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2954 		return (EINVAL);
2955 
2956 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2957 		error = copyin(uap->sig, &osig, sizeof(osig));
2958 		if (error)
2959 			return (error);
2960 		error = convert_old_sigevent32(&osig, &sig);
2961 		if (error)
2962 			return (error);
2963 		sigp = &sig;
2964 	} else
2965 		sigp = NULL;
2966 
2967 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2968 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2969 	if (error) {
2970 		free(acb_list32, M_LIO);
2971 		return (error);
2972 	}
2973 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2974 	for (i = 0; i < nent; i++)
2975 		acb_list[i] = PTRIN(acb_list32[i]);
2976 	free(acb_list32, M_LIO);
2977 
2978 	error = kern_lio_listio(td, uap->mode,
2979 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2980 	    &aiocb32_ops_osigevent);
2981 	free(acb_list, M_LIO);
2982 	return (error);
2983 }
2984 
2985 int
2986 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
2987 {
2988 	struct aiocb **acb_list;
2989 	struct sigevent *sigp, sig;
2990 	struct sigevent32 sig32;
2991 	uint32_t *acb_list32;
2992 	int error, i, nent;
2993 
2994 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2995 		return (EINVAL);
2996 
2997 	nent = uap->nent;
2998 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2999 		return (EINVAL);
3000 
3001 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3002 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3003 		if (error)
3004 			return (error);
3005 		error = convert_sigevent32(&sig32, &sig);
3006 		if (error)
3007 			return (error);
3008 		sigp = &sig;
3009 	} else
3010 		sigp = NULL;
3011 
3012 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3013 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3014 	if (error) {
3015 		free(acb_list32, M_LIO);
3016 		return (error);
3017 	}
3018 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3019 	for (i = 0; i < nent; i++)
3020 		acb_list[i] = PTRIN(acb_list32[i]);
3021 	free(acb_list32, M_LIO);
3022 
3023 	error = kern_lio_listio(td, uap->mode,
3024 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3025 	    &aiocb32_ops);
3026 	free(acb_list, M_LIO);
3027 	return (error);
3028 }
3029 
3030 #endif
3031