xref: /freebsd/sys/kern/vfs_aio.c (revision d93a896e)
1 /*-
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  */
16 
17 /*
18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_compat.h"
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/bio.h>
30 #include <sys/buf.h>
31 #include <sys/capsicum.h>
32 #include <sys/eventhandler.h>
33 #include <sys/sysproto.h>
34 #include <sys/filedesc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kthread.h>
38 #include <sys/fcntl.h>
39 #include <sys/file.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/unistd.h>
44 #include <sys/posix4.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/protosw.h>
50 #include <sys/rwlock.h>
51 #include <sys/sema.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syscall.h>
55 #include <sys/sysent.h>
56 #include <sys/sysctl.h>
57 #include <sys/syslog.h>
58 #include <sys/sx.h>
59 #include <sys/taskqueue.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <sys/event.h>
63 #include <sys/mount.h>
64 #include <geom/geom.h>
65 
66 #include <machine/atomic.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_extern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 #include <vm/uma.h>
75 #include <sys/aio.h>
76 
77 /*
78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
79  * overflow. (XXX will be removed soon.)
80  */
81 static u_long jobrefid;
82 
83 /*
84  * Counter for aio_fsync.
85  */
86 static uint64_t jobseqno;
87 
88 #ifndef MAX_AIO_PER_PROC
89 #define MAX_AIO_PER_PROC	32
90 #endif
91 
92 #ifndef MAX_AIO_QUEUE_PER_PROC
93 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
94 #endif
95 
96 #ifndef MAX_AIO_QUEUE
97 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
98 #endif
99 
100 #ifndef MAX_BUF_AIO
101 #define MAX_BUF_AIO		16
102 #endif
103 
104 FEATURE(aio, "Asynchronous I/O");
105 
106 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
107 
108 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0,
109     "Async IO management");
110 
111 static int enable_aio_unsafe = 0;
112 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
113     "Permit asynchronous IO on all file types, not just known-safe types");
114 
115 static unsigned int unsafe_warningcnt = 1;
116 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
117     &unsafe_warningcnt, 0,
118     "Warnings that will be triggered upon failed IO requests on unsafe files");
119 
120 static int max_aio_procs = MAX_AIO_PROCS;
121 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
122     "Maximum number of kernel processes to use for handling async IO ");
123 
124 static int num_aio_procs = 0;
125 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
126     "Number of presently active kernel processes for async IO");
127 
128 /*
129  * The code will adjust the actual number of AIO processes towards this
130  * number when it gets a chance.
131  */
132 static int target_aio_procs = TARGET_AIO_PROCS;
133 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
134     0,
135     "Preferred number of ready kernel processes for async IO");
136 
137 static int max_queue_count = MAX_AIO_QUEUE;
138 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
139     "Maximum number of aio requests to queue, globally");
140 
141 static int num_queue_count = 0;
142 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
143     "Number of queued aio requests");
144 
145 static int num_buf_aio = 0;
146 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
147     "Number of aio requests presently handled by the buf subsystem");
148 
149 /* Number of async I/O processes in the process of being started */
150 /* XXX This should be local to aio_aqueue() */
151 static int num_aio_resv_start = 0;
152 
153 static int aiod_lifetime;
154 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
155     "Maximum lifetime for idle aiod");
156 
157 static int max_aio_per_proc = MAX_AIO_PER_PROC;
158 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
159     0,
160     "Maximum active aio requests per process (stored in the process)");
161 
162 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
163 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
164     &max_aio_queue_per_proc, 0,
165     "Maximum queued aio requests per process (stored in the process)");
166 
167 static int max_buf_aio = MAX_BUF_AIO;
168 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
169     "Maximum buf aio requests per process (stored in the process)");
170 
171 #ifdef COMPAT_FREEBSD6
172 typedef struct oaiocb {
173 	int	aio_fildes;		/* File descriptor */
174 	off_t	aio_offset;		/* File offset for I/O */
175 	volatile void *aio_buf;         /* I/O buffer in process space */
176 	size_t	aio_nbytes;		/* Number of bytes for I/O */
177 	struct	osigevent aio_sigevent;	/* Signal to deliver */
178 	int	aio_lio_opcode;		/* LIO opcode */
179 	int	aio_reqprio;		/* Request priority -- ignored */
180 	struct	__aiocb_private	_aiocb_private;
181 } oaiocb_t;
182 #endif
183 
184 /*
185  * Below is a key of locks used to protect each member of struct kaiocb
186  * aioliojob and kaioinfo and any backends.
187  *
188  * * - need not protected
189  * a - locked by kaioinfo lock
190  * b - locked by backend lock, the backend lock can be null in some cases,
191  *     for example, BIO belongs to this type, in this case, proc lock is
192  *     reused.
193  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
194  */
195 
196 /*
197  * If the routine that services an AIO request blocks while running in an
198  * AIO kernel process it can starve other I/O requests.  BIO requests
199  * queued via aio_qphysio() complete in GEOM and do not use AIO kernel
200  * processes at all.  Socket I/O requests use a separate pool of
201  * kprocs and also force non-blocking I/O.  Other file I/O requests
202  * use the generic fo_read/fo_write operations which can block.  The
203  * fsync and mlock operations can also block while executing.  Ideally
204  * none of these requests would block while executing.
205  *
206  * Note that the service routines cannot toggle O_NONBLOCK in the file
207  * structure directly while handling a request due to races with
208  * userland threads.
209  */
210 
211 /* jobflags */
212 #define	KAIOCB_QUEUEING		0x01
213 #define	KAIOCB_CANCELLED	0x02
214 #define	KAIOCB_CANCELLING	0x04
215 #define	KAIOCB_CHECKSYNC	0x08
216 #define	KAIOCB_CLEARED		0x10
217 #define	KAIOCB_FINISHED		0x20
218 
219 /*
220  * AIO process info
221  */
222 #define AIOP_FREE	0x1			/* proc on free queue */
223 
224 struct aioproc {
225 	int	aioprocflags;			/* (c) AIO proc flags */
226 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
227 	struct	proc *aioproc;			/* (*) the AIO proc */
228 };
229 
230 /*
231  * data-structure for lio signal management
232  */
233 struct aioliojob {
234 	int	lioj_flags;			/* (a) listio flags */
235 	int	lioj_count;			/* (a) listio flags */
236 	int	lioj_finished_count;		/* (a) listio flags */
237 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
238 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
239 	struct	knlist klist;			/* (a) list of knotes */
240 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
241 };
242 
243 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
244 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
245 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
246 
247 /*
248  * per process aio data structure
249  */
250 struct kaioinfo {
251 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
252 	int	kaio_flags;		/* (a) per process kaio flags */
253 	int	kaio_maxactive_count;	/* (*) maximum number of AIOs */
254 	int	kaio_active_count;	/* (c) number of currently used AIOs */
255 	int	kaio_qallowed_count;	/* (*) maxiumu size of AIO queue */
256 	int	kaio_count;		/* (a) size of AIO queue */
257 	int	kaio_ballowed_count;	/* (*) maximum number of buffers */
258 	int	kaio_buffer_count;	/* (a) number of physio buffers */
259 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
260 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
261 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
262 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
263 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
264 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
265 	struct	task kaio_task;		/* (*) task to kick aio processes */
266 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
267 };
268 
269 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
270 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
271 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
272 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
273 
274 #define KAIO_RUNDOWN	0x1	/* process is being run down */
275 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
276 
277 /*
278  * Operations used to interact with userland aio control blocks.
279  * Different ABIs provide their own operations.
280  */
281 struct aiocb_ops {
282 	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
283 	long	(*fetch_status)(struct aiocb *ujob);
284 	long	(*fetch_error)(struct aiocb *ujob);
285 	int	(*store_status)(struct aiocb *ujob, long status);
286 	int	(*store_error)(struct aiocb *ujob, long error);
287 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
288 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
289 };
290 
291 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
292 static struct sema aio_newproc_sem;
293 static struct mtx aio_job_mtx;
294 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
295 static struct unrhdr *aiod_unr;
296 
297 void		aio_init_aioinfo(struct proc *p);
298 static int	aio_onceonly(void);
299 static int	aio_free_entry(struct kaiocb *job);
300 static void	aio_process_rw(struct kaiocb *job);
301 static void	aio_process_sync(struct kaiocb *job);
302 static void	aio_process_mlock(struct kaiocb *job);
303 static void	aio_schedule_fsync(void *context, int pending);
304 static int	aio_newproc(int *);
305 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
306 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
307 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
308 static void	aio_physwakeup(struct bio *bp);
309 static void	aio_proc_rundown(void *arg, struct proc *p);
310 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
311 		    struct image_params *imgp);
312 static int	aio_qphysio(struct proc *p, struct kaiocb *job);
313 static void	aio_daemon(void *param);
314 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
315 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
316 static int	aio_kick(struct proc *userp);
317 static void	aio_kick_nowait(struct proc *userp);
318 static void	aio_kick_helper(void *context, int pending);
319 static int	filt_aioattach(struct knote *kn);
320 static void	filt_aiodetach(struct knote *kn);
321 static int	filt_aio(struct knote *kn, long hint);
322 static int	filt_lioattach(struct knote *kn);
323 static void	filt_liodetach(struct knote *kn);
324 static int	filt_lio(struct knote *kn, long hint);
325 
326 /*
327  * Zones for:
328  * 	kaio	Per process async io info
329  *	aiop	async io process data
330  *	aiocb	async io jobs
331  *	aiol	list io job pointer - internal to aio_suspend XXX
332  *	aiolio	list io jobs
333  */
334 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
335 
336 /* kqueue filters for aio */
337 static struct filterops aio_filtops = {
338 	.f_isfd = 0,
339 	.f_attach = filt_aioattach,
340 	.f_detach = filt_aiodetach,
341 	.f_event = filt_aio,
342 };
343 static struct filterops lio_filtops = {
344 	.f_isfd = 0,
345 	.f_attach = filt_lioattach,
346 	.f_detach = filt_liodetach,
347 	.f_event = filt_lio
348 };
349 
350 static eventhandler_tag exit_tag, exec_tag;
351 
352 TASKQUEUE_DEFINE_THREAD(aiod_kick);
353 
354 /*
355  * Main operations function for use as a kernel module.
356  */
357 static int
358 aio_modload(struct module *module, int cmd, void *arg)
359 {
360 	int error = 0;
361 
362 	switch (cmd) {
363 	case MOD_LOAD:
364 		aio_onceonly();
365 		break;
366 	case MOD_SHUTDOWN:
367 		break;
368 	default:
369 		error = EOPNOTSUPP;
370 		break;
371 	}
372 	return (error);
373 }
374 
375 static moduledata_t aio_mod = {
376 	"aio",
377 	&aio_modload,
378 	NULL
379 };
380 
381 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
382 MODULE_VERSION(aio, 1);
383 
384 /*
385  * Startup initialization
386  */
387 static int
388 aio_onceonly(void)
389 {
390 
391 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
392 	    EVENTHANDLER_PRI_ANY);
393 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
394 	    NULL, EVENTHANDLER_PRI_ANY);
395 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
396 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
397 	TAILQ_INIT(&aio_freeproc);
398 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
399 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
400 	TAILQ_INIT(&aio_jobs);
401 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
402 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
403 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
404 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
405 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
406 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
407 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
408 	aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
409 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
410 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
411 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
412 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
413 	jobrefid = 1;
414 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
416 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
417 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
418 
419 	return (0);
420 }
421 
422 /*
423  * Init the per-process aioinfo structure.  The aioinfo limits are set
424  * per-process for user limit (resource) management.
425  */
426 void
427 aio_init_aioinfo(struct proc *p)
428 {
429 	struct kaioinfo *ki;
430 
431 	ki = uma_zalloc(kaio_zone, M_WAITOK);
432 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
433 	ki->kaio_flags = 0;
434 	ki->kaio_maxactive_count = max_aio_per_proc;
435 	ki->kaio_active_count = 0;
436 	ki->kaio_qallowed_count = max_aio_queue_per_proc;
437 	ki->kaio_count = 0;
438 	ki->kaio_ballowed_count = max_buf_aio;
439 	ki->kaio_buffer_count = 0;
440 	TAILQ_INIT(&ki->kaio_all);
441 	TAILQ_INIT(&ki->kaio_done);
442 	TAILQ_INIT(&ki->kaio_jobqueue);
443 	TAILQ_INIT(&ki->kaio_liojoblist);
444 	TAILQ_INIT(&ki->kaio_syncqueue);
445 	TAILQ_INIT(&ki->kaio_syncready);
446 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
447 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
448 	PROC_LOCK(p);
449 	if (p->p_aioinfo == NULL) {
450 		p->p_aioinfo = ki;
451 		PROC_UNLOCK(p);
452 	} else {
453 		PROC_UNLOCK(p);
454 		mtx_destroy(&ki->kaio_mtx);
455 		uma_zfree(kaio_zone, ki);
456 	}
457 
458 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
459 		aio_newproc(NULL);
460 }
461 
462 static int
463 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
464 {
465 	struct thread *td;
466 	int error;
467 
468 	error = sigev_findtd(p, sigev, &td);
469 	if (error)
470 		return (error);
471 	if (!KSI_ONQ(ksi)) {
472 		ksiginfo_set_sigev(ksi, sigev);
473 		ksi->ksi_code = SI_ASYNCIO;
474 		ksi->ksi_flags |= KSI_EXT | KSI_INS;
475 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
476 	}
477 	PROC_UNLOCK(p);
478 	return (error);
479 }
480 
481 /*
482  * Free a job entry.  Wait for completion if it is currently active, but don't
483  * delay forever.  If we delay, we return a flag that says that we have to
484  * restart the queue scan.
485  */
486 static int
487 aio_free_entry(struct kaiocb *job)
488 {
489 	struct kaioinfo *ki;
490 	struct aioliojob *lj;
491 	struct proc *p;
492 
493 	p = job->userproc;
494 	MPASS(curproc == p);
495 	ki = p->p_aioinfo;
496 	MPASS(ki != NULL);
497 
498 	AIO_LOCK_ASSERT(ki, MA_OWNED);
499 	MPASS(job->jobflags & KAIOCB_FINISHED);
500 
501 	atomic_subtract_int(&num_queue_count, 1);
502 
503 	ki->kaio_count--;
504 	MPASS(ki->kaio_count >= 0);
505 
506 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
507 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
508 
509 	lj = job->lio;
510 	if (lj) {
511 		lj->lioj_count--;
512 		lj->lioj_finished_count--;
513 
514 		if (lj->lioj_count == 0) {
515 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
516 			/* lio is going away, we need to destroy any knotes */
517 			knlist_delete(&lj->klist, curthread, 1);
518 			PROC_LOCK(p);
519 			sigqueue_take(&lj->lioj_ksi);
520 			PROC_UNLOCK(p);
521 			uma_zfree(aiolio_zone, lj);
522 		}
523 	}
524 
525 	/* job is going away, we need to destroy any knotes */
526 	knlist_delete(&job->klist, curthread, 1);
527 	PROC_LOCK(p);
528 	sigqueue_take(&job->ksi);
529 	PROC_UNLOCK(p);
530 
531 	AIO_UNLOCK(ki);
532 
533 	/*
534 	 * The thread argument here is used to find the owning process
535 	 * and is also passed to fo_close() which may pass it to various
536 	 * places such as devsw close() routines.  Because of that, we
537 	 * need a thread pointer from the process owning the job that is
538 	 * persistent and won't disappear out from under us or move to
539 	 * another process.
540 	 *
541 	 * Currently, all the callers of this function call it to remove
542 	 * a kaiocb from the current process' job list either via a
543 	 * syscall or due to the current process calling exit() or
544 	 * execve().  Thus, we know that p == curproc.  We also know that
545 	 * curthread can't exit since we are curthread.
546 	 *
547 	 * Therefore, we use curthread as the thread to pass to
548 	 * knlist_delete().  This does mean that it is possible for the
549 	 * thread pointer at close time to differ from the thread pointer
550 	 * at open time, but this is already true of file descriptors in
551 	 * a multithreaded process.
552 	 */
553 	if (job->fd_file)
554 		fdrop(job->fd_file, curthread);
555 	crfree(job->cred);
556 	uma_zfree(aiocb_zone, job);
557 	AIO_LOCK(ki);
558 
559 	return (0);
560 }
561 
562 static void
563 aio_proc_rundown_exec(void *arg, struct proc *p,
564     struct image_params *imgp __unused)
565 {
566    	aio_proc_rundown(arg, p);
567 }
568 
569 static int
570 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
571 {
572 	aio_cancel_fn_t *func;
573 	int cancelled;
574 
575 	AIO_LOCK_ASSERT(ki, MA_OWNED);
576 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
577 		return (0);
578 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
579 	job->jobflags |= KAIOCB_CANCELLED;
580 
581 	func = job->cancel_fn;
582 
583 	/*
584 	 * If there is no cancel routine, just leave the job marked as
585 	 * cancelled.  The job should be in active use by a caller who
586 	 * should complete it normally or when it fails to install a
587 	 * cancel routine.
588 	 */
589 	if (func == NULL)
590 		return (0);
591 
592 	/*
593 	 * Set the CANCELLING flag so that aio_complete() will defer
594 	 * completions of this job.  This prevents the job from being
595 	 * freed out from under the cancel callback.  After the
596 	 * callback any deferred completion (whether from the callback
597 	 * or any other source) will be completed.
598 	 */
599 	job->jobflags |= KAIOCB_CANCELLING;
600 	AIO_UNLOCK(ki);
601 	func(job);
602 	AIO_LOCK(ki);
603 	job->jobflags &= ~KAIOCB_CANCELLING;
604 	if (job->jobflags & KAIOCB_FINISHED) {
605 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
606 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
607 		aio_bio_done_notify(p, job);
608 	} else {
609 		/*
610 		 * The cancel callback might have scheduled an
611 		 * operation to cancel this request, but it is
612 		 * only counted as cancelled if the request is
613 		 * cancelled when the callback returns.
614 		 */
615 		cancelled = 0;
616 	}
617 	return (cancelled);
618 }
619 
620 /*
621  * Rundown the jobs for a given process.
622  */
623 static void
624 aio_proc_rundown(void *arg, struct proc *p)
625 {
626 	struct kaioinfo *ki;
627 	struct aioliojob *lj;
628 	struct kaiocb *job, *jobn;
629 
630 	KASSERT(curthread->td_proc == p,
631 	    ("%s: called on non-curproc", __func__));
632 	ki = p->p_aioinfo;
633 	if (ki == NULL)
634 		return;
635 
636 	AIO_LOCK(ki);
637 	ki->kaio_flags |= KAIO_RUNDOWN;
638 
639 restart:
640 
641 	/*
642 	 * Try to cancel all pending requests. This code simulates
643 	 * aio_cancel on all pending I/O requests.
644 	 */
645 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
646 		aio_cancel_job(p, ki, job);
647 	}
648 
649 	/* Wait for all running I/O to be finished */
650 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
651 		ki->kaio_flags |= KAIO_WAKEUP;
652 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
653 		goto restart;
654 	}
655 
656 	/* Free all completed I/O requests. */
657 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
658 		aio_free_entry(job);
659 
660 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
661 		if (lj->lioj_count == 0) {
662 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
663 			knlist_delete(&lj->klist, curthread, 1);
664 			PROC_LOCK(p);
665 			sigqueue_take(&lj->lioj_ksi);
666 			PROC_UNLOCK(p);
667 			uma_zfree(aiolio_zone, lj);
668 		} else {
669 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
670 			    lj->lioj_count, lj->lioj_finished_count);
671 		}
672 	}
673 	AIO_UNLOCK(ki);
674 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
675 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
676 	mtx_destroy(&ki->kaio_mtx);
677 	uma_zfree(kaio_zone, ki);
678 	p->p_aioinfo = NULL;
679 }
680 
681 /*
682  * Select a job to run (called by an AIO daemon).
683  */
684 static struct kaiocb *
685 aio_selectjob(struct aioproc *aiop)
686 {
687 	struct kaiocb *job;
688 	struct kaioinfo *ki;
689 	struct proc *userp;
690 
691 	mtx_assert(&aio_job_mtx, MA_OWNED);
692 restart:
693 	TAILQ_FOREACH(job, &aio_jobs, list) {
694 		userp = job->userproc;
695 		ki = userp->p_aioinfo;
696 
697 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
698 			TAILQ_REMOVE(&aio_jobs, job, list);
699 			if (!aio_clear_cancel_function(job))
700 				goto restart;
701 
702 			/* Account for currently active jobs. */
703 			ki->kaio_active_count++;
704 			break;
705 		}
706 	}
707 	return (job);
708 }
709 
710 /*
711  * Move all data to a permanent storage device.  This code
712  * simulates the fsync syscall.
713  */
714 static int
715 aio_fsync_vnode(struct thread *td, struct vnode *vp)
716 {
717 	struct mount *mp;
718 	int error;
719 
720 	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
721 		goto drop;
722 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
723 	if (vp->v_object != NULL) {
724 		VM_OBJECT_WLOCK(vp->v_object);
725 		vm_object_page_clean(vp->v_object, 0, 0, 0);
726 		VM_OBJECT_WUNLOCK(vp->v_object);
727 	}
728 	error = VOP_FSYNC(vp, MNT_WAIT, td);
729 
730 	VOP_UNLOCK(vp, 0);
731 	vn_finished_write(mp);
732 drop:
733 	return (error);
734 }
735 
736 /*
737  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
738  * does the I/O request for the non-physio version of the operations.  The
739  * normal vn operations are used, and this code should work in all instances
740  * for every type of file, including pipes, sockets, fifos, and regular files.
741  *
742  * XXX I don't think it works well for socket, pipe, and fifo.
743  */
744 static void
745 aio_process_rw(struct kaiocb *job)
746 {
747 	struct ucred *td_savedcred;
748 	struct thread *td;
749 	struct aiocb *cb;
750 	struct file *fp;
751 	struct uio auio;
752 	struct iovec aiov;
753 	ssize_t cnt;
754 	long msgsnd_st, msgsnd_end;
755 	long msgrcv_st, msgrcv_end;
756 	long oublock_st, oublock_end;
757 	long inblock_st, inblock_end;
758 	int error;
759 
760 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
761 	    job->uaiocb.aio_lio_opcode == LIO_WRITE,
762 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
763 
764 	aio_switch_vmspace(job);
765 	td = curthread;
766 	td_savedcred = td->td_ucred;
767 	td->td_ucred = job->cred;
768 	cb = &job->uaiocb;
769 	fp = job->fd_file;
770 
771 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
772 	aiov.iov_len = cb->aio_nbytes;
773 
774 	auio.uio_iov = &aiov;
775 	auio.uio_iovcnt = 1;
776 	auio.uio_offset = cb->aio_offset;
777 	auio.uio_resid = cb->aio_nbytes;
778 	cnt = cb->aio_nbytes;
779 	auio.uio_segflg = UIO_USERSPACE;
780 	auio.uio_td = td;
781 
782 	msgrcv_st = td->td_ru.ru_msgrcv;
783 	msgsnd_st = td->td_ru.ru_msgsnd;
784 	inblock_st = td->td_ru.ru_inblock;
785 	oublock_st = td->td_ru.ru_oublock;
786 
787 	/*
788 	 * aio_aqueue() acquires a reference to the file that is
789 	 * released in aio_free_entry().
790 	 */
791 	if (cb->aio_lio_opcode == LIO_READ) {
792 		auio.uio_rw = UIO_READ;
793 		if (auio.uio_resid == 0)
794 			error = 0;
795 		else
796 			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
797 	} else {
798 		if (fp->f_type == DTYPE_VNODE)
799 			bwillwrite();
800 		auio.uio_rw = UIO_WRITE;
801 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
802 	}
803 	msgrcv_end = td->td_ru.ru_msgrcv;
804 	msgsnd_end = td->td_ru.ru_msgsnd;
805 	inblock_end = td->td_ru.ru_inblock;
806 	oublock_end = td->td_ru.ru_oublock;
807 
808 	job->msgrcv = msgrcv_end - msgrcv_st;
809 	job->msgsnd = msgsnd_end - msgsnd_st;
810 	job->inblock = inblock_end - inblock_st;
811 	job->outblock = oublock_end - oublock_st;
812 
813 	if ((error) && (auio.uio_resid != cnt)) {
814 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
815 			error = 0;
816 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
817 			PROC_LOCK(job->userproc);
818 			kern_psignal(job->userproc, SIGPIPE);
819 			PROC_UNLOCK(job->userproc);
820 		}
821 	}
822 
823 	cnt -= auio.uio_resid;
824 	td->td_ucred = td_savedcred;
825 	if (error)
826 		aio_complete(job, -1, error);
827 	else
828 		aio_complete(job, cnt, 0);
829 }
830 
831 static void
832 aio_process_sync(struct kaiocb *job)
833 {
834 	struct thread *td = curthread;
835 	struct ucred *td_savedcred = td->td_ucred;
836 	struct file *fp = job->fd_file;
837 	int error = 0;
838 
839 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC,
840 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
841 
842 	td->td_ucred = job->cred;
843 	if (fp->f_vnode != NULL)
844 		error = aio_fsync_vnode(td, fp->f_vnode);
845 	td->td_ucred = td_savedcred;
846 	if (error)
847 		aio_complete(job, -1, error);
848 	else
849 		aio_complete(job, 0, 0);
850 }
851 
852 static void
853 aio_process_mlock(struct kaiocb *job)
854 {
855 	struct aiocb *cb = &job->uaiocb;
856 	int error;
857 
858 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
859 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
860 
861 	aio_switch_vmspace(job);
862 	error = kern_mlock(job->userproc, job->cred,
863 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
864 	aio_complete(job, error != 0 ? -1 : 0, error);
865 }
866 
867 static void
868 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
869 {
870 	struct aioliojob *lj;
871 	struct kaioinfo *ki;
872 	struct kaiocb *sjob, *sjobn;
873 	int lj_done;
874 	bool schedule_fsync;
875 
876 	ki = userp->p_aioinfo;
877 	AIO_LOCK_ASSERT(ki, MA_OWNED);
878 	lj = job->lio;
879 	lj_done = 0;
880 	if (lj) {
881 		lj->lioj_finished_count++;
882 		if (lj->lioj_count == lj->lioj_finished_count)
883 			lj_done = 1;
884 	}
885 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
886 	MPASS(job->jobflags & KAIOCB_FINISHED);
887 
888 	if (ki->kaio_flags & KAIO_RUNDOWN)
889 		goto notification_done;
890 
891 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
892 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
893 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi);
894 
895 	KNOTE_LOCKED(&job->klist, 1);
896 
897 	if (lj_done) {
898 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
899 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
900 			KNOTE_LOCKED(&lj->klist, 1);
901 		}
902 		if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
903 		    == LIOJ_SIGNAL
904 		    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
905 		        lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
906 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
907 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
908 		}
909 	}
910 
911 notification_done:
912 	if (job->jobflags & KAIOCB_CHECKSYNC) {
913 		schedule_fsync = false;
914 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
915 			if (job->fd_file != sjob->fd_file ||
916 			    job->seqno >= sjob->seqno)
917 				continue;
918 			if (--sjob->pending > 0)
919 				continue;
920 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
921 			if (!aio_clear_cancel_function_locked(sjob))
922 				continue;
923 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
924 			schedule_fsync = true;
925 		}
926 		if (schedule_fsync)
927 			taskqueue_enqueue(taskqueue_aiod_kick,
928 			    &ki->kaio_sync_task);
929 	}
930 	if (ki->kaio_flags & KAIO_WAKEUP) {
931 		ki->kaio_flags &= ~KAIO_WAKEUP;
932 		wakeup(&userp->p_aioinfo);
933 	}
934 }
935 
936 static void
937 aio_schedule_fsync(void *context, int pending)
938 {
939 	struct kaioinfo *ki;
940 	struct kaiocb *job;
941 
942 	ki = context;
943 	AIO_LOCK(ki);
944 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
945 		job = TAILQ_FIRST(&ki->kaio_syncready);
946 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
947 		AIO_UNLOCK(ki);
948 		aio_schedule(job, aio_process_sync);
949 		AIO_LOCK(ki);
950 	}
951 	AIO_UNLOCK(ki);
952 }
953 
954 bool
955 aio_cancel_cleared(struct kaiocb *job)
956 {
957 	struct kaioinfo *ki;
958 
959 	/*
960 	 * The caller should hold the same queue lock held when
961 	 * aio_clear_cancel_function() was called and set this flag
962 	 * ensuring this check sees an up-to-date value.  However,
963 	 * there is no way to assert that.
964 	 */
965 	ki = job->userproc->p_aioinfo;
966 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
967 }
968 
969 static bool
970 aio_clear_cancel_function_locked(struct kaiocb *job)
971 {
972 
973 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
974 	MPASS(job->cancel_fn != NULL);
975 	if (job->jobflags & KAIOCB_CANCELLING) {
976 		job->jobflags |= KAIOCB_CLEARED;
977 		return (false);
978 	}
979 	job->cancel_fn = NULL;
980 	return (true);
981 }
982 
983 bool
984 aio_clear_cancel_function(struct kaiocb *job)
985 {
986 	struct kaioinfo *ki;
987 	bool ret;
988 
989 	ki = job->userproc->p_aioinfo;
990 	AIO_LOCK(ki);
991 	ret = aio_clear_cancel_function_locked(job);
992 	AIO_UNLOCK(ki);
993 	return (ret);
994 }
995 
996 static bool
997 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
998 {
999 
1000 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1001 	if (job->jobflags & KAIOCB_CANCELLED)
1002 		return (false);
1003 	job->cancel_fn = func;
1004 	return (true);
1005 }
1006 
1007 bool
1008 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1009 {
1010 	struct kaioinfo *ki;
1011 	bool ret;
1012 
1013 	ki = job->userproc->p_aioinfo;
1014 	AIO_LOCK(ki);
1015 	ret = aio_set_cancel_function_locked(job, func);
1016 	AIO_UNLOCK(ki);
1017 	return (ret);
1018 }
1019 
1020 void
1021 aio_complete(struct kaiocb *job, long status, int error)
1022 {
1023 	struct kaioinfo *ki;
1024 	struct proc *userp;
1025 
1026 	job->uaiocb._aiocb_private.error = error;
1027 	job->uaiocb._aiocb_private.status = status;
1028 
1029 	userp = job->userproc;
1030 	ki = userp->p_aioinfo;
1031 
1032 	AIO_LOCK(ki);
1033 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1034 	    ("duplicate aio_complete"));
1035 	job->jobflags |= KAIOCB_FINISHED;
1036 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1037 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1038 		aio_bio_done_notify(userp, job);
1039 	}
1040 	AIO_UNLOCK(ki);
1041 }
1042 
1043 void
1044 aio_cancel(struct kaiocb *job)
1045 {
1046 
1047 	aio_complete(job, -1, ECANCELED);
1048 }
1049 
1050 void
1051 aio_switch_vmspace(struct kaiocb *job)
1052 {
1053 
1054 	vmspace_switch_aio(job->userproc->p_vmspace);
1055 }
1056 
1057 /*
1058  * The AIO daemon, most of the actual work is done in aio_process_*,
1059  * but the setup (and address space mgmt) is done in this routine.
1060  */
1061 static void
1062 aio_daemon(void *_id)
1063 {
1064 	struct kaiocb *job;
1065 	struct aioproc *aiop;
1066 	struct kaioinfo *ki;
1067 	struct proc *p;
1068 	struct vmspace *myvm;
1069 	struct thread *td = curthread;
1070 	int id = (intptr_t)_id;
1071 
1072 	/*
1073 	 * Grab an extra reference on the daemon's vmspace so that it
1074 	 * doesn't get freed by jobs that switch to a different
1075 	 * vmspace.
1076 	 */
1077 	p = td->td_proc;
1078 	myvm = vmspace_acquire_ref(p);
1079 
1080 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1081 
1082 	/*
1083 	 * Allocate and ready the aio control info.  There is one aiop structure
1084 	 * per daemon.
1085 	 */
1086 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1087 	aiop->aioproc = p;
1088 	aiop->aioprocflags = 0;
1089 
1090 	/*
1091 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1092 	 * and creating too many daemons.)
1093 	 */
1094 	sema_post(&aio_newproc_sem);
1095 
1096 	mtx_lock(&aio_job_mtx);
1097 	for (;;) {
1098 		/*
1099 		 * Take daemon off of free queue
1100 		 */
1101 		if (aiop->aioprocflags & AIOP_FREE) {
1102 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1103 			aiop->aioprocflags &= ~AIOP_FREE;
1104 		}
1105 
1106 		/*
1107 		 * Check for jobs.
1108 		 */
1109 		while ((job = aio_selectjob(aiop)) != NULL) {
1110 			mtx_unlock(&aio_job_mtx);
1111 
1112 			ki = job->userproc->p_aioinfo;
1113 			job->handle_fn(job);
1114 
1115 			mtx_lock(&aio_job_mtx);
1116 			/* Decrement the active job count. */
1117 			ki->kaio_active_count--;
1118 		}
1119 
1120 		/*
1121 		 * Disconnect from user address space.
1122 		 */
1123 		if (p->p_vmspace != myvm) {
1124 			mtx_unlock(&aio_job_mtx);
1125 			vmspace_switch_aio(myvm);
1126 			mtx_lock(&aio_job_mtx);
1127 			/*
1128 			 * We have to restart to avoid race, we only sleep if
1129 			 * no job can be selected.
1130 			 */
1131 			continue;
1132 		}
1133 
1134 		mtx_assert(&aio_job_mtx, MA_OWNED);
1135 
1136 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1137 		aiop->aioprocflags |= AIOP_FREE;
1138 
1139 		/*
1140 		 * If daemon is inactive for a long time, allow it to exit,
1141 		 * thereby freeing resources.
1142 		 */
1143 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1144 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1145 		    (aiop->aioprocflags & AIOP_FREE) &&
1146 		    num_aio_procs > target_aio_procs)
1147 			break;
1148 	}
1149 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1150 	num_aio_procs--;
1151 	mtx_unlock(&aio_job_mtx);
1152 	uma_zfree(aiop_zone, aiop);
1153 	free_unr(aiod_unr, id);
1154 	vmspace_free(myvm);
1155 
1156 	KASSERT(p->p_vmspace == myvm,
1157 	    ("AIOD: bad vmspace for exiting daemon"));
1158 	KASSERT(myvm->vm_refcnt > 1,
1159 	    ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt));
1160 	kproc_exit(0);
1161 }
1162 
1163 /*
1164  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1165  * AIO daemon modifies its environment itself.
1166  */
1167 static int
1168 aio_newproc(int *start)
1169 {
1170 	int error;
1171 	struct proc *p;
1172 	int id;
1173 
1174 	id = alloc_unr(aiod_unr);
1175 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1176 		RFNOWAIT, 0, "aiod%d", id);
1177 	if (error == 0) {
1178 		/*
1179 		 * Wait until daemon is started.
1180 		 */
1181 		sema_wait(&aio_newproc_sem);
1182 		mtx_lock(&aio_job_mtx);
1183 		num_aio_procs++;
1184 		if (start != NULL)
1185 			(*start)--;
1186 		mtx_unlock(&aio_job_mtx);
1187 	} else {
1188 		free_unr(aiod_unr, id);
1189 	}
1190 	return (error);
1191 }
1192 
1193 /*
1194  * Try the high-performance, low-overhead physio method for eligible
1195  * VCHR devices.  This method doesn't use an aio helper thread, and
1196  * thus has very low overhead.
1197  *
1198  * Assumes that the caller, aio_aqueue(), has incremented the file
1199  * structure's reference count, preventing its deallocation for the
1200  * duration of this call.
1201  */
1202 static int
1203 aio_qphysio(struct proc *p, struct kaiocb *job)
1204 {
1205 	struct aiocb *cb;
1206 	struct file *fp;
1207 	struct bio *bp;
1208 	struct buf *pbuf;
1209 	struct vnode *vp;
1210 	struct cdevsw *csw;
1211 	struct cdev *dev;
1212 	struct kaioinfo *ki;
1213 	int error, ref, poff;
1214 	vm_prot_t prot;
1215 
1216 	cb = &job->uaiocb;
1217 	fp = job->fd_file;
1218 
1219 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1220 		return (-1);
1221 
1222 	vp = fp->f_vnode;
1223 	if (vp->v_type != VCHR)
1224 		return (-1);
1225 	if (vp->v_bufobj.bo_bsize == 0)
1226 		return (-1);
1227 	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
1228 		return (-1);
1229 
1230 	ref = 0;
1231 	csw = devvn_refthread(vp, &dev, &ref);
1232 	if (csw == NULL)
1233 		return (ENXIO);
1234 
1235 	if ((csw->d_flags & D_DISK) == 0) {
1236 		error = -1;
1237 		goto unref;
1238 	}
1239 	if (cb->aio_nbytes > dev->si_iosize_max) {
1240 		error = -1;
1241 		goto unref;
1242 	}
1243 
1244 	ki = p->p_aioinfo;
1245 	poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
1246 	if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) {
1247 		if (cb->aio_nbytes > MAXPHYS) {
1248 			error = -1;
1249 			goto unref;
1250 		}
1251 
1252 		pbuf = NULL;
1253 	} else {
1254 		if (cb->aio_nbytes > MAXPHYS - poff) {
1255 			error = -1;
1256 			goto unref;
1257 		}
1258 		if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
1259 			error = -1;
1260 			goto unref;
1261 		}
1262 
1263 		job->pbuf = pbuf = (struct buf *)getpbuf(NULL);
1264 		BUF_KERNPROC(pbuf);
1265 		AIO_LOCK(ki);
1266 		ki->kaio_buffer_count++;
1267 		AIO_UNLOCK(ki);
1268 	}
1269 	job->bp = bp = g_alloc_bio();
1270 
1271 	bp->bio_length = cb->aio_nbytes;
1272 	bp->bio_bcount = cb->aio_nbytes;
1273 	bp->bio_done = aio_physwakeup;
1274 	bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
1275 	bp->bio_offset = cb->aio_offset;
1276 	bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
1277 	bp->bio_dev = dev;
1278 	bp->bio_caller1 = (void *)job;
1279 
1280 	prot = VM_PROT_READ;
1281 	if (cb->aio_lio_opcode == LIO_READ)
1282 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1283 	job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1284 	    (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages,
1285 	    nitems(job->pages));
1286 	if (job->npages < 0) {
1287 		error = EFAULT;
1288 		goto doerror;
1289 	}
1290 	if (pbuf != NULL) {
1291 		pmap_qenter((vm_offset_t)pbuf->b_data,
1292 		    job->pages, job->npages);
1293 		bp->bio_data = pbuf->b_data + poff;
1294 		atomic_add_int(&num_buf_aio, 1);
1295 	} else {
1296 		bp->bio_ma = job->pages;
1297 		bp->bio_ma_n = job->npages;
1298 		bp->bio_ma_offset = poff;
1299 		bp->bio_data = unmapped_buf;
1300 		bp->bio_flags |= BIO_UNMAPPED;
1301 	}
1302 
1303 	/* Perform transfer. */
1304 	csw->d_strategy(bp);
1305 	dev_relthread(dev, ref);
1306 	return (0);
1307 
1308 doerror:
1309 	if (pbuf != NULL) {
1310 		AIO_LOCK(ki);
1311 		ki->kaio_buffer_count--;
1312 		AIO_UNLOCK(ki);
1313 		relpbuf(pbuf, NULL);
1314 		job->pbuf = NULL;
1315 	}
1316 	g_destroy_bio(bp);
1317 	job->bp = NULL;
1318 unref:
1319 	dev_relthread(dev, ref);
1320 	return (error);
1321 }
1322 
1323 #ifdef COMPAT_FREEBSD6
1324 static int
1325 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1326 {
1327 
1328 	/*
1329 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1330 	 * supported by AIO with the old sigevent structure.
1331 	 */
1332 	nsig->sigev_notify = osig->sigev_notify;
1333 	switch (nsig->sigev_notify) {
1334 	case SIGEV_NONE:
1335 		break;
1336 	case SIGEV_SIGNAL:
1337 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1338 		break;
1339 	case SIGEV_KEVENT:
1340 		nsig->sigev_notify_kqueue =
1341 		    osig->__sigev_u.__sigev_notify_kqueue;
1342 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1343 		break;
1344 	default:
1345 		return (EINVAL);
1346 	}
1347 	return (0);
1348 }
1349 
1350 static int
1351 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
1352 {
1353 	struct oaiocb *ojob;
1354 	int error;
1355 
1356 	bzero(kjob, sizeof(struct aiocb));
1357 	error = copyin(ujob, kjob, sizeof(struct oaiocb));
1358 	if (error)
1359 		return (error);
1360 	ojob = (struct oaiocb *)kjob;
1361 	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
1362 }
1363 #endif
1364 
1365 static int
1366 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
1367 {
1368 
1369 	return (copyin(ujob, kjob, sizeof(struct aiocb)));
1370 }
1371 
1372 static long
1373 aiocb_fetch_status(struct aiocb *ujob)
1374 {
1375 
1376 	return (fuword(&ujob->_aiocb_private.status));
1377 }
1378 
1379 static long
1380 aiocb_fetch_error(struct aiocb *ujob)
1381 {
1382 
1383 	return (fuword(&ujob->_aiocb_private.error));
1384 }
1385 
1386 static int
1387 aiocb_store_status(struct aiocb *ujob, long status)
1388 {
1389 
1390 	return (suword(&ujob->_aiocb_private.status, status));
1391 }
1392 
1393 static int
1394 aiocb_store_error(struct aiocb *ujob, long error)
1395 {
1396 
1397 	return (suword(&ujob->_aiocb_private.error, error));
1398 }
1399 
1400 static int
1401 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1402 {
1403 
1404 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1405 }
1406 
1407 static int
1408 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1409 {
1410 
1411 	return (suword(ujobp, (long)ujob));
1412 }
1413 
1414 static struct aiocb_ops aiocb_ops = {
1415 	.copyin = aiocb_copyin,
1416 	.fetch_status = aiocb_fetch_status,
1417 	.fetch_error = aiocb_fetch_error,
1418 	.store_status = aiocb_store_status,
1419 	.store_error = aiocb_store_error,
1420 	.store_kernelinfo = aiocb_store_kernelinfo,
1421 	.store_aiocb = aiocb_store_aiocb,
1422 };
1423 
1424 #ifdef COMPAT_FREEBSD6
1425 static struct aiocb_ops aiocb_ops_osigevent = {
1426 	.copyin = aiocb_copyin_old_sigevent,
1427 	.fetch_status = aiocb_fetch_status,
1428 	.fetch_error = aiocb_fetch_error,
1429 	.store_status = aiocb_store_status,
1430 	.store_error = aiocb_store_error,
1431 	.store_kernelinfo = aiocb_store_kernelinfo,
1432 	.store_aiocb = aiocb_store_aiocb,
1433 };
1434 #endif
1435 
1436 /*
1437  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1438  * technique is done in this code.
1439  */
1440 int
1441 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1442     int type, struct aiocb_ops *ops)
1443 {
1444 	struct proc *p = td->td_proc;
1445 	cap_rights_t rights;
1446 	struct file *fp;
1447 	struct kaiocb *job;
1448 	struct kaioinfo *ki;
1449 	struct kevent kev;
1450 	int opcode;
1451 	int error;
1452 	int fd, kqfd;
1453 	int jid;
1454 	u_short evflags;
1455 
1456 	if (p->p_aioinfo == NULL)
1457 		aio_init_aioinfo(p);
1458 
1459 	ki = p->p_aioinfo;
1460 
1461 	ops->store_status(ujob, -1);
1462 	ops->store_error(ujob, 0);
1463 	ops->store_kernelinfo(ujob, -1);
1464 
1465 	if (num_queue_count >= max_queue_count ||
1466 	    ki->kaio_count >= ki->kaio_qallowed_count) {
1467 		ops->store_error(ujob, EAGAIN);
1468 		return (EAGAIN);
1469 	}
1470 
1471 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1472 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1473 
1474 	error = ops->copyin(ujob, &job->uaiocb);
1475 	if (error) {
1476 		ops->store_error(ujob, error);
1477 		uma_zfree(aiocb_zone, job);
1478 		return (error);
1479 	}
1480 
1481 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1482 		uma_zfree(aiocb_zone, job);
1483 		return (EINVAL);
1484 	}
1485 
1486 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1487 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1488 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1489 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1490 		ops->store_error(ujob, EINVAL);
1491 		uma_zfree(aiocb_zone, job);
1492 		return (EINVAL);
1493 	}
1494 
1495 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1496 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1497 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1498 		uma_zfree(aiocb_zone, job);
1499 		return (EINVAL);
1500 	}
1501 
1502 	ksiginfo_init(&job->ksi);
1503 
1504 	/* Save userspace address of the job info. */
1505 	job->ujob = ujob;
1506 
1507 	/* Get the opcode. */
1508 	if (type != LIO_NOP)
1509 		job->uaiocb.aio_lio_opcode = type;
1510 	opcode = job->uaiocb.aio_lio_opcode;
1511 
1512 	/*
1513 	 * Validate the opcode and fetch the file object for the specified
1514 	 * file descriptor.
1515 	 *
1516 	 * XXXRW: Moved the opcode validation up here so that we don't
1517 	 * retrieve a file descriptor without knowing what the capabiltity
1518 	 * should be.
1519 	 */
1520 	fd = job->uaiocb.aio_fildes;
1521 	switch (opcode) {
1522 	case LIO_WRITE:
1523 		error = fget_write(td, fd,
1524 		    cap_rights_init(&rights, CAP_PWRITE), &fp);
1525 		break;
1526 	case LIO_READ:
1527 		error = fget_read(td, fd,
1528 		    cap_rights_init(&rights, CAP_PREAD), &fp);
1529 		break;
1530 	case LIO_SYNC:
1531 		error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
1532 		break;
1533 	case LIO_MLOCK:
1534 		fp = NULL;
1535 		break;
1536 	case LIO_NOP:
1537 		error = fget(td, fd, cap_rights_init(&rights), &fp);
1538 		break;
1539 	default:
1540 		error = EINVAL;
1541 	}
1542 	if (error) {
1543 		uma_zfree(aiocb_zone, job);
1544 		ops->store_error(ujob, error);
1545 		return (error);
1546 	}
1547 
1548 	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
1549 		error = EINVAL;
1550 		goto aqueue_fail;
1551 	}
1552 
1553 	if ((opcode == LIO_READ || opcode == LIO_WRITE) &&
1554 	    job->uaiocb.aio_offset < 0 &&
1555 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1556 		error = EINVAL;
1557 		goto aqueue_fail;
1558 	}
1559 
1560 	job->fd_file = fp;
1561 
1562 	mtx_lock(&aio_job_mtx);
1563 	jid = jobrefid++;
1564 	job->seqno = jobseqno++;
1565 	mtx_unlock(&aio_job_mtx);
1566 	error = ops->store_kernelinfo(ujob, jid);
1567 	if (error) {
1568 		error = EINVAL;
1569 		goto aqueue_fail;
1570 	}
1571 	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1572 
1573 	if (opcode == LIO_NOP) {
1574 		fdrop(fp, td);
1575 		uma_zfree(aiocb_zone, job);
1576 		return (0);
1577 	}
1578 
1579 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1580 		goto no_kqueue;
1581 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1582 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1583 		error = EINVAL;
1584 		goto aqueue_fail;
1585 	}
1586 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1587 	kev.ident = (uintptr_t)job->ujob;
1588 	kev.filter = EVFILT_AIO;
1589 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1590 	kev.data = (intptr_t)job;
1591 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1592 	error = kqfd_register(kqfd, &kev, td, 1);
1593 	if (error)
1594 		goto aqueue_fail;
1595 
1596 no_kqueue:
1597 
1598 	ops->store_error(ujob, EINPROGRESS);
1599 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1600 	job->userproc = p;
1601 	job->cred = crhold(td->td_ucred);
1602 	job->jobflags = KAIOCB_QUEUEING;
1603 	job->lio = lj;
1604 
1605 	if (opcode == LIO_MLOCK) {
1606 		aio_schedule(job, aio_process_mlock);
1607 		error = 0;
1608 	} else if (fp->f_ops->fo_aio_queue == NULL)
1609 		error = aio_queue_file(fp, job);
1610 	else
1611 		error = fo_aio_queue(fp, job);
1612 	if (error)
1613 		goto aqueue_fail;
1614 
1615 	AIO_LOCK(ki);
1616 	job->jobflags &= ~KAIOCB_QUEUEING;
1617 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1618 	ki->kaio_count++;
1619 	if (lj)
1620 		lj->lioj_count++;
1621 	atomic_add_int(&num_queue_count, 1);
1622 	if (job->jobflags & KAIOCB_FINISHED) {
1623 		/*
1624 		 * The queue callback completed the request synchronously.
1625 		 * The bulk of the completion is deferred in that case
1626 		 * until this point.
1627 		 */
1628 		aio_bio_done_notify(p, job);
1629 	} else
1630 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1631 	AIO_UNLOCK(ki);
1632 	return (0);
1633 
1634 aqueue_fail:
1635 	knlist_delete(&job->klist, curthread, 0);
1636 	if (fp)
1637 		fdrop(fp, td);
1638 	uma_zfree(aiocb_zone, job);
1639 	ops->store_error(ujob, error);
1640 	return (error);
1641 }
1642 
1643 static void
1644 aio_cancel_daemon_job(struct kaiocb *job)
1645 {
1646 
1647 	mtx_lock(&aio_job_mtx);
1648 	if (!aio_cancel_cleared(job))
1649 		TAILQ_REMOVE(&aio_jobs, job, list);
1650 	mtx_unlock(&aio_job_mtx);
1651 	aio_cancel(job);
1652 }
1653 
1654 void
1655 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1656 {
1657 
1658 	mtx_lock(&aio_job_mtx);
1659 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1660 		mtx_unlock(&aio_job_mtx);
1661 		aio_cancel(job);
1662 		return;
1663 	}
1664 	job->handle_fn = func;
1665 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1666 	aio_kick_nowait(job->userproc);
1667 	mtx_unlock(&aio_job_mtx);
1668 }
1669 
1670 static void
1671 aio_cancel_sync(struct kaiocb *job)
1672 {
1673 	struct kaioinfo *ki;
1674 
1675 	ki = job->userproc->p_aioinfo;
1676 	AIO_LOCK(ki);
1677 	if (!aio_cancel_cleared(job))
1678 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1679 	AIO_UNLOCK(ki);
1680 	aio_cancel(job);
1681 }
1682 
1683 int
1684 aio_queue_file(struct file *fp, struct kaiocb *job)
1685 {
1686 	struct aioliojob *lj;
1687 	struct kaioinfo *ki;
1688 	struct kaiocb *job2;
1689 	struct vnode *vp;
1690 	struct mount *mp;
1691 	int error, opcode;
1692 	bool safe;
1693 
1694 	lj = job->lio;
1695 	ki = job->userproc->p_aioinfo;
1696 	opcode = job->uaiocb.aio_lio_opcode;
1697 	if (opcode == LIO_SYNC)
1698 		goto queueit;
1699 
1700 	if ((error = aio_qphysio(job->userproc, job)) == 0)
1701 		goto done;
1702 #if 0
1703 	/*
1704 	 * XXX: This means qphysio() failed with EFAULT.  The current
1705 	 * behavior is to retry the operation via fo_read/fo_write.
1706 	 * Wouldn't it be better to just complete the request with an
1707 	 * error here?
1708 	 */
1709 	if (error > 0)
1710 		goto done;
1711 #endif
1712 queueit:
1713 	safe = false;
1714 	if (fp->f_type == DTYPE_VNODE) {
1715 		vp = fp->f_vnode;
1716 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1717 			mp = fp->f_vnode->v_mount;
1718 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1719 				safe = true;
1720 		}
1721 	}
1722 	if (!(safe || enable_aio_unsafe)) {
1723 		counted_warning(&unsafe_warningcnt,
1724 		    "is attempting to use unsafe AIO requests");
1725 		return (EOPNOTSUPP);
1726 	}
1727 
1728 	if (opcode == LIO_SYNC) {
1729 		AIO_LOCK(ki);
1730 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1731 			if (job2->fd_file == job->fd_file &&
1732 			    job2->uaiocb.aio_lio_opcode != LIO_SYNC &&
1733 			    job2->seqno < job->seqno) {
1734 				job2->jobflags |= KAIOCB_CHECKSYNC;
1735 				job->pending++;
1736 			}
1737 		}
1738 		if (job->pending != 0) {
1739 			if (!aio_set_cancel_function_locked(job,
1740 				aio_cancel_sync)) {
1741 				AIO_UNLOCK(ki);
1742 				aio_cancel(job);
1743 				return (0);
1744 			}
1745 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1746 			AIO_UNLOCK(ki);
1747 			return (0);
1748 		}
1749 		AIO_UNLOCK(ki);
1750 	}
1751 
1752 	switch (opcode) {
1753 	case LIO_READ:
1754 	case LIO_WRITE:
1755 		aio_schedule(job, aio_process_rw);
1756 		error = 0;
1757 		break;
1758 	case LIO_SYNC:
1759 		aio_schedule(job, aio_process_sync);
1760 		error = 0;
1761 		break;
1762 	default:
1763 		error = EINVAL;
1764 	}
1765 done:
1766 	return (error);
1767 }
1768 
1769 static void
1770 aio_kick_nowait(struct proc *userp)
1771 {
1772 	struct kaioinfo *ki = userp->p_aioinfo;
1773 	struct aioproc *aiop;
1774 
1775 	mtx_assert(&aio_job_mtx, MA_OWNED);
1776 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1777 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1778 		aiop->aioprocflags &= ~AIOP_FREE;
1779 		wakeup(aiop->aioproc);
1780 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1781 	    ki->kaio_active_count + num_aio_resv_start <
1782 	    ki->kaio_maxactive_count) {
1783 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1784 	}
1785 }
1786 
1787 static int
1788 aio_kick(struct proc *userp)
1789 {
1790 	struct kaioinfo *ki = userp->p_aioinfo;
1791 	struct aioproc *aiop;
1792 	int error, ret = 0;
1793 
1794 	mtx_assert(&aio_job_mtx, MA_OWNED);
1795 retryproc:
1796 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1797 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1798 		aiop->aioprocflags &= ~AIOP_FREE;
1799 		wakeup(aiop->aioproc);
1800 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1801 	    ki->kaio_active_count + num_aio_resv_start <
1802 	    ki->kaio_maxactive_count) {
1803 		num_aio_resv_start++;
1804 		mtx_unlock(&aio_job_mtx);
1805 		error = aio_newproc(&num_aio_resv_start);
1806 		mtx_lock(&aio_job_mtx);
1807 		if (error) {
1808 			num_aio_resv_start--;
1809 			goto retryproc;
1810 		}
1811 	} else {
1812 		ret = -1;
1813 	}
1814 	return (ret);
1815 }
1816 
1817 static void
1818 aio_kick_helper(void *context, int pending)
1819 {
1820 	struct proc *userp = context;
1821 
1822 	mtx_lock(&aio_job_mtx);
1823 	while (--pending >= 0) {
1824 		if (aio_kick(userp))
1825 			break;
1826 	}
1827 	mtx_unlock(&aio_job_mtx);
1828 }
1829 
1830 /*
1831  * Support the aio_return system call, as a side-effect, kernel resources are
1832  * released.
1833  */
1834 static int
1835 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1836 {
1837 	struct proc *p = td->td_proc;
1838 	struct kaiocb *job;
1839 	struct kaioinfo *ki;
1840 	long status, error;
1841 
1842 	ki = p->p_aioinfo;
1843 	if (ki == NULL)
1844 		return (EINVAL);
1845 	AIO_LOCK(ki);
1846 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1847 		if (job->ujob == ujob)
1848 			break;
1849 	}
1850 	if (job != NULL) {
1851 		MPASS(job->jobflags & KAIOCB_FINISHED);
1852 		status = job->uaiocb._aiocb_private.status;
1853 		error = job->uaiocb._aiocb_private.error;
1854 		td->td_retval[0] = status;
1855 		td->td_ru.ru_oublock += job->outblock;
1856 		td->td_ru.ru_inblock += job->inblock;
1857 		td->td_ru.ru_msgsnd += job->msgsnd;
1858 		td->td_ru.ru_msgrcv += job->msgrcv;
1859 		aio_free_entry(job);
1860 		AIO_UNLOCK(ki);
1861 		ops->store_error(ujob, error);
1862 		ops->store_status(ujob, status);
1863 	} else {
1864 		error = EINVAL;
1865 		AIO_UNLOCK(ki);
1866 	}
1867 	return (error);
1868 }
1869 
1870 int
1871 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1872 {
1873 
1874 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1875 }
1876 
1877 /*
1878  * Allow a process to wakeup when any of the I/O requests are completed.
1879  */
1880 static int
1881 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1882     struct timespec *ts)
1883 {
1884 	struct proc *p = td->td_proc;
1885 	struct timeval atv;
1886 	struct kaioinfo *ki;
1887 	struct kaiocb *firstjob, *job;
1888 	int error, i, timo;
1889 
1890 	timo = 0;
1891 	if (ts) {
1892 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1893 			return (EINVAL);
1894 
1895 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1896 		if (itimerfix(&atv))
1897 			return (EINVAL);
1898 		timo = tvtohz(&atv);
1899 	}
1900 
1901 	ki = p->p_aioinfo;
1902 	if (ki == NULL)
1903 		return (EAGAIN);
1904 
1905 	if (njoblist == 0)
1906 		return (0);
1907 
1908 	AIO_LOCK(ki);
1909 	for (;;) {
1910 		firstjob = NULL;
1911 		error = 0;
1912 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1913 			for (i = 0; i < njoblist; i++) {
1914 				if (job->ujob == ujoblist[i]) {
1915 					if (firstjob == NULL)
1916 						firstjob = job;
1917 					if (job->jobflags & KAIOCB_FINISHED)
1918 						goto RETURN;
1919 				}
1920 			}
1921 		}
1922 		/* All tasks were finished. */
1923 		if (firstjob == NULL)
1924 			break;
1925 
1926 		ki->kaio_flags |= KAIO_WAKEUP;
1927 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1928 		    "aiospn", timo);
1929 		if (error == ERESTART)
1930 			error = EINTR;
1931 		if (error)
1932 			break;
1933 	}
1934 RETURN:
1935 	AIO_UNLOCK(ki);
1936 	return (error);
1937 }
1938 
1939 int
1940 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1941 {
1942 	struct timespec ts, *tsp;
1943 	struct aiocb **ujoblist;
1944 	int error;
1945 
1946 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
1947 		return (EINVAL);
1948 
1949 	if (uap->timeout) {
1950 		/* Get timespec struct. */
1951 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1952 			return (error);
1953 		tsp = &ts;
1954 	} else
1955 		tsp = NULL;
1956 
1957 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
1958 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
1959 	if (error == 0)
1960 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
1961 	uma_zfree(aiol_zone, ujoblist);
1962 	return (error);
1963 }
1964 
1965 /*
1966  * aio_cancel cancels any non-physio aio operations not currently in
1967  * progress.
1968  */
1969 int
1970 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
1971 {
1972 	struct proc *p = td->td_proc;
1973 	struct kaioinfo *ki;
1974 	struct kaiocb *job, *jobn;
1975 	struct file *fp;
1976 	cap_rights_t rights;
1977 	int error;
1978 	int cancelled = 0;
1979 	int notcancelled = 0;
1980 	struct vnode *vp;
1981 
1982 	/* Lookup file object. */
1983 	error = fget(td, uap->fd, cap_rights_init(&rights), &fp);
1984 	if (error)
1985 		return (error);
1986 
1987 	ki = p->p_aioinfo;
1988 	if (ki == NULL)
1989 		goto done;
1990 
1991 	if (fp->f_type == DTYPE_VNODE) {
1992 		vp = fp->f_vnode;
1993 		if (vn_isdisk(vp, &error)) {
1994 			fdrop(fp, td);
1995 			td->td_retval[0] = AIO_NOTCANCELED;
1996 			return (0);
1997 		}
1998 	}
1999 
2000 	AIO_LOCK(ki);
2001 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2002 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2003 		    ((uap->aiocbp == NULL) ||
2004 		     (uap->aiocbp == job->ujob))) {
2005 			if (aio_cancel_job(p, ki, job)) {
2006 				cancelled++;
2007 			} else {
2008 				notcancelled++;
2009 			}
2010 			if (uap->aiocbp != NULL)
2011 				break;
2012 		}
2013 	}
2014 	AIO_UNLOCK(ki);
2015 
2016 done:
2017 	fdrop(fp, td);
2018 
2019 	if (uap->aiocbp != NULL) {
2020 		if (cancelled) {
2021 			td->td_retval[0] = AIO_CANCELED;
2022 			return (0);
2023 		}
2024 	}
2025 
2026 	if (notcancelled) {
2027 		td->td_retval[0] = AIO_NOTCANCELED;
2028 		return (0);
2029 	}
2030 
2031 	if (cancelled) {
2032 		td->td_retval[0] = AIO_CANCELED;
2033 		return (0);
2034 	}
2035 
2036 	td->td_retval[0] = AIO_ALLDONE;
2037 
2038 	return (0);
2039 }
2040 
2041 /*
2042  * aio_error is implemented in the kernel level for compatibility purposes
2043  * only.  For a user mode async implementation, it would be best to do it in
2044  * a userland subroutine.
2045  */
2046 static int
2047 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2048 {
2049 	struct proc *p = td->td_proc;
2050 	struct kaiocb *job;
2051 	struct kaioinfo *ki;
2052 	int status;
2053 
2054 	ki = p->p_aioinfo;
2055 	if (ki == NULL) {
2056 		td->td_retval[0] = EINVAL;
2057 		return (0);
2058 	}
2059 
2060 	AIO_LOCK(ki);
2061 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2062 		if (job->ujob == ujob) {
2063 			if (job->jobflags & KAIOCB_FINISHED)
2064 				td->td_retval[0] =
2065 					job->uaiocb._aiocb_private.error;
2066 			else
2067 				td->td_retval[0] = EINPROGRESS;
2068 			AIO_UNLOCK(ki);
2069 			return (0);
2070 		}
2071 	}
2072 	AIO_UNLOCK(ki);
2073 
2074 	/*
2075 	 * Hack for failure of aio_aqueue.
2076 	 */
2077 	status = ops->fetch_status(ujob);
2078 	if (status == -1) {
2079 		td->td_retval[0] = ops->fetch_error(ujob);
2080 		return (0);
2081 	}
2082 
2083 	td->td_retval[0] = EINVAL;
2084 	return (0);
2085 }
2086 
2087 int
2088 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2089 {
2090 
2091 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2092 }
2093 
2094 /* syscall - asynchronous read from a file (REALTIME) */
2095 #ifdef COMPAT_FREEBSD6
2096 int
2097 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2098 {
2099 
2100 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2101 	    &aiocb_ops_osigevent));
2102 }
2103 #endif
2104 
2105 int
2106 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2107 {
2108 
2109 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2110 }
2111 
2112 /* syscall - asynchronous write to a file (REALTIME) */
2113 #ifdef COMPAT_FREEBSD6
2114 int
2115 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2116 {
2117 
2118 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2119 	    &aiocb_ops_osigevent));
2120 }
2121 #endif
2122 
2123 int
2124 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2125 {
2126 
2127 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2128 }
2129 
2130 int
2131 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2132 {
2133 
2134 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2135 }
2136 
2137 static int
2138 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2139     struct aiocb **acb_list, int nent, struct sigevent *sig,
2140     struct aiocb_ops *ops)
2141 {
2142 	struct proc *p = td->td_proc;
2143 	struct aiocb *job;
2144 	struct kaioinfo *ki;
2145 	struct aioliojob *lj;
2146 	struct kevent kev;
2147 	int error;
2148 	int nerror;
2149 	int i;
2150 
2151 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2152 		return (EINVAL);
2153 
2154 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2155 		return (EINVAL);
2156 
2157 	if (p->p_aioinfo == NULL)
2158 		aio_init_aioinfo(p);
2159 
2160 	ki = p->p_aioinfo;
2161 
2162 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2163 	lj->lioj_flags = 0;
2164 	lj->lioj_count = 0;
2165 	lj->lioj_finished_count = 0;
2166 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2167 	ksiginfo_init(&lj->lioj_ksi);
2168 
2169 	/*
2170 	 * Setup signal.
2171 	 */
2172 	if (sig && (mode == LIO_NOWAIT)) {
2173 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2174 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2175 			/* Assume only new style KEVENT */
2176 			kev.filter = EVFILT_LIO;
2177 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2178 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2179 			kev.data = (intptr_t)lj;
2180 			/* pass user defined sigval data */
2181 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2182 			error = kqfd_register(
2183 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
2184 			if (error) {
2185 				uma_zfree(aiolio_zone, lj);
2186 				return (error);
2187 			}
2188 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2189 			;
2190 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2191 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2192 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2193 					uma_zfree(aiolio_zone, lj);
2194 					return EINVAL;
2195 				}
2196 				lj->lioj_flags |= LIOJ_SIGNAL;
2197 		} else {
2198 			uma_zfree(aiolio_zone, lj);
2199 			return EINVAL;
2200 		}
2201 	}
2202 
2203 	AIO_LOCK(ki);
2204 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2205 	/*
2206 	 * Add extra aiocb count to avoid the lio to be freed
2207 	 * by other threads doing aio_waitcomplete or aio_return,
2208 	 * and prevent event from being sent until we have queued
2209 	 * all tasks.
2210 	 */
2211 	lj->lioj_count = 1;
2212 	AIO_UNLOCK(ki);
2213 
2214 	/*
2215 	 * Get pointers to the list of I/O requests.
2216 	 */
2217 	nerror = 0;
2218 	for (i = 0; i < nent; i++) {
2219 		job = acb_list[i];
2220 		if (job != NULL) {
2221 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2222 			if (error != 0)
2223 				nerror++;
2224 		}
2225 	}
2226 
2227 	error = 0;
2228 	AIO_LOCK(ki);
2229 	if (mode == LIO_WAIT) {
2230 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2231 			ki->kaio_flags |= KAIO_WAKEUP;
2232 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2233 			    PRIBIO | PCATCH, "aiospn", 0);
2234 			if (error == ERESTART)
2235 				error = EINTR;
2236 			if (error)
2237 				break;
2238 		}
2239 	} else {
2240 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2241 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2242 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2243 				KNOTE_LOCKED(&lj->klist, 1);
2244 			}
2245 			if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
2246 			    == LIOJ_SIGNAL
2247 			    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2248 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2249 				aio_sendsig(p, &lj->lioj_signal,
2250 					    &lj->lioj_ksi);
2251 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2252 			}
2253 		}
2254 	}
2255 	lj->lioj_count--;
2256 	if (lj->lioj_count == 0) {
2257 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2258 		knlist_delete(&lj->klist, curthread, 1);
2259 		PROC_LOCK(p);
2260 		sigqueue_take(&lj->lioj_ksi);
2261 		PROC_UNLOCK(p);
2262 		AIO_UNLOCK(ki);
2263 		uma_zfree(aiolio_zone, lj);
2264 	} else
2265 		AIO_UNLOCK(ki);
2266 
2267 	if (nerror)
2268 		return (EIO);
2269 	return (error);
2270 }
2271 
2272 /* syscall - list directed I/O (REALTIME) */
2273 #ifdef COMPAT_FREEBSD6
2274 int
2275 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2276 {
2277 	struct aiocb **acb_list;
2278 	struct sigevent *sigp, sig;
2279 	struct osigevent osig;
2280 	int error, nent;
2281 
2282 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2283 		return (EINVAL);
2284 
2285 	nent = uap->nent;
2286 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2287 		return (EINVAL);
2288 
2289 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2290 		error = copyin(uap->sig, &osig, sizeof(osig));
2291 		if (error)
2292 			return (error);
2293 		error = convert_old_sigevent(&osig, &sig);
2294 		if (error)
2295 			return (error);
2296 		sigp = &sig;
2297 	} else
2298 		sigp = NULL;
2299 
2300 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2301 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2302 	if (error == 0)
2303 		error = kern_lio_listio(td, uap->mode,
2304 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2305 		    &aiocb_ops_osigevent);
2306 	free(acb_list, M_LIO);
2307 	return (error);
2308 }
2309 #endif
2310 
2311 /* syscall - list directed I/O (REALTIME) */
2312 int
2313 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2314 {
2315 	struct aiocb **acb_list;
2316 	struct sigevent *sigp, sig;
2317 	int error, nent;
2318 
2319 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2320 		return (EINVAL);
2321 
2322 	nent = uap->nent;
2323 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2324 		return (EINVAL);
2325 
2326 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2327 		error = copyin(uap->sig, &sig, sizeof(sig));
2328 		if (error)
2329 			return (error);
2330 		sigp = &sig;
2331 	} else
2332 		sigp = NULL;
2333 
2334 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2335 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2336 	if (error == 0)
2337 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2338 		    nent, sigp, &aiocb_ops);
2339 	free(acb_list, M_LIO);
2340 	return (error);
2341 }
2342 
2343 static void
2344 aio_physwakeup(struct bio *bp)
2345 {
2346 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2347 	struct proc *userp;
2348 	struct kaioinfo *ki;
2349 	size_t nbytes;
2350 	int error, nblks;
2351 
2352 	/* Release mapping into kernel space. */
2353 	userp = job->userproc;
2354 	ki = userp->p_aioinfo;
2355 	if (job->pbuf) {
2356 		pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages);
2357 		relpbuf(job->pbuf, NULL);
2358 		job->pbuf = NULL;
2359 		atomic_subtract_int(&num_buf_aio, 1);
2360 		AIO_LOCK(ki);
2361 		ki->kaio_buffer_count--;
2362 		AIO_UNLOCK(ki);
2363 	}
2364 	vm_page_unhold_pages(job->pages, job->npages);
2365 
2366 	bp = job->bp;
2367 	job->bp = NULL;
2368 	nbytes = job->uaiocb.aio_nbytes - bp->bio_resid;
2369 	error = 0;
2370 	if (bp->bio_flags & BIO_ERROR)
2371 		error = bp->bio_error;
2372 	nblks = btodb(nbytes);
2373 	if (job->uaiocb.aio_lio_opcode == LIO_WRITE)
2374 		job->outblock += nblks;
2375 	else
2376 		job->inblock += nblks;
2377 
2378 	if (error)
2379 		aio_complete(job, -1, error);
2380 	else
2381 		aio_complete(job, nbytes, 0);
2382 
2383 	g_destroy_bio(bp);
2384 }
2385 
2386 /* syscall - wait for the next completion of an aio request */
2387 static int
2388 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2389     struct timespec *ts, struct aiocb_ops *ops)
2390 {
2391 	struct proc *p = td->td_proc;
2392 	struct timeval atv;
2393 	struct kaioinfo *ki;
2394 	struct kaiocb *job;
2395 	struct aiocb *ujob;
2396 	long error, status;
2397 	int timo;
2398 
2399 	ops->store_aiocb(ujobp, NULL);
2400 
2401 	if (ts == NULL) {
2402 		timo = 0;
2403 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2404 		timo = -1;
2405 	} else {
2406 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2407 			return (EINVAL);
2408 
2409 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2410 		if (itimerfix(&atv))
2411 			return (EINVAL);
2412 		timo = tvtohz(&atv);
2413 	}
2414 
2415 	if (p->p_aioinfo == NULL)
2416 		aio_init_aioinfo(p);
2417 	ki = p->p_aioinfo;
2418 
2419 	error = 0;
2420 	job = NULL;
2421 	AIO_LOCK(ki);
2422 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2423 		if (timo == -1) {
2424 			error = EWOULDBLOCK;
2425 			break;
2426 		}
2427 		ki->kaio_flags |= KAIO_WAKEUP;
2428 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2429 		    "aiowc", timo);
2430 		if (timo && error == ERESTART)
2431 			error = EINTR;
2432 		if (error)
2433 			break;
2434 	}
2435 
2436 	if (job != NULL) {
2437 		MPASS(job->jobflags & KAIOCB_FINISHED);
2438 		ujob = job->ujob;
2439 		status = job->uaiocb._aiocb_private.status;
2440 		error = job->uaiocb._aiocb_private.error;
2441 		td->td_retval[0] = status;
2442 		td->td_ru.ru_oublock += job->outblock;
2443 		td->td_ru.ru_inblock += job->inblock;
2444 		td->td_ru.ru_msgsnd += job->msgsnd;
2445 		td->td_ru.ru_msgrcv += job->msgrcv;
2446 		aio_free_entry(job);
2447 		AIO_UNLOCK(ki);
2448 		ops->store_aiocb(ujobp, ujob);
2449 		ops->store_error(ujob, error);
2450 		ops->store_status(ujob, status);
2451 	} else
2452 		AIO_UNLOCK(ki);
2453 
2454 	return (error);
2455 }
2456 
2457 int
2458 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2459 {
2460 	struct timespec ts, *tsp;
2461 	int error;
2462 
2463 	if (uap->timeout) {
2464 		/* Get timespec struct. */
2465 		error = copyin(uap->timeout, &ts, sizeof(ts));
2466 		if (error)
2467 			return (error);
2468 		tsp = &ts;
2469 	} else
2470 		tsp = NULL;
2471 
2472 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2473 }
2474 
2475 static int
2476 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2477     struct aiocb_ops *ops)
2478 {
2479 
2480 	if (op != O_SYNC) /* XXX lack of O_DSYNC */
2481 		return (EINVAL);
2482 	return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
2483 }
2484 
2485 int
2486 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2487 {
2488 
2489 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2490 }
2491 
2492 /* kqueue attach function */
2493 static int
2494 filt_aioattach(struct knote *kn)
2495 {
2496 	struct kaiocb *job;
2497 
2498 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2499 
2500 	/*
2501 	 * The job pointer must be validated before using it, so
2502 	 * registration is restricted to the kernel; the user cannot
2503 	 * set EV_FLAG1.
2504 	 */
2505 	if ((kn->kn_flags & EV_FLAG1) == 0)
2506 		return (EPERM);
2507 	kn->kn_ptr.p_aio = job;
2508 	kn->kn_flags &= ~EV_FLAG1;
2509 
2510 	knlist_add(&job->klist, kn, 0);
2511 
2512 	return (0);
2513 }
2514 
2515 /* kqueue detach function */
2516 static void
2517 filt_aiodetach(struct knote *kn)
2518 {
2519 	struct knlist *knl;
2520 
2521 	knl = &kn->kn_ptr.p_aio->klist;
2522 	knl->kl_lock(knl->kl_lockarg);
2523 	if (!knlist_empty(knl))
2524 		knlist_remove(knl, kn, 1);
2525 	knl->kl_unlock(knl->kl_lockarg);
2526 }
2527 
2528 /* kqueue filter function */
2529 /*ARGSUSED*/
2530 static int
2531 filt_aio(struct knote *kn, long hint)
2532 {
2533 	struct kaiocb *job = kn->kn_ptr.p_aio;
2534 
2535 	kn->kn_data = job->uaiocb._aiocb_private.error;
2536 	if (!(job->jobflags & KAIOCB_FINISHED))
2537 		return (0);
2538 	kn->kn_flags |= EV_EOF;
2539 	return (1);
2540 }
2541 
2542 /* kqueue attach function */
2543 static int
2544 filt_lioattach(struct knote *kn)
2545 {
2546 	struct aioliojob *lj;
2547 
2548 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2549 
2550 	/*
2551 	 * The aioliojob pointer must be validated before using it, so
2552 	 * registration is restricted to the kernel; the user cannot
2553 	 * set EV_FLAG1.
2554 	 */
2555 	if ((kn->kn_flags & EV_FLAG1) == 0)
2556 		return (EPERM);
2557 	kn->kn_ptr.p_lio = lj;
2558 	kn->kn_flags &= ~EV_FLAG1;
2559 
2560 	knlist_add(&lj->klist, kn, 0);
2561 
2562 	return (0);
2563 }
2564 
2565 /* kqueue detach function */
2566 static void
2567 filt_liodetach(struct knote *kn)
2568 {
2569 	struct knlist *knl;
2570 
2571 	knl = &kn->kn_ptr.p_lio->klist;
2572 	knl->kl_lock(knl->kl_lockarg);
2573 	if (!knlist_empty(knl))
2574 		knlist_remove(knl, kn, 1);
2575 	knl->kl_unlock(knl->kl_lockarg);
2576 }
2577 
2578 /* kqueue filter function */
2579 /*ARGSUSED*/
2580 static int
2581 filt_lio(struct knote *kn, long hint)
2582 {
2583 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2584 
2585 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2586 }
2587 
2588 #ifdef COMPAT_FREEBSD32
2589 #include <sys/mount.h>
2590 #include <sys/socket.h>
2591 #include <compat/freebsd32/freebsd32.h>
2592 #include <compat/freebsd32/freebsd32_proto.h>
2593 #include <compat/freebsd32/freebsd32_signal.h>
2594 #include <compat/freebsd32/freebsd32_syscall.h>
2595 #include <compat/freebsd32/freebsd32_util.h>
2596 
2597 struct __aiocb_private32 {
2598 	int32_t	status;
2599 	int32_t	error;
2600 	uint32_t kernelinfo;
2601 };
2602 
2603 #ifdef COMPAT_FREEBSD6
2604 typedef struct oaiocb32 {
2605 	int	aio_fildes;		/* File descriptor */
2606 	uint64_t aio_offset __packed;	/* File offset for I/O */
2607 	uint32_t aio_buf;		/* I/O buffer in process space */
2608 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2609 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2610 	int	aio_lio_opcode;		/* LIO opcode */
2611 	int	aio_reqprio;		/* Request priority -- ignored */
2612 	struct	__aiocb_private32 _aiocb_private;
2613 } oaiocb32_t;
2614 #endif
2615 
2616 typedef struct aiocb32 {
2617 	int32_t	aio_fildes;		/* File descriptor */
2618 	uint64_t aio_offset __packed;	/* File offset for I/O */
2619 	uint32_t aio_buf;		/* I/O buffer in process space */
2620 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2621 	int	__spare__[2];
2622 	uint32_t __spare2__;
2623 	int	aio_lio_opcode;		/* LIO opcode */
2624 	int	aio_reqprio;		/* Request priority -- ignored */
2625 	struct	__aiocb_private32 _aiocb_private;
2626 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2627 } aiocb32_t;
2628 
2629 #ifdef COMPAT_FREEBSD6
2630 static int
2631 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2632 {
2633 
2634 	/*
2635 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2636 	 * supported by AIO with the old sigevent structure.
2637 	 */
2638 	CP(*osig, *nsig, sigev_notify);
2639 	switch (nsig->sigev_notify) {
2640 	case SIGEV_NONE:
2641 		break;
2642 	case SIGEV_SIGNAL:
2643 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2644 		break;
2645 	case SIGEV_KEVENT:
2646 		nsig->sigev_notify_kqueue =
2647 		    osig->__sigev_u.__sigev_notify_kqueue;
2648 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2649 		break;
2650 	default:
2651 		return (EINVAL);
2652 	}
2653 	return (0);
2654 }
2655 
2656 static int
2657 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
2658 {
2659 	struct oaiocb32 job32;
2660 	int error;
2661 
2662 	bzero(kjob, sizeof(struct aiocb));
2663 	error = copyin(ujob, &job32, sizeof(job32));
2664 	if (error)
2665 		return (error);
2666 
2667 	CP(job32, *kjob, aio_fildes);
2668 	CP(job32, *kjob, aio_offset);
2669 	PTRIN_CP(job32, *kjob, aio_buf);
2670 	CP(job32, *kjob, aio_nbytes);
2671 	CP(job32, *kjob, aio_lio_opcode);
2672 	CP(job32, *kjob, aio_reqprio);
2673 	CP(job32, *kjob, _aiocb_private.status);
2674 	CP(job32, *kjob, _aiocb_private.error);
2675 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2676 	return (convert_old_sigevent32(&job32.aio_sigevent,
2677 	    &kjob->aio_sigevent));
2678 }
2679 #endif
2680 
2681 static int
2682 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
2683 {
2684 	struct aiocb32 job32;
2685 	int error;
2686 
2687 	error = copyin(ujob, &job32, sizeof(job32));
2688 	if (error)
2689 		return (error);
2690 	CP(job32, *kjob, aio_fildes);
2691 	CP(job32, *kjob, aio_offset);
2692 	PTRIN_CP(job32, *kjob, aio_buf);
2693 	CP(job32, *kjob, aio_nbytes);
2694 	CP(job32, *kjob, aio_lio_opcode);
2695 	CP(job32, *kjob, aio_reqprio);
2696 	CP(job32, *kjob, _aiocb_private.status);
2697 	CP(job32, *kjob, _aiocb_private.error);
2698 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2699 	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
2700 }
2701 
2702 static long
2703 aiocb32_fetch_status(struct aiocb *ujob)
2704 {
2705 	struct aiocb32 *ujob32;
2706 
2707 	ujob32 = (struct aiocb32 *)ujob;
2708 	return (fuword32(&ujob32->_aiocb_private.status));
2709 }
2710 
2711 static long
2712 aiocb32_fetch_error(struct aiocb *ujob)
2713 {
2714 	struct aiocb32 *ujob32;
2715 
2716 	ujob32 = (struct aiocb32 *)ujob;
2717 	return (fuword32(&ujob32->_aiocb_private.error));
2718 }
2719 
2720 static int
2721 aiocb32_store_status(struct aiocb *ujob, long status)
2722 {
2723 	struct aiocb32 *ujob32;
2724 
2725 	ujob32 = (struct aiocb32 *)ujob;
2726 	return (suword32(&ujob32->_aiocb_private.status, status));
2727 }
2728 
2729 static int
2730 aiocb32_store_error(struct aiocb *ujob, long error)
2731 {
2732 	struct aiocb32 *ujob32;
2733 
2734 	ujob32 = (struct aiocb32 *)ujob;
2735 	return (suword32(&ujob32->_aiocb_private.error, error));
2736 }
2737 
2738 static int
2739 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2740 {
2741 	struct aiocb32 *ujob32;
2742 
2743 	ujob32 = (struct aiocb32 *)ujob;
2744 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2745 }
2746 
2747 static int
2748 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2749 {
2750 
2751 	return (suword32(ujobp, (long)ujob));
2752 }
2753 
2754 static struct aiocb_ops aiocb32_ops = {
2755 	.copyin = aiocb32_copyin,
2756 	.fetch_status = aiocb32_fetch_status,
2757 	.fetch_error = aiocb32_fetch_error,
2758 	.store_status = aiocb32_store_status,
2759 	.store_error = aiocb32_store_error,
2760 	.store_kernelinfo = aiocb32_store_kernelinfo,
2761 	.store_aiocb = aiocb32_store_aiocb,
2762 };
2763 
2764 #ifdef COMPAT_FREEBSD6
2765 static struct aiocb_ops aiocb32_ops_osigevent = {
2766 	.copyin = aiocb32_copyin_old_sigevent,
2767 	.fetch_status = aiocb32_fetch_status,
2768 	.fetch_error = aiocb32_fetch_error,
2769 	.store_status = aiocb32_store_status,
2770 	.store_error = aiocb32_store_error,
2771 	.store_kernelinfo = aiocb32_store_kernelinfo,
2772 	.store_aiocb = aiocb32_store_aiocb,
2773 };
2774 #endif
2775 
2776 int
2777 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2778 {
2779 
2780 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2781 }
2782 
2783 int
2784 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2785 {
2786 	struct timespec32 ts32;
2787 	struct timespec ts, *tsp;
2788 	struct aiocb **ujoblist;
2789 	uint32_t *ujoblist32;
2790 	int error, i;
2791 
2792 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2793 		return (EINVAL);
2794 
2795 	if (uap->timeout) {
2796 		/* Get timespec struct. */
2797 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2798 			return (error);
2799 		CP(ts32, ts, tv_sec);
2800 		CP(ts32, ts, tv_nsec);
2801 		tsp = &ts;
2802 	} else
2803 		tsp = NULL;
2804 
2805 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2806 	ujoblist32 = (uint32_t *)ujoblist;
2807 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2808 	    sizeof(ujoblist32[0]));
2809 	if (error == 0) {
2810 		for (i = uap->nent; i > 0; i--)
2811 			ujoblist[i] = PTRIN(ujoblist32[i]);
2812 
2813 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2814 	}
2815 	uma_zfree(aiol_zone, ujoblist);
2816 	return (error);
2817 }
2818 
2819 int
2820 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2821 {
2822 
2823 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2824 }
2825 
2826 #ifdef COMPAT_FREEBSD6
2827 int
2828 freebsd6_freebsd32_aio_read(struct thread *td,
2829     struct freebsd6_freebsd32_aio_read_args *uap)
2830 {
2831 
2832 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2833 	    &aiocb32_ops_osigevent));
2834 }
2835 #endif
2836 
2837 int
2838 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2839 {
2840 
2841 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2842 	    &aiocb32_ops));
2843 }
2844 
2845 #ifdef COMPAT_FREEBSD6
2846 int
2847 freebsd6_freebsd32_aio_write(struct thread *td,
2848     struct freebsd6_freebsd32_aio_write_args *uap)
2849 {
2850 
2851 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2852 	    &aiocb32_ops_osigevent));
2853 }
2854 #endif
2855 
2856 int
2857 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2858 {
2859 
2860 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2861 	    &aiocb32_ops));
2862 }
2863 
2864 int
2865 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2866 {
2867 
2868 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2869 	    &aiocb32_ops));
2870 }
2871 
2872 int
2873 freebsd32_aio_waitcomplete(struct thread *td,
2874     struct freebsd32_aio_waitcomplete_args *uap)
2875 {
2876 	struct timespec32 ts32;
2877 	struct timespec ts, *tsp;
2878 	int error;
2879 
2880 	if (uap->timeout) {
2881 		/* Get timespec struct. */
2882 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2883 		if (error)
2884 			return (error);
2885 		CP(ts32, ts, tv_sec);
2886 		CP(ts32, ts, tv_nsec);
2887 		tsp = &ts;
2888 	} else
2889 		tsp = NULL;
2890 
2891 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
2892 	    &aiocb32_ops));
2893 }
2894 
2895 int
2896 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
2897 {
2898 
2899 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
2900 	    &aiocb32_ops));
2901 }
2902 
2903 #ifdef COMPAT_FREEBSD6
2904 int
2905 freebsd6_freebsd32_lio_listio(struct thread *td,
2906     struct freebsd6_freebsd32_lio_listio_args *uap)
2907 {
2908 	struct aiocb **acb_list;
2909 	struct sigevent *sigp, sig;
2910 	struct osigevent32 osig;
2911 	uint32_t *acb_list32;
2912 	int error, i, nent;
2913 
2914 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2915 		return (EINVAL);
2916 
2917 	nent = uap->nent;
2918 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2919 		return (EINVAL);
2920 
2921 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2922 		error = copyin(uap->sig, &osig, sizeof(osig));
2923 		if (error)
2924 			return (error);
2925 		error = convert_old_sigevent32(&osig, &sig);
2926 		if (error)
2927 			return (error);
2928 		sigp = &sig;
2929 	} else
2930 		sigp = NULL;
2931 
2932 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2933 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2934 	if (error) {
2935 		free(acb_list32, M_LIO);
2936 		return (error);
2937 	}
2938 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2939 	for (i = 0; i < nent; i++)
2940 		acb_list[i] = PTRIN(acb_list32[i]);
2941 	free(acb_list32, M_LIO);
2942 
2943 	error = kern_lio_listio(td, uap->mode,
2944 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2945 	    &aiocb32_ops_osigevent);
2946 	free(acb_list, M_LIO);
2947 	return (error);
2948 }
2949 #endif
2950 
2951 int
2952 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
2953 {
2954 	struct aiocb **acb_list;
2955 	struct sigevent *sigp, sig;
2956 	struct sigevent32 sig32;
2957 	uint32_t *acb_list32;
2958 	int error, i, nent;
2959 
2960 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2961 		return (EINVAL);
2962 
2963 	nent = uap->nent;
2964 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2965 		return (EINVAL);
2966 
2967 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2968 		error = copyin(uap->sig, &sig32, sizeof(sig32));
2969 		if (error)
2970 			return (error);
2971 		error = convert_sigevent32(&sig32, &sig);
2972 		if (error)
2973 			return (error);
2974 		sigp = &sig;
2975 	} else
2976 		sigp = NULL;
2977 
2978 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2979 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2980 	if (error) {
2981 		free(acb_list32, M_LIO);
2982 		return (error);
2983 	}
2984 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2985 	for (i = 0; i < nent; i++)
2986 		acb_list[i] = PTRIN(acb_list32[i]);
2987 	free(acb_list32, M_LIO);
2988 
2989 	error = kern_lio_listio(td, uap->mode,
2990 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2991 	    &aiocb32_ops);
2992 	free(acb_list, M_LIO);
2993 	return (error);
2994 }
2995 
2996 #endif
2997