xref: /freebsd/sys/libkern/x86/crc32_sse42.c (revision d93a896e)
1 /*
2  * Derived from crc32c.c version 1.1 by Mark Adler.
3  *
4  * Copyright (C) 2013 Mark Adler
5  *
6  * This software is provided 'as-is', without any express or implied warranty.
7  * In no event will the author be held liable for any damages arising from the
8  * use of this software.
9  *
10  * Permission is granted to anyone to use this software for any purpose,
11  * including commercial applications, and to alter it and redistribute it
12  * freely, subject to the following restrictions:
13  *
14  * 1. The origin of this software must not be misrepresented; you must not
15  *    claim that you wrote the original software. If you use this software
16  *    in a product, an acknowledgment in the product documentation would be
17  *    appreciated but is not required.
18  * 2. Altered source versions must be plainly marked as such, and must not be
19  *    misrepresented as being the original software.
20  * 3. This notice may not be removed or altered from any source distribution.
21  *
22  * Mark Adler
23  * madler@alumni.caltech.edu
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * This file is compiled in userspace in order to run ATF unit tests.
31  */
32 #ifdef USERSPACE_TESTING
33 #include <stdint.h>
34 #include <stdlib.h>
35 #else
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #endif
40 
41 static __inline uint32_t
42 _mm_crc32_u8(uint32_t x, uint8_t y)
43 {
44 	/*
45 	 * clang (at least 3.9.[0-1]) pessimizes "rm" (y) and "m" (y)
46 	 * significantly and "r" (y) a lot by copying y to a different
47 	 * local variable (on the stack or in a register), so only use
48 	 * the latter.  This costs a register and an instruction but
49 	 * not a uop.
50 	 */
51 	__asm("crc32b %1,%0" : "+r" (x) : "r" (y));
52 	return (x);
53 }
54 
55 static __inline uint32_t
56 _mm_crc32_u32(uint32_t x, uint32_t y)
57 {
58 	__asm("crc32l %1,%0" : "+r" (x) : "r" (y));
59 	return (x);
60 }
61 
62 static __inline uint64_t
63 _mm_crc32_u64(uint64_t x, uint64_t y)
64 {
65 	__asm("crc32q %1,%0" : "+r" (x) : "r" (y));
66 	return (x);
67 }
68 
69 /* CRC-32C (iSCSI) polynomial in reversed bit order. */
70 #define POLY	0x82f63b78
71 
72 /*
73  * Block sizes for three-way parallel crc computation.  LONG and SHORT must
74  * both be powers of two.
75  */
76 #define LONG	128
77 #define SHORT	64
78 
79 /*
80  * Tables for updating a crc for LONG, 2 * LONG, SHORT and 2 * SHORT bytes
81  * of value 0 later in the input stream, in the same way that the hardware
82  * would, but in software without calculating intermediate steps.
83  */
84 static uint32_t crc32c_long[4][256];
85 static uint32_t crc32c_2long[4][256];
86 static uint32_t crc32c_short[4][256];
87 static uint32_t crc32c_2short[4][256];
88 
89 /*
90  * Multiply a matrix times a vector over the Galois field of two elements,
91  * GF(2).  Each element is a bit in an unsigned integer.  mat must have at
92  * least as many entries as the power of two for most significant one bit in
93  * vec.
94  */
95 static inline uint32_t
96 gf2_matrix_times(uint32_t *mat, uint32_t vec)
97 {
98 	uint32_t sum;
99 
100 	sum = 0;
101 	while (vec) {
102 		if (vec & 1)
103 			sum ^= *mat;
104 		vec >>= 1;
105 		mat++;
106 	}
107 	return (sum);
108 }
109 
110 /*
111  * Multiply a matrix by itself over GF(2).  Both mat and square must have 32
112  * rows.
113  */
114 static inline void
115 gf2_matrix_square(uint32_t *square, uint32_t *mat)
116 {
117 	int n;
118 
119 	for (n = 0; n < 32; n++)
120 		square[n] = gf2_matrix_times(mat, mat[n]);
121 }
122 
123 /*
124  * Construct an operator to apply len zeros to a crc.  len must be a power of
125  * two.  If len is not a power of two, then the result is the same as for the
126  * largest power of two less than len.  The result for len == 0 is the same as
127  * for len == 1.  A version of this routine could be easily written for any
128  * len, but that is not needed for this application.
129  */
130 static void
131 crc32c_zeros_op(uint32_t *even, size_t len)
132 {
133 	uint32_t odd[32];       /* odd-power-of-two zeros operator */
134 	uint32_t row;
135 	int n;
136 
137 	/* put operator for one zero bit in odd */
138 	odd[0] = POLY;              /* CRC-32C polynomial */
139 	row = 1;
140 	for (n = 1; n < 32; n++) {
141 		odd[n] = row;
142 		row <<= 1;
143 	}
144 
145 	/* put operator for two zero bits in even */
146 	gf2_matrix_square(even, odd);
147 
148 	/* put operator for four zero bits in odd */
149 	gf2_matrix_square(odd, even);
150 
151 	/*
152 	 * first square will put the operator for one zero byte (eight zero
153 	 * bits), in even -- next square puts operator for two zero bytes in
154 	 * odd, and so on, until len has been rotated down to zero
155 	 */
156 	do {
157 		gf2_matrix_square(even, odd);
158 		len >>= 1;
159 		if (len == 0)
160 			return;
161 		gf2_matrix_square(odd, even);
162 		len >>= 1;
163 	} while (len);
164 
165 	/* answer ended up in odd -- copy to even */
166 	for (n = 0; n < 32; n++)
167 		even[n] = odd[n];
168 }
169 
170 /*
171  * Take a length and build four lookup tables for applying the zeros operator
172  * for that length, byte-by-byte on the operand.
173  */
174 static void
175 crc32c_zeros(uint32_t zeros[][256], size_t len)
176 {
177 	uint32_t op[32];
178 	uint32_t n;
179 
180 	crc32c_zeros_op(op, len);
181 	for (n = 0; n < 256; n++) {
182 		zeros[0][n] = gf2_matrix_times(op, n);
183 		zeros[1][n] = gf2_matrix_times(op, n << 8);
184 		zeros[2][n] = gf2_matrix_times(op, n << 16);
185 		zeros[3][n] = gf2_matrix_times(op, n << 24);
186 	}
187 }
188 
189 /* Apply the zeros operator table to crc. */
190 static inline uint32_t
191 crc32c_shift(uint32_t zeros[][256], uint32_t crc)
192 {
193 
194 	return (zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
195 	    zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24]);
196 }
197 
198 /* Initialize tables for shifting crcs. */
199 static void
200 #ifdef USERSPACE_TESTING
201 __attribute__((__constructor__))
202 #endif
203 crc32c_init_hw(void)
204 {
205 	crc32c_zeros(crc32c_long, LONG);
206 	crc32c_zeros(crc32c_2long, 2 * LONG);
207 	crc32c_zeros(crc32c_short, SHORT);
208 	crc32c_zeros(crc32c_2short, 2 * SHORT);
209 }
210 #ifdef _KERNEL
211 SYSINIT(crc32c_sse42, SI_SUB_LOCK, SI_ORDER_ANY, crc32c_init_hw, NULL);
212 #endif
213 
214 /* Compute CRC-32C using the Intel hardware instruction. */
215 #ifdef USERSPACE_TESTING
216 uint32_t sse42_crc32c(uint32_t, const unsigned char *, unsigned);
217 #endif
218 uint32_t
219 sse42_crc32c(uint32_t crc, const unsigned char *buf, unsigned len)
220 {
221 #ifdef __amd64__
222 	const size_t align = 8;
223 #else
224 	const size_t align = 4;
225 #endif
226 	const unsigned char *next, *end;
227 #ifdef __amd64__
228 	uint64_t crc0, crc1, crc2;
229 #else
230 	uint32_t crc0, crc1, crc2;
231 #endif
232 
233 	next = buf;
234 	crc0 = crc;
235 
236 	/* Compute the crc to bring the data pointer to an aligned boundary. */
237 	while (len && ((uintptr_t)next & (align - 1)) != 0) {
238 		crc0 = _mm_crc32_u8(crc0, *next);
239 		next++;
240 		len--;
241 	}
242 
243 #if LONG > SHORT
244 	/*
245 	 * Compute the crc on sets of LONG*3 bytes, executing three independent
246 	 * crc instructions, each on LONG bytes -- this is optimized for the
247 	 * Nehalem, Westmere, Sandy Bridge, and Ivy Bridge architectures, which
248 	 * have a throughput of one crc per cycle, but a latency of three
249 	 * cycles.
250 	 */
251 	crc = 0;
252 	while (len >= LONG * 3) {
253 		crc1 = 0;
254 		crc2 = 0;
255 		end = next + LONG;
256 		do {
257 #ifdef __amd64__
258 			crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
259 			crc1 = _mm_crc32_u64(crc1,
260 			    *(const uint64_t *)(next + LONG));
261 			crc2 = _mm_crc32_u64(crc2,
262 			    *(const uint64_t *)(next + (LONG * 2)));
263 #else
264 			crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
265 			crc1 = _mm_crc32_u32(crc1,
266 			    *(const uint32_t *)(next + LONG));
267 			crc2 = _mm_crc32_u32(crc2,
268 			    *(const uint32_t *)(next + (LONG * 2)));
269 #endif
270 			next += align;
271 		} while (next < end);
272 		/*-
273 		 * Update the crc.  Try to do it in parallel with the inner
274 		 * loop.  'crc' is used to accumulate crc0 and crc1
275 		 * produced by the inner loop so that the next iteration
276 		 * of the loop doesn't depend on anything except crc2.
277 		 *
278 		 * The full expression for the update is:
279 		 *     crc = S*S*S*crc + S*S*crc0 + S*crc1
280 		 * where the terms are polynomials modulo the CRC polynomial.
281 		 * We regroup this subtly as:
282 		 *     crc = S*S * (S*crc + crc0) + S*crc1.
283 		 * This has an extra dependency which reduces possible
284 		 * parallelism for the expression, but it turns out to be
285 		 * best to intentionally delay evaluation of this expression
286 		 * so that it competes less with the inner loop.
287 		 *
288 		 * We also intentionally reduce parallelism by feedng back
289 		 * crc2 to the inner loop as crc0 instead of accumulating
290 		 * it in crc.  This synchronizes the loop with crc update.
291 		 * CPU and/or compiler schedulers produced bad order without
292 		 * this.
293 		 *
294 		 * Shifts take about 12 cycles each, so 3 here with 2
295 		 * parallelizable take about 24 cycles and the crc update
296 		 * takes slightly longer.  8 dependent crc32 instructions
297 		 * can run in 24 cycles, so the 3-way blocking is worse
298 		 * than useless for sizes less than 8 * <word size> = 64
299 		 * on amd64.  In practice, SHORT = 32 confirms these
300 		 * timing calculations by giving a small improvement
301 		 * starting at size 96.  Then the inner loop takes about
302 		 * 12 cycles and the crc update about 24, but these are
303 		 * partly in parallel so the total time is less than the
304 		 * 36 cycles that 12 dependent crc32 instructions would
305 		 * take.
306 		 *
307 		 * To have a chance of completely hiding the overhead for
308 		 * the crc update, the inner loop must take considerably
309 		 * longer than 24 cycles.  LONG = 64 makes the inner loop
310 		 * take about 24 cycles, so is not quite large enough.
311 		 * LONG = 128 works OK.  Unhideable overheads are about
312 		 * 12 cycles per inner loop.  All assuming timing like
313 		 * Haswell.
314 		 */
315 		crc = crc32c_shift(crc32c_long, crc) ^ crc0;
316 		crc1 = crc32c_shift(crc32c_long, crc1);
317 		crc = crc32c_shift(crc32c_2long, crc) ^ crc1;
318 		crc0 = crc2;
319 		next += LONG * 2;
320 		len -= LONG * 3;
321 	}
322 	crc0 ^= crc;
323 #endif /* LONG > SHORT */
324 
325 	/*
326 	 * Do the same thing, but now on SHORT*3 blocks for the remaining data
327 	 * less than a LONG*3 block
328 	 */
329 	crc = 0;
330 	while (len >= SHORT * 3) {
331 		crc1 = 0;
332 		crc2 = 0;
333 		end = next + SHORT;
334 		do {
335 #ifdef __amd64__
336 			crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
337 			crc1 = _mm_crc32_u64(crc1,
338 			    *(const uint64_t *)(next + SHORT));
339 			crc2 = _mm_crc32_u64(crc2,
340 			    *(const uint64_t *)(next + (SHORT * 2)));
341 #else
342 			crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
343 			crc1 = _mm_crc32_u32(crc1,
344 			    *(const uint32_t *)(next + SHORT));
345 			crc2 = _mm_crc32_u32(crc2,
346 			    *(const uint32_t *)(next + (SHORT * 2)));
347 #endif
348 			next += align;
349 		} while (next < end);
350 		crc = crc32c_shift(crc32c_short, crc) ^ crc0;
351 		crc1 = crc32c_shift(crc32c_short, crc1);
352 		crc = crc32c_shift(crc32c_2short, crc) ^ crc1;
353 		crc0 = crc2;
354 		next += SHORT * 2;
355 		len -= SHORT * 3;
356 	}
357 	crc0 ^= crc;
358 
359 	/* Compute the crc on the remaining bytes at native word size. */
360 	end = next + (len - (len & (align - 1)));
361 	while (next < end) {
362 #ifdef __amd64__
363 		crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
364 #else
365 		crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
366 #endif
367 		next += align;
368 	}
369 	len &= (align - 1);
370 
371 	/* Compute the crc for any trailing bytes. */
372 	while (len) {
373 		crc0 = _mm_crc32_u8(crc0, *next);
374 		next++;
375 		len--;
376 	}
377 
378 	return ((uint32_t)crc0);
379 }
380