xref: /freebsd/sys/net/bpf.c (revision 19261079)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_bpf.h"
44 #include "opt_ddb.h"
45 #include "opt_netgraph.h"
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/jail.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/time.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/signalvar.h>
61 #include <sys/filio.h>
62 #include <sys/sockio.h>
63 #include <sys/ttycom.h>
64 #include <sys/uio.h>
65 #include <sys/sysent.h>
66 #include <sys/systm.h>
67 
68 #include <sys/event.h>
69 #include <sys/file.h>
70 #include <sys/poll.h>
71 #include <sys/proc.h>
72 
73 #include <sys/socket.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/if_vlan_var.h>
82 #include <net/if_dl.h>
83 #include <net/bpf.h>
84 #include <net/bpf_buffer.h>
85 #ifdef BPF_JITTER
86 #include <net/bpf_jitter.h>
87 #endif
88 #include <net/bpf_zerocopy.h>
89 #include <net/bpfdesc.h>
90 #include <net/route.h>
91 #include <net/vnet.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/if_ether.h>
95 #include <sys/kernel.h>
96 #include <sys/sysctl.h>
97 
98 #include <net80211/ieee80211_freebsd.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
103 
104 static struct bpf_if_ext dead_bpf_if = {
105 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
106 };
107 
108 struct bpf_if {
109 #define	bif_next	bif_ext.bif_next
110 #define	bif_dlist	bif_ext.bif_dlist
111 	struct bpf_if_ext bif_ext;	/* public members */
112 	u_int		bif_dlt;	/* link layer type */
113 	u_int		bif_hdrlen;	/* length of link header */
114 	struct bpfd_list bif_wlist;	/* writer-only list */
115 	struct ifnet	*bif_ifp;	/* corresponding interface */
116 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
117 	volatile u_int	bif_refcnt;
118 	struct epoch_context epoch_ctx;
119 };
120 
121 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
122 
123 struct bpf_program_buffer {
124 	struct epoch_context	epoch_ctx;
125 #ifdef BPF_JITTER
126 	bpf_jit_filter		*func;
127 #endif
128 	void			*buffer[0];
129 };
130 
131 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
132 
133 #define PRINET  26			/* interruptible */
134 #define BPF_PRIO_MAX	7
135 
136 #define	SIZEOF_BPF_HDR(type)	\
137     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
138 
139 #ifdef COMPAT_FREEBSD32
140 #include <sys/mount.h>
141 #include <compat/freebsd32/freebsd32.h>
142 #define BPF_ALIGNMENT32 sizeof(int32_t)
143 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
144 
145 #ifndef BURN_BRIDGES
146 /*
147  * 32-bit version of structure prepended to each packet.  We use this header
148  * instead of the standard one for 32-bit streams.  We mark the a stream as
149  * 32-bit the first time we see a 32-bit compat ioctl request.
150  */
151 struct bpf_hdr32 {
152 	struct timeval32 bh_tstamp;	/* time stamp */
153 	uint32_t	bh_caplen;	/* length of captured portion */
154 	uint32_t	bh_datalen;	/* original length of packet */
155 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
156 					   plus alignment padding) */
157 };
158 #endif
159 
160 struct bpf_program32 {
161 	u_int bf_len;
162 	uint32_t bf_insns;
163 };
164 
165 struct bpf_dltlist32 {
166 	u_int	bfl_len;
167 	u_int	bfl_list;
168 };
169 
170 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
171 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
172 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
173 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
174 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
175 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
176 #endif
177 
178 #define BPF_LOCK()	   sx_xlock(&bpf_sx)
179 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
180 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
181 /*
182  * bpf_iflist is a list of BPF interface structures, each corresponding to a
183  * specific DLT. The same network interface might have several BPF interface
184  * structures registered by different layers in the stack (i.e., 802.11
185  * frames, ethernet frames, etc).
186  */
187 CK_LIST_HEAD(bpf_iflist, bpf_if);
188 static struct bpf_iflist bpf_iflist;
189 static struct sx	bpf_sx;		/* bpf global lock */
190 static int		bpf_bpfd_cnt;
191 
192 static void	bpfif_ref(struct bpf_if *);
193 static void	bpfif_rele(struct bpf_if *);
194 
195 static void	bpfd_ref(struct bpf_d *);
196 static void	bpfd_rele(struct bpf_d *);
197 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
198 static void	bpf_detachd(struct bpf_d *);
199 static void	bpf_detachd_locked(struct bpf_d *, bool);
200 static void	bpfd_free(epoch_context_t);
201 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
202 		    struct sockaddr *, int *, struct bpf_d *);
203 static int	bpf_setif(struct bpf_d *, struct ifreq *);
204 static void	bpf_timed_out(void *);
205 static __inline void
206 		bpf_wakeup(struct bpf_d *);
207 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
208 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
209 		    struct bintime *);
210 static void	reset_d(struct bpf_d *);
211 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
212 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
213 static int	bpf_setdlt(struct bpf_d *, u_int);
214 static void	filt_bpfdetach(struct knote *);
215 static int	filt_bpfread(struct knote *, long);
216 static void	bpf_drvinit(void *);
217 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
218 
219 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
220     "bpf sysctl");
221 int bpf_maxinsns = BPF_MAXINSNS;
222 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
223     &bpf_maxinsns, 0, "Maximum bpf program instructions");
224 static int bpf_zerocopy_enable = 0;
225 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
226     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
227 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
228     bpf_stats_sysctl, "bpf statistics portal");
229 
230 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
231 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
232 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
233     &VNET_NAME(bpf_optimize_writers), 0,
234     "Do not send packets until BPF program is set");
235 
236 static	d_open_t	bpfopen;
237 static	d_read_t	bpfread;
238 static	d_write_t	bpfwrite;
239 static	d_ioctl_t	bpfioctl;
240 static	d_poll_t	bpfpoll;
241 static	d_kqfilter_t	bpfkqfilter;
242 
243 static struct cdevsw bpf_cdevsw = {
244 	.d_version =	D_VERSION,
245 	.d_open =	bpfopen,
246 	.d_read =	bpfread,
247 	.d_write =	bpfwrite,
248 	.d_ioctl =	bpfioctl,
249 	.d_poll =	bpfpoll,
250 	.d_name =	"bpf",
251 	.d_kqfilter =	bpfkqfilter,
252 };
253 
254 static struct filterops bpfread_filtops = {
255 	.f_isfd = 1,
256 	.f_detach = filt_bpfdetach,
257 	.f_event = filt_bpfread,
258 };
259 
260 /*
261  * LOCKING MODEL USED BY BPF
262  *
263  * Locks:
264  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
265  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
266  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
267  * structure fields used by bpf_*tap* code.
268  *
269  * Lock order: global lock, then descriptor lock.
270  *
271  * There are several possible consumers:
272  *
273  * 1. The kernel registers interface pointer with bpfattach().
274  * Each call allocates new bpf_if structure, references ifnet pointer
275  * and links bpf_if into bpf_iflist chain. This is protected with global
276  * lock.
277  *
278  * 2. An userland application uses ioctl() call to bpf_d descriptor.
279  * All such call are serialized with global lock. BPF filters can be
280  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
281  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
282  * filter pointers, even if change will happen during bpf_tap execution.
283  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
284  *
285  * 3. An userland application can write packets into bpf_d descriptor.
286  * There we need to be sure, that ifnet won't disappear during bpfwrite().
287  *
288  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
289  * bif_dlist is protected with net_epoch_preempt section. So, it should
290  * be safe to make access to bpf_d descriptor inside the section.
291  *
292  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
293  * are modified with global lock held and actual free() is done using
294  * NET_EPOCH_CALL().
295  */
296 
297 static void
298 bpfif_free(epoch_context_t ctx)
299 {
300 	struct bpf_if *bp;
301 
302 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
303 	if_rele(bp->bif_ifp);
304 	free(bp, M_BPF);
305 }
306 
307 static void
308 bpfif_ref(struct bpf_if *bp)
309 {
310 
311 	refcount_acquire(&bp->bif_refcnt);
312 }
313 
314 static void
315 bpfif_rele(struct bpf_if *bp)
316 {
317 
318 	if (!refcount_release(&bp->bif_refcnt))
319 		return;
320 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
321 }
322 
323 static void
324 bpfd_ref(struct bpf_d *d)
325 {
326 
327 	refcount_acquire(&d->bd_refcnt);
328 }
329 
330 static void
331 bpfd_rele(struct bpf_d *d)
332 {
333 
334 	if (!refcount_release(&d->bd_refcnt))
335 		return;
336 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
337 }
338 
339 static struct bpf_program_buffer*
340 bpf_program_buffer_alloc(size_t size, int flags)
341 {
342 
343 	return (malloc(sizeof(struct bpf_program_buffer) + size,
344 	    M_BPF, flags));
345 }
346 
347 static void
348 bpf_program_buffer_free(epoch_context_t ctx)
349 {
350 	struct bpf_program_buffer *ptr;
351 
352 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
353 #ifdef BPF_JITTER
354 	if (ptr->func != NULL)
355 		bpf_destroy_jit_filter(ptr->func);
356 #endif
357 	free(ptr, M_BPF);
358 }
359 
360 /*
361  * Wrapper functions for various buffering methods.  If the set of buffer
362  * modes expands, we will probably want to introduce a switch data structure
363  * similar to protosw, et.
364  */
365 static void
366 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
367     u_int len)
368 {
369 
370 	BPFD_LOCK_ASSERT(d);
371 
372 	switch (d->bd_bufmode) {
373 	case BPF_BUFMODE_BUFFER:
374 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
375 
376 	case BPF_BUFMODE_ZBUF:
377 		counter_u64_add(d->bd_zcopy, 1);
378 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
379 
380 	default:
381 		panic("bpf_buf_append_bytes");
382 	}
383 }
384 
385 static void
386 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
387     u_int len)
388 {
389 
390 	BPFD_LOCK_ASSERT(d);
391 
392 	switch (d->bd_bufmode) {
393 	case BPF_BUFMODE_BUFFER:
394 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
395 
396 	case BPF_BUFMODE_ZBUF:
397 		counter_u64_add(d->bd_zcopy, 1);
398 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
399 
400 	default:
401 		panic("bpf_buf_append_mbuf");
402 	}
403 }
404 
405 /*
406  * This function gets called when the free buffer is re-assigned.
407  */
408 static void
409 bpf_buf_reclaimed(struct bpf_d *d)
410 {
411 
412 	BPFD_LOCK_ASSERT(d);
413 
414 	switch (d->bd_bufmode) {
415 	case BPF_BUFMODE_BUFFER:
416 		return;
417 
418 	case BPF_BUFMODE_ZBUF:
419 		bpf_zerocopy_buf_reclaimed(d);
420 		return;
421 
422 	default:
423 		panic("bpf_buf_reclaimed");
424 	}
425 }
426 
427 /*
428  * If the buffer mechanism has a way to decide that a held buffer can be made
429  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
430  * returned if the buffer can be discarded, (0) is returned if it cannot.
431  */
432 static int
433 bpf_canfreebuf(struct bpf_d *d)
434 {
435 
436 	BPFD_LOCK_ASSERT(d);
437 
438 	switch (d->bd_bufmode) {
439 	case BPF_BUFMODE_ZBUF:
440 		return (bpf_zerocopy_canfreebuf(d));
441 	}
442 	return (0);
443 }
444 
445 /*
446  * Allow the buffer model to indicate that the current store buffer is
447  * immutable, regardless of the appearance of space.  Return (1) if the
448  * buffer is writable, and (0) if not.
449  */
450 static int
451 bpf_canwritebuf(struct bpf_d *d)
452 {
453 	BPFD_LOCK_ASSERT(d);
454 
455 	switch (d->bd_bufmode) {
456 	case BPF_BUFMODE_ZBUF:
457 		return (bpf_zerocopy_canwritebuf(d));
458 	}
459 	return (1);
460 }
461 
462 /*
463  * Notify buffer model that an attempt to write to the store buffer has
464  * resulted in a dropped packet, in which case the buffer may be considered
465  * full.
466  */
467 static void
468 bpf_buffull(struct bpf_d *d)
469 {
470 
471 	BPFD_LOCK_ASSERT(d);
472 
473 	switch (d->bd_bufmode) {
474 	case BPF_BUFMODE_ZBUF:
475 		bpf_zerocopy_buffull(d);
476 		break;
477 	}
478 }
479 
480 /*
481  * Notify the buffer model that a buffer has moved into the hold position.
482  */
483 void
484 bpf_bufheld(struct bpf_d *d)
485 {
486 
487 	BPFD_LOCK_ASSERT(d);
488 
489 	switch (d->bd_bufmode) {
490 	case BPF_BUFMODE_ZBUF:
491 		bpf_zerocopy_bufheld(d);
492 		break;
493 	}
494 }
495 
496 static void
497 bpf_free(struct bpf_d *d)
498 {
499 
500 	switch (d->bd_bufmode) {
501 	case BPF_BUFMODE_BUFFER:
502 		return (bpf_buffer_free(d));
503 
504 	case BPF_BUFMODE_ZBUF:
505 		return (bpf_zerocopy_free(d));
506 
507 	default:
508 		panic("bpf_buf_free");
509 	}
510 }
511 
512 static int
513 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
514 {
515 
516 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
517 		return (EOPNOTSUPP);
518 	return (bpf_buffer_uiomove(d, buf, len, uio));
519 }
520 
521 static int
522 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
523 {
524 
525 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
526 		return (EOPNOTSUPP);
527 	return (bpf_buffer_ioctl_sblen(d, i));
528 }
529 
530 static int
531 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
532 {
533 
534 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
535 		return (EOPNOTSUPP);
536 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
537 }
538 
539 static int
540 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
541 {
542 
543 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
544 		return (EOPNOTSUPP);
545 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
546 }
547 
548 static int
549 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
550 {
551 
552 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
553 		return (EOPNOTSUPP);
554 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
555 }
556 
557 /*
558  * General BPF functions.
559  */
560 static int
561 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
562     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
563 {
564 	const struct ieee80211_bpf_params *p;
565 	struct ether_header *eh;
566 	struct mbuf *m;
567 	int error;
568 	int len;
569 	int hlen;
570 	int slen;
571 
572 	/*
573 	 * Build a sockaddr based on the data link layer type.
574 	 * We do this at this level because the ethernet header
575 	 * is copied directly into the data field of the sockaddr.
576 	 * In the case of SLIP, there is no header and the packet
577 	 * is forwarded as is.
578 	 * Also, we are careful to leave room at the front of the mbuf
579 	 * for the link level header.
580 	 */
581 	switch (linktype) {
582 	case DLT_SLIP:
583 		sockp->sa_family = AF_INET;
584 		hlen = 0;
585 		break;
586 
587 	case DLT_EN10MB:
588 		sockp->sa_family = AF_UNSPEC;
589 		/* XXX Would MAXLINKHDR be better? */
590 		hlen = ETHER_HDR_LEN;
591 		break;
592 
593 	case DLT_FDDI:
594 		sockp->sa_family = AF_IMPLINK;
595 		hlen = 0;
596 		break;
597 
598 	case DLT_RAW:
599 		sockp->sa_family = AF_UNSPEC;
600 		hlen = 0;
601 		break;
602 
603 	case DLT_NULL:
604 		/*
605 		 * null interface types require a 4 byte pseudo header which
606 		 * corresponds to the address family of the packet.
607 		 */
608 		sockp->sa_family = AF_UNSPEC;
609 		hlen = 4;
610 		break;
611 
612 	case DLT_ATM_RFC1483:
613 		/*
614 		 * en atm driver requires 4-byte atm pseudo header.
615 		 * though it isn't standard, vpi:vci needs to be
616 		 * specified anyway.
617 		 */
618 		sockp->sa_family = AF_UNSPEC;
619 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
620 		break;
621 
622 	case DLT_PPP:
623 		sockp->sa_family = AF_UNSPEC;
624 		hlen = 4;	/* This should match PPP_HDRLEN */
625 		break;
626 
627 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
628 		sockp->sa_family = AF_IEEE80211;
629 		hlen = 0;
630 		break;
631 
632 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
633 		sockp->sa_family = AF_IEEE80211;
634 		sockp->sa_len = 12;	/* XXX != 0 */
635 		hlen = sizeof(struct ieee80211_bpf_params);
636 		break;
637 
638 	default:
639 		return (EIO);
640 	}
641 
642 	len = uio->uio_resid;
643 	if (len < hlen || len - hlen > ifp->if_mtu)
644 		return (EMSGSIZE);
645 
646 	/* Allocate a mbuf for our write, since m_get2 fails if len >= to MJUMPAGESIZE, use m_getjcl for bigger buffers */
647 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
648 	if (m == NULL)
649 		return (EIO);
650 	m->m_pkthdr.len = m->m_len = len;
651 	*mp = m;
652 
653 	error = uiomove(mtod(m, u_char *), len, uio);
654 	if (error)
655 		goto bad;
656 
657 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
658 	if (slen == 0) {
659 		error = EPERM;
660 		goto bad;
661 	}
662 
663 	/* Check for multicast destination */
664 	switch (linktype) {
665 	case DLT_EN10MB:
666 		eh = mtod(m, struct ether_header *);
667 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
668 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
669 			    ETHER_ADDR_LEN) == 0)
670 				m->m_flags |= M_BCAST;
671 			else
672 				m->m_flags |= M_MCAST;
673 		}
674 		if (d->bd_hdrcmplt == 0) {
675 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
676 			    sizeof(eh->ether_shost));
677 		}
678 		break;
679 	}
680 
681 	/*
682 	 * Make room for link header, and copy it to sockaddr
683 	 */
684 	if (hlen != 0) {
685 		if (sockp->sa_family == AF_IEEE80211) {
686 			/*
687 			 * Collect true length from the parameter header
688 			 * NB: sockp is known to be zero'd so if we do a
689 			 *     short copy unspecified parameters will be
690 			 *     zero.
691 			 * NB: packet may not be aligned after stripping
692 			 *     bpf params
693 			 * XXX check ibp_vers
694 			 */
695 			p = mtod(m, const struct ieee80211_bpf_params *);
696 			hlen = p->ibp_len;
697 			if (hlen > sizeof(sockp->sa_data)) {
698 				error = EINVAL;
699 				goto bad;
700 			}
701 		}
702 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
703 	}
704 	*hdrlen = hlen;
705 
706 	return (0);
707 bad:
708 	m_freem(m);
709 	return (error);
710 }
711 
712 /*
713  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
714  * then reset its buffers and counters with reset_d().
715  */
716 static void
717 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
718 {
719 	int op_w;
720 
721 	BPF_LOCK_ASSERT();
722 
723 	/*
724 	 * Save sysctl value to protect from sysctl change
725 	 * between reads
726 	 */
727 	op_w = V_bpf_optimize_writers || d->bd_writer;
728 
729 	if (d->bd_bif != NULL)
730 		bpf_detachd_locked(d, false);
731 	/*
732 	 * Point d at bp, and add d to the interface's list.
733 	 * Since there are many applications using BPF for
734 	 * sending raw packets only (dhcpd, cdpd are good examples)
735 	 * we can delay adding d to the list of active listeners until
736 	 * some filter is configured.
737 	 */
738 
739 	BPFD_LOCK(d);
740 	/*
741 	 * Hold reference to bpif while descriptor uses this interface.
742 	 */
743 	bpfif_ref(bp);
744 	d->bd_bif = bp;
745 	if (op_w != 0) {
746 		/* Add to writers-only list */
747 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
748 		/*
749 		 * We decrement bd_writer on every filter set operation.
750 		 * First BIOCSETF is done by pcap_open_live() to set up
751 		 * snap length. After that appliation usually sets its own
752 		 * filter.
753 		 */
754 		d->bd_writer = 2;
755 	} else
756 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
757 
758 	reset_d(d);
759 	BPFD_UNLOCK(d);
760 	bpf_bpfd_cnt++;
761 
762 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
763 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
764 
765 	if (op_w == 0)
766 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
767 }
768 
769 /*
770  * Check if we need to upgrade our descriptor @d from write-only mode.
771  */
772 static int
773 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
774     int flen)
775 {
776 	int is_snap, need_upgrade;
777 
778 	/*
779 	 * Check if we've already upgraded or new filter is empty.
780 	 */
781 	if (d->bd_writer == 0 || fcode == NULL)
782 		return (0);
783 
784 	need_upgrade = 0;
785 
786 	/*
787 	 * Check if cmd looks like snaplen setting from
788 	 * pcap_bpf.c:pcap_open_live().
789 	 * Note we're not checking .k value here:
790 	 * while pcap_open_live() definitely sets to non-zero value,
791 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
792 	 * do not consider upgrading immediately
793 	 */
794 	if (cmd == BIOCSETF && flen == 1 &&
795 	    fcode[0].code == (BPF_RET | BPF_K))
796 		is_snap = 1;
797 	else
798 		is_snap = 0;
799 
800 	if (is_snap == 0) {
801 		/*
802 		 * We're setting first filter and it doesn't look like
803 		 * setting snaplen.  We're probably using bpf directly.
804 		 * Upgrade immediately.
805 		 */
806 		need_upgrade = 1;
807 	} else {
808 		/*
809 		 * Do not require upgrade by first BIOCSETF
810 		 * (used to set snaplen) by pcap_open_live().
811 		 */
812 
813 		if (--d->bd_writer == 0) {
814 			/*
815 			 * First snaplen filter has already
816 			 * been set. This is probably catch-all
817 			 * filter
818 			 */
819 			need_upgrade = 1;
820 		}
821 	}
822 
823 	CTR5(KTR_NET,
824 	    "%s: filter function set by pid %d, "
825 	    "bd_writer counter %d, snap %d upgrade %d",
826 	    __func__, d->bd_pid, d->bd_writer,
827 	    is_snap, need_upgrade);
828 
829 	return (need_upgrade);
830 }
831 
832 /*
833  * Detach a file from its interface.
834  */
835 static void
836 bpf_detachd(struct bpf_d *d)
837 {
838 	BPF_LOCK();
839 	bpf_detachd_locked(d, false);
840 	BPF_UNLOCK();
841 }
842 
843 static void
844 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
845 {
846 	struct bpf_if *bp;
847 	struct ifnet *ifp;
848 	int error;
849 
850 	BPF_LOCK_ASSERT();
851 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
852 
853 	/* Check if descriptor is attached */
854 	if ((bp = d->bd_bif) == NULL)
855 		return;
856 
857 	BPFD_LOCK(d);
858 	/* Remove d from the interface's descriptor list. */
859 	CK_LIST_REMOVE(d, bd_next);
860 	/* Save bd_writer value */
861 	error = d->bd_writer;
862 	ifp = bp->bif_ifp;
863 	d->bd_bif = NULL;
864 	if (detached_ifp) {
865 		/*
866 		 * Notify descriptor as it's detached, so that any
867 		 * sleepers wake up and get ENXIO.
868 		 */
869 		bpf_wakeup(d);
870 	}
871 	BPFD_UNLOCK(d);
872 	bpf_bpfd_cnt--;
873 
874 	/* Call event handler iff d is attached */
875 	if (error == 0)
876 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
877 
878 	/*
879 	 * Check if this descriptor had requested promiscuous mode.
880 	 * If so and ifnet is not detached, turn it off.
881 	 */
882 	if (d->bd_promisc && !detached_ifp) {
883 		d->bd_promisc = 0;
884 		CURVNET_SET(ifp->if_vnet);
885 		error = ifpromisc(ifp, 0);
886 		CURVNET_RESTORE();
887 		if (error != 0 && error != ENXIO) {
888 			/*
889 			 * ENXIO can happen if a pccard is unplugged
890 			 * Something is really wrong if we were able to put
891 			 * the driver into promiscuous mode, but can't
892 			 * take it out.
893 			 */
894 			if_printf(bp->bif_ifp,
895 				"bpf_detach: ifpromisc failed (%d)\n", error);
896 		}
897 	}
898 	bpfif_rele(bp);
899 }
900 
901 /*
902  * Close the descriptor by detaching it from its interface,
903  * deallocating its buffers, and marking it free.
904  */
905 static void
906 bpf_dtor(void *data)
907 {
908 	struct bpf_d *d = data;
909 
910 	BPFD_LOCK(d);
911 	if (d->bd_state == BPF_WAITING)
912 		callout_stop(&d->bd_callout);
913 	d->bd_state = BPF_IDLE;
914 	BPFD_UNLOCK(d);
915 	funsetown(&d->bd_sigio);
916 	bpf_detachd(d);
917 #ifdef MAC
918 	mac_bpfdesc_destroy(d);
919 #endif /* MAC */
920 	seldrain(&d->bd_sel);
921 	knlist_destroy(&d->bd_sel.si_note);
922 	callout_drain(&d->bd_callout);
923 	bpfd_rele(d);
924 }
925 
926 /*
927  * Open ethernet device.  Returns ENXIO for illegal minor device number,
928  * EBUSY if file is open by another process.
929  */
930 /* ARGSUSED */
931 static	int
932 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
933 {
934 	struct bpf_d *d;
935 	int error;
936 
937 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
938 	error = devfs_set_cdevpriv(d, bpf_dtor);
939 	if (error != 0) {
940 		free(d, M_BPF);
941 		return (error);
942 	}
943 
944 	/* Setup counters */
945 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
946 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
947 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
948 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
949 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
950 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
951 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
952 
953 	/*
954 	 * For historical reasons, perform a one-time initialization call to
955 	 * the buffer routines, even though we're not yet committed to a
956 	 * particular buffer method.
957 	 */
958 	bpf_buffer_init(d);
959 	if ((flags & FREAD) == 0)
960 		d->bd_writer = 2;
961 	d->bd_hbuf_in_use = 0;
962 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
963 	d->bd_sig = SIGIO;
964 	d->bd_direction = BPF_D_INOUT;
965 	d->bd_refcnt = 1;
966 	BPF_PID_REFRESH(d, td);
967 #ifdef MAC
968 	mac_bpfdesc_init(d);
969 	mac_bpfdesc_create(td->td_ucred, d);
970 #endif
971 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
972 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
973 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
974 
975 	/* Disable VLAN pcp tagging. */
976 	d->bd_pcp = 0;
977 
978 	return (0);
979 }
980 
981 /*
982  *  bpfread - read next chunk of packets from buffers
983  */
984 static	int
985 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
986 {
987 	struct bpf_d *d;
988 	int error;
989 	int non_block;
990 	int timed_out;
991 
992 	error = devfs_get_cdevpriv((void **)&d);
993 	if (error != 0)
994 		return (error);
995 
996 	/*
997 	 * Restrict application to use a buffer the same size as
998 	 * as kernel buffers.
999 	 */
1000 	if (uio->uio_resid != d->bd_bufsize)
1001 		return (EINVAL);
1002 
1003 	non_block = ((ioflag & O_NONBLOCK) != 0);
1004 
1005 	BPFD_LOCK(d);
1006 	BPF_PID_REFRESH_CUR(d);
1007 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1008 		BPFD_UNLOCK(d);
1009 		return (EOPNOTSUPP);
1010 	}
1011 	if (d->bd_state == BPF_WAITING)
1012 		callout_stop(&d->bd_callout);
1013 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1014 	d->bd_state = BPF_IDLE;
1015 	while (d->bd_hbuf_in_use) {
1016 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1017 		    PRINET|PCATCH, "bd_hbuf", 0);
1018 		if (error != 0) {
1019 			BPFD_UNLOCK(d);
1020 			return (error);
1021 		}
1022 	}
1023 	/*
1024 	 * If the hold buffer is empty, then do a timed sleep, which
1025 	 * ends when the timeout expires or when enough packets
1026 	 * have arrived to fill the store buffer.
1027 	 */
1028 	while (d->bd_hbuf == NULL) {
1029 		if (d->bd_slen != 0) {
1030 			/*
1031 			 * A packet(s) either arrived since the previous
1032 			 * read or arrived while we were asleep.
1033 			 */
1034 			if (d->bd_immediate || non_block || timed_out) {
1035 				/*
1036 				 * Rotate the buffers and return what's here
1037 				 * if we are in immediate mode, non-blocking
1038 				 * flag is set, or this descriptor timed out.
1039 				 */
1040 				ROTATE_BUFFERS(d);
1041 				break;
1042 			}
1043 		}
1044 
1045 		/*
1046 		 * No data is available, check to see if the bpf device
1047 		 * is still pointed at a real interface.  If not, return
1048 		 * ENXIO so that the userland process knows to rebind
1049 		 * it before using it again.
1050 		 */
1051 		if (d->bd_bif == NULL) {
1052 			BPFD_UNLOCK(d);
1053 			return (ENXIO);
1054 		}
1055 
1056 		if (non_block) {
1057 			BPFD_UNLOCK(d);
1058 			return (EWOULDBLOCK);
1059 		}
1060 		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1061 		     "bpf", d->bd_rtout);
1062 		if (error == EINTR || error == ERESTART) {
1063 			BPFD_UNLOCK(d);
1064 			return (error);
1065 		}
1066 		if (error == EWOULDBLOCK) {
1067 			/*
1068 			 * On a timeout, return what's in the buffer,
1069 			 * which may be nothing.  If there is something
1070 			 * in the store buffer, we can rotate the buffers.
1071 			 */
1072 			if (d->bd_hbuf)
1073 				/*
1074 				 * We filled up the buffer in between
1075 				 * getting the timeout and arriving
1076 				 * here, so we don't need to rotate.
1077 				 */
1078 				break;
1079 
1080 			if (d->bd_slen == 0) {
1081 				BPFD_UNLOCK(d);
1082 				return (0);
1083 			}
1084 			ROTATE_BUFFERS(d);
1085 			break;
1086 		}
1087 	}
1088 	/*
1089 	 * At this point, we know we have something in the hold slot.
1090 	 */
1091 	d->bd_hbuf_in_use = 1;
1092 	BPFD_UNLOCK(d);
1093 
1094 	/*
1095 	 * Move data from hold buffer into user space.
1096 	 * We know the entire buffer is transferred since
1097 	 * we checked above that the read buffer is bpf_bufsize bytes.
1098   	 *
1099 	 * We do not have to worry about simultaneous reads because
1100 	 * we waited for sole access to the hold buffer above.
1101 	 */
1102 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1103 
1104 	BPFD_LOCK(d);
1105 	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1106 	d->bd_fbuf = d->bd_hbuf;
1107 	d->bd_hbuf = NULL;
1108 	d->bd_hlen = 0;
1109 	bpf_buf_reclaimed(d);
1110 	d->bd_hbuf_in_use = 0;
1111 	wakeup(&d->bd_hbuf_in_use);
1112 	BPFD_UNLOCK(d);
1113 
1114 	return (error);
1115 }
1116 
1117 /*
1118  * If there are processes sleeping on this descriptor, wake them up.
1119  */
1120 static __inline void
1121 bpf_wakeup(struct bpf_d *d)
1122 {
1123 
1124 	BPFD_LOCK_ASSERT(d);
1125 	if (d->bd_state == BPF_WAITING) {
1126 		callout_stop(&d->bd_callout);
1127 		d->bd_state = BPF_IDLE;
1128 	}
1129 	wakeup(d);
1130 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1131 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1132 
1133 	selwakeuppri(&d->bd_sel, PRINET);
1134 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1135 }
1136 
1137 static void
1138 bpf_timed_out(void *arg)
1139 {
1140 	struct bpf_d *d = (struct bpf_d *)arg;
1141 
1142 	BPFD_LOCK_ASSERT(d);
1143 
1144 	if (callout_pending(&d->bd_callout) ||
1145 	    !callout_active(&d->bd_callout))
1146 		return;
1147 	if (d->bd_state == BPF_WAITING) {
1148 		d->bd_state = BPF_TIMED_OUT;
1149 		if (d->bd_slen != 0)
1150 			bpf_wakeup(d);
1151 	}
1152 }
1153 
1154 static int
1155 bpf_ready(struct bpf_d *d)
1156 {
1157 
1158 	BPFD_LOCK_ASSERT(d);
1159 
1160 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1161 		return (1);
1162 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1163 	    d->bd_slen != 0)
1164 		return (1);
1165 	return (0);
1166 }
1167 
1168 static int
1169 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1170 {
1171 	struct route ro;
1172 	struct sockaddr dst;
1173 	struct epoch_tracker et;
1174 	struct bpf_if *bp;
1175 	struct bpf_d *d;
1176 	struct ifnet *ifp;
1177 	struct mbuf *m, *mc;
1178 	int error, hlen;
1179 
1180 	error = devfs_get_cdevpriv((void **)&d);
1181 	if (error != 0)
1182 		return (error);
1183 
1184 	NET_EPOCH_ENTER(et);
1185 	BPFD_LOCK(d);
1186 	BPF_PID_REFRESH_CUR(d);
1187 	counter_u64_add(d->bd_wcount, 1);
1188 	if ((bp = d->bd_bif) == NULL) {
1189 		error = ENXIO;
1190 		goto out_locked;
1191 	}
1192 
1193 	ifp = bp->bif_ifp;
1194 	if ((ifp->if_flags & IFF_UP) == 0) {
1195 		error = ENETDOWN;
1196 		goto out_locked;
1197 	}
1198 
1199 	if (uio->uio_resid == 0)
1200 		goto out_locked;
1201 
1202 	bzero(&dst, sizeof(dst));
1203 	m = NULL;
1204 	hlen = 0;
1205 
1206 	/*
1207 	 * Take extra reference, unlock d and exit from epoch section,
1208 	 * since bpf_movein() can sleep.
1209 	 */
1210 	bpfd_ref(d);
1211 	NET_EPOCH_EXIT(et);
1212 	BPFD_UNLOCK(d);
1213 
1214 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1215 	    &m, &dst, &hlen, d);
1216 
1217 	if (error != 0) {
1218 		counter_u64_add(d->bd_wdcount, 1);
1219 		bpfd_rele(d);
1220 		return (error);
1221 	}
1222 
1223 	BPFD_LOCK(d);
1224 	/*
1225 	 * Check that descriptor is still attached to the interface.
1226 	 * This can happen on bpfdetach(). To avoid access to detached
1227 	 * ifnet, free mbuf and return ENXIO.
1228 	 */
1229 	if (d->bd_bif == NULL) {
1230 		counter_u64_add(d->bd_wdcount, 1);
1231 		BPFD_UNLOCK(d);
1232 		bpfd_rele(d);
1233 		m_freem(m);
1234 		return (ENXIO);
1235 	}
1236 	counter_u64_add(d->bd_wfcount, 1);
1237 	if (d->bd_hdrcmplt)
1238 		dst.sa_family = pseudo_AF_HDRCMPLT;
1239 
1240 	if (d->bd_feedback) {
1241 		mc = m_dup(m, M_NOWAIT);
1242 		if (mc != NULL)
1243 			mc->m_pkthdr.rcvif = ifp;
1244 		/* Set M_PROMISC for outgoing packets to be discarded. */
1245 		if (d->bd_direction == BPF_D_INOUT)
1246 			m->m_flags |= M_PROMISC;
1247 	} else
1248 		mc = NULL;
1249 
1250 	m->m_pkthdr.len -= hlen;
1251 	m->m_len -= hlen;
1252 	m->m_data += hlen;	/* XXX */
1253 
1254 	CURVNET_SET(ifp->if_vnet);
1255 #ifdef MAC
1256 	mac_bpfdesc_create_mbuf(d, m);
1257 	if (mc != NULL)
1258 		mac_bpfdesc_create_mbuf(d, mc);
1259 #endif
1260 
1261 	bzero(&ro, sizeof(ro));
1262 	if (hlen != 0) {
1263 		ro.ro_prepend = (u_char *)&dst.sa_data;
1264 		ro.ro_plen = hlen;
1265 		ro.ro_flags = RT_HAS_HEADER;
1266 	}
1267 
1268 	if (d->bd_pcp != 0)
1269 		vlan_set_pcp(m, d->bd_pcp);
1270 
1271 	/* Avoid possible recursion on BPFD_LOCK(). */
1272 	NET_EPOCH_ENTER(et);
1273 	BPFD_UNLOCK(d);
1274 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1275 	if (error)
1276 		counter_u64_add(d->bd_wdcount, 1);
1277 
1278 	if (mc != NULL) {
1279 		if (error == 0)
1280 			(*ifp->if_input)(ifp, mc);
1281 		else
1282 			m_freem(mc);
1283 	}
1284 	NET_EPOCH_EXIT(et);
1285 	CURVNET_RESTORE();
1286 	bpfd_rele(d);
1287 	return (error);
1288 
1289 out_locked:
1290 	counter_u64_add(d->bd_wdcount, 1);
1291 	NET_EPOCH_EXIT(et);
1292 	BPFD_UNLOCK(d);
1293 	return (error);
1294 }
1295 
1296 /*
1297  * Reset a descriptor by flushing its packet buffer and clearing the receive
1298  * and drop counts.  This is doable for kernel-only buffers, but with
1299  * zero-copy buffers, we can't write to (or rotate) buffers that are
1300  * currently owned by userspace.  It would be nice if we could encapsulate
1301  * this logic in the buffer code rather than here.
1302  */
1303 static void
1304 reset_d(struct bpf_d *d)
1305 {
1306 
1307 	BPFD_LOCK_ASSERT(d);
1308 
1309 	while (d->bd_hbuf_in_use)
1310 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1311 		    "bd_hbuf", 0);
1312 	if ((d->bd_hbuf != NULL) &&
1313 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1314 		/* Free the hold buffer. */
1315 		d->bd_fbuf = d->bd_hbuf;
1316 		d->bd_hbuf = NULL;
1317 		d->bd_hlen = 0;
1318 		bpf_buf_reclaimed(d);
1319 	}
1320 	if (bpf_canwritebuf(d))
1321 		d->bd_slen = 0;
1322 	counter_u64_zero(d->bd_rcount);
1323 	counter_u64_zero(d->bd_dcount);
1324 	counter_u64_zero(d->bd_fcount);
1325 	counter_u64_zero(d->bd_wcount);
1326 	counter_u64_zero(d->bd_wfcount);
1327 	counter_u64_zero(d->bd_wdcount);
1328 	counter_u64_zero(d->bd_zcopy);
1329 }
1330 
1331 /*
1332  *  FIONREAD		Check for read packet available.
1333  *  BIOCGBLEN		Get buffer len [for read()].
1334  *  BIOCSETF		Set read filter.
1335  *  BIOCSETFNR		Set read filter without resetting descriptor.
1336  *  BIOCSETWF		Set write filter.
1337  *  BIOCFLUSH		Flush read packet buffer.
1338  *  BIOCPROMISC		Put interface into promiscuous mode.
1339  *  BIOCGDLT		Get link layer type.
1340  *  BIOCGETIF		Get interface name.
1341  *  BIOCSETIF		Set interface.
1342  *  BIOCSRTIMEOUT	Set read timeout.
1343  *  BIOCGRTIMEOUT	Get read timeout.
1344  *  BIOCGSTATS		Get packet stats.
1345  *  BIOCIMMEDIATE	Set immediate mode.
1346  *  BIOCVERSION		Get filter language version.
1347  *  BIOCGHDRCMPLT	Get "header already complete" flag
1348  *  BIOCSHDRCMPLT	Set "header already complete" flag
1349  *  BIOCGDIRECTION	Get packet direction flag
1350  *  BIOCSDIRECTION	Set packet direction flag
1351  *  BIOCGTSTAMP		Get time stamp format and resolution.
1352  *  BIOCSTSTAMP		Set time stamp format and resolution.
1353  *  BIOCLOCK		Set "locked" flag
1354  *  BIOCFEEDBACK	Set packet feedback mode.
1355  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1356  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1357  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1358  *  BIOCSETBUFMODE	Set buffer mode.
1359  *  BIOCGETBUFMODE	Get current buffer mode.
1360  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1361  */
1362 /* ARGSUSED */
1363 static	int
1364 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1365     struct thread *td)
1366 {
1367 	struct bpf_d *d;
1368 	int error;
1369 
1370 	error = devfs_get_cdevpriv((void **)&d);
1371 	if (error != 0)
1372 		return (error);
1373 
1374 	/*
1375 	 * Refresh PID associated with this descriptor.
1376 	 */
1377 	BPFD_LOCK(d);
1378 	BPF_PID_REFRESH(d, td);
1379 	if (d->bd_state == BPF_WAITING)
1380 		callout_stop(&d->bd_callout);
1381 	d->bd_state = BPF_IDLE;
1382 	BPFD_UNLOCK(d);
1383 
1384 	if (d->bd_locked == 1) {
1385 		switch (cmd) {
1386 		case BIOCGBLEN:
1387 		case BIOCFLUSH:
1388 		case BIOCGDLT:
1389 		case BIOCGDLTLIST:
1390 #ifdef COMPAT_FREEBSD32
1391 		case BIOCGDLTLIST32:
1392 #endif
1393 		case BIOCGETIF:
1394 		case BIOCGRTIMEOUT:
1395 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1396 		case BIOCGRTIMEOUT32:
1397 #endif
1398 		case BIOCGSTATS:
1399 		case BIOCVERSION:
1400 		case BIOCGRSIG:
1401 		case BIOCGHDRCMPLT:
1402 		case BIOCSTSTAMP:
1403 		case BIOCFEEDBACK:
1404 		case FIONREAD:
1405 		case BIOCLOCK:
1406 		case BIOCSRTIMEOUT:
1407 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1408 		case BIOCSRTIMEOUT32:
1409 #endif
1410 		case BIOCIMMEDIATE:
1411 		case TIOCGPGRP:
1412 		case BIOCROTZBUF:
1413 			break;
1414 		default:
1415 			return (EPERM);
1416 		}
1417 	}
1418 #ifdef COMPAT_FREEBSD32
1419 	/*
1420 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1421 	 * that it will get 32-bit packet headers.
1422 	 */
1423 	switch (cmd) {
1424 	case BIOCSETF32:
1425 	case BIOCSETFNR32:
1426 	case BIOCSETWF32:
1427 	case BIOCGDLTLIST32:
1428 	case BIOCGRTIMEOUT32:
1429 	case BIOCSRTIMEOUT32:
1430 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1431 			BPFD_LOCK(d);
1432 			d->bd_compat32 = 1;
1433 			BPFD_UNLOCK(d);
1434 		}
1435 	}
1436 #endif
1437 
1438 	CURVNET_SET(TD_TO_VNET(td));
1439 	switch (cmd) {
1440 	default:
1441 		error = EINVAL;
1442 		break;
1443 
1444 	/*
1445 	 * Check for read packet available.
1446 	 */
1447 	case FIONREAD:
1448 		{
1449 			int n;
1450 
1451 			BPFD_LOCK(d);
1452 			n = d->bd_slen;
1453 			while (d->bd_hbuf_in_use)
1454 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1455 				    PRINET, "bd_hbuf", 0);
1456 			if (d->bd_hbuf)
1457 				n += d->bd_hlen;
1458 			BPFD_UNLOCK(d);
1459 
1460 			*(int *)addr = n;
1461 			break;
1462 		}
1463 
1464 	/*
1465 	 * Get buffer len [for read()].
1466 	 */
1467 	case BIOCGBLEN:
1468 		BPFD_LOCK(d);
1469 		*(u_int *)addr = d->bd_bufsize;
1470 		BPFD_UNLOCK(d);
1471 		break;
1472 
1473 	/*
1474 	 * Set buffer length.
1475 	 */
1476 	case BIOCSBLEN:
1477 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1478 		break;
1479 
1480 	/*
1481 	 * Set link layer read filter.
1482 	 */
1483 	case BIOCSETF:
1484 	case BIOCSETFNR:
1485 	case BIOCSETWF:
1486 #ifdef COMPAT_FREEBSD32
1487 	case BIOCSETF32:
1488 	case BIOCSETFNR32:
1489 	case BIOCSETWF32:
1490 #endif
1491 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1492 		break;
1493 
1494 	/*
1495 	 * Flush read packet buffer.
1496 	 */
1497 	case BIOCFLUSH:
1498 		BPFD_LOCK(d);
1499 		reset_d(d);
1500 		BPFD_UNLOCK(d);
1501 		break;
1502 
1503 	/*
1504 	 * Put interface into promiscuous mode.
1505 	 */
1506 	case BIOCPROMISC:
1507 		if (d->bd_bif == NULL) {
1508 			/*
1509 			 * No interface attached yet.
1510 			 */
1511 			error = EINVAL;
1512 			break;
1513 		}
1514 		if (d->bd_promisc == 0) {
1515 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1516 			if (error == 0)
1517 				d->bd_promisc = 1;
1518 		}
1519 		break;
1520 
1521 	/*
1522 	 * Get current data link type.
1523 	 */
1524 	case BIOCGDLT:
1525 		BPF_LOCK();
1526 		if (d->bd_bif == NULL)
1527 			error = EINVAL;
1528 		else
1529 			*(u_int *)addr = d->bd_bif->bif_dlt;
1530 		BPF_UNLOCK();
1531 		break;
1532 
1533 	/*
1534 	 * Get a list of supported data link types.
1535 	 */
1536 #ifdef COMPAT_FREEBSD32
1537 	case BIOCGDLTLIST32:
1538 		{
1539 			struct bpf_dltlist32 *list32;
1540 			struct bpf_dltlist dltlist;
1541 
1542 			list32 = (struct bpf_dltlist32 *)addr;
1543 			dltlist.bfl_len = list32->bfl_len;
1544 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1545 			BPF_LOCK();
1546 			if (d->bd_bif == NULL)
1547 				error = EINVAL;
1548 			else {
1549 				error = bpf_getdltlist(d, &dltlist);
1550 				if (error == 0)
1551 					list32->bfl_len = dltlist.bfl_len;
1552 			}
1553 			BPF_UNLOCK();
1554 			break;
1555 		}
1556 #endif
1557 
1558 	case BIOCGDLTLIST:
1559 		BPF_LOCK();
1560 		if (d->bd_bif == NULL)
1561 			error = EINVAL;
1562 		else
1563 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1564 		BPF_UNLOCK();
1565 		break;
1566 
1567 	/*
1568 	 * Set data link type.
1569 	 */
1570 	case BIOCSDLT:
1571 		BPF_LOCK();
1572 		if (d->bd_bif == NULL)
1573 			error = EINVAL;
1574 		else
1575 			error = bpf_setdlt(d, *(u_int *)addr);
1576 		BPF_UNLOCK();
1577 		break;
1578 
1579 	/*
1580 	 * Get interface name.
1581 	 */
1582 	case BIOCGETIF:
1583 		BPF_LOCK();
1584 		if (d->bd_bif == NULL)
1585 			error = EINVAL;
1586 		else {
1587 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1588 			struct ifreq *const ifr = (struct ifreq *)addr;
1589 
1590 			strlcpy(ifr->ifr_name, ifp->if_xname,
1591 			    sizeof(ifr->ifr_name));
1592 		}
1593 		BPF_UNLOCK();
1594 		break;
1595 
1596 	/*
1597 	 * Set interface.
1598 	 */
1599 	case BIOCSETIF:
1600 		{
1601 			int alloc_buf, size;
1602 
1603 			/*
1604 			 * Behavior here depends on the buffering model.  If
1605 			 * we're using kernel memory buffers, then we can
1606 			 * allocate them here.  If we're using zero-copy,
1607 			 * then the user process must have registered buffers
1608 			 * by the time we get here.
1609 			 */
1610 			alloc_buf = 0;
1611 			BPFD_LOCK(d);
1612 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1613 			    d->bd_sbuf == NULL)
1614 				alloc_buf = 1;
1615 			BPFD_UNLOCK(d);
1616 			if (alloc_buf) {
1617 				size = d->bd_bufsize;
1618 				error = bpf_buffer_ioctl_sblen(d, &size);
1619 				if (error != 0)
1620 					break;
1621 			}
1622 			BPF_LOCK();
1623 			error = bpf_setif(d, (struct ifreq *)addr);
1624 			BPF_UNLOCK();
1625 			break;
1626 		}
1627 
1628 	/*
1629 	 * Set read timeout.
1630 	 */
1631 	case BIOCSRTIMEOUT:
1632 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1633 	case BIOCSRTIMEOUT32:
1634 #endif
1635 		{
1636 			struct timeval *tv = (struct timeval *)addr;
1637 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1638 			struct timeval32 *tv32;
1639 			struct timeval tv64;
1640 
1641 			if (cmd == BIOCSRTIMEOUT32) {
1642 				tv32 = (struct timeval32 *)addr;
1643 				tv = &tv64;
1644 				tv->tv_sec = tv32->tv_sec;
1645 				tv->tv_usec = tv32->tv_usec;
1646 			} else
1647 #endif
1648 				tv = (struct timeval *)addr;
1649 
1650 			/*
1651 			 * Subtract 1 tick from tvtohz() since this isn't
1652 			 * a one-shot timer.
1653 			 */
1654 			if ((error = itimerfix(tv)) == 0)
1655 				d->bd_rtout = tvtohz(tv) - 1;
1656 			break;
1657 		}
1658 
1659 	/*
1660 	 * Get read timeout.
1661 	 */
1662 	case BIOCGRTIMEOUT:
1663 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1664 	case BIOCGRTIMEOUT32:
1665 #endif
1666 		{
1667 			struct timeval *tv;
1668 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1669 			struct timeval32 *tv32;
1670 			struct timeval tv64;
1671 
1672 			if (cmd == BIOCGRTIMEOUT32)
1673 				tv = &tv64;
1674 			else
1675 #endif
1676 				tv = (struct timeval *)addr;
1677 
1678 			tv->tv_sec = d->bd_rtout / hz;
1679 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1680 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1681 			if (cmd == BIOCGRTIMEOUT32) {
1682 				tv32 = (struct timeval32 *)addr;
1683 				tv32->tv_sec = tv->tv_sec;
1684 				tv32->tv_usec = tv->tv_usec;
1685 			}
1686 #endif
1687 
1688 			break;
1689 		}
1690 
1691 	/*
1692 	 * Get packet stats.
1693 	 */
1694 	case BIOCGSTATS:
1695 		{
1696 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1697 
1698 			/* XXXCSJP overflow */
1699 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1700 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1701 			break;
1702 		}
1703 
1704 	/*
1705 	 * Set immediate mode.
1706 	 */
1707 	case BIOCIMMEDIATE:
1708 		BPFD_LOCK(d);
1709 		d->bd_immediate = *(u_int *)addr;
1710 		BPFD_UNLOCK(d);
1711 		break;
1712 
1713 	case BIOCVERSION:
1714 		{
1715 			struct bpf_version *bv = (struct bpf_version *)addr;
1716 
1717 			bv->bv_major = BPF_MAJOR_VERSION;
1718 			bv->bv_minor = BPF_MINOR_VERSION;
1719 			break;
1720 		}
1721 
1722 	/*
1723 	 * Get "header already complete" flag
1724 	 */
1725 	case BIOCGHDRCMPLT:
1726 		BPFD_LOCK(d);
1727 		*(u_int *)addr = d->bd_hdrcmplt;
1728 		BPFD_UNLOCK(d);
1729 		break;
1730 
1731 	/*
1732 	 * Set "header already complete" flag
1733 	 */
1734 	case BIOCSHDRCMPLT:
1735 		BPFD_LOCK(d);
1736 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1737 		BPFD_UNLOCK(d);
1738 		break;
1739 
1740 	/*
1741 	 * Get packet direction flag
1742 	 */
1743 	case BIOCGDIRECTION:
1744 		BPFD_LOCK(d);
1745 		*(u_int *)addr = d->bd_direction;
1746 		BPFD_UNLOCK(d);
1747 		break;
1748 
1749 	/*
1750 	 * Set packet direction flag
1751 	 */
1752 	case BIOCSDIRECTION:
1753 		{
1754 			u_int	direction;
1755 
1756 			direction = *(u_int *)addr;
1757 			switch (direction) {
1758 			case BPF_D_IN:
1759 			case BPF_D_INOUT:
1760 			case BPF_D_OUT:
1761 				BPFD_LOCK(d);
1762 				d->bd_direction = direction;
1763 				BPFD_UNLOCK(d);
1764 				break;
1765 			default:
1766 				error = EINVAL;
1767 			}
1768 		}
1769 		break;
1770 
1771 	/*
1772 	 * Get packet timestamp format and resolution.
1773 	 */
1774 	case BIOCGTSTAMP:
1775 		BPFD_LOCK(d);
1776 		*(u_int *)addr = d->bd_tstamp;
1777 		BPFD_UNLOCK(d);
1778 		break;
1779 
1780 	/*
1781 	 * Set packet timestamp format and resolution.
1782 	 */
1783 	case BIOCSTSTAMP:
1784 		{
1785 			u_int	func;
1786 
1787 			func = *(u_int *)addr;
1788 			if (BPF_T_VALID(func))
1789 				d->bd_tstamp = func;
1790 			else
1791 				error = EINVAL;
1792 		}
1793 		break;
1794 
1795 	case BIOCFEEDBACK:
1796 		BPFD_LOCK(d);
1797 		d->bd_feedback = *(u_int *)addr;
1798 		BPFD_UNLOCK(d);
1799 		break;
1800 
1801 	case BIOCLOCK:
1802 		BPFD_LOCK(d);
1803 		d->bd_locked = 1;
1804 		BPFD_UNLOCK(d);
1805 		break;
1806 
1807 	case FIONBIO:		/* Non-blocking I/O */
1808 		break;
1809 
1810 	case FIOASYNC:		/* Send signal on receive packets */
1811 		BPFD_LOCK(d);
1812 		d->bd_async = *(int *)addr;
1813 		BPFD_UNLOCK(d);
1814 		break;
1815 
1816 	case FIOSETOWN:
1817 		/*
1818 		 * XXX: Add some sort of locking here?
1819 		 * fsetown() can sleep.
1820 		 */
1821 		error = fsetown(*(int *)addr, &d->bd_sigio);
1822 		break;
1823 
1824 	case FIOGETOWN:
1825 		BPFD_LOCK(d);
1826 		*(int *)addr = fgetown(&d->bd_sigio);
1827 		BPFD_UNLOCK(d);
1828 		break;
1829 
1830 	/* This is deprecated, FIOSETOWN should be used instead. */
1831 	case TIOCSPGRP:
1832 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1833 		break;
1834 
1835 	/* This is deprecated, FIOGETOWN should be used instead. */
1836 	case TIOCGPGRP:
1837 		*(int *)addr = -fgetown(&d->bd_sigio);
1838 		break;
1839 
1840 	case BIOCSRSIG:		/* Set receive signal */
1841 		{
1842 			u_int sig;
1843 
1844 			sig = *(u_int *)addr;
1845 
1846 			if (sig >= NSIG)
1847 				error = EINVAL;
1848 			else {
1849 				BPFD_LOCK(d);
1850 				d->bd_sig = sig;
1851 				BPFD_UNLOCK(d);
1852 			}
1853 			break;
1854 		}
1855 	case BIOCGRSIG:
1856 		BPFD_LOCK(d);
1857 		*(u_int *)addr = d->bd_sig;
1858 		BPFD_UNLOCK(d);
1859 		break;
1860 
1861 	case BIOCGETBUFMODE:
1862 		BPFD_LOCK(d);
1863 		*(u_int *)addr = d->bd_bufmode;
1864 		BPFD_UNLOCK(d);
1865 		break;
1866 
1867 	case BIOCSETBUFMODE:
1868 		/*
1869 		 * Allow the buffering mode to be changed as long as we
1870 		 * haven't yet committed to a particular mode.  Our
1871 		 * definition of commitment, for now, is whether or not a
1872 		 * buffer has been allocated or an interface attached, since
1873 		 * that's the point where things get tricky.
1874 		 */
1875 		switch (*(u_int *)addr) {
1876 		case BPF_BUFMODE_BUFFER:
1877 			break;
1878 
1879 		case BPF_BUFMODE_ZBUF:
1880 			if (bpf_zerocopy_enable)
1881 				break;
1882 			/* FALLSTHROUGH */
1883 
1884 		default:
1885 			CURVNET_RESTORE();
1886 			return (EINVAL);
1887 		}
1888 
1889 		BPFD_LOCK(d);
1890 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1891 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1892 			BPFD_UNLOCK(d);
1893 			CURVNET_RESTORE();
1894 			return (EBUSY);
1895 		}
1896 		d->bd_bufmode = *(u_int *)addr;
1897 		BPFD_UNLOCK(d);
1898 		break;
1899 
1900 	case BIOCGETZMAX:
1901 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1902 		break;
1903 
1904 	case BIOCSETZBUF:
1905 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1906 		break;
1907 
1908 	case BIOCROTZBUF:
1909 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1910 		break;
1911 
1912 	case BIOCSETVLANPCP:
1913 		{
1914 			u_int pcp;
1915 
1916 			pcp = *(u_int *)addr;
1917 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1918 				error = EINVAL;
1919 				break;
1920 			}
1921 			d->bd_pcp = pcp;
1922 			break;
1923 		}
1924 	}
1925 	CURVNET_RESTORE();
1926 	return (error);
1927 }
1928 
1929 /*
1930  * Set d's packet filter program to fp. If this file already has a filter,
1931  * free it and replace it. Returns EINVAL for bogus requests.
1932  *
1933  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1934  * calls.
1935  */
1936 static int
1937 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1938 {
1939 #ifdef COMPAT_FREEBSD32
1940 	struct bpf_program fp_swab;
1941 	struct bpf_program32 *fp32;
1942 #endif
1943 	struct bpf_program_buffer *fcode;
1944 	struct bpf_insn *filter;
1945 #ifdef BPF_JITTER
1946 	bpf_jit_filter *jfunc;
1947 #endif
1948 	size_t size;
1949 	u_int flen;
1950 	bool track_event;
1951 
1952 #ifdef COMPAT_FREEBSD32
1953 	switch (cmd) {
1954 	case BIOCSETF32:
1955 	case BIOCSETWF32:
1956 	case BIOCSETFNR32:
1957 		fp32 = (struct bpf_program32 *)fp;
1958 		fp_swab.bf_len = fp32->bf_len;
1959 		fp_swab.bf_insns =
1960 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1961 		fp = &fp_swab;
1962 		switch (cmd) {
1963 		case BIOCSETF32:
1964 			cmd = BIOCSETF;
1965 			break;
1966 		case BIOCSETWF32:
1967 			cmd = BIOCSETWF;
1968 			break;
1969 		}
1970 		break;
1971 	}
1972 #endif
1973 
1974 	filter = NULL;
1975 #ifdef BPF_JITTER
1976 	jfunc = NULL;
1977 #endif
1978 	/*
1979 	 * Check new filter validness before acquiring any locks.
1980 	 * Allocate memory for new filter, if needed.
1981 	 */
1982 	flen = fp->bf_len;
1983 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1984 		return (EINVAL);
1985 	size = flen * sizeof(*fp->bf_insns);
1986 	if (size > 0) {
1987 		/* We're setting up new filter. Copy and check actual data. */
1988 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1989 		filter = (struct bpf_insn *)fcode->buffer;
1990 		if (copyin(fp->bf_insns, filter, size) != 0 ||
1991 		    !bpf_validate(filter, flen)) {
1992 			free(fcode, M_BPF);
1993 			return (EINVAL);
1994 		}
1995 #ifdef BPF_JITTER
1996 		if (cmd != BIOCSETWF) {
1997 			/*
1998 			 * Filter is copied inside fcode and is
1999 			 * perfectly valid.
2000 			 */
2001 			jfunc = bpf_jitter(filter, flen);
2002 		}
2003 #endif
2004 	}
2005 
2006 	track_event = false;
2007 	fcode = NULL;
2008 
2009 	BPF_LOCK();
2010 	BPFD_LOCK(d);
2011 	/* Set up new filter. */
2012 	if (cmd == BIOCSETWF) {
2013 		if (d->bd_wfilter != NULL) {
2014 			fcode = __containerof((void *)d->bd_wfilter,
2015 			    struct bpf_program_buffer, buffer);
2016 #ifdef BPF_JITTER
2017 			fcode->func = NULL;
2018 #endif
2019 		}
2020 		d->bd_wfilter = filter;
2021 	} else {
2022 		if (d->bd_rfilter != NULL) {
2023 			fcode = __containerof((void *)d->bd_rfilter,
2024 			    struct bpf_program_buffer, buffer);
2025 #ifdef BPF_JITTER
2026 			fcode->func = d->bd_bfilter;
2027 #endif
2028 		}
2029 		d->bd_rfilter = filter;
2030 #ifdef BPF_JITTER
2031 		d->bd_bfilter = jfunc;
2032 #endif
2033 		if (cmd == BIOCSETF)
2034 			reset_d(d);
2035 
2036 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2037 			/*
2038 			 * Filter can be set several times without
2039 			 * specifying interface. In this case just mark d
2040 			 * as reader.
2041 			 */
2042 			d->bd_writer = 0;
2043 			if (d->bd_bif != NULL) {
2044 				/*
2045 				 * Remove descriptor from writers-only list
2046 				 * and add it to active readers list.
2047 				 */
2048 				CK_LIST_REMOVE(d, bd_next);
2049 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2050 				    d, bd_next);
2051 				CTR2(KTR_NET,
2052 				    "%s: upgrade required by pid %d",
2053 				    __func__, d->bd_pid);
2054 				track_event = true;
2055 			}
2056 		}
2057 	}
2058 	BPFD_UNLOCK(d);
2059 
2060 	if (fcode != NULL)
2061 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2062 
2063 	if (track_event)
2064 		EVENTHANDLER_INVOKE(bpf_track,
2065 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2066 
2067 	BPF_UNLOCK();
2068 	return (0);
2069 }
2070 
2071 /*
2072  * Detach a file from its current interface (if attached at all) and attach
2073  * to the interface indicated by the name stored in ifr.
2074  * Return an errno or 0.
2075  */
2076 static int
2077 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2078 {
2079 	struct bpf_if *bp;
2080 	struct ifnet *theywant;
2081 
2082 	BPF_LOCK_ASSERT();
2083 
2084 	theywant = ifunit(ifr->ifr_name);
2085 	if (theywant == NULL || theywant->if_bpf == NULL)
2086 		return (ENXIO);
2087 
2088 	bp = theywant->if_bpf;
2089 	/*
2090 	 * At this point, we expect the buffer is already allocated.  If not,
2091 	 * return an error.
2092 	 */
2093 	switch (d->bd_bufmode) {
2094 	case BPF_BUFMODE_BUFFER:
2095 	case BPF_BUFMODE_ZBUF:
2096 		if (d->bd_sbuf == NULL)
2097 			return (EINVAL);
2098 		break;
2099 
2100 	default:
2101 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2102 	}
2103 	if (bp != d->bd_bif)
2104 		bpf_attachd(d, bp);
2105 	else {
2106 		BPFD_LOCK(d);
2107 		reset_d(d);
2108 		BPFD_UNLOCK(d);
2109 	}
2110 	return (0);
2111 }
2112 
2113 /*
2114  * Support for select() and poll() system calls
2115  *
2116  * Return true iff the specific operation will not block indefinitely.
2117  * Otherwise, return false but make a note that a selwakeup() must be done.
2118  */
2119 static int
2120 bpfpoll(struct cdev *dev, int events, struct thread *td)
2121 {
2122 	struct bpf_d *d;
2123 	int revents;
2124 
2125 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2126 		return (events &
2127 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2128 
2129 	/*
2130 	 * Refresh PID associated with this descriptor.
2131 	 */
2132 	revents = events & (POLLOUT | POLLWRNORM);
2133 	BPFD_LOCK(d);
2134 	BPF_PID_REFRESH(d, td);
2135 	if (events & (POLLIN | POLLRDNORM)) {
2136 		if (bpf_ready(d))
2137 			revents |= events & (POLLIN | POLLRDNORM);
2138 		else {
2139 			selrecord(td, &d->bd_sel);
2140 			/* Start the read timeout if necessary. */
2141 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2142 				callout_reset(&d->bd_callout, d->bd_rtout,
2143 				    bpf_timed_out, d);
2144 				d->bd_state = BPF_WAITING;
2145 			}
2146 		}
2147 	}
2148 	BPFD_UNLOCK(d);
2149 	return (revents);
2150 }
2151 
2152 /*
2153  * Support for kevent() system call.  Register EVFILT_READ filters and
2154  * reject all others.
2155  */
2156 int
2157 bpfkqfilter(struct cdev *dev, struct knote *kn)
2158 {
2159 	struct bpf_d *d;
2160 
2161 	if (devfs_get_cdevpriv((void **)&d) != 0 ||
2162 	    kn->kn_filter != EVFILT_READ)
2163 		return (1);
2164 
2165 	/*
2166 	 * Refresh PID associated with this descriptor.
2167 	 */
2168 	BPFD_LOCK(d);
2169 	BPF_PID_REFRESH_CUR(d);
2170 	kn->kn_fop = &bpfread_filtops;
2171 	kn->kn_hook = d;
2172 	knlist_add(&d->bd_sel.si_note, kn, 1);
2173 	BPFD_UNLOCK(d);
2174 
2175 	return (0);
2176 }
2177 
2178 static void
2179 filt_bpfdetach(struct knote *kn)
2180 {
2181 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2182 
2183 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2184 }
2185 
2186 static int
2187 filt_bpfread(struct knote *kn, long hint)
2188 {
2189 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2190 	int ready;
2191 
2192 	BPFD_LOCK_ASSERT(d);
2193 	ready = bpf_ready(d);
2194 	if (ready) {
2195 		kn->kn_data = d->bd_slen;
2196 		/*
2197 		 * Ignore the hold buffer if it is being copied to user space.
2198 		 */
2199 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2200 			kn->kn_data += d->bd_hlen;
2201 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2202 		callout_reset(&d->bd_callout, d->bd_rtout,
2203 		    bpf_timed_out, d);
2204 		d->bd_state = BPF_WAITING;
2205 	}
2206 
2207 	return (ready);
2208 }
2209 
2210 #define	BPF_TSTAMP_NONE		0
2211 #define	BPF_TSTAMP_FAST		1
2212 #define	BPF_TSTAMP_NORMAL	2
2213 #define	BPF_TSTAMP_EXTERN	3
2214 
2215 static int
2216 bpf_ts_quality(int tstype)
2217 {
2218 
2219 	if (tstype == BPF_T_NONE)
2220 		return (BPF_TSTAMP_NONE);
2221 	if ((tstype & BPF_T_FAST) != 0)
2222 		return (BPF_TSTAMP_FAST);
2223 
2224 	return (BPF_TSTAMP_NORMAL);
2225 }
2226 
2227 static int
2228 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2229 {
2230 	struct m_tag *tag;
2231 	int quality;
2232 
2233 	quality = bpf_ts_quality(tstype);
2234 	if (quality == BPF_TSTAMP_NONE)
2235 		return (quality);
2236 
2237 	if (m != NULL) {
2238 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2239 		if (tag != NULL) {
2240 			*bt = *(struct bintime *)(tag + 1);
2241 			return (BPF_TSTAMP_EXTERN);
2242 		}
2243 	}
2244 	if (quality == BPF_TSTAMP_NORMAL)
2245 		binuptime(bt);
2246 	else
2247 		getbinuptime(bt);
2248 
2249 	return (quality);
2250 }
2251 
2252 /*
2253  * Incoming linkage from device drivers.  Process the packet pkt, of length
2254  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2255  * by each process' filter, and if accepted, stashed into the corresponding
2256  * buffer.
2257  */
2258 void
2259 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2260 {
2261 	struct epoch_tracker et;
2262 	struct bintime bt;
2263 	struct bpf_d *d;
2264 #ifdef BPF_JITTER
2265 	bpf_jit_filter *bf;
2266 #endif
2267 	u_int slen;
2268 	int gottime;
2269 
2270 	gottime = BPF_TSTAMP_NONE;
2271 	NET_EPOCH_ENTER(et);
2272 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2273 		counter_u64_add(d->bd_rcount, 1);
2274 		/*
2275 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2276 		 * is no way for the caller to indiciate to us whether this
2277 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2278 		 * we use the interface pointers on the mbuf to figure it out.
2279 		 */
2280 #ifdef BPF_JITTER
2281 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2282 		if (bf != NULL)
2283 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2284 		else
2285 #endif
2286 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2287 		if (slen != 0) {
2288 			/*
2289 			 * Filter matches. Let's to acquire write lock.
2290 			 */
2291 			BPFD_LOCK(d);
2292 			counter_u64_add(d->bd_fcount, 1);
2293 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2294 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2295 				    NULL);
2296 #ifdef MAC
2297 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2298 #endif
2299 				catchpacket(d, pkt, pktlen, slen,
2300 				    bpf_append_bytes, &bt);
2301 			BPFD_UNLOCK(d);
2302 		}
2303 	}
2304 	NET_EPOCH_EXIT(et);
2305 }
2306 
2307 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2308 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2309 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2310 
2311 /*
2312  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2313  * Locking model is explained in bpf_tap().
2314  */
2315 void
2316 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2317 {
2318 	struct epoch_tracker et;
2319 	struct bintime bt;
2320 	struct bpf_d *d;
2321 #ifdef BPF_JITTER
2322 	bpf_jit_filter *bf;
2323 #endif
2324 	u_int pktlen, slen;
2325 	int gottime;
2326 
2327 	/* Skip outgoing duplicate packets. */
2328 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2329 		m->m_flags &= ~M_PROMISC;
2330 		return;
2331 	}
2332 
2333 	pktlen = m_length(m, NULL);
2334 	gottime = BPF_TSTAMP_NONE;
2335 
2336 	NET_EPOCH_ENTER(et);
2337 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2338 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2339 			continue;
2340 		counter_u64_add(d->bd_rcount, 1);
2341 #ifdef BPF_JITTER
2342 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2343 		/* XXX We cannot handle multiple mbufs. */
2344 		if (bf != NULL && m->m_next == NULL)
2345 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2346 			    pktlen);
2347 		else
2348 #endif
2349 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2350 		if (slen != 0) {
2351 			BPFD_LOCK(d);
2352 
2353 			counter_u64_add(d->bd_fcount, 1);
2354 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2355 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2356 #ifdef MAC
2357 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2358 #endif
2359 				catchpacket(d, (u_char *)m, pktlen, slen,
2360 				    bpf_append_mbuf, &bt);
2361 			BPFD_UNLOCK(d);
2362 		}
2363 	}
2364 	NET_EPOCH_EXIT(et);
2365 }
2366 
2367 /*
2368  * Incoming linkage from device drivers, when packet is in
2369  * an mbuf chain and to be prepended by a contiguous header.
2370  */
2371 void
2372 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2373 {
2374 	struct epoch_tracker et;
2375 	struct bintime bt;
2376 	struct mbuf mb;
2377 	struct bpf_d *d;
2378 	u_int pktlen, slen;
2379 	int gottime;
2380 
2381 	/* Skip outgoing duplicate packets. */
2382 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2383 		m->m_flags &= ~M_PROMISC;
2384 		return;
2385 	}
2386 
2387 	pktlen = m_length(m, NULL);
2388 	/*
2389 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2390 	 * Note that we cut corners here; we only setup what's
2391 	 * absolutely needed--this mbuf should never go anywhere else.
2392 	 */
2393 	mb.m_flags = 0;
2394 	mb.m_next = m;
2395 	mb.m_data = data;
2396 	mb.m_len = dlen;
2397 	pktlen += dlen;
2398 
2399 	gottime = BPF_TSTAMP_NONE;
2400 
2401 	NET_EPOCH_ENTER(et);
2402 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2403 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2404 			continue;
2405 		counter_u64_add(d->bd_rcount, 1);
2406 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2407 		if (slen != 0) {
2408 			BPFD_LOCK(d);
2409 
2410 			counter_u64_add(d->bd_fcount, 1);
2411 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2412 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2413 #ifdef MAC
2414 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2415 #endif
2416 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2417 				    bpf_append_mbuf, &bt);
2418 			BPFD_UNLOCK(d);
2419 		}
2420 	}
2421 	NET_EPOCH_EXIT(et);
2422 }
2423 
2424 #undef	BPF_CHECK_DIRECTION
2425 #undef	BPF_TSTAMP_NONE
2426 #undef	BPF_TSTAMP_FAST
2427 #undef	BPF_TSTAMP_NORMAL
2428 #undef	BPF_TSTAMP_EXTERN
2429 
2430 static int
2431 bpf_hdrlen(struct bpf_d *d)
2432 {
2433 	int hdrlen;
2434 
2435 	hdrlen = d->bd_bif->bif_hdrlen;
2436 #ifndef BURN_BRIDGES
2437 	if (d->bd_tstamp == BPF_T_NONE ||
2438 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2439 #ifdef COMPAT_FREEBSD32
2440 		if (d->bd_compat32)
2441 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2442 		else
2443 #endif
2444 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2445 	else
2446 #endif
2447 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2448 #ifdef COMPAT_FREEBSD32
2449 	if (d->bd_compat32)
2450 		hdrlen = BPF_WORDALIGN32(hdrlen);
2451 	else
2452 #endif
2453 		hdrlen = BPF_WORDALIGN(hdrlen);
2454 
2455 	return (hdrlen - d->bd_bif->bif_hdrlen);
2456 }
2457 
2458 static void
2459 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2460 {
2461 	struct bintime bt2, boottimebin;
2462 	struct timeval tsm;
2463 	struct timespec tsn;
2464 
2465 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2466 		bt2 = *bt;
2467 		getboottimebin(&boottimebin);
2468 		bintime_add(&bt2, &boottimebin);
2469 		bt = &bt2;
2470 	}
2471 	switch (BPF_T_FORMAT(tstype)) {
2472 	case BPF_T_MICROTIME:
2473 		bintime2timeval(bt, &tsm);
2474 		ts->bt_sec = tsm.tv_sec;
2475 		ts->bt_frac = tsm.tv_usec;
2476 		break;
2477 	case BPF_T_NANOTIME:
2478 		bintime2timespec(bt, &tsn);
2479 		ts->bt_sec = tsn.tv_sec;
2480 		ts->bt_frac = tsn.tv_nsec;
2481 		break;
2482 	case BPF_T_BINTIME:
2483 		ts->bt_sec = bt->sec;
2484 		ts->bt_frac = bt->frac;
2485 		break;
2486 	}
2487 }
2488 
2489 /*
2490  * Move the packet data from interface memory (pkt) into the
2491  * store buffer.  "cpfn" is the routine called to do the actual data
2492  * transfer.  bcopy is passed in to copy contiguous chunks, while
2493  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2494  * pkt is really an mbuf.
2495  */
2496 static void
2497 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2498     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2499     struct bintime *bt)
2500 {
2501 	struct bpf_xhdr hdr;
2502 #ifndef BURN_BRIDGES
2503 	struct bpf_hdr hdr_old;
2504 #ifdef COMPAT_FREEBSD32
2505 	struct bpf_hdr32 hdr32_old;
2506 #endif
2507 #endif
2508 	int caplen, curlen, hdrlen, totlen;
2509 	int do_wakeup = 0;
2510 	int do_timestamp;
2511 	int tstype;
2512 
2513 	BPFD_LOCK_ASSERT(d);
2514 	if (d->bd_bif == NULL) {
2515 		/* Descriptor was detached in concurrent thread */
2516 		counter_u64_add(d->bd_dcount, 1);
2517 		return;
2518 	}
2519 
2520 	/*
2521 	 * Detect whether user space has released a buffer back to us, and if
2522 	 * so, move it from being a hold buffer to a free buffer.  This may
2523 	 * not be the best place to do it (for example, we might only want to
2524 	 * run this check if we need the space), but for now it's a reliable
2525 	 * spot to do it.
2526 	 */
2527 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2528 		d->bd_fbuf = d->bd_hbuf;
2529 		d->bd_hbuf = NULL;
2530 		d->bd_hlen = 0;
2531 		bpf_buf_reclaimed(d);
2532 	}
2533 
2534 	/*
2535 	 * Figure out how many bytes to move.  If the packet is
2536 	 * greater or equal to the snapshot length, transfer that
2537 	 * much.  Otherwise, transfer the whole packet (unless
2538 	 * we hit the buffer size limit).
2539 	 */
2540 	hdrlen = bpf_hdrlen(d);
2541 	totlen = hdrlen + min(snaplen, pktlen);
2542 	if (totlen > d->bd_bufsize)
2543 		totlen = d->bd_bufsize;
2544 
2545 	/*
2546 	 * Round up the end of the previous packet to the next longword.
2547 	 *
2548 	 * Drop the packet if there's no room and no hope of room
2549 	 * If the packet would overflow the storage buffer or the storage
2550 	 * buffer is considered immutable by the buffer model, try to rotate
2551 	 * the buffer and wakeup pending processes.
2552 	 */
2553 #ifdef COMPAT_FREEBSD32
2554 	if (d->bd_compat32)
2555 		curlen = BPF_WORDALIGN32(d->bd_slen);
2556 	else
2557 #endif
2558 		curlen = BPF_WORDALIGN(d->bd_slen);
2559 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2560 		if (d->bd_fbuf == NULL) {
2561 			/*
2562 			 * There's no room in the store buffer, and no
2563 			 * prospect of room, so drop the packet.  Notify the
2564 			 * buffer model.
2565 			 */
2566 			bpf_buffull(d);
2567 			counter_u64_add(d->bd_dcount, 1);
2568 			return;
2569 		}
2570 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2571 		ROTATE_BUFFERS(d);
2572 		do_wakeup = 1;
2573 		curlen = 0;
2574 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
2575 		/*
2576 		 * Immediate mode is set, or the read timeout has already
2577 		 * expired during a select call.  A packet arrived, so the
2578 		 * reader should be woken up.
2579 		 */
2580 		do_wakeup = 1;
2581 	caplen = totlen - hdrlen;
2582 	tstype = d->bd_tstamp;
2583 	do_timestamp = tstype != BPF_T_NONE;
2584 #ifndef BURN_BRIDGES
2585 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2586 		struct bpf_ts ts;
2587 		if (do_timestamp)
2588 			bpf_bintime2ts(bt, &ts, tstype);
2589 #ifdef COMPAT_FREEBSD32
2590 		if (d->bd_compat32) {
2591 			bzero(&hdr32_old, sizeof(hdr32_old));
2592 			if (do_timestamp) {
2593 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2594 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2595 			}
2596 			hdr32_old.bh_datalen = pktlen;
2597 			hdr32_old.bh_hdrlen = hdrlen;
2598 			hdr32_old.bh_caplen = caplen;
2599 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2600 			    sizeof(hdr32_old));
2601 			goto copy;
2602 		}
2603 #endif
2604 		bzero(&hdr_old, sizeof(hdr_old));
2605 		if (do_timestamp) {
2606 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2607 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2608 		}
2609 		hdr_old.bh_datalen = pktlen;
2610 		hdr_old.bh_hdrlen = hdrlen;
2611 		hdr_old.bh_caplen = caplen;
2612 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2613 		    sizeof(hdr_old));
2614 		goto copy;
2615 	}
2616 #endif
2617 
2618 	/*
2619 	 * Append the bpf header.  Note we append the actual header size, but
2620 	 * move forward the length of the header plus padding.
2621 	 */
2622 	bzero(&hdr, sizeof(hdr));
2623 	if (do_timestamp)
2624 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2625 	hdr.bh_datalen = pktlen;
2626 	hdr.bh_hdrlen = hdrlen;
2627 	hdr.bh_caplen = caplen;
2628 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2629 
2630 	/*
2631 	 * Copy the packet data into the store buffer and update its length.
2632 	 */
2633 #ifndef BURN_BRIDGES
2634 copy:
2635 #endif
2636 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2637 	d->bd_slen = curlen + totlen;
2638 
2639 	if (do_wakeup)
2640 		bpf_wakeup(d);
2641 }
2642 
2643 /*
2644  * Free buffers currently in use by a descriptor.
2645  * Called on close.
2646  */
2647 static void
2648 bpfd_free(epoch_context_t ctx)
2649 {
2650 	struct bpf_d *d;
2651 	struct bpf_program_buffer *p;
2652 
2653 	/*
2654 	 * We don't need to lock out interrupts since this descriptor has
2655 	 * been detached from its interface and it yet hasn't been marked
2656 	 * free.
2657 	 */
2658 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2659 	bpf_free(d);
2660 	if (d->bd_rfilter != NULL) {
2661 		p = __containerof((void *)d->bd_rfilter,
2662 		    struct bpf_program_buffer, buffer);
2663 #ifdef BPF_JITTER
2664 		p->func = d->bd_bfilter;
2665 #endif
2666 		bpf_program_buffer_free(&p->epoch_ctx);
2667 	}
2668 	if (d->bd_wfilter != NULL) {
2669 		p = __containerof((void *)d->bd_wfilter,
2670 		    struct bpf_program_buffer, buffer);
2671 #ifdef BPF_JITTER
2672 		p->func = NULL;
2673 #endif
2674 		bpf_program_buffer_free(&p->epoch_ctx);
2675 	}
2676 
2677 	mtx_destroy(&d->bd_lock);
2678 	counter_u64_free(d->bd_rcount);
2679 	counter_u64_free(d->bd_dcount);
2680 	counter_u64_free(d->bd_fcount);
2681 	counter_u64_free(d->bd_wcount);
2682 	counter_u64_free(d->bd_wfcount);
2683 	counter_u64_free(d->bd_wdcount);
2684 	counter_u64_free(d->bd_zcopy);
2685 	free(d, M_BPF);
2686 }
2687 
2688 /*
2689  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2690  * fixed size of the link header (variable length headers not yet supported).
2691  */
2692 void
2693 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2694 {
2695 
2696 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2697 }
2698 
2699 /*
2700  * Attach an interface to bpf.  ifp is a pointer to the structure
2701  * defining the interface to be attached, dlt is the link layer type,
2702  * and hdrlen is the fixed size of the link header (variable length
2703  * headers are not yet supporrted).
2704  */
2705 void
2706 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2707     struct bpf_if **driverp)
2708 {
2709 	struct bpf_if *bp;
2710 
2711 	KASSERT(*driverp == NULL,
2712 	    ("bpfattach2: driverp already initialized"));
2713 
2714 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2715 
2716 	CK_LIST_INIT(&bp->bif_dlist);
2717 	CK_LIST_INIT(&bp->bif_wlist);
2718 	bp->bif_ifp = ifp;
2719 	bp->bif_dlt = dlt;
2720 	bp->bif_hdrlen = hdrlen;
2721 	bp->bif_bpf = driverp;
2722 	bp->bif_refcnt = 1;
2723 	*driverp = bp;
2724 	/*
2725 	 * Reference ifnet pointer, so it won't freed until
2726 	 * we release it.
2727 	 */
2728 	if_ref(ifp);
2729 	BPF_LOCK();
2730 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2731 	BPF_UNLOCK();
2732 
2733 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2734 		if_printf(ifp, "bpf attached\n");
2735 }
2736 
2737 #ifdef VIMAGE
2738 /*
2739  * When moving interfaces between vnet instances we need a way to
2740  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2741  * after the vmove.  We unfortunately have no device driver infrastructure
2742  * to query the interface for these values after creation/attach, thus
2743  * add this as a workaround.
2744  */
2745 int
2746 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2747 {
2748 
2749 	if (bp == NULL)
2750 		return (ENXIO);
2751 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2752 		return (0);
2753 
2754 	if (bif_dlt != NULL)
2755 		*bif_dlt = bp->bif_dlt;
2756 	if (bif_hdrlen != NULL)
2757 		*bif_hdrlen = bp->bif_hdrlen;
2758 
2759 	return (0);
2760 }
2761 #endif
2762 
2763 /*
2764  * Detach bpf from an interface. This involves detaching each descriptor
2765  * associated with the interface. Notify each descriptor as it's detached
2766  * so that any sleepers wake up and get ENXIO.
2767  */
2768 void
2769 bpfdetach(struct ifnet *ifp)
2770 {
2771 	struct bpf_if *bp, *bp_temp;
2772 	struct bpf_d *d;
2773 
2774 	BPF_LOCK();
2775 	/* Find all bpf_if struct's which reference ifp and detach them. */
2776 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2777 		if (ifp != bp->bif_ifp)
2778 			continue;
2779 
2780 		CK_LIST_REMOVE(bp, bif_next);
2781 		*bp->bif_bpf = (struct bpf_if *)&dead_bpf_if;
2782 
2783 		CTR4(KTR_NET,
2784 		    "%s: sheduling free for encap %d (%p) for if %p",
2785 		    __func__, bp->bif_dlt, bp, ifp);
2786 
2787 		/* Detach common descriptors */
2788 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2789 			bpf_detachd_locked(d, true);
2790 		}
2791 
2792 		/* Detach writer-only descriptors */
2793 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2794 			bpf_detachd_locked(d, true);
2795 		}
2796 		bpfif_rele(bp);
2797 	}
2798 	BPF_UNLOCK();
2799 }
2800 
2801 /*
2802  * Get a list of available data link type of the interface.
2803  */
2804 static int
2805 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2806 {
2807 	struct ifnet *ifp;
2808 	struct bpf_if *bp;
2809 	u_int *lst;
2810 	int error, n, n1;
2811 
2812 	BPF_LOCK_ASSERT();
2813 
2814 	ifp = d->bd_bif->bif_ifp;
2815 	n1 = 0;
2816 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2817 		if (bp->bif_ifp == ifp)
2818 			n1++;
2819 	}
2820 	if (bfl->bfl_list == NULL) {
2821 		bfl->bfl_len = n1;
2822 		return (0);
2823 	}
2824 	if (n1 > bfl->bfl_len)
2825 		return (ENOMEM);
2826 
2827 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2828 	n = 0;
2829 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2830 		if (bp->bif_ifp != ifp)
2831 			continue;
2832 		lst[n++] = bp->bif_dlt;
2833 	}
2834 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2835 	free(lst, M_TEMP);
2836 	bfl->bfl_len = n;
2837 	return (error);
2838 }
2839 
2840 /*
2841  * Set the data link type of a BPF instance.
2842  */
2843 static int
2844 bpf_setdlt(struct bpf_d *d, u_int dlt)
2845 {
2846 	int error, opromisc;
2847 	struct ifnet *ifp;
2848 	struct bpf_if *bp;
2849 
2850 	BPF_LOCK_ASSERT();
2851 	MPASS(d->bd_bif != NULL);
2852 
2853 	/*
2854 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2855 	 * changed while we hold global lock.
2856 	 */
2857 	if (d->bd_bif->bif_dlt == dlt)
2858 		return (0);
2859 
2860 	ifp = d->bd_bif->bif_ifp;
2861 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2862 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2863 			break;
2864 	}
2865 	if (bp == NULL)
2866 		return (EINVAL);
2867 
2868 	opromisc = d->bd_promisc;
2869 	bpf_attachd(d, bp);
2870 	if (opromisc) {
2871 		error = ifpromisc(bp->bif_ifp, 1);
2872 		if (error)
2873 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2874 			    __func__, error);
2875 		else
2876 			d->bd_promisc = 1;
2877 	}
2878 	return (0);
2879 }
2880 
2881 static void
2882 bpf_drvinit(void *unused)
2883 {
2884 	struct cdev *dev;
2885 
2886 	sx_init(&bpf_sx, "bpf global lock");
2887 	CK_LIST_INIT(&bpf_iflist);
2888 
2889 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2890 	/* For compatibility */
2891 	make_dev_alias(dev, "bpf0");
2892 }
2893 
2894 /*
2895  * Zero out the various packet counters associated with all of the bpf
2896  * descriptors.  At some point, we will probably want to get a bit more
2897  * granular and allow the user to specify descriptors to be zeroed.
2898  */
2899 static void
2900 bpf_zero_counters(void)
2901 {
2902 	struct bpf_if *bp;
2903 	struct bpf_d *bd;
2904 
2905 	BPF_LOCK();
2906 	/*
2907 	 * We are protected by global lock here, interfaces and
2908 	 * descriptors can not be deleted while we hold it.
2909 	 */
2910 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2911 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2912 			counter_u64_zero(bd->bd_rcount);
2913 			counter_u64_zero(bd->bd_dcount);
2914 			counter_u64_zero(bd->bd_fcount);
2915 			counter_u64_zero(bd->bd_wcount);
2916 			counter_u64_zero(bd->bd_wfcount);
2917 			counter_u64_zero(bd->bd_zcopy);
2918 		}
2919 	}
2920 	BPF_UNLOCK();
2921 }
2922 
2923 /*
2924  * Fill filter statistics
2925  */
2926 static void
2927 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2928 {
2929 
2930 	BPF_LOCK_ASSERT();
2931 	bzero(d, sizeof(*d));
2932 	d->bd_structsize = sizeof(*d);
2933 	d->bd_immediate = bd->bd_immediate;
2934 	d->bd_promisc = bd->bd_promisc;
2935 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2936 	d->bd_direction = bd->bd_direction;
2937 	d->bd_feedback = bd->bd_feedback;
2938 	d->bd_async = bd->bd_async;
2939 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
2940 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
2941 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
2942 	d->bd_sig = bd->bd_sig;
2943 	d->bd_slen = bd->bd_slen;
2944 	d->bd_hlen = bd->bd_hlen;
2945 	d->bd_bufsize = bd->bd_bufsize;
2946 	d->bd_pid = bd->bd_pid;
2947 	strlcpy(d->bd_ifname,
2948 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2949 	d->bd_locked = bd->bd_locked;
2950 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
2951 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
2952 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
2953 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
2954 	d->bd_bufmode = bd->bd_bufmode;
2955 }
2956 
2957 /*
2958  * Handle `netstat -B' stats request
2959  */
2960 static int
2961 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2962 {
2963 	static const struct xbpf_d zerostats;
2964 	struct xbpf_d *xbdbuf, *xbd, tempstats;
2965 	int index, error;
2966 	struct bpf_if *bp;
2967 	struct bpf_d *bd;
2968 
2969 	/*
2970 	 * XXX This is not technically correct. It is possible for non
2971 	 * privileged users to open bpf devices. It would make sense
2972 	 * if the users who opened the devices were able to retrieve
2973 	 * the statistics for them, too.
2974 	 */
2975 	error = priv_check(req->td, PRIV_NET_BPF);
2976 	if (error)
2977 		return (error);
2978 	/*
2979 	 * Check to see if the user is requesting that the counters be
2980 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
2981 	 * as we aren't allowing the user to set the counters currently.
2982 	 */
2983 	if (req->newptr != NULL) {
2984 		if (req->newlen != sizeof(tempstats))
2985 			return (EINVAL);
2986 		memset(&tempstats, 0, sizeof(tempstats));
2987 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
2988 		if (error)
2989 			return (error);
2990 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
2991 			return (EINVAL);
2992 		bpf_zero_counters();
2993 		return (0);
2994 	}
2995 	if (req->oldptr == NULL)
2996 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2997 	if (bpf_bpfd_cnt == 0)
2998 		return (SYSCTL_OUT(req, 0, 0));
2999 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3000 	BPF_LOCK();
3001 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3002 		BPF_UNLOCK();
3003 		free(xbdbuf, M_BPF);
3004 		return (ENOMEM);
3005 	}
3006 	index = 0;
3007 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3008 		/* Send writers-only first */
3009 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3010 			xbd = &xbdbuf[index++];
3011 			bpfstats_fill_xbpf(xbd, bd);
3012 		}
3013 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3014 			xbd = &xbdbuf[index++];
3015 			bpfstats_fill_xbpf(xbd, bd);
3016 		}
3017 	}
3018 	BPF_UNLOCK();
3019 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3020 	free(xbdbuf, M_BPF);
3021 	return (error);
3022 }
3023 
3024 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
3025 
3026 #else /* !DEV_BPF && !NETGRAPH_BPF */
3027 
3028 /*
3029  * NOP stubs to allow bpf-using drivers to load and function.
3030  *
3031  * A 'better' implementation would allow the core bpf functionality
3032  * to be loaded at runtime.
3033  */
3034 
3035 void
3036 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3037 {
3038 }
3039 
3040 void
3041 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3042 {
3043 }
3044 
3045 void
3046 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3047 {
3048 }
3049 
3050 void
3051 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3052 {
3053 
3054 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3055 }
3056 
3057 void
3058 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3059 {
3060 
3061 	*driverp = (struct bpf_if *)&dead_bpf_if;
3062 }
3063 
3064 void
3065 bpfdetach(struct ifnet *ifp)
3066 {
3067 }
3068 
3069 u_int
3070 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3071 {
3072 	return -1;	/* "no filter" behaviour */
3073 }
3074 
3075 int
3076 bpf_validate(const struct bpf_insn *f, int len)
3077 {
3078 	return 0;		/* false */
3079 }
3080 
3081 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3082 
3083 #ifdef DDB
3084 static void
3085 bpf_show_bpf_if(struct bpf_if *bpf_if)
3086 {
3087 
3088 	if (bpf_if == NULL)
3089 		return;
3090 	db_printf("%p:\n", bpf_if);
3091 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3092 	/* bif_ext.bif_next */
3093 	/* bif_ext.bif_dlist */
3094 	BPF_DB_PRINTF("%#x", bif_dlt);
3095 	BPF_DB_PRINTF("%u", bif_hdrlen);
3096 	/* bif_wlist */
3097 	BPF_DB_PRINTF("%p", bif_ifp);
3098 	BPF_DB_PRINTF("%p", bif_bpf);
3099 	BPF_DB_PRINTF("%u", bif_refcnt);
3100 }
3101 
3102 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3103 {
3104 
3105 	if (!have_addr) {
3106 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3107 		return;
3108 	}
3109 
3110 	bpf_show_bpf_if((struct bpf_if *)addr);
3111 }
3112 #endif
3113