xref: /freebsd/sys/net/if_vlan.c (revision d93a896e)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  *
5  * Portions of this software were developed by Robert N. M. Watson under
6  * contract to ADARA Networks, Inc.
7  *
8  * Permission to use, copy, modify, and distribute this software and
9  * its documentation for any purpose and without fee is hereby
10  * granted, provided that both the above copyright notice and this
11  * permission notice appear in all copies, that both the above
12  * copyright notice and this permission notice appear in all
13  * supporting documentation, and that the name of M.I.T. not be used
14  * in advertising or publicity pertaining to distribution of the
15  * software without specific, written prior permission.  M.I.T. makes
16  * no representations about the suitability of this software for any
17  * purpose.  It is provided "as is" without express or implied
18  * warranty.
19  *
20  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
21  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
22  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
24  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
27  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
36  * This is sort of sneaky in the implementation, since
37  * we need to pretend to be enough of an Ethernet implementation
38  * to make arp work.  The way we do this is by telling everyone
39  * that we are an Ethernet, and then catch the packets that
40  * ether_output() sends to us via if_transmit(), rewrite them for
41  * use by the real outgoing interface, and ask it to send them.
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_inet.h"
48 #include "opt_vlan.h"
49 #include "opt_ratelimit.h"
50 
51 #include <sys/param.h>
52 #include <sys/eventhandler.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/module.h>
58 #include <sys/rmlock.h>
59 #include <sys/priv.h>
60 #include <sys/queue.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/sx.h>
66 
67 #include <net/bpf.h>
68 #include <net/ethernet.h>
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_clone.h>
72 #include <net/if_dl.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 #include <net/vnet.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	VLAN_DEF_HWIDTH	4
83 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
84 
85 #define	UP_AND_RUNNING(ifp) \
86     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
87 
88 LIST_HEAD(ifvlanhead, ifvlan);
89 
90 struct ifvlantrunk {
91 	struct	ifnet   *parent;	/* parent interface of this trunk */
92 	struct	rmlock	lock;
93 #ifdef VLAN_ARRAY
94 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
95 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
96 #else
97 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
98 	uint16_t	hmask;
99 	uint16_t	hwidth;
100 #endif
101 	int		refcnt;
102 };
103 
104 struct vlan_mc_entry {
105 	struct sockaddr_dl		mc_addr;
106 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
107 };
108 
109 struct	ifvlan {
110 	struct	ifvlantrunk *ifv_trunk;
111 	struct	ifnet *ifv_ifp;
112 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
113 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
114 	void	*ifv_cookie;
115 	int	ifv_pflags;	/* special flags we have set on parent */
116 	int	ifv_capenable;
117 	struct	ifv_linkmib {
118 		int	ifvm_encaplen;	/* encapsulation length */
119 		int	ifvm_mtufudge;	/* MTU fudged by this much */
120 		int	ifvm_mintu;	/* min transmission unit */
121 		uint16_t ifvm_proto;	/* encapsulation ethertype */
122 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
123               	uint16_t ifvm_vid;	/* VLAN ID */
124 		uint8_t	ifvm_pcp;	/* Priority Code Point (PCP). */
125 	}	ifv_mib;
126 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
127 #ifndef VLAN_ARRAY
128 	LIST_ENTRY(ifvlan) ifv_list;
129 #endif
130 };
131 #define	ifv_proto	ifv_mib.ifvm_proto
132 #define	ifv_tag		ifv_mib.ifvm_tag
133 #define	ifv_vid 	ifv_mib.ifvm_vid
134 #define	ifv_pcp		ifv_mib.ifvm_pcp
135 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
136 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
137 #define	ifv_mintu	ifv_mib.ifvm_mintu
138 
139 /* Special flags we should propagate to parent. */
140 static struct {
141 	int flag;
142 	int (*func)(struct ifnet *, int);
143 } vlan_pflags[] = {
144 	{IFF_PROMISC, ifpromisc},
145 	{IFF_ALLMULTI, if_allmulti},
146 	{0, NULL}
147 };
148 
149 SYSCTL_DECL(_net_link);
150 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
151     "IEEE 802.1Q VLAN");
152 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
153     "for consistency");
154 
155 static VNET_DEFINE(int, soft_pad);
156 #define	V_soft_pad	VNET(soft_pad)
157 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
158     &VNET_NAME(soft_pad), 0, "pad short frames before tagging");
159 
160 /*
161  * For now, make preserving PCP via an mbuf tag optional, as it increases
162  * per-packet memory allocations and frees.  In the future, it would be
163  * preferable to reuse ether_vtag for this, or similar.
164  */
165 static int vlan_mtag_pcp = 0;
166 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, &vlan_mtag_pcp, 0,
167 	"Retain VLAN PCP information as packets are passed up the stack");
168 
169 static const char vlanname[] = "vlan";
170 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
171 
172 static eventhandler_tag ifdetach_tag;
173 static eventhandler_tag iflladdr_tag;
174 
175 /*
176  * We have a global mutex, that is used to serialize configuration
177  * changes and isn't used in normal packet delivery.
178  *
179  * We also have a per-trunk rmlock(9), that is locked shared on packet
180  * processing and exclusive when configuration is changed.
181  *
182  * The VLAN_ARRAY substitutes the dynamic hash with a static array
183  * with 4096 entries. In theory this can give a boost in processing,
184  * however on practice it does not. Probably this is because array
185  * is too big to fit into CPU cache.
186  */
187 static struct sx ifv_lock;
188 #define	VLAN_LOCK_INIT()	sx_init(&ifv_lock, "vlan_global")
189 #define	VLAN_LOCK_DESTROY()	sx_destroy(&ifv_lock)
190 #define	VLAN_LOCK_ASSERT()	sx_assert(&ifv_lock, SA_LOCKED)
191 #define	VLAN_LOCK()		sx_xlock(&ifv_lock)
192 #define	VLAN_UNLOCK()		sx_xunlock(&ifv_lock)
193 #define	TRUNK_LOCK_INIT(trunk)	rm_init(&(trunk)->lock, vlanname)
194 #define	TRUNK_LOCK_DESTROY(trunk) rm_destroy(&(trunk)->lock)
195 #define	TRUNK_LOCK(trunk)	rm_wlock(&(trunk)->lock)
196 #define	TRUNK_UNLOCK(trunk)	rm_wunlock(&(trunk)->lock)
197 #define	TRUNK_LOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_WLOCKED)
198 #define	TRUNK_RLOCK(trunk)	rm_rlock(&(trunk)->lock, &tracker)
199 #define	TRUNK_RUNLOCK(trunk)	rm_runlock(&(trunk)->lock, &tracker)
200 #define	TRUNK_LOCK_RASSERT(trunk) rm_assert(&(trunk)->lock, RA_RLOCKED)
201 #define	TRUNK_LOCK_READER	struct rm_priotracker tracker
202 
203 #ifndef VLAN_ARRAY
204 static	void vlan_inithash(struct ifvlantrunk *trunk);
205 static	void vlan_freehash(struct ifvlantrunk *trunk);
206 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
207 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
208 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
209 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
210 	uint16_t vid);
211 #endif
212 static	void trunk_destroy(struct ifvlantrunk *trunk);
213 
214 static	void vlan_init(void *foo);
215 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
216 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
217 #ifdef RATELIMIT
218 static	int vlan_snd_tag_alloc(struct ifnet *,
219     union if_snd_tag_alloc_params *, struct m_snd_tag **);
220 #endif
221 static	void vlan_qflush(struct ifnet *ifp);
222 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
223     int (*func)(struct ifnet *, int));
224 static	int vlan_setflags(struct ifnet *ifp, int status);
225 static	int vlan_setmulti(struct ifnet *ifp);
226 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
227 static	void vlan_unconfig(struct ifnet *ifp);
228 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
229 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
230 static	void vlan_link_state(struct ifnet *ifp);
231 static	void vlan_capabilities(struct ifvlan *ifv);
232 static	void vlan_trunk_capabilities(struct ifnet *ifp);
233 
234 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
235 static	int vlan_clone_match(struct if_clone *, const char *);
236 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
237 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
238 
239 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
240 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
241 
242 static struct if_clone *vlan_cloner;
243 
244 #ifdef VIMAGE
245 static VNET_DEFINE(struct if_clone *, vlan_cloner);
246 #define	V_vlan_cloner	VNET(vlan_cloner)
247 #endif
248 
249 #ifndef VLAN_ARRAY
250 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
251 
252 static void
253 vlan_inithash(struct ifvlantrunk *trunk)
254 {
255 	int i, n;
256 
257 	/*
258 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
259 	 * It is OK in case this function is called before the trunk struct
260 	 * gets hooked up and becomes visible from other threads.
261 	 */
262 
263 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
264 	    ("%s: hash already initialized", __func__));
265 
266 	trunk->hwidth = VLAN_DEF_HWIDTH;
267 	n = 1 << trunk->hwidth;
268 	trunk->hmask = n - 1;
269 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
270 	for (i = 0; i < n; i++)
271 		LIST_INIT(&trunk->hash[i]);
272 }
273 
274 static void
275 vlan_freehash(struct ifvlantrunk *trunk)
276 {
277 #ifdef INVARIANTS
278 	int i;
279 
280 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
281 	for (i = 0; i < (1 << trunk->hwidth); i++)
282 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
283 		    ("%s: hash table not empty", __func__));
284 #endif
285 	free(trunk->hash, M_VLAN);
286 	trunk->hash = NULL;
287 	trunk->hwidth = trunk->hmask = 0;
288 }
289 
290 static int
291 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
292 {
293 	int i, b;
294 	struct ifvlan *ifv2;
295 
296 	TRUNK_LOCK_ASSERT(trunk);
297 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
298 
299 	b = 1 << trunk->hwidth;
300 	i = HASH(ifv->ifv_vid, trunk->hmask);
301 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
302 		if (ifv->ifv_vid == ifv2->ifv_vid)
303 			return (EEXIST);
304 
305 	/*
306 	 * Grow the hash when the number of vlans exceeds half of the number of
307 	 * hash buckets squared. This will make the average linked-list length
308 	 * buckets/2.
309 	 */
310 	if (trunk->refcnt > (b * b) / 2) {
311 		vlan_growhash(trunk, 1);
312 		i = HASH(ifv->ifv_vid, trunk->hmask);
313 	}
314 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
315 	trunk->refcnt++;
316 
317 	return (0);
318 }
319 
320 static int
321 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
322 {
323 	int i, b;
324 	struct ifvlan *ifv2;
325 
326 	TRUNK_LOCK_ASSERT(trunk);
327 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
328 
329 	b = 1 << trunk->hwidth;
330 	i = HASH(ifv->ifv_vid, trunk->hmask);
331 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
332 		if (ifv2 == ifv) {
333 			trunk->refcnt--;
334 			LIST_REMOVE(ifv2, ifv_list);
335 			if (trunk->refcnt < (b * b) / 2)
336 				vlan_growhash(trunk, -1);
337 			return (0);
338 		}
339 
340 	panic("%s: vlan not found\n", __func__);
341 	return (ENOENT); /*NOTREACHED*/
342 }
343 
344 /*
345  * Grow the hash larger or smaller if memory permits.
346  */
347 static void
348 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
349 {
350 	struct ifvlan *ifv;
351 	struct ifvlanhead *hash2;
352 	int hwidth2, i, j, n, n2;
353 
354 	TRUNK_LOCK_ASSERT(trunk);
355 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
356 
357 	if (howmuch == 0) {
358 		/* Harmless yet obvious coding error */
359 		printf("%s: howmuch is 0\n", __func__);
360 		return;
361 	}
362 
363 	hwidth2 = trunk->hwidth + howmuch;
364 	n = 1 << trunk->hwidth;
365 	n2 = 1 << hwidth2;
366 	/* Do not shrink the table below the default */
367 	if (hwidth2 < VLAN_DEF_HWIDTH)
368 		return;
369 
370 	/* M_NOWAIT because we're called with trunk mutex held */
371 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
372 	if (hash2 == NULL) {
373 		printf("%s: out of memory -- hash size not changed\n",
374 		    __func__);
375 		return;		/* We can live with the old hash table */
376 	}
377 	for (j = 0; j < n2; j++)
378 		LIST_INIT(&hash2[j]);
379 	for (i = 0; i < n; i++)
380 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
381 			LIST_REMOVE(ifv, ifv_list);
382 			j = HASH(ifv->ifv_vid, n2 - 1);
383 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
384 		}
385 	free(trunk->hash, M_VLAN);
386 	trunk->hash = hash2;
387 	trunk->hwidth = hwidth2;
388 	trunk->hmask = n2 - 1;
389 
390 	if (bootverbose)
391 		if_printf(trunk->parent,
392 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
393 }
394 
395 static __inline struct ifvlan *
396 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
397 {
398 	struct ifvlan *ifv;
399 
400 	TRUNK_LOCK_RASSERT(trunk);
401 
402 	LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
403 		if (ifv->ifv_vid == vid)
404 			return (ifv);
405 	return (NULL);
406 }
407 
408 #if 0
409 /* Debugging code to view the hashtables. */
410 static void
411 vlan_dumphash(struct ifvlantrunk *trunk)
412 {
413 	int i;
414 	struct ifvlan *ifv;
415 
416 	for (i = 0; i < (1 << trunk->hwidth); i++) {
417 		printf("%d: ", i);
418 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
419 			printf("%s ", ifv->ifv_ifp->if_xname);
420 		printf("\n");
421 	}
422 }
423 #endif /* 0 */
424 #else
425 
426 static __inline struct ifvlan *
427 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
428 {
429 
430 	return trunk->vlans[vid];
431 }
432 
433 static __inline int
434 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
435 {
436 
437 	if (trunk->vlans[ifv->ifv_vid] != NULL)
438 		return EEXIST;
439 	trunk->vlans[ifv->ifv_vid] = ifv;
440 	trunk->refcnt++;
441 
442 	return (0);
443 }
444 
445 static __inline int
446 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
447 {
448 
449 	trunk->vlans[ifv->ifv_vid] = NULL;
450 	trunk->refcnt--;
451 
452 	return (0);
453 }
454 
455 static __inline void
456 vlan_freehash(struct ifvlantrunk *trunk)
457 {
458 }
459 
460 static __inline void
461 vlan_inithash(struct ifvlantrunk *trunk)
462 {
463 }
464 
465 #endif /* !VLAN_ARRAY */
466 
467 static void
468 trunk_destroy(struct ifvlantrunk *trunk)
469 {
470 	VLAN_LOCK_ASSERT();
471 
472 	TRUNK_LOCK(trunk);
473 	vlan_freehash(trunk);
474 	trunk->parent->if_vlantrunk = NULL;
475 	TRUNK_UNLOCK(trunk);
476 	TRUNK_LOCK_DESTROY(trunk);
477 	if_rele(trunk->parent);
478 	free(trunk, M_VLAN);
479 }
480 
481 /*
482  * Program our multicast filter. What we're actually doing is
483  * programming the multicast filter of the parent. This has the
484  * side effect of causing the parent interface to receive multicast
485  * traffic that it doesn't really want, which ends up being discarded
486  * later by the upper protocol layers. Unfortunately, there's no way
487  * to avoid this: there really is only one physical interface.
488  */
489 static int
490 vlan_setmulti(struct ifnet *ifp)
491 {
492 	struct ifnet		*ifp_p;
493 	struct ifmultiaddr	*ifma;
494 	struct ifvlan		*sc;
495 	struct vlan_mc_entry	*mc;
496 	int			error;
497 
498 	/* Find the parent. */
499 	sc = ifp->if_softc;
500 	TRUNK_LOCK_ASSERT(TRUNK(sc));
501 	ifp_p = PARENT(sc);
502 
503 	CURVNET_SET_QUIET(ifp_p->if_vnet);
504 
505 	/* First, remove any existing filter entries. */
506 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
507 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
508 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
509 		free(mc, M_VLAN);
510 	}
511 
512 	/* Now program new ones. */
513 	IF_ADDR_WLOCK(ifp);
514 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
515 		if (ifma->ifma_addr->sa_family != AF_LINK)
516 			continue;
517 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
518 		if (mc == NULL) {
519 			IF_ADDR_WUNLOCK(ifp);
520 			return (ENOMEM);
521 		}
522 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
523 		mc->mc_addr.sdl_index = ifp_p->if_index;
524 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
525 	}
526 	IF_ADDR_WUNLOCK(ifp);
527 	SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
528 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
529 		    NULL);
530 		if (error)
531 			return (error);
532 	}
533 
534 	CURVNET_RESTORE();
535 	return (0);
536 }
537 
538 /*
539  * A handler for parent interface link layer address changes.
540  * If the parent interface link layer address is changed we
541  * should also change it on all children vlans.
542  */
543 static void
544 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
545 {
546 	struct ifvlan *ifv;
547 #ifndef VLAN_ARRAY
548 	struct ifvlan *next;
549 #endif
550 	int i;
551 
552 	/*
553 	 * Check if it's a trunk interface first of all
554 	 * to avoid needless locking.
555 	 */
556 	if (ifp->if_vlantrunk == NULL)
557 		return;
558 
559 	VLAN_LOCK();
560 	/*
561 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
562 	 */
563 #ifdef VLAN_ARRAY
564 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
565 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
566 #else /* VLAN_ARRAY */
567 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
568 		LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
569 #endif /* VLAN_ARRAY */
570 			VLAN_UNLOCK();
571 			if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp),
572 			    ifp->if_addrlen);
573 			VLAN_LOCK();
574 		}
575 	VLAN_UNLOCK();
576 
577 }
578 
579 /*
580  * A handler for network interface departure events.
581  * Track departure of trunks here so that we don't access invalid
582  * pointers or whatever if a trunk is ripped from under us, e.g.,
583  * by ejecting its hot-plug card.  However, if an ifnet is simply
584  * being renamed, then there's no need to tear down the state.
585  */
586 static void
587 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
588 {
589 	struct ifvlan *ifv;
590 	int i;
591 
592 	/*
593 	 * Check if it's a trunk interface first of all
594 	 * to avoid needless locking.
595 	 */
596 	if (ifp->if_vlantrunk == NULL)
597 		return;
598 
599 	/* If the ifnet is just being renamed, don't do anything. */
600 	if (ifp->if_flags & IFF_RENAMING)
601 		return;
602 
603 	VLAN_LOCK();
604 	/*
605 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
606 	 * Check trunk pointer after each vlan_unconfig() as it will
607 	 * free it and set to NULL after the last vlan was detached.
608 	 */
609 #ifdef VLAN_ARRAY
610 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
611 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
612 			vlan_unconfig_locked(ifv->ifv_ifp, 1);
613 			if (ifp->if_vlantrunk == NULL)
614 				break;
615 		}
616 #else /* VLAN_ARRAY */
617 restart:
618 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
619 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
620 			vlan_unconfig_locked(ifv->ifv_ifp, 1);
621 			if (ifp->if_vlantrunk)
622 				goto restart;	/* trunk->hwidth can change */
623 			else
624 				break;
625 		}
626 #endif /* VLAN_ARRAY */
627 	/* Trunk should have been destroyed in vlan_unconfig(). */
628 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
629 	VLAN_UNLOCK();
630 }
631 
632 /*
633  * Return the trunk device for a virtual interface.
634  */
635 static struct ifnet  *
636 vlan_trunkdev(struct ifnet *ifp)
637 {
638 	struct ifvlan *ifv;
639 
640 	if (ifp->if_type != IFT_L2VLAN)
641 		return (NULL);
642 	ifv = ifp->if_softc;
643 	ifp = NULL;
644 	VLAN_LOCK();
645 	if (ifv->ifv_trunk)
646 		ifp = PARENT(ifv);
647 	VLAN_UNLOCK();
648 	return (ifp);
649 }
650 
651 /*
652  * Return the 12-bit VLAN VID for this interface, for use by external
653  * components such as Infiniband.
654  *
655  * XXXRW: Note that the function name here is historical; it should be named
656  * vlan_vid().
657  */
658 static int
659 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
660 {
661 	struct ifvlan *ifv;
662 
663 	if (ifp->if_type != IFT_L2VLAN)
664 		return (EINVAL);
665 	ifv = ifp->if_softc;
666 	*vidp = ifv->ifv_vid;
667 	return (0);
668 }
669 
670 /*
671  * Return a driver specific cookie for this interface.  Synchronization
672  * with setcookie must be provided by the driver.
673  */
674 static void *
675 vlan_cookie(struct ifnet *ifp)
676 {
677 	struct ifvlan *ifv;
678 
679 	if (ifp->if_type != IFT_L2VLAN)
680 		return (NULL);
681 	ifv = ifp->if_softc;
682 	return (ifv->ifv_cookie);
683 }
684 
685 /*
686  * Store a cookie in our softc that drivers can use to store driver
687  * private per-instance data in.
688  */
689 static int
690 vlan_setcookie(struct ifnet *ifp, void *cookie)
691 {
692 	struct ifvlan *ifv;
693 
694 	if (ifp->if_type != IFT_L2VLAN)
695 		return (EINVAL);
696 	ifv = ifp->if_softc;
697 	ifv->ifv_cookie = cookie;
698 	return (0);
699 }
700 
701 /*
702  * Return the vlan device present at the specific VID.
703  */
704 static struct ifnet *
705 vlan_devat(struct ifnet *ifp, uint16_t vid)
706 {
707 	struct ifvlantrunk *trunk;
708 	struct ifvlan *ifv;
709 	TRUNK_LOCK_READER;
710 
711 	trunk = ifp->if_vlantrunk;
712 	if (trunk == NULL)
713 		return (NULL);
714 	ifp = NULL;
715 	TRUNK_RLOCK(trunk);
716 	ifv = vlan_gethash(trunk, vid);
717 	if (ifv)
718 		ifp = ifv->ifv_ifp;
719 	TRUNK_RUNLOCK(trunk);
720 	return (ifp);
721 }
722 
723 /*
724  * Recalculate the cached VLAN tag exposed via the MIB.
725  */
726 static void
727 vlan_tag_recalculate(struct ifvlan *ifv)
728 {
729 
730        ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
731 }
732 
733 /*
734  * VLAN support can be loaded as a module.  The only place in the
735  * system that's intimately aware of this is ether_input.  We hook
736  * into this code through vlan_input_p which is defined there and
737  * set here.  No one else in the system should be aware of this so
738  * we use an explicit reference here.
739  */
740 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
741 
742 /* For if_link_state_change() eyes only... */
743 extern	void (*vlan_link_state_p)(struct ifnet *);
744 
745 static int
746 vlan_modevent(module_t mod, int type, void *data)
747 {
748 
749 	switch (type) {
750 	case MOD_LOAD:
751 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
752 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
753 		if (ifdetach_tag == NULL)
754 			return (ENOMEM);
755 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
756 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
757 		if (iflladdr_tag == NULL)
758 			return (ENOMEM);
759 		VLAN_LOCK_INIT();
760 		vlan_input_p = vlan_input;
761 		vlan_link_state_p = vlan_link_state;
762 		vlan_trunk_cap_p = vlan_trunk_capabilities;
763 		vlan_trunkdev_p = vlan_trunkdev;
764 		vlan_cookie_p = vlan_cookie;
765 		vlan_setcookie_p = vlan_setcookie;
766 		vlan_tag_p = vlan_tag;
767 		vlan_devat_p = vlan_devat;
768 #ifndef VIMAGE
769 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
770 		    vlan_clone_create, vlan_clone_destroy);
771 #endif
772 		if (bootverbose)
773 			printf("vlan: initialized, using "
774 #ifdef VLAN_ARRAY
775 			       "full-size arrays"
776 #else
777 			       "hash tables with chaining"
778 #endif
779 
780 			       "\n");
781 		break;
782 	case MOD_UNLOAD:
783 #ifndef VIMAGE
784 		if_clone_detach(vlan_cloner);
785 #endif
786 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
787 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
788 		vlan_input_p = NULL;
789 		vlan_link_state_p = NULL;
790 		vlan_trunk_cap_p = NULL;
791 		vlan_trunkdev_p = NULL;
792 		vlan_tag_p = NULL;
793 		vlan_cookie_p = NULL;
794 		vlan_setcookie_p = NULL;
795 		vlan_devat_p = NULL;
796 		VLAN_LOCK_DESTROY();
797 		if (bootverbose)
798 			printf("vlan: unloaded\n");
799 		break;
800 	default:
801 		return (EOPNOTSUPP);
802 	}
803 	return (0);
804 }
805 
806 static moduledata_t vlan_mod = {
807 	"if_vlan",
808 	vlan_modevent,
809 	0
810 };
811 
812 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
813 MODULE_VERSION(if_vlan, 3);
814 
815 #ifdef VIMAGE
816 static void
817 vnet_vlan_init(const void *unused __unused)
818 {
819 
820 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
821 		    vlan_clone_create, vlan_clone_destroy);
822 	V_vlan_cloner = vlan_cloner;
823 }
824 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
825     vnet_vlan_init, NULL);
826 
827 static void
828 vnet_vlan_uninit(const void *unused __unused)
829 {
830 
831 	if_clone_detach(V_vlan_cloner);
832 }
833 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
834     vnet_vlan_uninit, NULL);
835 #endif
836 
837 /*
838  * Check for <etherif>.<vlan> style interface names.
839  */
840 static struct ifnet *
841 vlan_clone_match_ethervid(const char *name, int *vidp)
842 {
843 	char ifname[IFNAMSIZ];
844 	char *cp;
845 	struct ifnet *ifp;
846 	int vid;
847 
848 	strlcpy(ifname, name, IFNAMSIZ);
849 	if ((cp = strchr(ifname, '.')) == NULL)
850 		return (NULL);
851 	*cp = '\0';
852 	if ((ifp = ifunit_ref(ifname)) == NULL)
853 		return (NULL);
854 	/* Parse VID. */
855 	if (*++cp == '\0') {
856 		if_rele(ifp);
857 		return (NULL);
858 	}
859 	vid = 0;
860 	for(; *cp >= '0' && *cp <= '9'; cp++)
861 		vid = (vid * 10) + (*cp - '0');
862 	if (*cp != '\0') {
863 		if_rele(ifp);
864 		return (NULL);
865 	}
866 	if (vidp != NULL)
867 		*vidp = vid;
868 
869 	return (ifp);
870 }
871 
872 static int
873 vlan_clone_match(struct if_clone *ifc, const char *name)
874 {
875 	const char *cp;
876 
877 	if (vlan_clone_match_ethervid(name, NULL) != NULL)
878 		return (1);
879 
880 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
881 		return (0);
882 	for (cp = name + 4; *cp != '\0'; cp++) {
883 		if (*cp < '0' || *cp > '9')
884 			return (0);
885 	}
886 
887 	return (1);
888 }
889 
890 static int
891 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
892 {
893 	char *dp;
894 	int wildcard;
895 	int unit;
896 	int error;
897 	int vid;
898 	struct ifvlan *ifv;
899 	struct ifnet *ifp;
900 	struct ifnet *p;
901 	struct ifaddr *ifa;
902 	struct sockaddr_dl *sdl;
903 	struct vlanreq vlr;
904 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
905 
906 	/*
907 	 * There are 3 (ugh) ways to specify the cloned device:
908 	 * o pass a parameter block with the clone request.
909 	 * o specify parameters in the text of the clone device name
910 	 * o specify no parameters and get an unattached device that
911 	 *   must be configured separately.
912 	 * The first technique is preferred; the latter two are
913 	 * supported for backwards compatibility.
914 	 *
915 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
916 	 * called for.
917 	 */
918 	if (params) {
919 		error = copyin(params, &vlr, sizeof(vlr));
920 		if (error)
921 			return error;
922 		p = ifunit_ref(vlr.vlr_parent);
923 		if (p == NULL)
924 			return (ENXIO);
925 		error = ifc_name2unit(name, &unit);
926 		if (error != 0) {
927 			if_rele(p);
928 			return (error);
929 		}
930 		vid = vlr.vlr_tag;
931 		wildcard = (unit < 0);
932 	} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
933 		unit = -1;
934 		wildcard = 0;
935 	} else {
936 		p = NULL;
937 		error = ifc_name2unit(name, &unit);
938 		if (error != 0)
939 			return (error);
940 
941 		wildcard = (unit < 0);
942 	}
943 
944 	error = ifc_alloc_unit(ifc, &unit);
945 	if (error != 0) {
946 		if (p != NULL)
947 			if_rele(p);
948 		return (error);
949 	}
950 
951 	/* In the wildcard case, we need to update the name. */
952 	if (wildcard) {
953 		for (dp = name; *dp != '\0'; dp++);
954 		if (snprintf(dp, len - (dp-name), "%d", unit) >
955 		    len - (dp-name) - 1) {
956 			panic("%s: interface name too long", __func__);
957 		}
958 	}
959 
960 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
961 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
962 	if (ifp == NULL) {
963 		ifc_free_unit(ifc, unit);
964 		free(ifv, M_VLAN);
965 		if (p != NULL)
966 			if_rele(p);
967 		return (ENOSPC);
968 	}
969 	SLIST_INIT(&ifv->vlan_mc_listhead);
970 	ifp->if_softc = ifv;
971 	/*
972 	 * Set the name manually rather than using if_initname because
973 	 * we don't conform to the default naming convention for interfaces.
974 	 */
975 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
976 	ifp->if_dname = vlanname;
977 	ifp->if_dunit = unit;
978 	/* NB: flags are not set here */
979 	ifp->if_linkmib = &ifv->ifv_mib;
980 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
981 	/* NB: mtu is not set here */
982 
983 	ifp->if_init = vlan_init;
984 	ifp->if_transmit = vlan_transmit;
985 	ifp->if_qflush = vlan_qflush;
986 	ifp->if_ioctl = vlan_ioctl;
987 #ifdef RATELIMIT
988 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
989 #endif
990 	ifp->if_flags = VLAN_IFFLAGS;
991 	ether_ifattach(ifp, eaddr);
992 	/* Now undo some of the damage... */
993 	ifp->if_baudrate = 0;
994 	ifp->if_type = IFT_L2VLAN;
995 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
996 	ifa = ifp->if_addr;
997 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
998 	sdl->sdl_type = IFT_L2VLAN;
999 
1000 	if (p != NULL) {
1001 		error = vlan_config(ifv, p, vid);
1002 		if_rele(p);
1003 		if (error != 0) {
1004 			/*
1005 			 * Since we've partially failed, we need to back
1006 			 * out all the way, otherwise userland could get
1007 			 * confused.  Thus, we destroy the interface.
1008 			 */
1009 			ether_ifdetach(ifp);
1010 			vlan_unconfig(ifp);
1011 			if_free(ifp);
1012 			ifc_free_unit(ifc, unit);
1013 			free(ifv, M_VLAN);
1014 
1015 			return (error);
1016 		}
1017 
1018 		/* Update flags on the parent, if necessary. */
1019 		vlan_setflags(ifp, 1);
1020 	}
1021 
1022 	return (0);
1023 }
1024 
1025 static int
1026 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1027 {
1028 	struct ifvlan *ifv = ifp->if_softc;
1029 	int unit = ifp->if_dunit;
1030 
1031 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1032 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1033 	if_free(ifp);
1034 	free(ifv, M_VLAN);
1035 	ifc_free_unit(ifc, unit);
1036 
1037 	return (0);
1038 }
1039 
1040 /*
1041  * The ifp->if_init entry point for vlan(4) is a no-op.
1042  */
1043 static void
1044 vlan_init(void *foo __unused)
1045 {
1046 }
1047 
1048 /*
1049  * The if_transmit method for vlan(4) interface.
1050  */
1051 static int
1052 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1053 {
1054 	struct ifvlan *ifv;
1055 	struct ifnet *p;
1056 	struct m_tag *mtag;
1057 	uint16_t tag;
1058 	int error, len, mcast;
1059 
1060 	ifv = ifp->if_softc;
1061 	p = PARENT(ifv);
1062 	len = m->m_pkthdr.len;
1063 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1064 
1065 	BPF_MTAP(ifp, m);
1066 
1067 	/*
1068 	 * Do not run parent's if_transmit() if the parent is not up,
1069 	 * or parent's driver will cause a system crash.
1070 	 */
1071 	if (!UP_AND_RUNNING(p)) {
1072 		m_freem(m);
1073 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1074 		return (ENETDOWN);
1075 	}
1076 
1077 	/*
1078 	 * Pad the frame to the minimum size allowed if told to.
1079 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1080 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1081 	 * bridges that violate paragraph C.4.4.3.a from the same
1082 	 * document, i.e., fail to pad short frames after untagging.
1083 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1084 	 * untagging it will produce a 62-byte frame, which is a runt
1085 	 * and requires padding.  There are VLAN-enabled network
1086 	 * devices that just discard such runts instead or mishandle
1087 	 * them somehow.
1088 	 */
1089 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1090 		static char pad[8];	/* just zeros */
1091 		int n;
1092 
1093 		for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
1094 		     n > 0; n -= sizeof(pad))
1095 			if (!m_append(m, min(n, sizeof(pad)), pad))
1096 				break;
1097 
1098 		if (n > 0) {
1099 			if_printf(ifp, "cannot pad short frame\n");
1100 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1101 			m_freem(m);
1102 			return (0);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * If underlying interface can do VLAN tag insertion itself,
1108 	 * just pass the packet along. However, we need some way to
1109 	 * tell the interface where the packet came from so that it
1110 	 * knows how to find the VLAN tag to use, so we attach a
1111 	 * packet tag that holds it.
1112 	 */
1113 	if (vlan_mtag_pcp && (mtag = m_tag_locate(m, MTAG_8021Q,
1114 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1115 		tag = EVL_MAKETAG(ifv->ifv_vid, *(uint8_t *)(mtag + 1), 0);
1116 	else
1117               tag = ifv->ifv_tag;
1118 	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1119 		m->m_pkthdr.ether_vtag = tag;
1120 		m->m_flags |= M_VLANTAG;
1121 	} else {
1122 		m = ether_vlanencap(m, tag);
1123 		if (m == NULL) {
1124 			if_printf(ifp, "unable to prepend VLAN header\n");
1125 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1126 			return (0);
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * Send it, precisely as ether_output() would have.
1132 	 */
1133 	error = (p->if_transmit)(p, m);
1134 	if (error == 0) {
1135 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1136 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1137 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1138 	} else
1139 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1140 	return (error);
1141 }
1142 
1143 /*
1144  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1145  */
1146 static void
1147 vlan_qflush(struct ifnet *ifp __unused)
1148 {
1149 }
1150 
1151 static void
1152 vlan_input(struct ifnet *ifp, struct mbuf *m)
1153 {
1154 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1155 	struct ifvlan *ifv;
1156 	TRUNK_LOCK_READER;
1157 	struct m_tag *mtag;
1158 	uint16_t vid, tag;
1159 
1160 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
1161 
1162 	if (m->m_flags & M_VLANTAG) {
1163 		/*
1164 		 * Packet is tagged, but m contains a normal
1165 		 * Ethernet frame; the tag is stored out-of-band.
1166 		 */
1167 		tag = m->m_pkthdr.ether_vtag;
1168 		m->m_flags &= ~M_VLANTAG;
1169 	} else {
1170 		struct ether_vlan_header *evl;
1171 
1172 		/*
1173 		 * Packet is tagged in-band as specified by 802.1q.
1174 		 */
1175 		switch (ifp->if_type) {
1176 		case IFT_ETHER:
1177 			if (m->m_len < sizeof(*evl) &&
1178 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1179 				if_printf(ifp, "cannot pullup VLAN header\n");
1180 				return;
1181 			}
1182 			evl = mtod(m, struct ether_vlan_header *);
1183 			tag = ntohs(evl->evl_tag);
1184 
1185 			/*
1186 			 * Remove the 802.1q header by copying the Ethernet
1187 			 * addresses over it and adjusting the beginning of
1188 			 * the data in the mbuf.  The encapsulated Ethernet
1189 			 * type field is already in place.
1190 			 */
1191 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1192 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1193 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1194 			break;
1195 
1196 		default:
1197 #ifdef INVARIANTS
1198 			panic("%s: %s has unsupported if_type %u",
1199 			      __func__, ifp->if_xname, ifp->if_type);
1200 #endif
1201 			m_freem(m);
1202 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1203 			return;
1204 		}
1205 	}
1206 
1207 	vid = EVL_VLANOFTAG(tag);
1208 
1209 	TRUNK_RLOCK(trunk);
1210 	ifv = vlan_gethash(trunk, vid);
1211 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1212 		TRUNK_RUNLOCK(trunk);
1213 		m_freem(m);
1214 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1215 		return;
1216 	}
1217 	TRUNK_RUNLOCK(trunk);
1218 
1219 	if (vlan_mtag_pcp) {
1220 		/*
1221 		 * While uncommon, it is possible that we will find a 802.1q
1222 		 * packet encapsulated inside another packet that also had an
1223 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1224 		 * arriving over ethernet.  In that case, we replace the
1225 		 * existing 802.1q PCP m_tag value.
1226 		 */
1227 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1228 		if (mtag == NULL) {
1229 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1230 			    sizeof(uint8_t), M_NOWAIT);
1231 			if (mtag == NULL) {
1232 				m_freem(m);
1233 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1234 				return;
1235 			}
1236 			m_tag_prepend(m, mtag);
1237 		}
1238 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1239 	}
1240 
1241 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1242 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1243 
1244 	/* Pass it back through the parent's input routine. */
1245 	(*ifp->if_input)(ifv->ifv_ifp, m);
1246 }
1247 
1248 static int
1249 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1250 {
1251 	struct ifvlantrunk *trunk;
1252 	struct ifnet *ifp;
1253 	int error = 0;
1254 
1255 	/*
1256 	 * We can handle non-ethernet hardware types as long as
1257 	 * they handle the tagging and headers themselves.
1258 	 */
1259 	if (p->if_type != IFT_ETHER &&
1260 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1261 		return (EPROTONOSUPPORT);
1262 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1263 		return (EPROTONOSUPPORT);
1264 	/*
1265 	 * Don't let the caller set up a VLAN VID with
1266 	 * anything except VLID bits.
1267 	 * VID numbers 0x0 and 0xFFF are reserved.
1268 	 */
1269 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1270 		return (EINVAL);
1271 	if (ifv->ifv_trunk)
1272 		return (EBUSY);
1273 
1274 	if (p->if_vlantrunk == NULL) {
1275 		trunk = malloc(sizeof(struct ifvlantrunk),
1276 		    M_VLAN, M_WAITOK | M_ZERO);
1277 		vlan_inithash(trunk);
1278 		VLAN_LOCK();
1279 		if (p->if_vlantrunk != NULL) {
1280 			/* A race that is very unlikely to be hit. */
1281 			vlan_freehash(trunk);
1282 			free(trunk, M_VLAN);
1283 			goto exists;
1284 		}
1285 		TRUNK_LOCK_INIT(trunk);
1286 		TRUNK_LOCK(trunk);
1287 		p->if_vlantrunk = trunk;
1288 		trunk->parent = p;
1289 		if_ref(trunk->parent);
1290 	} else {
1291 		VLAN_LOCK();
1292 exists:
1293 		trunk = p->if_vlantrunk;
1294 		TRUNK_LOCK(trunk);
1295 	}
1296 
1297 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1298 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1299 	vlan_tag_recalculate(ifv);
1300 	error = vlan_inshash(trunk, ifv);
1301 	if (error)
1302 		goto done;
1303 	ifv->ifv_proto = ETHERTYPE_VLAN;
1304 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1305 	ifv->ifv_mintu = ETHERMIN;
1306 	ifv->ifv_pflags = 0;
1307 	ifv->ifv_capenable = -1;
1308 
1309 	/*
1310 	 * If the parent supports the VLAN_MTU capability,
1311 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1312 	 * use it.
1313 	 */
1314 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1315 		/*
1316 		 * No need to fudge the MTU since the parent can
1317 		 * handle extended frames.
1318 		 */
1319 		ifv->ifv_mtufudge = 0;
1320 	} else {
1321 		/*
1322 		 * Fudge the MTU by the encapsulation size.  This
1323 		 * makes us incompatible with strictly compliant
1324 		 * 802.1Q implementations, but allows us to use
1325 		 * the feature with other NetBSD implementations,
1326 		 * which might still be useful.
1327 		 */
1328 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1329 	}
1330 
1331 	ifv->ifv_trunk = trunk;
1332 	ifp = ifv->ifv_ifp;
1333 	/*
1334 	 * Initialize fields from our parent.  This duplicates some
1335 	 * work with ether_ifattach() but allows for non-ethernet
1336 	 * interfaces to also work.
1337 	 */
1338 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1339 	ifp->if_baudrate = p->if_baudrate;
1340 	ifp->if_output = p->if_output;
1341 	ifp->if_input = p->if_input;
1342 	ifp->if_resolvemulti = p->if_resolvemulti;
1343 	ifp->if_addrlen = p->if_addrlen;
1344 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1345 
1346 	/*
1347 	 * Copy only a selected subset of flags from the parent.
1348 	 * Other flags are none of our business.
1349 	 */
1350 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1351 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1352 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1353 #undef VLAN_COPY_FLAGS
1354 
1355 	ifp->if_link_state = p->if_link_state;
1356 
1357 	vlan_capabilities(ifv);
1358 
1359 	/*
1360 	 * Set up our interface address to reflect the underlying
1361 	 * physical interface's.
1362 	 */
1363 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1364 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1365 	    p->if_addrlen;
1366 
1367 	/*
1368 	 * Configure multicast addresses that may already be
1369 	 * joined on the vlan device.
1370 	 */
1371 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1372 
1373 	/* We are ready for operation now. */
1374 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1375 done:
1376 	TRUNK_UNLOCK(trunk);
1377 	if (error == 0)
1378 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1379 	VLAN_UNLOCK();
1380 
1381 	return (error);
1382 }
1383 
1384 static void
1385 vlan_unconfig(struct ifnet *ifp)
1386 {
1387 
1388 	VLAN_LOCK();
1389 	vlan_unconfig_locked(ifp, 0);
1390 	VLAN_UNLOCK();
1391 }
1392 
1393 static void
1394 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1395 {
1396 	struct ifvlantrunk *trunk;
1397 	struct vlan_mc_entry *mc;
1398 	struct ifvlan *ifv;
1399 	struct ifnet  *parent;
1400 	int error;
1401 
1402 	VLAN_LOCK_ASSERT();
1403 
1404 	ifv = ifp->if_softc;
1405 	trunk = ifv->ifv_trunk;
1406 	parent = NULL;
1407 
1408 	if (trunk != NULL) {
1409 
1410 		TRUNK_LOCK(trunk);
1411 		parent = trunk->parent;
1412 
1413 		/*
1414 		 * Since the interface is being unconfigured, we need to
1415 		 * empty the list of multicast groups that we may have joined
1416 		 * while we were alive from the parent's list.
1417 		 */
1418 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1419 			/*
1420 			 * If the parent interface is being detached,
1421 			 * all its multicast addresses have already
1422 			 * been removed.  Warn about errors if
1423 			 * if_delmulti() does fail, but don't abort as
1424 			 * all callers expect vlan destruction to
1425 			 * succeed.
1426 			 */
1427 			if (!departing) {
1428 				error = if_delmulti(parent,
1429 				    (struct sockaddr *)&mc->mc_addr);
1430 				if (error)
1431 					if_printf(ifp,
1432 		    "Failed to delete multicast address from parent: %d\n",
1433 					    error);
1434 			}
1435 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1436 			free(mc, M_VLAN);
1437 		}
1438 
1439 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1440 		vlan_remhash(trunk, ifv);
1441 		ifv->ifv_trunk = NULL;
1442 
1443 		/*
1444 		 * Check if we were the last.
1445 		 */
1446 		if (trunk->refcnt == 0) {
1447 			parent->if_vlantrunk = NULL;
1448 			/*
1449 			 * XXXGL: If some ithread has already entered
1450 			 * vlan_input() and is now blocked on the trunk
1451 			 * lock, then it should preempt us right after
1452 			 * unlock and finish its work. Then we will acquire
1453 			 * lock again in trunk_destroy().
1454 			 */
1455 			TRUNK_UNLOCK(trunk);
1456 			trunk_destroy(trunk);
1457 		} else
1458 			TRUNK_UNLOCK(trunk);
1459 	}
1460 
1461 	/* Disconnect from parent. */
1462 	if (ifv->ifv_pflags)
1463 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1464 	ifp->if_mtu = ETHERMTU;
1465 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1466 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1467 
1468 	/*
1469 	 * Only dispatch an event if vlan was
1470 	 * attached, otherwise there is nothing
1471 	 * to cleanup anyway.
1472 	 */
1473 	if (parent != NULL)
1474 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1475 }
1476 
1477 /* Handle a reference counted flag that should be set on the parent as well */
1478 static int
1479 vlan_setflag(struct ifnet *ifp, int flag, int status,
1480 	     int (*func)(struct ifnet *, int))
1481 {
1482 	struct ifvlan *ifv;
1483 	int error;
1484 
1485 	/* XXX VLAN_LOCK_ASSERT(); */
1486 
1487 	ifv = ifp->if_softc;
1488 	status = status ? (ifp->if_flags & flag) : 0;
1489 	/* Now "status" contains the flag value or 0 */
1490 
1491 	/*
1492 	 * See if recorded parent's status is different from what
1493 	 * we want it to be.  If it is, flip it.  We record parent's
1494 	 * status in ifv_pflags so that we won't clear parent's flag
1495 	 * we haven't set.  In fact, we don't clear or set parent's
1496 	 * flags directly, but get or release references to them.
1497 	 * That's why we can be sure that recorded flags still are
1498 	 * in accord with actual parent's flags.
1499 	 */
1500 	if (status != (ifv->ifv_pflags & flag)) {
1501 		error = (*func)(PARENT(ifv), status);
1502 		if (error)
1503 			return (error);
1504 		ifv->ifv_pflags &= ~flag;
1505 		ifv->ifv_pflags |= status;
1506 	}
1507 	return (0);
1508 }
1509 
1510 /*
1511  * Handle IFF_* flags that require certain changes on the parent:
1512  * if "status" is true, update parent's flags respective to our if_flags;
1513  * if "status" is false, forcedly clear the flags set on parent.
1514  */
1515 static int
1516 vlan_setflags(struct ifnet *ifp, int status)
1517 {
1518 	int error, i;
1519 
1520 	for (i = 0; vlan_pflags[i].flag; i++) {
1521 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1522 				     status, vlan_pflags[i].func);
1523 		if (error)
1524 			return (error);
1525 	}
1526 	return (0);
1527 }
1528 
1529 /* Inform all vlans that their parent has changed link state */
1530 static void
1531 vlan_link_state(struct ifnet *ifp)
1532 {
1533 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1534 	struct ifvlan *ifv;
1535 	int i;
1536 
1537 	TRUNK_LOCK(trunk);
1538 #ifdef VLAN_ARRAY
1539 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1540 		if (trunk->vlans[i] != NULL) {
1541 			ifv = trunk->vlans[i];
1542 #else
1543 	for (i = 0; i < (1 << trunk->hwidth); i++)
1544 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1545 #endif
1546 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1547 			if_link_state_change(ifv->ifv_ifp,
1548 			    trunk->parent->if_link_state);
1549 		}
1550 	TRUNK_UNLOCK(trunk);
1551 }
1552 
1553 static void
1554 vlan_capabilities(struct ifvlan *ifv)
1555 {
1556 	struct ifnet *p = PARENT(ifv);
1557 	struct ifnet *ifp = ifv->ifv_ifp;
1558 	struct ifnet_hw_tsomax hw_tsomax;
1559 	int cap = 0, ena = 0, mena;
1560 	u_long hwa = 0;
1561 
1562 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1563 
1564 	/* Mask parent interface enabled capabilities disabled by user. */
1565 	mena = p->if_capenable & ifv->ifv_capenable;
1566 
1567 	/*
1568 	 * If the parent interface can do checksum offloading
1569 	 * on VLANs, then propagate its hardware-assisted
1570 	 * checksumming flags. Also assert that checksum
1571 	 * offloading requires hardware VLAN tagging.
1572 	 */
1573 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1574 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1575 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1576 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1577 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1578 		if (ena & IFCAP_TXCSUM)
1579 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1580 			    CSUM_UDP | CSUM_SCTP);
1581 		if (ena & IFCAP_TXCSUM_IPV6)
1582 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1583 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1584 	}
1585 
1586 	/*
1587 	 * If the parent interface can do TSO on VLANs then
1588 	 * propagate the hardware-assisted flag. TSO on VLANs
1589 	 * does not necessarily require hardware VLAN tagging.
1590 	 */
1591 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1592 	if_hw_tsomax_common(p, &hw_tsomax);
1593 	if_hw_tsomax_update(ifp, &hw_tsomax);
1594 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1595 		cap |= p->if_capabilities & IFCAP_TSO;
1596 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1597 		ena |= mena & IFCAP_TSO;
1598 		if (ena & IFCAP_TSO)
1599 			hwa |= p->if_hwassist & CSUM_TSO;
1600 	}
1601 
1602 	/*
1603 	 * If the parent interface can do LRO and checksum offloading on
1604 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1605 	 * cost nothing, while false negative may lead to some confusions.
1606 	 */
1607 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1608 		cap |= p->if_capabilities & IFCAP_LRO;
1609 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1610 		ena |= p->if_capenable & IFCAP_LRO;
1611 
1612 	/*
1613 	 * If the parent interface can offload TCP connections over VLANs then
1614 	 * propagate its TOE capability to the VLAN interface.
1615 	 *
1616 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1617 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1618 	 * with its own bit.
1619 	 */
1620 #define	IFCAP_VLAN_TOE IFCAP_TOE
1621 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1622 		cap |= p->if_capabilities & IFCAP_TOE;
1623 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1624 		TOEDEV(ifp) = TOEDEV(p);
1625 		ena |= mena & IFCAP_TOE;
1626 	}
1627 
1628 	/*
1629 	 * If the parent interface supports dynamic link state, so does the
1630 	 * VLAN interface.
1631 	 */
1632 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1633 	ena |= (mena & IFCAP_LINKSTATE);
1634 
1635 #ifdef RATELIMIT
1636 	/*
1637 	 * If the parent interface supports ratelimiting, so does the
1638 	 * VLAN interface.
1639 	 */
1640 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1641 	ena |= (mena & IFCAP_TXRTLMT);
1642 #endif
1643 
1644 	ifp->if_capabilities = cap;
1645 	ifp->if_capenable = ena;
1646 	ifp->if_hwassist = hwa;
1647 }
1648 
1649 static void
1650 vlan_trunk_capabilities(struct ifnet *ifp)
1651 {
1652 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1653 	struct ifvlan *ifv;
1654 	int i;
1655 
1656 	TRUNK_LOCK(trunk);
1657 #ifdef VLAN_ARRAY
1658 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1659 		if (trunk->vlans[i] != NULL) {
1660 			ifv = trunk->vlans[i];
1661 #else
1662 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1663 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1664 #endif
1665 			vlan_capabilities(ifv);
1666 	}
1667 	TRUNK_UNLOCK(trunk);
1668 }
1669 
1670 static int
1671 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1672 {
1673 	struct ifnet *p;
1674 	struct ifreq *ifr;
1675 	struct ifaddr *ifa;
1676 	struct ifvlan *ifv;
1677 	struct ifvlantrunk *trunk;
1678 	struct vlanreq vlr;
1679 	int error = 0;
1680 
1681 	ifr = (struct ifreq *)data;
1682 	ifa = (struct ifaddr *) data;
1683 	ifv = ifp->if_softc;
1684 
1685 	switch (cmd) {
1686 	case SIOCSIFADDR:
1687 		ifp->if_flags |= IFF_UP;
1688 #ifdef INET
1689 		if (ifa->ifa_addr->sa_family == AF_INET)
1690 			arp_ifinit(ifp, ifa);
1691 #endif
1692 		break;
1693 	case SIOCGIFADDR:
1694                 {
1695 			struct sockaddr *sa;
1696 
1697 			sa = (struct sockaddr *)&ifr->ifr_data;
1698 			bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen);
1699                 }
1700 		break;
1701 	case SIOCGIFMEDIA:
1702 		VLAN_LOCK();
1703 		if (TRUNK(ifv) != NULL) {
1704 			p = PARENT(ifv);
1705 			if_ref(p);
1706 			VLAN_UNLOCK();
1707 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1708 			if_rele(p);
1709 			/* Limit the result to the parent's current config. */
1710 			if (error == 0) {
1711 				struct ifmediareq *ifmr;
1712 
1713 				ifmr = (struct ifmediareq *)data;
1714 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1715 					ifmr->ifm_count = 1;
1716 					error = copyout(&ifmr->ifm_current,
1717 						ifmr->ifm_ulist,
1718 						sizeof(int));
1719 				}
1720 			}
1721 		} else {
1722 			VLAN_UNLOCK();
1723 			error = EINVAL;
1724 		}
1725 		break;
1726 
1727 	case SIOCSIFMEDIA:
1728 		error = EINVAL;
1729 		break;
1730 
1731 	case SIOCSIFMTU:
1732 		/*
1733 		 * Set the interface MTU.
1734 		 */
1735 		VLAN_LOCK();
1736 		if (TRUNK(ifv) != NULL) {
1737 			if (ifr->ifr_mtu >
1738 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1739 			    ifr->ifr_mtu <
1740 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1741 				error = EINVAL;
1742 			else
1743 				ifp->if_mtu = ifr->ifr_mtu;
1744 		} else
1745 			error = EINVAL;
1746 		VLAN_UNLOCK();
1747 		break;
1748 
1749 	case SIOCSETVLAN:
1750 #ifdef VIMAGE
1751 		/*
1752 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1753 		 * interface to be delegated to a jail without allowing the
1754 		 * jail to change what underlying interface/VID it is
1755 		 * associated with.  We are not entirely convinced that this
1756 		 * is the right way to accomplish that policy goal.
1757 		 */
1758 		if (ifp->if_vnet != ifp->if_home_vnet) {
1759 			error = EPERM;
1760 			break;
1761 		}
1762 #endif
1763 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1764 		if (error)
1765 			break;
1766 		if (vlr.vlr_parent[0] == '\0') {
1767 			vlan_unconfig(ifp);
1768 			break;
1769 		}
1770 		p = ifunit_ref(vlr.vlr_parent);
1771 		if (p == NULL) {
1772 			error = ENOENT;
1773 			break;
1774 		}
1775 		error = vlan_config(ifv, p, vlr.vlr_tag);
1776 		if_rele(p);
1777 		if (error)
1778 			break;
1779 
1780 		/* Update flags on the parent, if necessary. */
1781 		vlan_setflags(ifp, 1);
1782 		break;
1783 
1784 	case SIOCGETVLAN:
1785 #ifdef VIMAGE
1786 		if (ifp->if_vnet != ifp->if_home_vnet) {
1787 			error = EPERM;
1788 			break;
1789 		}
1790 #endif
1791 		bzero(&vlr, sizeof(vlr));
1792 		VLAN_LOCK();
1793 		if (TRUNK(ifv) != NULL) {
1794 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1795 			    sizeof(vlr.vlr_parent));
1796 			vlr.vlr_tag = ifv->ifv_vid;
1797 		}
1798 		VLAN_UNLOCK();
1799 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1800 		break;
1801 
1802 	case SIOCSIFFLAGS:
1803 		/*
1804 		 * We should propagate selected flags to the parent,
1805 		 * e.g., promiscuous mode.
1806 		 */
1807 		if (TRUNK(ifv) != NULL)
1808 			error = vlan_setflags(ifp, 1);
1809 		break;
1810 
1811 	case SIOCADDMULTI:
1812 	case SIOCDELMULTI:
1813 		/*
1814 		 * If we don't have a parent, just remember the membership for
1815 		 * when we do.
1816 		 */
1817 		trunk = TRUNK(ifv);
1818 		if (trunk != NULL) {
1819 			TRUNK_LOCK(trunk);
1820 			error = vlan_setmulti(ifp);
1821 			TRUNK_UNLOCK(trunk);
1822 		}
1823 		break;
1824 
1825 	case SIOCGVLANPCP:
1826 #ifdef VIMAGE
1827 		if (ifp->if_vnet != ifp->if_home_vnet) {
1828 			error = EPERM;
1829 			break;
1830 		}
1831 #endif
1832 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
1833 		break;
1834 
1835 	case SIOCSVLANPCP:
1836 #ifdef VIMAGE
1837 		if (ifp->if_vnet != ifp->if_home_vnet) {
1838 			error = EPERM;
1839 			break;
1840 		}
1841 #endif
1842 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
1843 		if (error)
1844 			break;
1845 		if (ifr->ifr_vlan_pcp > 7) {
1846 			error = EINVAL;
1847 			break;
1848 		}
1849 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
1850 		vlan_tag_recalculate(ifv);
1851 		break;
1852 
1853 	case SIOCSIFCAP:
1854 		VLAN_LOCK();
1855 		ifv->ifv_capenable = ifr->ifr_reqcap;
1856 		trunk = TRUNK(ifv);
1857 		if (trunk != NULL) {
1858 			TRUNK_LOCK(trunk);
1859 			vlan_capabilities(ifv);
1860 			TRUNK_UNLOCK(trunk);
1861 		}
1862 		VLAN_UNLOCK();
1863 		break;
1864 
1865 	default:
1866 		error = EINVAL;
1867 		break;
1868 	}
1869 
1870 	return (error);
1871 }
1872 
1873 #ifdef RATELIMIT
1874 static int
1875 vlan_snd_tag_alloc(struct ifnet *ifp,
1876     union if_snd_tag_alloc_params *params,
1877     struct m_snd_tag **ppmt)
1878 {
1879 
1880 	/* get trunk device */
1881 	ifp = vlan_trunkdev(ifp);
1882 	if (ifp == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0)
1883 		return (EOPNOTSUPP);
1884 	/* forward allocation request */
1885 	return (ifp->if_snd_tag_alloc(ifp, params, ppmt));
1886 }
1887 #endif
1888