xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 1f474190)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * Copyright (c) 2012 IEEE
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * IEEE 802.11 protocol support.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>		/* XXX for ether_sprintf */
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_adhoc.h>
55 #include <net80211/ieee80211_sta.h>
56 #include <net80211/ieee80211_hostap.h>
57 #include <net80211/ieee80211_wds.h>
58 #ifdef IEEE80211_SUPPORT_MESH
59 #include <net80211/ieee80211_mesh.h>
60 #endif
61 #include <net80211/ieee80211_monitor.h>
62 #include <net80211/ieee80211_input.h>
63 
64 /* XXX tunables */
65 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
66 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
67 
68 const char *mgt_subtype_name[] = {
69 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
70 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
71 	"beacon",	"atim",		"disassoc",	"auth",
72 	"deauth",	"action",	"action_noack",	"reserved#15"
73 };
74 const char *ctl_subtype_name[] = {
75 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
76 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
77 	"bar",		"ba",		"ps_poll",	"rts",
78 	"cts",		"ack",		"cf_end",	"cf_end_ack"
79 };
80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
81 	"IBSS",		/* IEEE80211_M_IBSS */
82 	"STA",		/* IEEE80211_M_STA */
83 	"WDS",		/* IEEE80211_M_WDS */
84 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
85 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
86 	"MONITOR",	/* IEEE80211_M_MONITOR */
87 	"MBSS"		/* IEEE80211_M_MBSS */
88 };
89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
90 	"INIT",		/* IEEE80211_S_INIT */
91 	"SCAN",		/* IEEE80211_S_SCAN */
92 	"AUTH",		/* IEEE80211_S_AUTH */
93 	"ASSOC",	/* IEEE80211_S_ASSOC */
94 	"CAC",		/* IEEE80211_S_CAC */
95 	"RUN",		/* IEEE80211_S_RUN */
96 	"CSA",		/* IEEE80211_S_CSA */
97 	"SLEEP",	/* IEEE80211_S_SLEEP */
98 };
99 const char *ieee80211_wme_acnames[] = {
100 	"WME_AC_BE",
101 	"WME_AC_BK",
102 	"WME_AC_VI",
103 	"WME_AC_VO",
104 	"WME_UPSD",
105 };
106 
107 /*
108  * Reason code descriptions were (mostly) obtained from
109  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
110  */
111 const char *
112 ieee80211_reason_to_string(uint16_t reason)
113 {
114 	switch (reason) {
115 	case IEEE80211_REASON_UNSPECIFIED:
116 		return ("unspecified");
117 	case IEEE80211_REASON_AUTH_EXPIRE:
118 		return ("previous authentication is expired");
119 	case IEEE80211_REASON_AUTH_LEAVE:
120 		return ("sending STA is leaving/has left IBSS or ESS");
121 	case IEEE80211_REASON_ASSOC_EXPIRE:
122 		return ("disassociated due to inactivity");
123 	case IEEE80211_REASON_ASSOC_TOOMANY:
124 		return ("too many associated STAs");
125 	case IEEE80211_REASON_NOT_AUTHED:
126 		return ("class 2 frame received from nonauthenticated STA");
127 	case IEEE80211_REASON_NOT_ASSOCED:
128 		return ("class 3 frame received from nonassociated STA");
129 	case IEEE80211_REASON_ASSOC_LEAVE:
130 		return ("sending STA is leaving/has left BSS");
131 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
132 		return ("STA requesting (re)association is not authenticated");
133 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
134 		return ("information in the Power Capability element is "
135 			"unacceptable");
136 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
137 		return ("information in the Supported Channels element is "
138 			"unacceptable");
139 	case IEEE80211_REASON_IE_INVALID:
140 		return ("invalid element");
141 	case IEEE80211_REASON_MIC_FAILURE:
142 		return ("MIC failure");
143 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
144 		return ("4-Way handshake timeout");
145 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
146 		return ("group key update timeout");
147 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
148 		return ("element in 4-Way handshake different from "
149 			"(re)association request/probe response/beacon frame");
150 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
151 		return ("invalid group cipher");
152 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
153 		return ("invalid pairwise cipher");
154 	case IEEE80211_REASON_AKMP_INVALID:
155 		return ("invalid AKMP");
156 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
157 		return ("unsupported version in RSN IE");
158 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
159 		return ("invalid capabilities in RSN IE");
160 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
161 		return ("IEEE 802.1X authentication failed");
162 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
163 		return ("cipher suite rejected because of the security "
164 			"policy");
165 	case IEEE80211_REASON_UNSPECIFIED_QOS:
166 		return ("unspecified (QoS-related)");
167 	case IEEE80211_REASON_INSUFFICIENT_BW:
168 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
169 	case IEEE80211_REASON_TOOMANY_FRAMES:
170 		return ("too many frames need to be acknowledged");
171 	case IEEE80211_REASON_OUTSIDE_TXOP:
172 		return ("STA is transmitting outside the limits of its TXOPs");
173 	case IEEE80211_REASON_LEAVING_QBSS:
174 		return ("requested from peer STA (the STA is "
175 			"resetting/leaving the BSS)");
176 	case IEEE80211_REASON_BAD_MECHANISM:
177 		return ("requested from peer STA (it does not want to use "
178 			"the mechanism)");
179 	case IEEE80211_REASON_SETUP_NEEDED:
180 		return ("requested from peer STA (setup is required for the "
181 			"used mechanism)");
182 	case IEEE80211_REASON_TIMEOUT:
183 		return ("requested from peer STA (timeout)");
184 	case IEEE80211_REASON_PEER_LINK_CANCELED:
185 		return ("SME cancels the mesh peering instance (not related "
186 			"to the maximum number of peer mesh STAs)");
187 	case IEEE80211_REASON_MESH_MAX_PEERS:
188 		return ("maximum number of peer mesh STAs was reached");
189 	case IEEE80211_REASON_MESH_CPVIOLATION:
190 		return ("the received information violates the Mesh "
191 			"Configuration policy configured in the mesh STA "
192 			"profile");
193 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
194 		return ("the mesh STA has received a Mesh Peering Close "
195 			"message requesting to close the mesh peering");
196 	case IEEE80211_REASON_MESH_MAX_RETRIES:
197 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
198 			"Peering Open messages, without receiving a Mesh "
199 			"Peering Confirm message");
200 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
201 		return ("the confirmTimer for the mesh peering instance times "
202 			"out");
203 	case IEEE80211_REASON_MESH_INVALID_GTK:
204 		return ("the mesh STA fails to unwrap the GTK or the values "
205 			"in the wrapped contents do not match");
206 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
207 		return ("the mesh STA receives inconsistent information about "
208 			"the mesh parameters between Mesh Peering Management "
209 			"frames");
210 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
211 		return ("the mesh STA fails the authenticated mesh peering "
212 			"exchange because due to failure in selecting "
213 			"pairwise/group ciphersuite");
214 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
215 		return ("the mesh STA does not have proxy information for "
216 			"this external destination");
217 	case IEEE80211_REASON_MESH_PERR_NO_FI:
218 		return ("the mesh STA does not have forwarding information "
219 			"for this destination");
220 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
221 		return ("the mesh STA determines that the link to the next "
222 			"hop of an active path in its forwarding information "
223 			"is no longer usable");
224 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
225 		return ("the MAC address of the STA already exists in the "
226 			"mesh BSS");
227 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
228 		return ("the mesh STA performs channel switch to meet "
229 			"regulatory requirements");
230 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
231 		return ("the mesh STA performs channel switch with "
232 			"unspecified reason");
233 	default:
234 		return ("reserved/unknown");
235 	}
236 }
237 
238 static void beacon_miss(void *, int);
239 static void beacon_swmiss(void *, int);
240 static void parent_updown(void *, int);
241 static void update_mcast(void *, int);
242 static void update_promisc(void *, int);
243 static void update_channel(void *, int);
244 static void update_chw(void *, int);
245 static void vap_update_wme(void *, int);
246 static void vap_update_slot(void *, int);
247 static void restart_vaps(void *, int);
248 static void vap_update_erp_protmode(void *, int);
249 static void vap_update_preamble(void *, int);
250 static void vap_update_ht_protmode(void *, int);
251 static void ieee80211_newstate_cb(void *, int);
252 
253 static int
254 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
255 	const struct ieee80211_bpf_params *params)
256 {
257 
258 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
259 	m_freem(m);
260 	return ENETDOWN;
261 }
262 
263 void
264 ieee80211_proto_attach(struct ieee80211com *ic)
265 {
266 	uint8_t hdrlen;
267 
268 	/* override the 802.3 setting */
269 	hdrlen = ic->ic_headroom
270 		+ sizeof(struct ieee80211_qosframe_addr4)
271 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
272 		+ IEEE80211_WEP_EXTIVLEN;
273 	/* XXX no way to recalculate on ifdetach */
274 	if (ALIGN(hdrlen) > max_linkhdr) {
275 		/* XXX sanity check... */
276 		max_linkhdr = ALIGN(hdrlen);
277 		max_hdr = max_linkhdr + max_protohdr;
278 		max_datalen = MHLEN - max_hdr;
279 	}
280 	//ic->ic_protmode = IEEE80211_PROT_CTSONLY;
281 
282 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
283 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
284 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
285 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
286 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
287 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
288 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
289 
290 	ic->ic_wme.wme_hipri_switch_hysteresis =
291 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
292 
293 	/* initialize management frame handlers */
294 	ic->ic_send_mgmt = ieee80211_send_mgmt;
295 	ic->ic_raw_xmit = null_raw_xmit;
296 
297 	ieee80211_adhoc_attach(ic);
298 	ieee80211_sta_attach(ic);
299 	ieee80211_wds_attach(ic);
300 	ieee80211_hostap_attach(ic);
301 #ifdef IEEE80211_SUPPORT_MESH
302 	ieee80211_mesh_attach(ic);
303 #endif
304 	ieee80211_monitor_attach(ic);
305 }
306 
307 void
308 ieee80211_proto_detach(struct ieee80211com *ic)
309 {
310 	ieee80211_monitor_detach(ic);
311 #ifdef IEEE80211_SUPPORT_MESH
312 	ieee80211_mesh_detach(ic);
313 #endif
314 	ieee80211_hostap_detach(ic);
315 	ieee80211_wds_detach(ic);
316 	ieee80211_adhoc_detach(ic);
317 	ieee80211_sta_detach(ic);
318 }
319 
320 static void
321 null_update_beacon(struct ieee80211vap *vap, int item)
322 {
323 }
324 
325 void
326 ieee80211_proto_vattach(struct ieee80211vap *vap)
327 {
328 	struct ieee80211com *ic = vap->iv_ic;
329 	struct ifnet *ifp = vap->iv_ifp;
330 	int i;
331 
332 	/* override the 802.3 setting */
333 	ifp->if_hdrlen = ic->ic_headroom
334                 + sizeof(struct ieee80211_qosframe_addr4)
335                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
336                 + IEEE80211_WEP_EXTIVLEN;
337 
338 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
339 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
340 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
341 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
342 	callout_init(&vap->iv_mgtsend, 1);
343 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
344 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
345 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
346 	TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
347 	TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
348 	TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
349 	TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
350 	/*
351 	 * Install default tx rate handling: no fixed rate, lowest
352 	 * supported rate for mgmt and multicast frames.  Default
353 	 * max retry count.  These settings can be changed by the
354 	 * driver and/or user applications.
355 	 */
356 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
357 		if (isclr(ic->ic_modecaps, i))
358 			continue;
359 
360 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
361 
362 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
363 
364 		/*
365 		 * Setting the management rate to MCS 0 assumes that the
366 		 * BSS Basic rate set is empty and the BSS Basic MCS set
367 		 * is not.
368 		 *
369 		 * Since we're not checking this, default to the lowest
370 		 * defined rate for this mode.
371 		 *
372 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
373 		 * some MCS management traffic (eg BA response frames.)
374 		 *
375 		 * See also: 9.6.0 of the 802.11n-2009 specification.
376 		 */
377 #ifdef	NOTYET
378 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
379 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
380 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
381 		} else {
382 			vap->iv_txparms[i].mgmtrate =
383 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
384 			vap->iv_txparms[i].mcastrate =
385 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
386 		}
387 #endif
388 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
389 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
390 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
391 	}
392 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
393 
394 	vap->iv_update_beacon = null_update_beacon;
395 	vap->iv_deliver_data = ieee80211_deliver_data;
396 	vap->iv_protmode = IEEE80211_PROT_CTSONLY;
397 
398 	/* attach support for operating mode */
399 	ic->ic_vattach[vap->iv_opmode](vap);
400 }
401 
402 void
403 ieee80211_proto_vdetach(struct ieee80211vap *vap)
404 {
405 #define	FREEAPPIE(ie) do { \
406 	if (ie != NULL) \
407 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
408 } while (0)
409 	/*
410 	 * Detach operating mode module.
411 	 */
412 	if (vap->iv_opdetach != NULL)
413 		vap->iv_opdetach(vap);
414 	/*
415 	 * This should not be needed as we detach when reseting
416 	 * the state but be conservative here since the
417 	 * authenticator may do things like spawn kernel threads.
418 	 */
419 	if (vap->iv_auth->ia_detach != NULL)
420 		vap->iv_auth->ia_detach(vap);
421 	/*
422 	 * Detach any ACL'ator.
423 	 */
424 	if (vap->iv_acl != NULL)
425 		vap->iv_acl->iac_detach(vap);
426 
427 	FREEAPPIE(vap->iv_appie_beacon);
428 	FREEAPPIE(vap->iv_appie_probereq);
429 	FREEAPPIE(vap->iv_appie_proberesp);
430 	FREEAPPIE(vap->iv_appie_assocreq);
431 	FREEAPPIE(vap->iv_appie_assocresp);
432 	FREEAPPIE(vap->iv_appie_wpa);
433 #undef FREEAPPIE
434 }
435 
436 /*
437  * Simple-minded authenticator module support.
438  */
439 
440 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
441 /* XXX well-known names */
442 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
443 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
444 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
445 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
446 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
447 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
448 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
449 };
450 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
451 
452 static const struct ieee80211_authenticator auth_internal = {
453 	.ia_name		= "wlan_internal",
454 	.ia_attach		= NULL,
455 	.ia_detach		= NULL,
456 	.ia_node_join		= NULL,
457 	.ia_node_leave		= NULL,
458 };
459 
460 /*
461  * Setup internal authenticators once; they are never unregistered.
462  */
463 static void
464 ieee80211_auth_setup(void)
465 {
466 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
467 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
468 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
469 }
470 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
471 
472 const struct ieee80211_authenticator *
473 ieee80211_authenticator_get(int auth)
474 {
475 	if (auth >= IEEE80211_AUTH_MAX)
476 		return NULL;
477 	if (authenticators[auth] == NULL)
478 		ieee80211_load_module(auth_modnames[auth]);
479 	return authenticators[auth];
480 }
481 
482 void
483 ieee80211_authenticator_register(int type,
484 	const struct ieee80211_authenticator *auth)
485 {
486 	if (type >= IEEE80211_AUTH_MAX)
487 		return;
488 	authenticators[type] = auth;
489 }
490 
491 void
492 ieee80211_authenticator_unregister(int type)
493 {
494 
495 	if (type >= IEEE80211_AUTH_MAX)
496 		return;
497 	authenticators[type] = NULL;
498 }
499 
500 /*
501  * Very simple-minded ACL module support.
502  */
503 /* XXX just one for now */
504 static	const struct ieee80211_aclator *acl = NULL;
505 
506 void
507 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
508 {
509 	printf("wlan: %s acl policy registered\n", iac->iac_name);
510 	acl = iac;
511 }
512 
513 void
514 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
515 {
516 	if (acl == iac)
517 		acl = NULL;
518 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
519 }
520 
521 const struct ieee80211_aclator *
522 ieee80211_aclator_get(const char *name)
523 {
524 	if (acl == NULL)
525 		ieee80211_load_module("wlan_acl");
526 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
527 }
528 
529 void
530 ieee80211_print_essid(const uint8_t *essid, int len)
531 {
532 	const uint8_t *p;
533 	int i;
534 
535 	if (len > IEEE80211_NWID_LEN)
536 		len = IEEE80211_NWID_LEN;
537 	/* determine printable or not */
538 	for (i = 0, p = essid; i < len; i++, p++) {
539 		if (*p < ' ' || *p > 0x7e)
540 			break;
541 	}
542 	if (i == len) {
543 		printf("\"");
544 		for (i = 0, p = essid; i < len; i++, p++)
545 			printf("%c", *p);
546 		printf("\"");
547 	} else {
548 		printf("0x");
549 		for (i = 0, p = essid; i < len; i++, p++)
550 			printf("%02x", *p);
551 	}
552 }
553 
554 void
555 ieee80211_dump_pkt(struct ieee80211com *ic,
556 	const uint8_t *buf, int len, int rate, int rssi)
557 {
558 	const struct ieee80211_frame *wh;
559 	int i;
560 
561 	wh = (const struct ieee80211_frame *)buf;
562 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
563 	case IEEE80211_FC1_DIR_NODS:
564 		printf("NODS %s", ether_sprintf(wh->i_addr2));
565 		printf("->%s", ether_sprintf(wh->i_addr1));
566 		printf("(%s)", ether_sprintf(wh->i_addr3));
567 		break;
568 	case IEEE80211_FC1_DIR_TODS:
569 		printf("TODS %s", ether_sprintf(wh->i_addr2));
570 		printf("->%s", ether_sprintf(wh->i_addr3));
571 		printf("(%s)", ether_sprintf(wh->i_addr1));
572 		break;
573 	case IEEE80211_FC1_DIR_FROMDS:
574 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
575 		printf("->%s", ether_sprintf(wh->i_addr1));
576 		printf("(%s)", ether_sprintf(wh->i_addr2));
577 		break;
578 	case IEEE80211_FC1_DIR_DSTODS:
579 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
580 		printf("->%s", ether_sprintf(wh->i_addr3));
581 		printf("(%s", ether_sprintf(wh->i_addr2));
582 		printf("->%s)", ether_sprintf(wh->i_addr1));
583 		break;
584 	}
585 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
586 	case IEEE80211_FC0_TYPE_DATA:
587 		printf(" data");
588 		break;
589 	case IEEE80211_FC0_TYPE_MGT:
590 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
591 		break;
592 	default:
593 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
594 		break;
595 	}
596 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
597 		const struct ieee80211_qosframe *qwh =
598 			(const struct ieee80211_qosframe *)buf;
599 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
600 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
601 	}
602 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
603 		int off;
604 
605 		off = ieee80211_anyhdrspace(ic, wh);
606 		printf(" WEP [IV %.02x %.02x %.02x",
607 			buf[off+0], buf[off+1], buf[off+2]);
608 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
609 			printf(" %.02x %.02x %.02x",
610 				buf[off+4], buf[off+5], buf[off+6]);
611 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
612 	}
613 	if (rate >= 0)
614 		printf(" %dM", rate / 2);
615 	if (rssi >= 0)
616 		printf(" +%d", rssi);
617 	printf("\n");
618 	if (len > 0) {
619 		for (i = 0; i < len; i++) {
620 			if ((i & 1) == 0)
621 				printf(" ");
622 			printf("%02x", buf[i]);
623 		}
624 		printf("\n");
625 	}
626 }
627 
628 static __inline int
629 findrix(const struct ieee80211_rateset *rs, int r)
630 {
631 	int i;
632 
633 	for (i = 0; i < rs->rs_nrates; i++)
634 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
635 			return i;
636 	return -1;
637 }
638 
639 int
640 ieee80211_fix_rate(struct ieee80211_node *ni,
641 	struct ieee80211_rateset *nrs, int flags)
642 {
643 	struct ieee80211vap *vap = ni->ni_vap;
644 	struct ieee80211com *ic = ni->ni_ic;
645 	int i, j, rix, error;
646 	int okrate, badrate, fixedrate, ucastrate;
647 	const struct ieee80211_rateset *srs;
648 	uint8_t r;
649 
650 	error = 0;
651 	okrate = badrate = 0;
652 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
653 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
654 		/*
655 		 * Workaround awkwardness with fixed rate.  We are called
656 		 * to check both the legacy rate set and the HT rate set
657 		 * but we must apply any legacy fixed rate check only to the
658 		 * legacy rate set and vice versa.  We cannot tell what type
659 		 * of rate set we've been given (legacy or HT) but we can
660 		 * distinguish the fixed rate type (MCS have 0x80 set).
661 		 * So to deal with this the caller communicates whether to
662 		 * check MCS or legacy rate using the flags and we use the
663 		 * type of any fixed rate to avoid applying an MCS to a
664 		 * legacy rate and vice versa.
665 		 */
666 		if (ucastrate & 0x80) {
667 			if (flags & IEEE80211_F_DOFRATE)
668 				flags &= ~IEEE80211_F_DOFRATE;
669 		} else if ((ucastrate & 0x80) == 0) {
670 			if (flags & IEEE80211_F_DOFMCS)
671 				flags &= ~IEEE80211_F_DOFMCS;
672 		}
673 		/* NB: required to make MCS match below work */
674 		ucastrate &= IEEE80211_RATE_VAL;
675 	}
676 	fixedrate = IEEE80211_FIXED_RATE_NONE;
677 	/*
678 	 * XXX we are called to process both MCS and legacy rates;
679 	 * we must use the appropriate basic rate set or chaos will
680 	 * ensue; for now callers that want MCS must supply
681 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
682 	 * function so there are two variants, one for MCS and one
683 	 * for legacy rates.
684 	 */
685 	if (flags & IEEE80211_F_DOBRS)
686 		srs = (const struct ieee80211_rateset *)
687 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
688 	else
689 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
690 	for (i = 0; i < nrs->rs_nrates; ) {
691 		if (flags & IEEE80211_F_DOSORT) {
692 			/*
693 			 * Sort rates.
694 			 */
695 			for (j = i + 1; j < nrs->rs_nrates; j++) {
696 				if (IEEE80211_RV(nrs->rs_rates[i]) >
697 				    IEEE80211_RV(nrs->rs_rates[j])) {
698 					r = nrs->rs_rates[i];
699 					nrs->rs_rates[i] = nrs->rs_rates[j];
700 					nrs->rs_rates[j] = r;
701 				}
702 			}
703 		}
704 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
705 		badrate = r;
706 		/*
707 		 * Check for fixed rate.
708 		 */
709 		if (r == ucastrate)
710 			fixedrate = r;
711 		/*
712 		 * Check against supported rates.
713 		 */
714 		rix = findrix(srs, r);
715 		if (flags & IEEE80211_F_DONEGO) {
716 			if (rix < 0) {
717 				/*
718 				 * A rate in the node's rate set is not
719 				 * supported.  If this is a basic rate and we
720 				 * are operating as a STA then this is an error.
721 				 * Otherwise we just discard/ignore the rate.
722 				 */
723 				if ((flags & IEEE80211_F_JOIN) &&
724 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
725 					error++;
726 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
727 				/*
728 				 * Overwrite with the supported rate
729 				 * value so any basic rate bit is set.
730 				 */
731 				nrs->rs_rates[i] = srs->rs_rates[rix];
732 			}
733 		}
734 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
735 			/*
736 			 * Delete unacceptable rates.
737 			 */
738 			nrs->rs_nrates--;
739 			for (j = i; j < nrs->rs_nrates; j++)
740 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
741 			nrs->rs_rates[j] = 0;
742 			continue;
743 		}
744 		if (rix >= 0)
745 			okrate = nrs->rs_rates[i];
746 		i++;
747 	}
748 	if (okrate == 0 || error != 0 ||
749 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
750 	     fixedrate != ucastrate)) {
751 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
752 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
753 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
754 		return badrate | IEEE80211_RATE_BASIC;
755 	} else
756 		return IEEE80211_RV(okrate);
757 }
758 
759 /*
760  * Reset 11g-related state.
761  *
762  * This is for per-VAP ERP/11g state.
763  *
764  * Eventually everything in ieee80211_reset_erp() will be
765  * per-VAP and in here.
766  */
767 void
768 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
769 {
770 	struct ieee80211com *ic = vap->iv_ic;
771 
772 	vap->iv_nonerpsta = 0;
773 	vap->iv_longslotsta = 0;
774 
775 	vap->iv_flags &= ~IEEE80211_F_USEPROT;
776 	/*
777 	 * Set short preamble and ERP barker-preamble flags.
778 	 */
779 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
780 	    (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
781 		vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
782 		vap->iv_flags &= ~IEEE80211_F_USEBARKER;
783 	} else {
784 		vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
785 		vap->iv_flags |= IEEE80211_F_USEBARKER;
786 	}
787 
788 	/*
789 	 * Short slot time is enabled only when operating in 11g
790 	 * and not in an IBSS.  We must also honor whether or not
791 	 * the driver is capable of doing it.
792 	 */
793 	ieee80211_vap_set_shortslottime(vap,
794 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
795 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
796 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
797 		vap->iv_opmode == IEEE80211_M_HOSTAP &&
798 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
799 }
800 
801 /*
802  * Reset 11g-related state.
803  *
804  * Note this resets the global state and a caller should schedule
805  * a re-check of all the VAPs after setup to update said state.
806  */
807 void
808 ieee80211_reset_erp(struct ieee80211com *ic)
809 {
810 #if 0
811 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
812 	/*
813 	 * Set short preamble and ERP barker-preamble flags.
814 	 */
815 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
816 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
817 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
818 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
819 	} else {
820 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
821 		ic->ic_flags |= IEEE80211_F_USEBARKER;
822 	}
823 #endif
824 	/* XXX TODO: schedule a new per-VAP ERP calculation */
825 }
826 
827 /*
828  * Deferred slot time update.
829  *
830  * For per-VAP slot time configuration, call the VAP
831  * method if the VAP requires it.  Otherwise, just call the
832  * older global method.
833  *
834  * If the per-VAP method is called then it's expected that
835  * the driver/firmware will take care of turning the per-VAP
836  * flags into slot time configuration.
837  *
838  * If the per-VAP method is not called then the global flags will be
839  * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
840  * be set only if all of the vaps will have it set.
841  *
842  * Look at the comments for vap_update_erp_protmode() for more
843  * background; this assumes all VAPs are on the same channel.
844  */
845 static void
846 vap_update_slot(void *arg, int npending)
847 {
848 	struct ieee80211vap *vap = arg;
849 	struct ieee80211com *ic = vap->iv_ic;
850 	struct ieee80211vap *iv;
851 	int num_shslot = 0, num_lgslot = 0;
852 
853 	/*
854 	 * Per-VAP path - we've already had the flags updated;
855 	 * so just notify the driver and move on.
856 	 */
857 	if (vap->iv_updateslot != NULL) {
858 		vap->iv_updateslot(vap);
859 		return;
860 	}
861 
862 	/*
863 	 * Iterate over all of the VAP flags to update the
864 	 * global flag.
865 	 *
866 	 * If all vaps have short slot enabled then flip on
867 	 * short slot.  If any vap has it disabled then
868 	 * we leave it globally disabled.  This should provide
869 	 * correct behaviour in a multi-BSS scenario where
870 	 * at least one VAP has short slot disabled for some
871 	 * reason.
872 	 */
873 	IEEE80211_LOCK(ic);
874 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
875 		if (iv->iv_flags & IEEE80211_F_SHSLOT)
876 			num_shslot++;
877 		else
878 			num_lgslot++;
879 	}
880 
881 	/*
882 	 * It looks backwards but - if the number of short slot VAPs
883 	 * is zero then we're not short slot.  Else, we have one
884 	 * or more short slot VAPs and we're checking to see if ANY
885 	 * of them have short slot disabled.
886 	 */
887 	if (num_shslot == 0)
888 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
889 	else if (num_lgslot == 0)
890 		ic->ic_flags |= IEEE80211_F_SHSLOT;
891 	IEEE80211_UNLOCK(ic);
892 
893 	/*
894 	 * Call the driver with our new global slot time flags.
895 	 */
896 	if (ic->ic_updateslot != NULL)
897 		ic->ic_updateslot(ic);
898 }
899 
900 /*
901  * Deferred ERP protmode update.
902  *
903  * This currently calculates the global ERP protection mode flag
904  * based on each of the VAPs.  Any VAP with it enabled is enough
905  * for the global flag to be enabled.  All VAPs with it disabled
906  * is enough for it to be disabled.
907  *
908  * This may make sense right now for the supported hardware where
909  * net80211 is controlling the single channel configuration, but
910  * offload firmware that's doing channel changes (eg off-channel
911  * TDLS, off-channel STA, off-channel P2P STA/AP) may get some
912  * silly looking flag updates.
913  *
914  * Ideally the protection mode calculation is done based on the
915  * channel, and all VAPs using that channel will inherit it.
916  * But until that's what net80211 does, this wil have to do.
917  */
918 static void
919 vap_update_erp_protmode(void *arg, int npending)
920 {
921 	struct ieee80211vap *vap = arg;
922 	struct ieee80211com *ic = vap->iv_ic;
923 	struct ieee80211vap *iv;
924 	int enable_protmode = 0;
925 	int non_erp_present = 0;
926 
927 	/*
928 	 * Iterate over all of the VAPs to calculate the overlapping
929 	 * ERP protection mode configuration and ERP present math.
930 	 *
931 	 * For now we assume that if a driver can handle this per-VAP
932 	 * then it'll ignore the ic->ic_protmode variant and instead
933 	 * will look at the vap related flags.
934 	 */
935 	IEEE80211_LOCK(ic);
936 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
937 		if (iv->iv_flags & IEEE80211_F_USEPROT)
938 			enable_protmode = 1;
939 		if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
940 			non_erp_present = 1;
941 	}
942 
943 	if (enable_protmode)
944 		ic->ic_flags |= IEEE80211_F_USEPROT;
945 	else
946 		ic->ic_flags &= ~IEEE80211_F_USEPROT;
947 
948 	if (non_erp_present)
949 		ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
950 	else
951 		ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
952 
953 	/* Beacon update on all VAPs */
954 	ieee80211_notify_erp_locked(ic);
955 
956 	IEEE80211_UNLOCK(ic);
957 
958 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
959 	    "%s: called; enable_protmode=%d, non_erp_present=%d\n",
960 	    __func__, enable_protmode, non_erp_present);
961 
962 	/*
963 	 * Now that the global configuration flags are calculated,
964 	 * notify the VAP about its configuration.
965 	 *
966 	 * The global flags will be used when assembling ERP IEs
967 	 * for multi-VAP operation, even if it's on a different
968 	 * channel.  Yes, that's going to need fixing in the
969 	 * future.
970 	 */
971 	if (vap->iv_erp_protmode_update != NULL)
972 		vap->iv_erp_protmode_update(vap);
973 }
974 
975 /*
976  * Deferred ERP short preamble/barker update.
977  *
978  * All VAPs need to use short preamble for it to be globally
979  * enabled or not.
980  *
981  * Look at the comments for vap_update_erp_protmode() for more
982  * background; this assumes all VAPs are on the same channel.
983  */
984 static void
985 vap_update_preamble(void *arg, int npending)
986 {
987 	struct ieee80211vap *vap = arg;
988 	struct ieee80211com *ic = vap->iv_ic;
989 	struct ieee80211vap *iv;
990 	int barker_count = 0, short_preamble_count = 0, count = 0;
991 
992 	/*
993 	 * Iterate over all of the VAPs to calculate the overlapping
994 	 * short or long preamble configuration.
995 	 *
996 	 * For now we assume that if a driver can handle this per-VAP
997 	 * then it'll ignore the ic->ic_flags variant and instead
998 	 * will look at the vap related flags.
999 	 */
1000 	IEEE80211_LOCK(ic);
1001 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1002 		if (iv->iv_flags & IEEE80211_F_USEBARKER)
1003 			barker_count++;
1004 		if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
1005 			short_preamble_count++;
1006 		count++;
1007 	}
1008 
1009 	/*
1010 	 * As with vap_update_erp_protmode(), the global flags are
1011 	 * currently used for beacon IEs.
1012 	 */
1013 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1014 	    "%s: called; barker_count=%d, short_preamble_count=%d\n",
1015 	    __func__, barker_count, short_preamble_count);
1016 
1017 	/*
1018 	 * Only flip on short preamble if all of the VAPs support
1019 	 * it.
1020 	 */
1021 	if (barker_count == 0 && short_preamble_count == count) {
1022 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
1023 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
1024 	} else {
1025 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
1026 		ic->ic_flags |= IEEE80211_F_USEBARKER;
1027 	}
1028 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1029 	  "%s: global barker=%d preamble=%d\n",
1030 	  __func__,
1031 	  !! (ic->ic_flags & IEEE80211_F_USEBARKER),
1032 	  !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
1033 
1034 	/* Beacon update on all VAPs */
1035 	ieee80211_notify_erp_locked(ic);
1036 
1037 	IEEE80211_UNLOCK(ic);
1038 
1039 	/* Driver notification */
1040 	if (vap->iv_erp_protmode_update != NULL)
1041 		vap->iv_preamble_update(vap);
1042 }
1043 
1044 /*
1045  * Deferred HT protmode update and beacon update.
1046  *
1047  * Look at the comments for vap_update_erp_protmode() for more
1048  * background; this assumes all VAPs are on the same channel.
1049  */
1050 static void
1051 vap_update_ht_protmode(void *arg, int npending)
1052 {
1053 	struct ieee80211vap *vap = arg;
1054 	struct ieee80211vap *iv;
1055 	struct ieee80211com *ic = vap->iv_ic;
1056 	int num_vaps = 0, num_pure = 0, num_mixed = 0;
1057 	int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
1058 	int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
1059 	int num_nonhtpr = 0;
1060 
1061 	/*
1062 	 * Iterate over all of the VAPs to calculate everything.
1063 	 *
1064 	 * There are a few different flags to calculate:
1065 	 *
1066 	 * + whether there's HT only or HT+legacy stations;
1067 	 * + whether there's HT20, HT40, or HT20+HT40 stations;
1068 	 * + whether the desired protection mode is mixed, pure or
1069 	 *   one of the two above.
1070 	 *
1071 	 * For now we assume that if a driver can handle this per-VAP
1072 	 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
1073 	 * variant and instead will look at the vap related variables.
1074 	 *
1075 	 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
1076 	 */
1077 
1078 	IEEE80211_LOCK(ic);
1079 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1080 		num_vaps++;
1081 		/* overlapping BSSes advertising non-HT status present */
1082 		if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
1083 			num_nonht++;
1084 		/* Operating mode flags */
1085 		if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
1086 			num_nonhtpr++;
1087 		switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
1088 		case IEEE80211_HTINFO_OPMODE_PURE:
1089 			num_pure++;
1090 			break;
1091 		case IEEE80211_HTINFO_OPMODE_PROTOPT:
1092 			num_optional++;
1093 			break;
1094 		case IEEE80211_HTINFO_OPMODE_HT20PR:
1095 			num_ht2040++;
1096 			break;
1097 		case IEEE80211_HTINFO_OPMODE_MIXED:
1098 			num_mixed++;
1099 			break;
1100 		}
1101 
1102 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1103 		    "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
1104 		    __func__,
1105 		    ieee80211_get_vap_ifname(iv),
1106 		    !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
1107 		    iv->iv_curhtprotmode);
1108 
1109 		num_ht_sta += iv->iv_ht_sta_assoc;
1110 		num_ht40_sta += iv->iv_ht40_sta_assoc;
1111 		num_sta += iv->iv_sta_assoc;
1112 	}
1113 
1114 	/*
1115 	 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
1116 	 * non-HT present), set it here.  This shouldn't be used by
1117 	 * anything but the old overlapping BSS logic so if any drivers
1118 	 * consume it, it's up to date.
1119 	 */
1120 	if (num_nonht > 0)
1121 		ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1122 	else
1123 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1124 
1125 	/*
1126 	 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
1127 	 *
1128 	 * + If all VAPs are PURE, we can stay PURE.
1129 	 * + If all VAPs are PROTOPT, we can go to PROTOPT.
1130 	 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
1131 	 *   Note that we may have a VAP with one HT20 and a VAP with one HT40;
1132 	 *   So we look at the sum ht and sum ht40 sta counts; if we have a
1133 	 *   HT station and the HT20 != HT40 count, we have to do HT20PR here.
1134 	 *   Note all stations need to be HT for this to be an option.
1135 	 * + The fall-through is MIXED, because it means we have some odd
1136 	 *   non HT40-involved combination of opmode and this is the most
1137 	 *   sensible default.
1138 	 */
1139 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1140 
1141 	if (num_pure == num_vaps)
1142 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
1143 
1144 	if (num_optional == num_vaps)
1145 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
1146 
1147 	/*
1148 	 * Note: we need /a/ HT40 station somewhere for this to
1149 	 * be a possibility.
1150 	 */
1151 	if ((num_ht2040 > 0) ||
1152 	    ((num_ht_sta > 0) && (num_ht40_sta > 0) &&
1153 	     (num_ht_sta != num_ht40_sta)))
1154 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1155 
1156 	/*
1157 	 * Step 3 - if any of the stations across the VAPs are
1158 	 * non-HT then this needs to be flipped back to MIXED.
1159 	 */
1160 	if (num_ht_sta != num_sta)
1161 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1162 
1163 	/*
1164 	 * Step 4 - If we see any overlapping BSS non-HT stations
1165 	 * via beacons then flip on NONHT_PRESENT.
1166 	 */
1167 	if (num_nonhtpr > 0)
1168 		ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
1169 
1170 	/* Notify all VAPs to potentially update their beacons */
1171 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
1172 		ieee80211_htinfo_notify(iv);
1173 
1174 	IEEE80211_UNLOCK(ic);
1175 
1176 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1177 	  "%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
1178 	  __func__,
1179 	  !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
1180 	  ic->ic_curhtprotmode);
1181 
1182 	/* Driver update */
1183 	if (vap->iv_erp_protmode_update != NULL)
1184 		vap->iv_ht_protmode_update(vap);
1185 }
1186 
1187 /*
1188  * Set the short slot time state and notify the driver.
1189  *
1190  * This is the per-VAP slot time state.
1191  */
1192 void
1193 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
1194 {
1195 	struct ieee80211com *ic = vap->iv_ic;
1196 
1197 	/* XXX lock? */
1198 
1199 	/*
1200 	 * Only modify the per-VAP slot time.
1201 	 */
1202 	if (onoff)
1203 		vap->iv_flags |= IEEE80211_F_SHSLOT;
1204 	else
1205 		vap->iv_flags &= ~IEEE80211_F_SHSLOT;
1206 
1207 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1208 	    "%s: called; onoff=%d\n", __func__, onoff);
1209 	/* schedule the deferred slot flag update and update */
1210 	ieee80211_runtask(ic, &vap->iv_slot_task);
1211 }
1212 
1213 /*
1214  * Update the VAP short /long / barker preamble state and
1215  * update beacon state if needed.
1216  *
1217  * For now it simply copies the global flags into the per-vap
1218  * flags and schedules the callback.  Later this will support
1219  * both global and per-VAP flags, especially useful for
1220  * and STA+STA multi-channel operation (eg p2p).
1221  */
1222 void
1223 ieee80211_vap_update_preamble(struct ieee80211vap *vap)
1224 {
1225 	struct ieee80211com *ic = vap->iv_ic;
1226 
1227 	/* XXX lock? */
1228 
1229 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1230 	    "%s: called\n", __func__);
1231 	/* schedule the deferred slot flag update and update */
1232 	ieee80211_runtask(ic, &vap->iv_preamble_task);
1233 }
1234 
1235 /*
1236  * Update the VAP 11g protection mode and update beacon state
1237  * if needed.
1238  */
1239 void
1240 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
1241 {
1242 	struct ieee80211com *ic = vap->iv_ic;
1243 
1244 	/* XXX lock? */
1245 
1246 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1247 	    "%s: called\n", __func__);
1248 	/* schedule the deferred slot flag update and update */
1249 	ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
1250 }
1251 
1252 /*
1253  * Update the VAP 11n protection mode and update beacon state
1254  * if needed.
1255  */
1256 void
1257 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
1258 {
1259 	struct ieee80211com *ic = vap->iv_ic;
1260 
1261 	/* XXX lock? */
1262 
1263 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1264 	    "%s: called\n", __func__);
1265 	/* schedule the deferred protmode update */
1266 	ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
1267 }
1268 
1269 /*
1270  * Check if the specified rate set supports ERP.
1271  * NB: the rate set is assumed to be sorted.
1272  */
1273 int
1274 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
1275 {
1276 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
1277 	int i, j;
1278 
1279 	if (rs->rs_nrates < nitems(rates))
1280 		return 0;
1281 	for (i = 0; i < nitems(rates); i++) {
1282 		for (j = 0; j < rs->rs_nrates; j++) {
1283 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
1284 			if (rates[i] == r)
1285 				goto next;
1286 			if (r > rates[i])
1287 				return 0;
1288 		}
1289 		return 0;
1290 	next:
1291 		;
1292 	}
1293 	return 1;
1294 }
1295 
1296 /*
1297  * Mark the basic rates for the rate table based on the
1298  * operating mode.  For real 11g we mark all the 11b rates
1299  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
1300  * 11b rates.  There's also a pseudo 11a-mode used to mark only
1301  * the basic OFDM rates.
1302  */
1303 static void
1304 setbasicrates(struct ieee80211_rateset *rs,
1305     enum ieee80211_phymode mode, int add)
1306 {
1307 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
1308 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
1309 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
1310 					    /* NB: mixed b/g */
1311 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
1312 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
1313 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
1314 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
1315 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
1316 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
1317 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
1318 					    /* NB: mixed b/g */
1319 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
1320 					    /* NB: mixed b/g */
1321 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
1322 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
1323 	};
1324 	int i, j;
1325 
1326 	for (i = 0; i < rs->rs_nrates; i++) {
1327 		if (!add)
1328 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
1329 		for (j = 0; j < basic[mode].rs_nrates; j++)
1330 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
1331 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
1332 				break;
1333 			}
1334 	}
1335 }
1336 
1337 /*
1338  * Set the basic rates in a rate set.
1339  */
1340 void
1341 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
1342     enum ieee80211_phymode mode)
1343 {
1344 	setbasicrates(rs, mode, 0);
1345 }
1346 
1347 /*
1348  * Add basic rates to a rate set.
1349  */
1350 void
1351 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
1352     enum ieee80211_phymode mode)
1353 {
1354 	setbasicrates(rs, mode, 1);
1355 }
1356 
1357 /*
1358  * WME protocol support.
1359  *
1360  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
1361  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
1362  * Draft 2.0 Test Plan (Appendix D).
1363  *
1364  * Static/Dynamic Turbo mode settings come from Atheros.
1365  */
1366 typedef struct phyParamType {
1367 	uint8_t		aifsn;
1368 	uint8_t		logcwmin;
1369 	uint8_t		logcwmax;
1370 	uint16_t	txopLimit;
1371 	uint8_t 	acm;
1372 } paramType;
1373 
1374 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
1375 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
1376 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
1377 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
1378 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
1379 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
1380 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
1381 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
1382 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
1383 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
1384 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
1385 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
1386 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
1387 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
1388 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
1389 };
1390 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
1391 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
1392 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
1393 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
1394 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
1395 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
1396 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
1397 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
1398 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
1399 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
1400 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
1401 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
1402 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
1403 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
1404 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
1405 };
1406 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
1407 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
1408 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
1409 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
1410 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
1411 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
1412 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
1413 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
1414 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
1415 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
1416 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
1417 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
1418 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
1419 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
1420 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
1421 };
1422 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1423 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
1424 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
1425 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
1426 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
1427 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
1428 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1429 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1430 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1431 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
1432 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
1433 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
1434 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
1435 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
1436 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
1437 };
1438 
1439 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1440 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
1441 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
1442 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
1443 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
1444 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
1445 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
1446 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
1447 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
1448 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
1449 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
1450 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
1451 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
1452 };
1453 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1454 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
1455 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
1456 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
1457 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
1458 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
1459 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
1460 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
1461 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
1462 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
1463 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
1464 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
1465 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
1466 };
1467 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1468 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
1469 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
1470 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
1471 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
1472 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1473 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1474 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1475 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1476 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1477 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1478 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1479 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1480 };
1481 
1482 static void
1483 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1484 {
1485 	wmep->wmep_aifsn = phy->aifsn;
1486 	wmep->wmep_logcwmin = phy->logcwmin;
1487 	wmep->wmep_logcwmax = phy->logcwmax;
1488 	wmep->wmep_txopLimit = phy->txopLimit;
1489 }
1490 
1491 static void
1492 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1493 	struct wmeParams *wmep, const paramType *phy)
1494 {
1495 	wmep->wmep_acm = phy->acm;
1496 	_setifsparams(wmep, phy);
1497 
1498 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1499 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1500 	    ieee80211_wme_acnames[ac], type,
1501 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1502 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1503 }
1504 
1505 static void
1506 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1507 {
1508 	struct ieee80211com *ic = vap->iv_ic;
1509 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1510 	const paramType *pPhyParam, *pBssPhyParam;
1511 	struct wmeParams *wmep;
1512 	enum ieee80211_phymode mode;
1513 	int i;
1514 
1515 	IEEE80211_LOCK_ASSERT(ic);
1516 
1517 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1518 		return;
1519 
1520 	/*
1521 	 * Clear the wme cap_info field so a qoscount from a previous
1522 	 * vap doesn't confuse later code which only parses the beacon
1523 	 * field and updates hardware when said field changes.
1524 	 * Otherwise the hardware is programmed with defaults, not what
1525 	 * the beacon actually announces.
1526 	 *
1527 	 * Note that we can't ever have 0xff as an actual value;
1528 	 * the only valid values are 0..15.
1529 	 */
1530 	wme->wme_wmeChanParams.cap_info = 0xfe;
1531 
1532 	/*
1533 	 * Select mode; we can be called early in which case we
1534 	 * always use auto mode.  We know we'll be called when
1535 	 * entering the RUN state with bsschan setup properly
1536 	 * so state will eventually get set correctly
1537 	 */
1538 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1539 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1540 	else
1541 		mode = IEEE80211_MODE_AUTO;
1542 	for (i = 0; i < WME_NUM_AC; i++) {
1543 		switch (i) {
1544 		case WME_AC_BK:
1545 			pPhyParam = &phyParamForAC_BK[mode];
1546 			pBssPhyParam = &phyParamForAC_BK[mode];
1547 			break;
1548 		case WME_AC_VI:
1549 			pPhyParam = &phyParamForAC_VI[mode];
1550 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1551 			break;
1552 		case WME_AC_VO:
1553 			pPhyParam = &phyParamForAC_VO[mode];
1554 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1555 			break;
1556 		case WME_AC_BE:
1557 		default:
1558 			pPhyParam = &phyParamForAC_BE[mode];
1559 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1560 			break;
1561 		}
1562 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1563 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1564 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1565 		} else {
1566 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1567 		}
1568 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1569 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1570 	}
1571 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1572 	if (vap->iv_bss != NULL) {
1573 		/*
1574 		 * Calculate aggressive mode switching threshold based
1575 		 * on beacon interval.  This doesn't need locking since
1576 		 * we're only called before entering the RUN state at
1577 		 * which point we start sending beacon frames.
1578 		 */
1579 		wme->wme_hipri_switch_thresh =
1580 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1581 		wme->wme_flags &= ~WME_F_AGGRMODE;
1582 		ieee80211_wme_updateparams(vap);
1583 	}
1584 }
1585 
1586 void
1587 ieee80211_wme_initparams(struct ieee80211vap *vap)
1588 {
1589 	struct ieee80211com *ic = vap->iv_ic;
1590 
1591 	IEEE80211_LOCK(ic);
1592 	ieee80211_wme_initparams_locked(vap);
1593 	IEEE80211_UNLOCK(ic);
1594 }
1595 
1596 /*
1597  * Update WME parameters for ourself and the BSS.
1598  */
1599 void
1600 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1601 {
1602 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1603 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1604 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1605 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1606 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1607 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1608 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1609 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1610 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1611 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1612 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1613 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1614 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1615 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1616 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1617 	};
1618 	struct ieee80211com *ic = vap->iv_ic;
1619 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1620 	const struct wmeParams *wmep;
1621 	struct wmeParams *chanp, *bssp;
1622 	enum ieee80211_phymode mode;
1623 	int i;
1624 	int do_aggrmode = 0;
1625 
1626        	/*
1627 	 * Set up the channel access parameters for the physical
1628 	 * device.  First populate the configured settings.
1629 	 */
1630 	for (i = 0; i < WME_NUM_AC; i++) {
1631 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1632 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1633 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1634 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1635 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1636 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1637 
1638 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1639 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1640 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1641 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1642 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1643 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1644 	}
1645 
1646 	/*
1647 	 * Select mode; we can be called early in which case we
1648 	 * always use auto mode.  We know we'll be called when
1649 	 * entering the RUN state with bsschan setup properly
1650 	 * so state will eventually get set correctly
1651 	 */
1652 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1653 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1654 	else
1655 		mode = IEEE80211_MODE_AUTO;
1656 
1657 	/*
1658 	 * This implements aggressive mode as found in certain
1659 	 * vendors' AP's.  When there is significant high
1660 	 * priority (VI/VO) traffic in the BSS throttle back BE
1661 	 * traffic by using conservative parameters.  Otherwise
1662 	 * BE uses aggressive params to optimize performance of
1663 	 * legacy/non-QoS traffic.
1664 	 */
1665 
1666 	/* Hostap? Only if aggressive mode is enabled */
1667         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1668 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1669 		do_aggrmode = 1;
1670 
1671 	/*
1672 	 * Station? Only if we're in a non-QoS BSS.
1673 	 */
1674 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1675 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1676 		do_aggrmode = 1;
1677 
1678 	/*
1679 	 * IBSS? Only if we we have WME enabled.
1680 	 */
1681 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1682 	    (vap->iv_flags & IEEE80211_F_WME))
1683 		do_aggrmode = 1;
1684 
1685 	/*
1686 	 * If WME is disabled on this VAP, default to aggressive mode
1687 	 * regardless of the configuration.
1688 	 */
1689 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1690 		do_aggrmode = 1;
1691 
1692 	/* XXX WDS? */
1693 
1694 	/* XXX MBSS? */
1695 
1696 	if (do_aggrmode) {
1697 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1698 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1699 
1700 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1701 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1702 		    aggrParam[mode].logcwmin;
1703 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1704 		    aggrParam[mode].logcwmax;
1705 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1706 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1707 			aggrParam[mode].txopLimit : 0;
1708 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1709 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1710 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1711 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1712 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1713 	}
1714 
1715 	/*
1716 	 * Change the contention window based on the number of associated
1717 	 * stations.  If the number of associated stations is 1 and
1718 	 * aggressive mode is enabled, lower the contention window even
1719 	 * further.
1720 	 */
1721 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1722 	    vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1723 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1724 		    [IEEE80211_MODE_AUTO]	= 3,
1725 		    [IEEE80211_MODE_11A]	= 3,
1726 		    [IEEE80211_MODE_11B]	= 4,
1727 		    [IEEE80211_MODE_11G]	= 3,
1728 		    [IEEE80211_MODE_FH]		= 4,
1729 		    [IEEE80211_MODE_TURBO_A]	= 3,
1730 		    [IEEE80211_MODE_TURBO_G]	= 3,
1731 		    [IEEE80211_MODE_STURBO_A]	= 3,
1732 		    [IEEE80211_MODE_HALF]	= 3,
1733 		    [IEEE80211_MODE_QUARTER]	= 3,
1734 		    [IEEE80211_MODE_11NA]	= 3,
1735 		    [IEEE80211_MODE_11NG]	= 3,
1736 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1737 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1738 		};
1739 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1740 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1741 
1742 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1743 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1744 		    "update %s (chan+bss) logcwmin %u\n",
1745 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1746 	}
1747 
1748 	/* schedule the deferred WME update */
1749 	ieee80211_runtask(ic, &vap->iv_wme_task);
1750 
1751 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1752 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1753 	    vap->iv_opmode == IEEE80211_M_STA ?
1754 		wme->wme_wmeChanParams.cap_info :
1755 		wme->wme_bssChanParams.cap_info);
1756 }
1757 
1758 void
1759 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1760 {
1761 	struct ieee80211com *ic = vap->iv_ic;
1762 
1763 	if (ic->ic_caps & IEEE80211_C_WME) {
1764 		IEEE80211_LOCK(ic);
1765 		ieee80211_wme_updateparams_locked(vap);
1766 		IEEE80211_UNLOCK(ic);
1767 	}
1768 }
1769 
1770 /*
1771  * Fetch the WME parameters for the given VAP.
1772  *
1773  * When net80211 grows p2p, etc support, this may return different
1774  * parameters for each VAP.
1775  */
1776 void
1777 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1778 {
1779 
1780 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1781 }
1782 
1783 /*
1784  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
1785  * there may be different VAP WME parameters but only one is "active".
1786  * This returns the "NIC" WME parameters for the currently active
1787  * context.
1788  */
1789 void
1790 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1791 {
1792 
1793 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1794 }
1795 
1796 /*
1797  * Return whether to use QoS on a given WME queue.
1798  *
1799  * This is intended to be called from the transmit path of softmac drivers
1800  * which are setting NoAck bits in transmit descriptors.
1801  *
1802  * Ideally this would be set in some transmit field before the packet is
1803  * queued to the driver but net80211 isn't quite there yet.
1804  */
1805 int
1806 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1807 {
1808 	/* Bounds/sanity check */
1809 	if (ac < 0 || ac >= WME_NUM_AC)
1810 		return (0);
1811 
1812 	/* Again, there's only one global context for now */
1813 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1814 }
1815 
1816 static void
1817 parent_updown(void *arg, int npending)
1818 {
1819 	struct ieee80211com *ic = arg;
1820 
1821 	ic->ic_parent(ic);
1822 }
1823 
1824 static void
1825 update_mcast(void *arg, int npending)
1826 {
1827 	struct ieee80211com *ic = arg;
1828 
1829 	ic->ic_update_mcast(ic);
1830 }
1831 
1832 static void
1833 update_promisc(void *arg, int npending)
1834 {
1835 	struct ieee80211com *ic = arg;
1836 
1837 	ic->ic_update_promisc(ic);
1838 }
1839 
1840 static void
1841 update_channel(void *arg, int npending)
1842 {
1843 	struct ieee80211com *ic = arg;
1844 
1845 	ic->ic_set_channel(ic);
1846 	ieee80211_radiotap_chan_change(ic);
1847 }
1848 
1849 static void
1850 update_chw(void *arg, int npending)
1851 {
1852 	struct ieee80211com *ic = arg;
1853 
1854 	/*
1855 	 * XXX should we defer the channel width _config_ update until now?
1856 	 */
1857 	ic->ic_update_chw(ic);
1858 }
1859 
1860 /*
1861  * Deferred WME parameter and beacon update.
1862  *
1863  * In preparation for per-VAP WME configuration, call the VAP
1864  * method if the VAP requires it.  Otherwise, just call the
1865  * older global method.  There isn't a per-VAP WME configuration
1866  * just yet so for now just use the global configuration.
1867  */
1868 static void
1869 vap_update_wme(void *arg, int npending)
1870 {
1871 	struct ieee80211vap *vap = arg;
1872 	struct ieee80211com *ic = vap->iv_ic;
1873 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1874 
1875 	/* Driver update */
1876 	if (vap->iv_wme_update != NULL)
1877 		vap->iv_wme_update(vap,
1878 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1879 	else
1880 		ic->ic_wme.wme_update(ic);
1881 
1882 	IEEE80211_LOCK(ic);
1883 	/*
1884 	 * Arrange for the beacon update.
1885 	 *
1886 	 * XXX what about MBSS, WDS?
1887 	 */
1888 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1889 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1890 		/*
1891 		 * Arrange for a beacon update and bump the parameter
1892 		 * set number so associated stations load the new values.
1893 		 */
1894 		wme->wme_bssChanParams.cap_info =
1895 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1896 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1897 	}
1898 	IEEE80211_UNLOCK(ic);
1899 }
1900 
1901 static void
1902 restart_vaps(void *arg, int npending)
1903 {
1904 	struct ieee80211com *ic = arg;
1905 
1906 	ieee80211_suspend_all(ic);
1907 	ieee80211_resume_all(ic);
1908 }
1909 
1910 /*
1911  * Block until the parent is in a known state.  This is
1912  * used after any operations that dispatch a task (e.g.
1913  * to auto-configure the parent device up/down).
1914  */
1915 void
1916 ieee80211_waitfor_parent(struct ieee80211com *ic)
1917 {
1918 	taskqueue_block(ic->ic_tq);
1919 	ieee80211_draintask(ic, &ic->ic_parent_task);
1920 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1921 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1922 	ieee80211_draintask(ic, &ic->ic_chan_task);
1923 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1924 	ieee80211_draintask(ic, &ic->ic_chw_task);
1925 	taskqueue_unblock(ic->ic_tq);
1926 }
1927 
1928 /*
1929  * Check to see whether the current channel needs reset.
1930  *
1931  * Some devices don't handle being given an invalid channel
1932  * in their operating mode very well (eg wpi(4) will throw a
1933  * firmware exception.)
1934  *
1935  * Return 0 if we're ok, 1 if the channel needs to be reset.
1936  *
1937  * See PR kern/202502.
1938  */
1939 static int
1940 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1941 {
1942 	struct ieee80211com *ic = vap->iv_ic;
1943 
1944 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1945 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1946 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1947 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1948 		return (1);
1949 	return (0);
1950 }
1951 
1952 /*
1953  * Reset the curchan to a known good state.
1954  */
1955 static void
1956 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1957 {
1958 	struct ieee80211com *ic = vap->iv_ic;
1959 
1960 	ic->ic_curchan = &ic->ic_channels[0];
1961 }
1962 
1963 /*
1964  * Start a vap running.  If this is the first vap to be
1965  * set running on the underlying device then we
1966  * automatically bring the device up.
1967  */
1968 void
1969 ieee80211_start_locked(struct ieee80211vap *vap)
1970 {
1971 	struct ifnet *ifp = vap->iv_ifp;
1972 	struct ieee80211com *ic = vap->iv_ic;
1973 
1974 	IEEE80211_LOCK_ASSERT(ic);
1975 
1976 	IEEE80211_DPRINTF(vap,
1977 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1978 		"start running, %d vaps running\n", ic->ic_nrunning);
1979 
1980 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1981 		/*
1982 		 * Mark us running.  Note that it's ok to do this first;
1983 		 * if we need to bring the parent device up we defer that
1984 		 * to avoid dropping the com lock.  We expect the device
1985 		 * to respond to being marked up by calling back into us
1986 		 * through ieee80211_start_all at which point we'll come
1987 		 * back in here and complete the work.
1988 		 */
1989 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1990 		ieee80211_notify_ifnet_change(vap);
1991 
1992 		/*
1993 		 * We are not running; if this we are the first vap
1994 		 * to be brought up auto-up the parent if necessary.
1995 		 */
1996 		if (ic->ic_nrunning++ == 0) {
1997 			/* reset the channel to a known good channel */
1998 			if (ieee80211_start_check_reset_chan(vap))
1999 				ieee80211_start_reset_chan(vap);
2000 
2001 			IEEE80211_DPRINTF(vap,
2002 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2003 			    "%s: up parent %s\n", __func__, ic->ic_name);
2004 			ieee80211_runtask(ic, &ic->ic_parent_task);
2005 			return;
2006 		}
2007 	}
2008 	/*
2009 	 * If the parent is up and running, then kick the
2010 	 * 802.11 state machine as appropriate.
2011 	 */
2012 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
2013 		if (vap->iv_opmode == IEEE80211_M_STA) {
2014 #if 0
2015 			/* XXX bypasses scan too easily; disable for now */
2016 			/*
2017 			 * Try to be intelligent about clocking the state
2018 			 * machine.  If we're currently in RUN state then
2019 			 * we should be able to apply any new state/parameters
2020 			 * simply by re-associating.  Otherwise we need to
2021 			 * re-scan to select an appropriate ap.
2022 			 */
2023 			if (vap->iv_state >= IEEE80211_S_RUN)
2024 				ieee80211_new_state_locked(vap,
2025 				    IEEE80211_S_ASSOC, 1);
2026 			else
2027 #endif
2028 				ieee80211_new_state_locked(vap,
2029 				    IEEE80211_S_SCAN, 0);
2030 		} else {
2031 			/*
2032 			 * For monitor+wds mode there's nothing to do but
2033 			 * start running.  Otherwise if this is the first
2034 			 * vap to be brought up, start a scan which may be
2035 			 * preempted if the station is locked to a particular
2036 			 * channel.
2037 			 */
2038 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
2039 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
2040 			    vap->iv_opmode == IEEE80211_M_WDS)
2041 				ieee80211_new_state_locked(vap,
2042 				    IEEE80211_S_RUN, -1);
2043 			else
2044 				ieee80211_new_state_locked(vap,
2045 				    IEEE80211_S_SCAN, 0);
2046 		}
2047 	}
2048 }
2049 
2050 /*
2051  * Start a single vap.
2052  */
2053 void
2054 ieee80211_init(void *arg)
2055 {
2056 	struct ieee80211vap *vap = arg;
2057 
2058 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2059 	    "%s\n", __func__);
2060 
2061 	IEEE80211_LOCK(vap->iv_ic);
2062 	ieee80211_start_locked(vap);
2063 	IEEE80211_UNLOCK(vap->iv_ic);
2064 }
2065 
2066 /*
2067  * Start all runnable vap's on a device.
2068  */
2069 void
2070 ieee80211_start_all(struct ieee80211com *ic)
2071 {
2072 	struct ieee80211vap *vap;
2073 
2074 	IEEE80211_LOCK(ic);
2075 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2076 		struct ifnet *ifp = vap->iv_ifp;
2077 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
2078 			ieee80211_start_locked(vap);
2079 	}
2080 	IEEE80211_UNLOCK(ic);
2081 }
2082 
2083 /*
2084  * Stop a vap.  We force it down using the state machine
2085  * then mark it's ifnet not running.  If this is the last
2086  * vap running on the underlying device then we close it
2087  * too to insure it will be properly initialized when the
2088  * next vap is brought up.
2089  */
2090 void
2091 ieee80211_stop_locked(struct ieee80211vap *vap)
2092 {
2093 	struct ieee80211com *ic = vap->iv_ic;
2094 	struct ifnet *ifp = vap->iv_ifp;
2095 
2096 	IEEE80211_LOCK_ASSERT(ic);
2097 
2098 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2099 	    "stop running, %d vaps running\n", ic->ic_nrunning);
2100 
2101 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
2102 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2103 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
2104 		ieee80211_notify_ifnet_change(vap);
2105 		if (--ic->ic_nrunning == 0) {
2106 			IEEE80211_DPRINTF(vap,
2107 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2108 			    "down parent %s\n", ic->ic_name);
2109 			ieee80211_runtask(ic, &ic->ic_parent_task);
2110 		}
2111 	}
2112 }
2113 
2114 void
2115 ieee80211_stop(struct ieee80211vap *vap)
2116 {
2117 	struct ieee80211com *ic = vap->iv_ic;
2118 
2119 	IEEE80211_LOCK(ic);
2120 	ieee80211_stop_locked(vap);
2121 	IEEE80211_UNLOCK(ic);
2122 }
2123 
2124 /*
2125  * Stop all vap's running on a device.
2126  */
2127 void
2128 ieee80211_stop_all(struct ieee80211com *ic)
2129 {
2130 	struct ieee80211vap *vap;
2131 
2132 	IEEE80211_LOCK(ic);
2133 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2134 		struct ifnet *ifp = vap->iv_ifp;
2135 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
2136 			ieee80211_stop_locked(vap);
2137 	}
2138 	IEEE80211_UNLOCK(ic);
2139 
2140 	ieee80211_waitfor_parent(ic);
2141 }
2142 
2143 /*
2144  * Stop all vap's running on a device and arrange
2145  * for those that were running to be resumed.
2146  */
2147 void
2148 ieee80211_suspend_all(struct ieee80211com *ic)
2149 {
2150 	struct ieee80211vap *vap;
2151 
2152 	IEEE80211_LOCK(ic);
2153 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2154 		struct ifnet *ifp = vap->iv_ifp;
2155 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
2156 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
2157 			ieee80211_stop_locked(vap);
2158 		}
2159 	}
2160 	IEEE80211_UNLOCK(ic);
2161 
2162 	ieee80211_waitfor_parent(ic);
2163 }
2164 
2165 /*
2166  * Start all vap's marked for resume.
2167  */
2168 void
2169 ieee80211_resume_all(struct ieee80211com *ic)
2170 {
2171 	struct ieee80211vap *vap;
2172 
2173 	IEEE80211_LOCK(ic);
2174 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2175 		struct ifnet *ifp = vap->iv_ifp;
2176 		if (!IFNET_IS_UP_RUNNING(ifp) &&
2177 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
2178 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
2179 			ieee80211_start_locked(vap);
2180 		}
2181 	}
2182 	IEEE80211_UNLOCK(ic);
2183 }
2184 
2185 /*
2186  * Restart all vap's running on a device.
2187  */
2188 void
2189 ieee80211_restart_all(struct ieee80211com *ic)
2190 {
2191 	/*
2192 	 * NB: do not use ieee80211_runtask here, we will
2193 	 * block & drain net80211 taskqueue.
2194 	 */
2195 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
2196 }
2197 
2198 void
2199 ieee80211_beacon_miss(struct ieee80211com *ic)
2200 {
2201 	IEEE80211_LOCK(ic);
2202 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2203 		/* Process in a taskq, the handler may reenter the driver */
2204 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
2205 	}
2206 	IEEE80211_UNLOCK(ic);
2207 }
2208 
2209 static void
2210 beacon_miss(void *arg, int npending)
2211 {
2212 	struct ieee80211com *ic = arg;
2213 	struct ieee80211vap *vap;
2214 
2215 	IEEE80211_LOCK(ic);
2216 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2217 		/*
2218 		 * We only pass events through for sta vap's in RUN+ state;
2219 		 * may be too restrictive but for now this saves all the
2220 		 * handlers duplicating these checks.
2221 		 */
2222 		if (vap->iv_opmode == IEEE80211_M_STA &&
2223 		    vap->iv_state >= IEEE80211_S_RUN &&
2224 		    vap->iv_bmiss != NULL)
2225 			vap->iv_bmiss(vap);
2226 	}
2227 	IEEE80211_UNLOCK(ic);
2228 }
2229 
2230 static void
2231 beacon_swmiss(void *arg, int npending)
2232 {
2233 	struct ieee80211vap *vap = arg;
2234 	struct ieee80211com *ic = vap->iv_ic;
2235 
2236 	IEEE80211_LOCK(ic);
2237 	if (vap->iv_state >= IEEE80211_S_RUN) {
2238 		/* XXX Call multiple times if npending > zero? */
2239 		vap->iv_bmiss(vap);
2240 	}
2241 	IEEE80211_UNLOCK(ic);
2242 }
2243 
2244 /*
2245  * Software beacon miss handling.  Check if any beacons
2246  * were received in the last period.  If not post a
2247  * beacon miss; otherwise reset the counter.
2248  */
2249 void
2250 ieee80211_swbmiss(void *arg)
2251 {
2252 	struct ieee80211vap *vap = arg;
2253 	struct ieee80211com *ic = vap->iv_ic;
2254 
2255 	IEEE80211_LOCK_ASSERT(ic);
2256 
2257 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2258 	    ("wrong state %d", vap->iv_state));
2259 
2260 	if (ic->ic_flags & IEEE80211_F_SCAN) {
2261 		/*
2262 		 * If scanning just ignore and reset state.  If we get a
2263 		 * bmiss after coming out of scan because we haven't had
2264 		 * time to receive a beacon then we should probe the AP
2265 		 * before posting a real bmiss (unless iv_bmiss_max has
2266 		 * been artifiically lowered).  A cleaner solution might
2267 		 * be to disable the timer on scan start/end but to handle
2268 		 * case of multiple sta vap's we'd need to disable the
2269 		 * timers of all affected vap's.
2270 		 */
2271 		vap->iv_swbmiss_count = 0;
2272 	} else if (vap->iv_swbmiss_count == 0) {
2273 		if (vap->iv_bmiss != NULL)
2274 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
2275 	} else
2276 		vap->iv_swbmiss_count = 0;
2277 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
2278 		ieee80211_swbmiss, vap);
2279 }
2280 
2281 /*
2282  * Start an 802.11h channel switch.  We record the parameters,
2283  * mark the operation pending, notify each vap through the
2284  * beacon update mechanism so it can update the beacon frame
2285  * contents, and then switch vap's to CSA state to block outbound
2286  * traffic.  Devices that handle CSA directly can use the state
2287  * switch to do the right thing so long as they call
2288  * ieee80211_csa_completeswitch when it's time to complete the
2289  * channel change.  Devices that depend on the net80211 layer can
2290  * use ieee80211_beacon_update to handle the countdown and the
2291  * channel switch.
2292  */
2293 void
2294 ieee80211_csa_startswitch(struct ieee80211com *ic,
2295 	struct ieee80211_channel *c, int mode, int count)
2296 {
2297 	struct ieee80211vap *vap;
2298 
2299 	IEEE80211_LOCK_ASSERT(ic);
2300 
2301 	ic->ic_csa_newchan = c;
2302 	ic->ic_csa_mode = mode;
2303 	ic->ic_csa_count = count;
2304 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
2305 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2306 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2307 		    vap->iv_opmode == IEEE80211_M_IBSS ||
2308 		    vap->iv_opmode == IEEE80211_M_MBSS)
2309 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
2310 		/* switch to CSA state to block outbound traffic */
2311 		if (vap->iv_state == IEEE80211_S_RUN)
2312 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
2313 	}
2314 	ieee80211_notify_csa(ic, c, mode, count);
2315 }
2316 
2317 /*
2318  * Complete the channel switch by transitioning all CSA VAPs to RUN.
2319  * This is called by both the completion and cancellation functions
2320  * so each VAP is placed back in the RUN state and can thus transmit.
2321  */
2322 static void
2323 csa_completeswitch(struct ieee80211com *ic)
2324 {
2325 	struct ieee80211vap *vap;
2326 
2327 	ic->ic_csa_newchan = NULL;
2328 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
2329 
2330 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2331 		if (vap->iv_state == IEEE80211_S_CSA)
2332 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2333 }
2334 
2335 /*
2336  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
2337  * We clear state and move all vap's in CSA state to RUN state
2338  * so they can again transmit.
2339  *
2340  * Although this may not be completely correct, update the BSS channel
2341  * for each VAP to the newly configured channel. The setcurchan sets
2342  * the current operating channel for the interface (so the radio does
2343  * switch over) but the VAP BSS isn't updated, leading to incorrectly
2344  * reported information via ioctl.
2345  */
2346 void
2347 ieee80211_csa_completeswitch(struct ieee80211com *ic)
2348 {
2349 	struct ieee80211vap *vap;
2350 
2351 	IEEE80211_LOCK_ASSERT(ic);
2352 
2353 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
2354 
2355 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
2356 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2357 		if (vap->iv_state == IEEE80211_S_CSA)
2358 			vap->iv_bss->ni_chan = ic->ic_curchan;
2359 
2360 	csa_completeswitch(ic);
2361 }
2362 
2363 /*
2364  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
2365  * We clear state and move all vap's in CSA state to RUN state
2366  * so they can again transmit.
2367  */
2368 void
2369 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
2370 {
2371 	IEEE80211_LOCK_ASSERT(ic);
2372 
2373 	csa_completeswitch(ic);
2374 }
2375 
2376 /*
2377  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
2378  * We clear state and move all vap's in CAC state to RUN state.
2379  */
2380 void
2381 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2382 {
2383 	struct ieee80211com *ic = vap0->iv_ic;
2384 	struct ieee80211vap *vap;
2385 
2386 	IEEE80211_LOCK(ic);
2387 	/*
2388 	 * Complete CAC state change for lead vap first; then
2389 	 * clock all the other vap's waiting.
2390 	 */
2391 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2392 	    ("wrong state %d", vap0->iv_state));
2393 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2394 
2395 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2396 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2397 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2398 	IEEE80211_UNLOCK(ic);
2399 }
2400 
2401 /*
2402  * Force all vap's other than the specified vap to the INIT state
2403  * and mark them as waiting for a scan to complete.  These vaps
2404  * will be brought up when the scan completes and the scanning vap
2405  * reaches RUN state by wakeupwaiting.
2406  */
2407 static void
2408 markwaiting(struct ieee80211vap *vap0)
2409 {
2410 	struct ieee80211com *ic = vap0->iv_ic;
2411 	struct ieee80211vap *vap;
2412 
2413 	IEEE80211_LOCK_ASSERT(ic);
2414 
2415 	/*
2416 	 * A vap list entry can not disappear since we are running on the
2417 	 * taskqueue and a vap destroy will queue and drain another state
2418 	 * change task.
2419 	 */
2420 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2421 		if (vap == vap0)
2422 			continue;
2423 		if (vap->iv_state != IEEE80211_S_INIT) {
2424 			/* NB: iv_newstate may drop the lock */
2425 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2426 			IEEE80211_LOCK_ASSERT(ic);
2427 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2428 		}
2429 	}
2430 }
2431 
2432 /*
2433  * Wakeup all vap's waiting for a scan to complete.  This is the
2434  * companion to markwaiting (above) and is used to coordinate
2435  * multiple vaps scanning.
2436  * This is called from the state taskqueue.
2437  */
2438 static void
2439 wakeupwaiting(struct ieee80211vap *vap0)
2440 {
2441 	struct ieee80211com *ic = vap0->iv_ic;
2442 	struct ieee80211vap *vap;
2443 
2444 	IEEE80211_LOCK_ASSERT(ic);
2445 
2446 	/*
2447 	 * A vap list entry can not disappear since we are running on the
2448 	 * taskqueue and a vap destroy will queue and drain another state
2449 	 * change task.
2450 	 */
2451 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2452 		if (vap == vap0)
2453 			continue;
2454 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2455 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2456 			/* NB: sta's cannot go INIT->RUN */
2457 			/* NB: iv_newstate may drop the lock */
2458 			vap->iv_newstate(vap,
2459 			    vap->iv_opmode == IEEE80211_M_STA ?
2460 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2461 			IEEE80211_LOCK_ASSERT(ic);
2462 		}
2463 	}
2464 }
2465 
2466 /*
2467  * Handle post state change work common to all operating modes.
2468  */
2469 static void
2470 ieee80211_newstate_cb(void *xvap, int npending)
2471 {
2472 	struct ieee80211vap *vap = xvap;
2473 	struct ieee80211com *ic = vap->iv_ic;
2474 	enum ieee80211_state nstate, ostate;
2475 	int arg, rc;
2476 
2477 	IEEE80211_LOCK(ic);
2478 	nstate = vap->iv_nstate;
2479 	arg = vap->iv_nstate_arg;
2480 
2481 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2482 		/*
2483 		 * We have been requested to drop back to the INIT before
2484 		 * proceeding to the new state.
2485 		 */
2486 		/* Deny any state changes while we are here. */
2487 		vap->iv_nstate = IEEE80211_S_INIT;
2488 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2489 		    "%s: %s -> %s arg %d\n", __func__,
2490 		    ieee80211_state_name[vap->iv_state],
2491 		    ieee80211_state_name[vap->iv_nstate], arg);
2492 		vap->iv_newstate(vap, vap->iv_nstate, 0);
2493 		IEEE80211_LOCK_ASSERT(ic);
2494 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2495 		    IEEE80211_FEXT_STATEWAIT);
2496 		/* enqueue new state transition after cancel_scan() task */
2497 		ieee80211_new_state_locked(vap, nstate, arg);
2498 		goto done;
2499 	}
2500 
2501 	ostate = vap->iv_state;
2502 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2503 		/*
2504 		 * SCAN was forced; e.g. on beacon miss.  Force other running
2505 		 * vap's to INIT state and mark them as waiting for the scan to
2506 		 * complete.  This insures they don't interfere with our
2507 		 * scanning.  Since we are single threaded the vaps can not
2508 		 * transition again while we are executing.
2509 		 *
2510 		 * XXX not always right, assumes ap follows sta
2511 		 */
2512 		markwaiting(vap);
2513 	}
2514 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2515 	    "%s: %s -> %s arg %d\n", __func__,
2516 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2517 
2518 	rc = vap->iv_newstate(vap, nstate, arg);
2519 	IEEE80211_LOCK_ASSERT(ic);
2520 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2521 	if (rc != 0) {
2522 		/* State transition failed */
2523 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2524 		KASSERT(nstate != IEEE80211_S_INIT,
2525 		    ("INIT state change failed"));
2526 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2527 		    "%s: %s returned error %d\n", __func__,
2528 		    ieee80211_state_name[nstate], rc);
2529 		goto done;
2530 	}
2531 
2532 	/* No actual transition, skip post processing */
2533 	if (ostate == nstate)
2534 		goto done;
2535 
2536 	if (nstate == IEEE80211_S_RUN) {
2537 		/*
2538 		 * OACTIVE may be set on the vap if the upper layer
2539 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2540 		 * RUN state.  Clear it and restart xmit.
2541 		 *
2542 		 * Note this can also happen as a result of SLEEP->RUN
2543 		 * (i.e. coming out of power save mode).
2544 		 */
2545 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2546 
2547 		/*
2548 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2549 		 */
2550 
2551 		/* bring up any vaps waiting on us */
2552 		wakeupwaiting(vap);
2553 	} else if (nstate == IEEE80211_S_INIT) {
2554 		/*
2555 		 * Flush the scan cache if we did the last scan (XXX?)
2556 		 * and flush any frames on send queues from this vap.
2557 		 * Note the mgt q is used only for legacy drivers and
2558 		 * will go away shortly.
2559 		 */
2560 		ieee80211_scan_flush(vap);
2561 
2562 		/*
2563 		 * XXX TODO: ic/vap queue flush
2564 		 */
2565 	}
2566 done:
2567 	IEEE80211_UNLOCK(ic);
2568 }
2569 
2570 /*
2571  * Public interface for initiating a state machine change.
2572  * This routine single-threads the request and coordinates
2573  * the scheduling of multiple vaps for the purpose of selecting
2574  * an operating channel.  Specifically the following scenarios
2575  * are handled:
2576  * o only one vap can be selecting a channel so on transition to
2577  *   SCAN state if another vap is already scanning then
2578  *   mark the caller for later processing and return without
2579  *   doing anything (XXX? expectations by caller of synchronous operation)
2580  * o only one vap can be doing CAC of a channel so on transition to
2581  *   CAC state if another vap is already scanning for radar then
2582  *   mark the caller for later processing and return without
2583  *   doing anything (XXX? expectations by caller of synchronous operation)
2584  * o if another vap is already running when a request is made
2585  *   to SCAN then an operating channel has been chosen; bypass
2586  *   the scan and just join the channel
2587  *
2588  * Note that the state change call is done through the iv_newstate
2589  * method pointer so any driver routine gets invoked.  The driver
2590  * will normally call back into operating mode-specific
2591  * ieee80211_newstate routines (below) unless it needs to completely
2592  * bypass the state machine (e.g. because the firmware has it's
2593  * own idea how things should work).  Bypassing the net80211 layer
2594  * is usually a mistake and indicates lack of proper integration
2595  * with the net80211 layer.
2596  */
2597 int
2598 ieee80211_new_state_locked(struct ieee80211vap *vap,
2599 	enum ieee80211_state nstate, int arg)
2600 {
2601 	struct ieee80211com *ic = vap->iv_ic;
2602 	struct ieee80211vap *vp;
2603 	enum ieee80211_state ostate;
2604 	int nrunning, nscanning;
2605 
2606 	IEEE80211_LOCK_ASSERT(ic);
2607 
2608 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2609 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2610 		    ((vap->iv_state == IEEE80211_S_INIT ||
2611 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2612 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2613 		    nstate > IEEE80211_S_SCAN)) {
2614 			/*
2615 			 * XXX The vap is being stopped/started,
2616 			 * do not allow any other state changes
2617 			 * until this is completed.
2618 			 */
2619 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2620 			    "%s: %s -> %s (%s) transition discarded\n",
2621 			    __func__,
2622 			    ieee80211_state_name[vap->iv_state],
2623 			    ieee80211_state_name[nstate],
2624 			    ieee80211_state_name[vap->iv_nstate]);
2625 			return -1;
2626 		} else if (vap->iv_state != vap->iv_nstate) {
2627 #if 0
2628 			/* Warn if the previous state hasn't completed. */
2629 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2630 			    "%s: pending %s -> %s transition lost\n", __func__,
2631 			    ieee80211_state_name[vap->iv_state],
2632 			    ieee80211_state_name[vap->iv_nstate]);
2633 #else
2634 			/* XXX temporarily enable to identify issues */
2635 			if_printf(vap->iv_ifp,
2636 			    "%s: pending %s -> %s transition lost\n",
2637 			    __func__, ieee80211_state_name[vap->iv_state],
2638 			    ieee80211_state_name[vap->iv_nstate]);
2639 #endif
2640 		}
2641 	}
2642 
2643 	nrunning = nscanning = 0;
2644 	/* XXX can track this state instead of calculating */
2645 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2646 		if (vp != vap) {
2647 			if (vp->iv_state >= IEEE80211_S_RUN)
2648 				nrunning++;
2649 			/* XXX doesn't handle bg scan */
2650 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2651 			else if (vp->iv_state > IEEE80211_S_INIT)
2652 				nscanning++;
2653 		}
2654 	}
2655 	ostate = vap->iv_state;
2656 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2657 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2658 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2659 	    nrunning, nscanning);
2660 	switch (nstate) {
2661 	case IEEE80211_S_SCAN:
2662 		if (ostate == IEEE80211_S_INIT) {
2663 			/*
2664 			 * INIT -> SCAN happens on initial bringup.
2665 			 */
2666 			KASSERT(!(nscanning && nrunning),
2667 			    ("%d scanning and %d running", nscanning, nrunning));
2668 			if (nscanning) {
2669 				/*
2670 				 * Someone is scanning, defer our state
2671 				 * change until the work has completed.
2672 				 */
2673 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2674 				    "%s: defer %s -> %s\n",
2675 				    __func__, ieee80211_state_name[ostate],
2676 				    ieee80211_state_name[nstate]);
2677 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2678 				return 0;
2679 			}
2680 			if (nrunning) {
2681 				/*
2682 				 * Someone is operating; just join the channel
2683 				 * they have chosen.
2684 				 */
2685 				/* XXX kill arg? */
2686 				/* XXX check each opmode, adhoc? */
2687 				if (vap->iv_opmode == IEEE80211_M_STA)
2688 					nstate = IEEE80211_S_SCAN;
2689 				else
2690 					nstate = IEEE80211_S_RUN;
2691 #ifdef IEEE80211_DEBUG
2692 				if (nstate != IEEE80211_S_SCAN) {
2693 					IEEE80211_DPRINTF(vap,
2694 					    IEEE80211_MSG_STATE,
2695 					    "%s: override, now %s -> %s\n",
2696 					    __func__,
2697 					    ieee80211_state_name[ostate],
2698 					    ieee80211_state_name[nstate]);
2699 				}
2700 #endif
2701 			}
2702 		}
2703 		break;
2704 	case IEEE80211_S_RUN:
2705 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2706 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2707 		    nscanning) {
2708 			/*
2709 			 * Legacy WDS with someone else scanning; don't
2710 			 * go online until that completes as we should
2711 			 * follow the other vap to the channel they choose.
2712 			 */
2713 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2714 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2715 			     ieee80211_state_name[ostate],
2716 			     ieee80211_state_name[nstate]);
2717 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2718 			return 0;
2719 		}
2720 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2721 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2722 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2723 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2724 			/*
2725 			 * This is a DFS channel, transition to CAC state
2726 			 * instead of RUN.  This allows us to initiate
2727 			 * Channel Availability Check (CAC) as specified
2728 			 * by 11h/DFS.
2729 			 */
2730 			nstate = IEEE80211_S_CAC;
2731 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2732 			     "%s: override %s -> %s (DFS)\n", __func__,
2733 			     ieee80211_state_name[ostate],
2734 			     ieee80211_state_name[nstate]);
2735 		}
2736 		break;
2737 	case IEEE80211_S_INIT:
2738 		/* cancel any scan in progress */
2739 		ieee80211_cancel_scan(vap);
2740 		if (ostate == IEEE80211_S_INIT ) {
2741 			/* XXX don't believe this */
2742 			/* INIT -> INIT. nothing to do */
2743 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2744 		}
2745 		/* fall thru... */
2746 	default:
2747 		break;
2748 	}
2749 	/* defer the state change to a thread */
2750 	vap->iv_nstate = nstate;
2751 	vap->iv_nstate_arg = arg;
2752 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2753 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2754 	return EINPROGRESS;
2755 }
2756 
2757 int
2758 ieee80211_new_state(struct ieee80211vap *vap,
2759 	enum ieee80211_state nstate, int arg)
2760 {
2761 	struct ieee80211com *ic = vap->iv_ic;
2762 	int rc;
2763 
2764 	IEEE80211_LOCK(ic);
2765 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2766 	IEEE80211_UNLOCK(ic);
2767 	return rc;
2768 }
2769