xref: /freebsd/sys/netinet/in_pcb.c (revision 224e0c2f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/if_types.h>
80 #include <net/if_llatbl.h>
81 #include <net/route.h>
82 #include <net/rss_config.h>
83 #include <net/vnet.h>
84 
85 #if defined(INET) || defined(INET6)
86 #include <netinet/in.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/udp.h>
91 #include <netinet/udp_var.h>
92 #endif
93 #ifdef INET
94 #include <netinet/in_var.h>
95 #endif
96 #ifdef INET6
97 #include <netinet/ip6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/in6_var.h>
100 #include <netinet6/ip6_var.h>
101 #endif /* INET6 */
102 
103 #include <netipsec/ipsec_support.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 static struct callout	ipport_tick_callout;
108 
109 /*
110  * These configure the range of local port addresses assigned to
111  * "unspecified" outgoing connections/packets/whatever.
112  */
113 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
114 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
115 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
116 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
117 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
118 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
119 
120 /*
121  * Reserved ports accessible only to root. There are significant
122  * security considerations that must be accounted for when changing these,
123  * but the security benefits can be great. Please be careful.
124  */
125 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
126 VNET_DEFINE(int, ipport_reservedlow);
127 
128 /* Variables dealing with random ephemeral port allocation. */
129 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
130 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
131 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
132 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
133 VNET_DEFINE(int, ipport_tcpallocs);
134 static VNET_DEFINE(int, ipport_tcplastcount);
135 
136 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
137 
138 static void	in_pcbremlists(struct inpcb *inp);
139 #ifdef INET
140 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
141 			    struct in_addr faddr, u_int fport_arg,
142 			    struct in_addr laddr, u_int lport_arg,
143 			    int lookupflags, struct ifnet *ifp);
144 
145 #define RANGECHK(var, min, max) \
146 	if ((var) < (min)) { (var) = (min); } \
147 	else if ((var) > (max)) { (var) = (max); }
148 
149 static int
150 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
151 {
152 	int error;
153 
154 	error = sysctl_handle_int(oidp, arg1, arg2, req);
155 	if (error == 0) {
156 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
157 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
158 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
160 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
161 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
162 	}
163 	return (error);
164 }
165 
166 #undef RANGECHK
167 
168 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
169     "IP Ports");
170 
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
173 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
174 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
175 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
176 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
177 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
178 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
179 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
180 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
181 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
182 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
184 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
185 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
187 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
188 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
189 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
190 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
191 	&VNET_NAME(ipport_reservedhigh), 0, "");
192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
193 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
194 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
195 	CTLFLAG_VNET | CTLFLAG_RW,
196 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
198 	CTLFLAG_VNET | CTLFLAG_RW,
199 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
200 	"allocations before switching to a sequental one");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomtime), 0,
204 	"Minimum time to keep sequental port "
205 	"allocation before switching to a random one");
206 #endif /* INET */
207 
208 /*
209  * in_pcb.c: manage the Protocol Control Blocks.
210  *
211  * NOTE: It is assumed that most of these functions will be called with
212  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
213  * functions often modify hash chains or addresses in pcbs.
214  */
215 
216 /*
217  * Different protocols initialize their inpcbs differently - giving
218  * different name to the lock.  But they all are disposed the same.
219  */
220 static void
221 inpcb_fini(void *mem, int size)
222 {
223 	struct inpcb *inp = mem;
224 
225 	INP_LOCK_DESTROY(inp);
226 }
227 
228 /*
229  * Initialize an inpcbinfo -- we should be able to reduce the number of
230  * arguments in time.
231  */
232 void
233 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
234     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
235     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
236 {
237 
238 	INP_INFO_LOCK_INIT(pcbinfo, name);
239 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
240 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
241 #ifdef VIMAGE
242 	pcbinfo->ipi_vnet = curvnet;
243 #endif
244 	pcbinfo->ipi_listhead = listhead;
245 	LIST_INIT(pcbinfo->ipi_listhead);
246 	pcbinfo->ipi_count = 0;
247 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
248 	    &pcbinfo->ipi_hashmask);
249 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
250 	    &pcbinfo->ipi_porthashmask);
251 #ifdef PCBGROUP
252 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
253 #endif
254 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
255 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
256 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
257 	uma_zone_set_warning(pcbinfo->ipi_zone,
258 	    "kern.ipc.maxsockets limit reached");
259 }
260 
261 /*
262  * Destroy an inpcbinfo.
263  */
264 void
265 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
266 {
267 
268 	KASSERT(pcbinfo->ipi_count == 0,
269 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
270 
271 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
272 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
273 	    pcbinfo->ipi_porthashmask);
274 #ifdef PCBGROUP
275 	in_pcbgroup_destroy(pcbinfo);
276 #endif
277 	uma_zdestroy(pcbinfo->ipi_zone);
278 	INP_LIST_LOCK_DESTROY(pcbinfo);
279 	INP_HASH_LOCK_DESTROY(pcbinfo);
280 	INP_INFO_LOCK_DESTROY(pcbinfo);
281 }
282 
283 /*
284  * Allocate a PCB and associate it with the socket.
285  * On success return with the PCB locked.
286  */
287 int
288 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
289 {
290 	struct inpcb *inp;
291 	int error;
292 
293 #ifdef INVARIANTS
294 	if (pcbinfo == &V_tcbinfo) {
295 		INP_INFO_RLOCK_ASSERT(pcbinfo);
296 	} else {
297 		INP_INFO_WLOCK_ASSERT(pcbinfo);
298 	}
299 #endif
300 
301 	error = 0;
302 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
303 	if (inp == NULL)
304 		return (ENOBUFS);
305 	bzero(&inp->inp_start_zero, inp_zero_size);
306 	inp->inp_pcbinfo = pcbinfo;
307 	inp->inp_socket = so;
308 	inp->inp_cred = crhold(so->so_cred);
309 	inp->inp_inc.inc_fibnum = so->so_fibnum;
310 #ifdef MAC
311 	error = mac_inpcb_init(inp, M_NOWAIT);
312 	if (error != 0)
313 		goto out;
314 	mac_inpcb_create(so, inp);
315 #endif
316 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
317 	error = ipsec_init_pcbpolicy(inp);
318 	if (error != 0) {
319 #ifdef MAC
320 		mac_inpcb_destroy(inp);
321 #endif
322 		goto out;
323 	}
324 #endif /*IPSEC*/
325 #ifdef INET6
326 	if (INP_SOCKAF(so) == AF_INET6) {
327 		inp->inp_vflag |= INP_IPV6PROTO;
328 		if (V_ip6_v6only)
329 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
330 	}
331 #endif
332 	INP_WLOCK(inp);
333 	INP_LIST_WLOCK(pcbinfo);
334 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
335 	pcbinfo->ipi_count++;
336 	so->so_pcb = (caddr_t)inp;
337 #ifdef INET6
338 	if (V_ip6_auto_flowlabel)
339 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
340 #endif
341 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
342 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
343 
344 	/*
345 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
346 	 * to be cleaned up.
347 	 */
348 	inp->inp_route.ro_flags = RT_LLE_CACHE;
349 	INP_LIST_WUNLOCK(pcbinfo);
350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
351 out:
352 	if (error != 0) {
353 		crfree(inp->inp_cred);
354 		uma_zfree(pcbinfo->ipi_zone, inp);
355 	}
356 #endif
357 	return (error);
358 }
359 
360 #ifdef INET
361 int
362 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
363 {
364 	int anonport, error;
365 
366 	INP_WLOCK_ASSERT(inp);
367 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
368 
369 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
370 		return (EINVAL);
371 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
372 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
373 	    &inp->inp_lport, cred);
374 	if (error)
375 		return (error);
376 	if (in_pcbinshash(inp) != 0) {
377 		inp->inp_laddr.s_addr = INADDR_ANY;
378 		inp->inp_lport = 0;
379 		return (EAGAIN);
380 	}
381 	if (anonport)
382 		inp->inp_flags |= INP_ANONPORT;
383 	return (0);
384 }
385 #endif
386 
387 /*
388  * Select a local port (number) to use.
389  */
390 #if defined(INET) || defined(INET6)
391 int
392 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
393     struct ucred *cred, int lookupflags)
394 {
395 	struct inpcbinfo *pcbinfo;
396 	struct inpcb *tmpinp;
397 	unsigned short *lastport;
398 	int count, dorandom, error;
399 	u_short aux, first, last, lport;
400 #ifdef INET
401 	struct in_addr laddr;
402 #endif
403 
404 	pcbinfo = inp->inp_pcbinfo;
405 
406 	/*
407 	 * Because no actual state changes occur here, a global write lock on
408 	 * the pcbinfo isn't required.
409 	 */
410 	INP_LOCK_ASSERT(inp);
411 	INP_HASH_LOCK_ASSERT(pcbinfo);
412 
413 	if (inp->inp_flags & INP_HIGHPORT) {
414 		first = V_ipport_hifirstauto;	/* sysctl */
415 		last  = V_ipport_hilastauto;
416 		lastport = &pcbinfo->ipi_lasthi;
417 	} else if (inp->inp_flags & INP_LOWPORT) {
418 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
419 		if (error)
420 			return (error);
421 		first = V_ipport_lowfirstauto;	/* 1023 */
422 		last  = V_ipport_lowlastauto;	/* 600 */
423 		lastport = &pcbinfo->ipi_lastlow;
424 	} else {
425 		first = V_ipport_firstauto;	/* sysctl */
426 		last  = V_ipport_lastauto;
427 		lastport = &pcbinfo->ipi_lastport;
428 	}
429 	/*
430 	 * For UDP(-Lite), use random port allocation as long as the user
431 	 * allows it.  For TCP (and as of yet unknown) connections,
432 	 * use random port allocation only if the user allows it AND
433 	 * ipport_tick() allows it.
434 	 */
435 	if (V_ipport_randomized &&
436 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
437 		pcbinfo == &V_ulitecbinfo))
438 		dorandom = 1;
439 	else
440 		dorandom = 0;
441 	/*
442 	 * It makes no sense to do random port allocation if
443 	 * we have the only port available.
444 	 */
445 	if (first == last)
446 		dorandom = 0;
447 	/* Make sure to not include UDP(-Lite) packets in the count. */
448 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
449 		V_ipport_tcpallocs++;
450 	/*
451 	 * Instead of having two loops further down counting up or down
452 	 * make sure that first is always <= last and go with only one
453 	 * code path implementing all logic.
454 	 */
455 	if (first > last) {
456 		aux = first;
457 		first = last;
458 		last = aux;
459 	}
460 
461 #ifdef INET
462 	/* Make the compiler happy. */
463 	laddr.s_addr = 0;
464 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
465 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
466 		    __func__, inp));
467 		laddr = *laddrp;
468 	}
469 #endif
470 	tmpinp = NULL;	/* Make compiler happy. */
471 	lport = *lportp;
472 
473 	if (dorandom)
474 		*lastport = first + (arc4random() % (last - first));
475 
476 	count = last - first;
477 
478 	do {
479 		if (count-- < 0)	/* completely used? */
480 			return (EADDRNOTAVAIL);
481 		++*lastport;
482 		if (*lastport < first || *lastport > last)
483 			*lastport = first;
484 		lport = htons(*lastport);
485 
486 #ifdef INET6
487 		if ((inp->inp_vflag & INP_IPV6) != 0)
488 			tmpinp = in6_pcblookup_local(pcbinfo,
489 			    &inp->in6p_laddr, lport, lookupflags, cred);
490 #endif
491 #if defined(INET) && defined(INET6)
492 		else
493 #endif
494 #ifdef INET
495 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
496 			    lport, lookupflags, cred);
497 #endif
498 	} while (tmpinp != NULL);
499 
500 #ifdef INET
501 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
502 		laddrp->s_addr = laddr.s_addr;
503 #endif
504 	*lportp = lport;
505 
506 	return (0);
507 }
508 
509 /*
510  * Return cached socket options.
511  */
512 short
513 inp_so_options(const struct inpcb *inp)
514 {
515    short so_options;
516 
517    so_options = 0;
518 
519    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
520 	   so_options |= SO_REUSEPORT;
521    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
522 	   so_options |= SO_REUSEADDR;
523    return (so_options);
524 }
525 #endif /* INET || INET6 */
526 
527 /*
528  * Check if a new BINDMULTI socket is allowed to be created.
529  *
530  * ni points to the new inp.
531  * oi points to the exisitng inp.
532  *
533  * This checks whether the existing inp also has BINDMULTI and
534  * whether the credentials match.
535  */
536 int
537 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
538 {
539 	/* Check permissions match */
540 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
541 	    (ni->inp_cred->cr_uid !=
542 	    oi->inp_cred->cr_uid))
543 		return (0);
544 
545 	/* Check the existing inp has BINDMULTI set */
546 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
547 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
548 		return (0);
549 
550 	/*
551 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
552 	 * it is and it matches the checks.
553 	 */
554 	return (1);
555 }
556 
557 #ifdef INET
558 /*
559  * Set up a bind operation on a PCB, performing port allocation
560  * as required, but do not actually modify the PCB. Callers can
561  * either complete the bind by setting inp_laddr/inp_lport and
562  * calling in_pcbinshash(), or they can just use the resulting
563  * port and address to authorise the sending of a once-off packet.
564  *
565  * On error, the values of *laddrp and *lportp are not changed.
566  */
567 int
568 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
569     u_short *lportp, struct ucred *cred)
570 {
571 	struct socket *so = inp->inp_socket;
572 	struct sockaddr_in *sin;
573 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
574 	struct in_addr laddr;
575 	u_short lport = 0;
576 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
577 	int error;
578 
579 	/*
580 	 * No state changes, so read locks are sufficient here.
581 	 */
582 	INP_LOCK_ASSERT(inp);
583 	INP_HASH_LOCK_ASSERT(pcbinfo);
584 
585 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
586 		return (EADDRNOTAVAIL);
587 	laddr.s_addr = *laddrp;
588 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
589 		return (EINVAL);
590 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
591 		lookupflags = INPLOOKUP_WILDCARD;
592 	if (nam == NULL) {
593 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
594 			return (error);
595 	} else {
596 		sin = (struct sockaddr_in *)nam;
597 		if (nam->sa_len != sizeof (*sin))
598 			return (EINVAL);
599 #ifdef notdef
600 		/*
601 		 * We should check the family, but old programs
602 		 * incorrectly fail to initialize it.
603 		 */
604 		if (sin->sin_family != AF_INET)
605 			return (EAFNOSUPPORT);
606 #endif
607 		error = prison_local_ip4(cred, &sin->sin_addr);
608 		if (error)
609 			return (error);
610 		if (sin->sin_port != *lportp) {
611 			/* Don't allow the port to change. */
612 			if (*lportp != 0)
613 				return (EINVAL);
614 			lport = sin->sin_port;
615 		}
616 		/* NB: lport is left as 0 if the port isn't being changed. */
617 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
618 			/*
619 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
620 			 * allow complete duplication of binding if
621 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
622 			 * and a multicast address is bound on both
623 			 * new and duplicated sockets.
624 			 */
625 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
626 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
627 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
628 			sin->sin_port = 0;		/* yech... */
629 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
630 			/*
631 			 * Is the address a local IP address?
632 			 * If INP_BINDANY is set, then the socket may be bound
633 			 * to any endpoint address, local or not.
634 			 */
635 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
636 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
637 				return (EADDRNOTAVAIL);
638 		}
639 		laddr = sin->sin_addr;
640 		if (lport) {
641 			struct inpcb *t;
642 			struct tcptw *tw;
643 
644 			/* GROSS */
645 			if (ntohs(lport) <= V_ipport_reservedhigh &&
646 			    ntohs(lport) >= V_ipport_reservedlow &&
647 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
648 			    0))
649 				return (EACCES);
650 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
651 			    priv_check_cred(inp->inp_cred,
652 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
653 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
654 				    lport, INPLOOKUP_WILDCARD, cred);
655 	/*
656 	 * XXX
657 	 * This entire block sorely needs a rewrite.
658 	 */
659 				if (t &&
660 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
661 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
662 				    (so->so_type != SOCK_STREAM ||
663 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
664 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
665 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
666 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
667 				    (inp->inp_cred->cr_uid !=
668 				     t->inp_cred->cr_uid))
669 					return (EADDRINUSE);
670 
671 				/*
672 				 * If the socket is a BINDMULTI socket, then
673 				 * the credentials need to match and the
674 				 * original socket also has to have been bound
675 				 * with BINDMULTI.
676 				 */
677 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
678 					return (EADDRINUSE);
679 			}
680 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
681 			    lport, lookupflags, cred);
682 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
683 				/*
684 				 * XXXRW: If an incpb has had its timewait
685 				 * state recycled, we treat the address as
686 				 * being in use (for now).  This is better
687 				 * than a panic, but not desirable.
688 				 */
689 				tw = intotw(t);
690 				if (tw == NULL ||
691 				    (reuseport & tw->tw_so_options) == 0)
692 					return (EADDRINUSE);
693 			} else if (t &&
694 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
695 			    (reuseport & inp_so_options(t)) == 0) {
696 #ifdef INET6
697 				if (ntohl(sin->sin_addr.s_addr) !=
698 				    INADDR_ANY ||
699 				    ntohl(t->inp_laddr.s_addr) !=
700 				    INADDR_ANY ||
701 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
702 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
703 #endif
704 				return (EADDRINUSE);
705 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
706 					return (EADDRINUSE);
707 			}
708 		}
709 	}
710 	if (*lportp != 0)
711 		lport = *lportp;
712 	if (lport == 0) {
713 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
714 		if (error != 0)
715 			return (error);
716 
717 	}
718 	*laddrp = laddr.s_addr;
719 	*lportp = lport;
720 	return (0);
721 }
722 
723 /*
724  * Connect from a socket to a specified address.
725  * Both address and port must be specified in argument sin.
726  * If don't have a local address for this socket yet,
727  * then pick one.
728  */
729 int
730 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
731     struct ucred *cred, struct mbuf *m)
732 {
733 	u_short lport, fport;
734 	in_addr_t laddr, faddr;
735 	int anonport, error;
736 
737 	INP_WLOCK_ASSERT(inp);
738 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
739 
740 	lport = inp->inp_lport;
741 	laddr = inp->inp_laddr.s_addr;
742 	anonport = (lport == 0);
743 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
744 	    NULL, cred);
745 	if (error)
746 		return (error);
747 
748 	/* Do the initial binding of the local address if required. */
749 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
750 		inp->inp_lport = lport;
751 		inp->inp_laddr.s_addr = laddr;
752 		if (in_pcbinshash(inp) != 0) {
753 			inp->inp_laddr.s_addr = INADDR_ANY;
754 			inp->inp_lport = 0;
755 			return (EAGAIN);
756 		}
757 	}
758 
759 	/* Commit the remaining changes. */
760 	inp->inp_lport = lport;
761 	inp->inp_laddr.s_addr = laddr;
762 	inp->inp_faddr.s_addr = faddr;
763 	inp->inp_fport = fport;
764 	in_pcbrehash_mbuf(inp, m);
765 
766 	if (anonport)
767 		inp->inp_flags |= INP_ANONPORT;
768 	return (0);
769 }
770 
771 int
772 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
773 {
774 
775 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
776 }
777 
778 /*
779  * Do proper source address selection on an unbound socket in case
780  * of connect. Take jails into account as well.
781  */
782 int
783 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
784     struct ucred *cred)
785 {
786 	struct ifaddr *ifa;
787 	struct sockaddr *sa;
788 	struct sockaddr_in *sin;
789 	struct route sro;
790 	int error;
791 
792 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
793 
794 	/*
795 	 * Bypass source address selection and use the primary jail IP
796 	 * if requested.
797 	 */
798 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
799 		return (0);
800 
801 	error = 0;
802 	bzero(&sro, sizeof(sro));
803 
804 	sin = (struct sockaddr_in *)&sro.ro_dst;
805 	sin->sin_family = AF_INET;
806 	sin->sin_len = sizeof(struct sockaddr_in);
807 	sin->sin_addr.s_addr = faddr->s_addr;
808 
809 	/*
810 	 * If route is known our src addr is taken from the i/f,
811 	 * else punt.
812 	 *
813 	 * Find out route to destination.
814 	 */
815 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
816 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
817 
818 	/*
819 	 * If we found a route, use the address corresponding to
820 	 * the outgoing interface.
821 	 *
822 	 * Otherwise assume faddr is reachable on a directly connected
823 	 * network and try to find a corresponding interface to take
824 	 * the source address from.
825 	 */
826 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
827 		struct in_ifaddr *ia;
828 		struct ifnet *ifp;
829 
830 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
831 					inp->inp_socket->so_fibnum));
832 		if (ia == NULL)
833 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
834 						inp->inp_socket->so_fibnum));
835 		if (ia == NULL) {
836 			error = ENETUNREACH;
837 			goto done;
838 		}
839 
840 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
841 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
842 			ifa_free(&ia->ia_ifa);
843 			goto done;
844 		}
845 
846 		ifp = ia->ia_ifp;
847 		ifa_free(&ia->ia_ifa);
848 		ia = NULL;
849 		IF_ADDR_RLOCK(ifp);
850 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
851 
852 			sa = ifa->ifa_addr;
853 			if (sa->sa_family != AF_INET)
854 				continue;
855 			sin = (struct sockaddr_in *)sa;
856 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
857 				ia = (struct in_ifaddr *)ifa;
858 				break;
859 			}
860 		}
861 		if (ia != NULL) {
862 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
863 			IF_ADDR_RUNLOCK(ifp);
864 			goto done;
865 		}
866 		IF_ADDR_RUNLOCK(ifp);
867 
868 		/* 3. As a last resort return the 'default' jail address. */
869 		error = prison_get_ip4(cred, laddr);
870 		goto done;
871 	}
872 
873 	/*
874 	 * If the outgoing interface on the route found is not
875 	 * a loopback interface, use the address from that interface.
876 	 * In case of jails do those three steps:
877 	 * 1. check if the interface address belongs to the jail. If so use it.
878 	 * 2. check if we have any address on the outgoing interface
879 	 *    belonging to this jail. If so use it.
880 	 * 3. as a last resort return the 'default' jail address.
881 	 */
882 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
883 		struct in_ifaddr *ia;
884 		struct ifnet *ifp;
885 
886 		/* If not jailed, use the default returned. */
887 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
888 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
889 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
890 			goto done;
891 		}
892 
893 		/* Jailed. */
894 		/* 1. Check if the iface address belongs to the jail. */
895 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
896 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
897 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
898 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
899 			goto done;
900 		}
901 
902 		/*
903 		 * 2. Check if we have any address on the outgoing interface
904 		 *    belonging to this jail.
905 		 */
906 		ia = NULL;
907 		ifp = sro.ro_rt->rt_ifp;
908 		IF_ADDR_RLOCK(ifp);
909 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
910 			sa = ifa->ifa_addr;
911 			if (sa->sa_family != AF_INET)
912 				continue;
913 			sin = (struct sockaddr_in *)sa;
914 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
915 				ia = (struct in_ifaddr *)ifa;
916 				break;
917 			}
918 		}
919 		if (ia != NULL) {
920 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
921 			IF_ADDR_RUNLOCK(ifp);
922 			goto done;
923 		}
924 		IF_ADDR_RUNLOCK(ifp);
925 
926 		/* 3. As a last resort return the 'default' jail address. */
927 		error = prison_get_ip4(cred, laddr);
928 		goto done;
929 	}
930 
931 	/*
932 	 * The outgoing interface is marked with 'loopback net', so a route
933 	 * to ourselves is here.
934 	 * Try to find the interface of the destination address and then
935 	 * take the address from there. That interface is not necessarily
936 	 * a loopback interface.
937 	 * In case of jails, check that it is an address of the jail
938 	 * and if we cannot find, fall back to the 'default' jail address.
939 	 */
940 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
941 		struct sockaddr_in sain;
942 		struct in_ifaddr *ia;
943 
944 		bzero(&sain, sizeof(struct sockaddr_in));
945 		sain.sin_family = AF_INET;
946 		sain.sin_len = sizeof(struct sockaddr_in);
947 		sain.sin_addr.s_addr = faddr->s_addr;
948 
949 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
950 					inp->inp_socket->so_fibnum));
951 		if (ia == NULL)
952 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
953 						inp->inp_socket->so_fibnum));
954 		if (ia == NULL)
955 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
956 
957 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
958 			if (ia == NULL) {
959 				error = ENETUNREACH;
960 				goto done;
961 			}
962 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
963 			ifa_free(&ia->ia_ifa);
964 			goto done;
965 		}
966 
967 		/* Jailed. */
968 		if (ia != NULL) {
969 			struct ifnet *ifp;
970 
971 			ifp = ia->ia_ifp;
972 			ifa_free(&ia->ia_ifa);
973 			ia = NULL;
974 			IF_ADDR_RLOCK(ifp);
975 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
976 
977 				sa = ifa->ifa_addr;
978 				if (sa->sa_family != AF_INET)
979 					continue;
980 				sin = (struct sockaddr_in *)sa;
981 				if (prison_check_ip4(cred,
982 				    &sin->sin_addr) == 0) {
983 					ia = (struct in_ifaddr *)ifa;
984 					break;
985 				}
986 			}
987 			if (ia != NULL) {
988 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
989 				IF_ADDR_RUNLOCK(ifp);
990 				goto done;
991 			}
992 			IF_ADDR_RUNLOCK(ifp);
993 		}
994 
995 		/* 3. As a last resort return the 'default' jail address. */
996 		error = prison_get_ip4(cred, laddr);
997 		goto done;
998 	}
999 
1000 done:
1001 	if (sro.ro_rt != NULL)
1002 		RTFREE(sro.ro_rt);
1003 	return (error);
1004 }
1005 
1006 /*
1007  * Set up for a connect from a socket to the specified address.
1008  * On entry, *laddrp and *lportp should contain the current local
1009  * address and port for the PCB; these are updated to the values
1010  * that should be placed in inp_laddr and inp_lport to complete
1011  * the connect.
1012  *
1013  * On success, *faddrp and *fportp will be set to the remote address
1014  * and port. These are not updated in the error case.
1015  *
1016  * If the operation fails because the connection already exists,
1017  * *oinpp will be set to the PCB of that connection so that the
1018  * caller can decide to override it. In all other cases, *oinpp
1019  * is set to NULL.
1020  */
1021 int
1022 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1023     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1024     struct inpcb **oinpp, struct ucred *cred)
1025 {
1026 	struct rm_priotracker in_ifa_tracker;
1027 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1028 	struct in_ifaddr *ia;
1029 	struct inpcb *oinp;
1030 	struct in_addr laddr, faddr;
1031 	u_short lport, fport;
1032 	int error;
1033 
1034 	/*
1035 	 * Because a global state change doesn't actually occur here, a read
1036 	 * lock is sufficient.
1037 	 */
1038 	INP_LOCK_ASSERT(inp);
1039 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1040 
1041 	if (oinpp != NULL)
1042 		*oinpp = NULL;
1043 	if (nam->sa_len != sizeof (*sin))
1044 		return (EINVAL);
1045 	if (sin->sin_family != AF_INET)
1046 		return (EAFNOSUPPORT);
1047 	if (sin->sin_port == 0)
1048 		return (EADDRNOTAVAIL);
1049 	laddr.s_addr = *laddrp;
1050 	lport = *lportp;
1051 	faddr = sin->sin_addr;
1052 	fport = sin->sin_port;
1053 
1054 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1055 		/*
1056 		 * If the destination address is INADDR_ANY,
1057 		 * use the primary local address.
1058 		 * If the supplied address is INADDR_BROADCAST,
1059 		 * and the primary interface supports broadcast,
1060 		 * choose the broadcast address for that interface.
1061 		 */
1062 		if (faddr.s_addr == INADDR_ANY) {
1063 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1064 			faddr =
1065 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1066 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1067 			if (cred != NULL &&
1068 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1069 				return (error);
1070 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1071 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1072 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1073 			    IFF_BROADCAST)
1074 				faddr = satosin(&TAILQ_FIRST(
1075 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1076 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1077 		}
1078 	}
1079 	if (laddr.s_addr == INADDR_ANY) {
1080 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1081 		/*
1082 		 * If the destination address is multicast and an outgoing
1083 		 * interface has been set as a multicast option, prefer the
1084 		 * address of that interface as our source address.
1085 		 */
1086 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1087 		    inp->inp_moptions != NULL) {
1088 			struct ip_moptions *imo;
1089 			struct ifnet *ifp;
1090 
1091 			imo = inp->inp_moptions;
1092 			if (imo->imo_multicast_ifp != NULL) {
1093 				ifp = imo->imo_multicast_ifp;
1094 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1095 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1096 					if ((ia->ia_ifp == ifp) &&
1097 					    (cred == NULL ||
1098 					    prison_check_ip4(cred,
1099 					    &ia->ia_addr.sin_addr) == 0))
1100 						break;
1101 				}
1102 				if (ia == NULL)
1103 					error = EADDRNOTAVAIL;
1104 				else {
1105 					laddr = ia->ia_addr.sin_addr;
1106 					error = 0;
1107 				}
1108 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1109 			}
1110 		}
1111 		if (error)
1112 			return (error);
1113 	}
1114 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1115 	    laddr, lport, 0, NULL);
1116 	if (oinp != NULL) {
1117 		if (oinpp != NULL)
1118 			*oinpp = oinp;
1119 		return (EADDRINUSE);
1120 	}
1121 	if (lport == 0) {
1122 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1123 		    cred);
1124 		if (error)
1125 			return (error);
1126 	}
1127 	*laddrp = laddr.s_addr;
1128 	*lportp = lport;
1129 	*faddrp = faddr.s_addr;
1130 	*fportp = fport;
1131 	return (0);
1132 }
1133 
1134 void
1135 in_pcbdisconnect(struct inpcb *inp)
1136 {
1137 
1138 	INP_WLOCK_ASSERT(inp);
1139 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1140 
1141 	inp->inp_faddr.s_addr = INADDR_ANY;
1142 	inp->inp_fport = 0;
1143 	in_pcbrehash(inp);
1144 }
1145 #endif /* INET */
1146 
1147 /*
1148  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1149  * For most protocols, this will be invoked immediately prior to calling
1150  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1151  * socket, in which case in_pcbfree() is deferred.
1152  */
1153 void
1154 in_pcbdetach(struct inpcb *inp)
1155 {
1156 
1157 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1158 
1159 #ifdef RATELIMIT
1160 	if (inp->inp_snd_tag != NULL)
1161 		in_pcbdetach_txrtlmt(inp);
1162 #endif
1163 	inp->inp_socket->so_pcb = NULL;
1164 	inp->inp_socket = NULL;
1165 }
1166 
1167 /*
1168  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1169  * stability of an inpcb pointer despite the inpcb lock being released.  This
1170  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1171  * but where the inpcb lock may already held, or when acquiring a reference
1172  * via a pcbgroup.
1173  *
1174  * in_pcbref() should be used only to provide brief memory stability, and
1175  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1176  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1177  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1178  * lock and rele are the *only* safe operations that may be performed on the
1179  * inpcb.
1180  *
1181  * While the inpcb will not be freed, releasing the inpcb lock means that the
1182  * connection's state may change, so the caller should be careful to
1183  * revalidate any cached state on reacquiring the lock.  Drop the reference
1184  * using in_pcbrele().
1185  */
1186 void
1187 in_pcbref(struct inpcb *inp)
1188 {
1189 
1190 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1191 
1192 	refcount_acquire(&inp->inp_refcount);
1193 }
1194 
1195 /*
1196  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1197  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1198  * return a flag indicating whether or not the inpcb remains valid.  If it is
1199  * valid, we return with the inpcb lock held.
1200  *
1201  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1202  * reference on an inpcb.  Historically more work was done here (actually, in
1203  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1204  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1205  * about memory stability (and continued use of the write lock).
1206  */
1207 int
1208 in_pcbrele_rlocked(struct inpcb *inp)
1209 {
1210 	struct inpcbinfo *pcbinfo;
1211 
1212 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1213 
1214 	INP_RLOCK_ASSERT(inp);
1215 
1216 	if (refcount_release(&inp->inp_refcount) == 0) {
1217 		/*
1218 		 * If the inpcb has been freed, let the caller know, even if
1219 		 * this isn't the last reference.
1220 		 */
1221 		if (inp->inp_flags2 & INP_FREED) {
1222 			INP_RUNLOCK(inp);
1223 			return (1);
1224 		}
1225 		return (0);
1226 	}
1227 
1228 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1229 
1230 	INP_RUNLOCK(inp);
1231 	pcbinfo = inp->inp_pcbinfo;
1232 	uma_zfree(pcbinfo->ipi_zone, inp);
1233 	return (1);
1234 }
1235 
1236 int
1237 in_pcbrele_wlocked(struct inpcb *inp)
1238 {
1239 	struct inpcbinfo *pcbinfo;
1240 
1241 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1242 
1243 	INP_WLOCK_ASSERT(inp);
1244 
1245 	if (refcount_release(&inp->inp_refcount) == 0) {
1246 		/*
1247 		 * If the inpcb has been freed, let the caller know, even if
1248 		 * this isn't the last reference.
1249 		 */
1250 		if (inp->inp_flags2 & INP_FREED) {
1251 			INP_WUNLOCK(inp);
1252 			return (1);
1253 		}
1254 		return (0);
1255 	}
1256 
1257 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1258 
1259 	INP_WUNLOCK(inp);
1260 	pcbinfo = inp->inp_pcbinfo;
1261 	uma_zfree(pcbinfo->ipi_zone, inp);
1262 	return (1);
1263 }
1264 
1265 /*
1266  * Temporary wrapper.
1267  */
1268 int
1269 in_pcbrele(struct inpcb *inp)
1270 {
1271 
1272 	return (in_pcbrele_wlocked(inp));
1273 }
1274 
1275 /*
1276  * Unconditionally schedule an inpcb to be freed by decrementing its
1277  * reference count, which should occur only after the inpcb has been detached
1278  * from its socket.  If another thread holds a temporary reference (acquired
1279  * using in_pcbref()) then the free is deferred until that reference is
1280  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1281  * work, including removal from global lists, is done in this context, where
1282  * the pcbinfo lock is held.
1283  */
1284 void
1285 in_pcbfree(struct inpcb *inp)
1286 {
1287 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1288 
1289 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1290 
1291 #ifdef INVARIANTS
1292 	if (pcbinfo == &V_tcbinfo) {
1293 		INP_INFO_LOCK_ASSERT(pcbinfo);
1294 	} else {
1295 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1296 	}
1297 #endif
1298 	INP_WLOCK_ASSERT(inp);
1299 
1300 	/* XXXRW: Do as much as possible here. */
1301 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1302 	if (inp->inp_sp != NULL)
1303 		ipsec_delete_pcbpolicy(inp);
1304 #endif
1305 	INP_LIST_WLOCK(pcbinfo);
1306 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1307 	in_pcbremlists(inp);
1308 	INP_LIST_WUNLOCK(pcbinfo);
1309 #ifdef INET6
1310 	if (inp->inp_vflag & INP_IPV6PROTO) {
1311 		ip6_freepcbopts(inp->in6p_outputopts);
1312 		if (inp->in6p_moptions != NULL)
1313 			ip6_freemoptions(inp->in6p_moptions);
1314 	}
1315 #endif
1316 	if (inp->inp_options)
1317 		(void)m_free(inp->inp_options);
1318 #ifdef INET
1319 	if (inp->inp_moptions != NULL)
1320 		inp_freemoptions(inp->inp_moptions);
1321 #endif
1322 	RO_RTFREE(&inp->inp_route);
1323 	if (inp->inp_route.ro_lle)
1324 		LLE_FREE(inp->inp_route.ro_lle);	/* zeros ro_lle */
1325 
1326 	inp->inp_vflag = 0;
1327 	inp->inp_flags2 |= INP_FREED;
1328 	crfree(inp->inp_cred);
1329 #ifdef MAC
1330 	mac_inpcb_destroy(inp);
1331 #endif
1332 	if (!in_pcbrele_wlocked(inp))
1333 		INP_WUNLOCK(inp);
1334 }
1335 
1336 /*
1337  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1338  * port reservation, and preventing it from being returned by inpcb lookups.
1339  *
1340  * It is used by TCP to mark an inpcb as unused and avoid future packet
1341  * delivery or event notification when a socket remains open but TCP has
1342  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1343  * or a RST on the wire, and allows the port binding to be reused while still
1344  * maintaining the invariant that so_pcb always points to a valid inpcb until
1345  * in_pcbdetach().
1346  *
1347  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1348  * in_pcbnotifyall() and in_pcbpurgeif0()?
1349  */
1350 void
1351 in_pcbdrop(struct inpcb *inp)
1352 {
1353 
1354 	INP_WLOCK_ASSERT(inp);
1355 
1356 	/*
1357 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1358 	 * the hash lock...?
1359 	 */
1360 	inp->inp_flags |= INP_DROPPED;
1361 	if (inp->inp_flags & INP_INHASHLIST) {
1362 		struct inpcbport *phd = inp->inp_phd;
1363 
1364 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1365 		LIST_REMOVE(inp, inp_hash);
1366 		LIST_REMOVE(inp, inp_portlist);
1367 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1368 			LIST_REMOVE(phd, phd_hash);
1369 			free(phd, M_PCB);
1370 		}
1371 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1372 		inp->inp_flags &= ~INP_INHASHLIST;
1373 #ifdef PCBGROUP
1374 		in_pcbgroup_remove(inp);
1375 #endif
1376 	}
1377 }
1378 
1379 #ifdef INET
1380 /*
1381  * Common routines to return the socket addresses associated with inpcbs.
1382  */
1383 struct sockaddr *
1384 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1385 {
1386 	struct sockaddr_in *sin;
1387 
1388 	sin = malloc(sizeof *sin, M_SONAME,
1389 		M_WAITOK | M_ZERO);
1390 	sin->sin_family = AF_INET;
1391 	sin->sin_len = sizeof(*sin);
1392 	sin->sin_addr = *addr_p;
1393 	sin->sin_port = port;
1394 
1395 	return (struct sockaddr *)sin;
1396 }
1397 
1398 int
1399 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1400 {
1401 	struct inpcb *inp;
1402 	struct in_addr addr;
1403 	in_port_t port;
1404 
1405 	inp = sotoinpcb(so);
1406 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1407 
1408 	INP_RLOCK(inp);
1409 	port = inp->inp_lport;
1410 	addr = inp->inp_laddr;
1411 	INP_RUNLOCK(inp);
1412 
1413 	*nam = in_sockaddr(port, &addr);
1414 	return 0;
1415 }
1416 
1417 int
1418 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1419 {
1420 	struct inpcb *inp;
1421 	struct in_addr addr;
1422 	in_port_t port;
1423 
1424 	inp = sotoinpcb(so);
1425 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1426 
1427 	INP_RLOCK(inp);
1428 	port = inp->inp_fport;
1429 	addr = inp->inp_faddr;
1430 	INP_RUNLOCK(inp);
1431 
1432 	*nam = in_sockaddr(port, &addr);
1433 	return 0;
1434 }
1435 
1436 void
1437 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1438     struct inpcb *(*notify)(struct inpcb *, int))
1439 {
1440 	struct inpcb *inp, *inp_temp;
1441 
1442 	INP_INFO_WLOCK(pcbinfo);
1443 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1444 		INP_WLOCK(inp);
1445 #ifdef INET6
1446 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1447 			INP_WUNLOCK(inp);
1448 			continue;
1449 		}
1450 #endif
1451 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1452 		    inp->inp_socket == NULL) {
1453 			INP_WUNLOCK(inp);
1454 			continue;
1455 		}
1456 		if ((*notify)(inp, errno))
1457 			INP_WUNLOCK(inp);
1458 	}
1459 	INP_INFO_WUNLOCK(pcbinfo);
1460 }
1461 
1462 void
1463 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1464 {
1465 	struct inpcb *inp;
1466 	struct ip_moptions *imo;
1467 	int i, gap;
1468 
1469 	INP_INFO_WLOCK(pcbinfo);
1470 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1471 		INP_WLOCK(inp);
1472 		imo = inp->inp_moptions;
1473 		if ((inp->inp_vflag & INP_IPV4) &&
1474 		    imo != NULL) {
1475 			/*
1476 			 * Unselect the outgoing interface if it is being
1477 			 * detached.
1478 			 */
1479 			if (imo->imo_multicast_ifp == ifp)
1480 				imo->imo_multicast_ifp = NULL;
1481 
1482 			/*
1483 			 * Drop multicast group membership if we joined
1484 			 * through the interface being detached.
1485 			 */
1486 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1487 			    i++) {
1488 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1489 					in_delmulti(imo->imo_membership[i]);
1490 					gap++;
1491 				} else if (gap != 0)
1492 					imo->imo_membership[i - gap] =
1493 					    imo->imo_membership[i];
1494 			}
1495 			imo->imo_num_memberships -= gap;
1496 		}
1497 		INP_WUNLOCK(inp);
1498 	}
1499 	INP_INFO_WUNLOCK(pcbinfo);
1500 }
1501 
1502 /*
1503  * Lookup a PCB based on the local address and port.  Caller must hold the
1504  * hash lock.  No inpcb locks or references are acquired.
1505  */
1506 #define INP_LOOKUP_MAPPED_PCB_COST	3
1507 struct inpcb *
1508 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1509     u_short lport, int lookupflags, struct ucred *cred)
1510 {
1511 	struct inpcb *inp;
1512 #ifdef INET6
1513 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1514 #else
1515 	int matchwild = 3;
1516 #endif
1517 	int wildcard;
1518 
1519 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1520 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1521 
1522 	INP_HASH_LOCK_ASSERT(pcbinfo);
1523 
1524 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1525 		struct inpcbhead *head;
1526 		/*
1527 		 * Look for an unconnected (wildcard foreign addr) PCB that
1528 		 * matches the local address and port we're looking for.
1529 		 */
1530 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1531 		    0, pcbinfo->ipi_hashmask)];
1532 		LIST_FOREACH(inp, head, inp_hash) {
1533 #ifdef INET6
1534 			/* XXX inp locking */
1535 			if ((inp->inp_vflag & INP_IPV4) == 0)
1536 				continue;
1537 #endif
1538 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1539 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1540 			    inp->inp_lport == lport) {
1541 				/*
1542 				 * Found?
1543 				 */
1544 				if (cred == NULL ||
1545 				    prison_equal_ip4(cred->cr_prison,
1546 					inp->inp_cred->cr_prison))
1547 					return (inp);
1548 			}
1549 		}
1550 		/*
1551 		 * Not found.
1552 		 */
1553 		return (NULL);
1554 	} else {
1555 		struct inpcbporthead *porthash;
1556 		struct inpcbport *phd;
1557 		struct inpcb *match = NULL;
1558 		/*
1559 		 * Best fit PCB lookup.
1560 		 *
1561 		 * First see if this local port is in use by looking on the
1562 		 * port hash list.
1563 		 */
1564 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1565 		    pcbinfo->ipi_porthashmask)];
1566 		LIST_FOREACH(phd, porthash, phd_hash) {
1567 			if (phd->phd_port == lport)
1568 				break;
1569 		}
1570 		if (phd != NULL) {
1571 			/*
1572 			 * Port is in use by one or more PCBs. Look for best
1573 			 * fit.
1574 			 */
1575 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1576 				wildcard = 0;
1577 				if (cred != NULL &&
1578 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1579 					cred->cr_prison))
1580 					continue;
1581 #ifdef INET6
1582 				/* XXX inp locking */
1583 				if ((inp->inp_vflag & INP_IPV4) == 0)
1584 					continue;
1585 				/*
1586 				 * We never select the PCB that has
1587 				 * INP_IPV6 flag and is bound to :: if
1588 				 * we have another PCB which is bound
1589 				 * to 0.0.0.0.  If a PCB has the
1590 				 * INP_IPV6 flag, then we set its cost
1591 				 * higher than IPv4 only PCBs.
1592 				 *
1593 				 * Note that the case only happens
1594 				 * when a socket is bound to ::, under
1595 				 * the condition that the use of the
1596 				 * mapped address is allowed.
1597 				 */
1598 				if ((inp->inp_vflag & INP_IPV6) != 0)
1599 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1600 #endif
1601 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1602 					wildcard++;
1603 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1604 					if (laddr.s_addr == INADDR_ANY)
1605 						wildcard++;
1606 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1607 						continue;
1608 				} else {
1609 					if (laddr.s_addr != INADDR_ANY)
1610 						wildcard++;
1611 				}
1612 				if (wildcard < matchwild) {
1613 					match = inp;
1614 					matchwild = wildcard;
1615 					if (matchwild == 0)
1616 						break;
1617 				}
1618 			}
1619 		}
1620 		return (match);
1621 	}
1622 }
1623 #undef INP_LOOKUP_MAPPED_PCB_COST
1624 
1625 #ifdef PCBGROUP
1626 /*
1627  * Lookup PCB in hash list, using pcbgroup tables.
1628  */
1629 static struct inpcb *
1630 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1631     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1632     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1633 {
1634 	struct inpcbhead *head;
1635 	struct inpcb *inp, *tmpinp;
1636 	u_short fport = fport_arg, lport = lport_arg;
1637 
1638 	/*
1639 	 * First look for an exact match.
1640 	 */
1641 	tmpinp = NULL;
1642 	INP_GROUP_LOCK(pcbgroup);
1643 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1644 	    pcbgroup->ipg_hashmask)];
1645 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1646 #ifdef INET6
1647 		/* XXX inp locking */
1648 		if ((inp->inp_vflag & INP_IPV4) == 0)
1649 			continue;
1650 #endif
1651 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1652 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1653 		    inp->inp_fport == fport &&
1654 		    inp->inp_lport == lport) {
1655 			/*
1656 			 * XXX We should be able to directly return
1657 			 * the inp here, without any checks.
1658 			 * Well unless both bound with SO_REUSEPORT?
1659 			 */
1660 			if (prison_flag(inp->inp_cred, PR_IP4))
1661 				goto found;
1662 			if (tmpinp == NULL)
1663 				tmpinp = inp;
1664 		}
1665 	}
1666 	if (tmpinp != NULL) {
1667 		inp = tmpinp;
1668 		goto found;
1669 	}
1670 
1671 #ifdef	RSS
1672 	/*
1673 	 * For incoming connections, we may wish to do a wildcard
1674 	 * match for an RSS-local socket.
1675 	 */
1676 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1677 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1678 #ifdef INET6
1679 		struct inpcb *local_wild_mapped = NULL;
1680 #endif
1681 		struct inpcb *jail_wild = NULL;
1682 		struct inpcbhead *head;
1683 		int injail;
1684 
1685 		/*
1686 		 * Order of socket selection - we always prefer jails.
1687 		 *      1. jailed, non-wild.
1688 		 *      2. jailed, wild.
1689 		 *      3. non-jailed, non-wild.
1690 		 *      4. non-jailed, wild.
1691 		 */
1692 
1693 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1694 		    lport, 0, pcbgroup->ipg_hashmask)];
1695 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1696 #ifdef INET6
1697 			/* XXX inp locking */
1698 			if ((inp->inp_vflag & INP_IPV4) == 0)
1699 				continue;
1700 #endif
1701 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1702 			    inp->inp_lport != lport)
1703 				continue;
1704 
1705 			injail = prison_flag(inp->inp_cred, PR_IP4);
1706 			if (injail) {
1707 				if (prison_check_ip4(inp->inp_cred,
1708 				    &laddr) != 0)
1709 					continue;
1710 			} else {
1711 				if (local_exact != NULL)
1712 					continue;
1713 			}
1714 
1715 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1716 				if (injail)
1717 					goto found;
1718 				else
1719 					local_exact = inp;
1720 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1721 #ifdef INET6
1722 				/* XXX inp locking, NULL check */
1723 				if (inp->inp_vflag & INP_IPV6PROTO)
1724 					local_wild_mapped = inp;
1725 				else
1726 #endif
1727 					if (injail)
1728 						jail_wild = inp;
1729 					else
1730 						local_wild = inp;
1731 			}
1732 		} /* LIST_FOREACH */
1733 
1734 		inp = jail_wild;
1735 		if (inp == NULL)
1736 			inp = local_exact;
1737 		if (inp == NULL)
1738 			inp = local_wild;
1739 #ifdef INET6
1740 		if (inp == NULL)
1741 			inp = local_wild_mapped;
1742 #endif
1743 		if (inp != NULL)
1744 			goto found;
1745 	}
1746 #endif
1747 
1748 	/*
1749 	 * Then look for a wildcard match, if requested.
1750 	 */
1751 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1752 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1753 #ifdef INET6
1754 		struct inpcb *local_wild_mapped = NULL;
1755 #endif
1756 		struct inpcb *jail_wild = NULL;
1757 		struct inpcbhead *head;
1758 		int injail;
1759 
1760 		/*
1761 		 * Order of socket selection - we always prefer jails.
1762 		 *      1. jailed, non-wild.
1763 		 *      2. jailed, wild.
1764 		 *      3. non-jailed, non-wild.
1765 		 *      4. non-jailed, wild.
1766 		 */
1767 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1768 		    0, pcbinfo->ipi_wildmask)];
1769 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1770 #ifdef INET6
1771 			/* XXX inp locking */
1772 			if ((inp->inp_vflag & INP_IPV4) == 0)
1773 				continue;
1774 #endif
1775 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1776 			    inp->inp_lport != lport)
1777 				continue;
1778 
1779 			injail = prison_flag(inp->inp_cred, PR_IP4);
1780 			if (injail) {
1781 				if (prison_check_ip4(inp->inp_cred,
1782 				    &laddr) != 0)
1783 					continue;
1784 			} else {
1785 				if (local_exact != NULL)
1786 					continue;
1787 			}
1788 
1789 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1790 				if (injail)
1791 					goto found;
1792 				else
1793 					local_exact = inp;
1794 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1795 #ifdef INET6
1796 				/* XXX inp locking, NULL check */
1797 				if (inp->inp_vflag & INP_IPV6PROTO)
1798 					local_wild_mapped = inp;
1799 				else
1800 #endif
1801 					if (injail)
1802 						jail_wild = inp;
1803 					else
1804 						local_wild = inp;
1805 			}
1806 		} /* LIST_FOREACH */
1807 		inp = jail_wild;
1808 		if (inp == NULL)
1809 			inp = local_exact;
1810 		if (inp == NULL)
1811 			inp = local_wild;
1812 #ifdef INET6
1813 		if (inp == NULL)
1814 			inp = local_wild_mapped;
1815 #endif
1816 		if (inp != NULL)
1817 			goto found;
1818 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1819 	INP_GROUP_UNLOCK(pcbgroup);
1820 	return (NULL);
1821 
1822 found:
1823 	in_pcbref(inp);
1824 	INP_GROUP_UNLOCK(pcbgroup);
1825 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1826 		INP_WLOCK(inp);
1827 		if (in_pcbrele_wlocked(inp))
1828 			return (NULL);
1829 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1830 		INP_RLOCK(inp);
1831 		if (in_pcbrele_rlocked(inp))
1832 			return (NULL);
1833 	} else
1834 		panic("%s: locking bug", __func__);
1835 	return (inp);
1836 }
1837 #endif /* PCBGROUP */
1838 
1839 /*
1840  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1841  * that the caller has locked the hash list, and will not perform any further
1842  * locking or reference operations on either the hash list or the connection.
1843  */
1844 static struct inpcb *
1845 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1846     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1847     struct ifnet *ifp)
1848 {
1849 	struct inpcbhead *head;
1850 	struct inpcb *inp, *tmpinp;
1851 	u_short fport = fport_arg, lport = lport_arg;
1852 
1853 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1854 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1855 
1856 	INP_HASH_LOCK_ASSERT(pcbinfo);
1857 
1858 	/*
1859 	 * First look for an exact match.
1860 	 */
1861 	tmpinp = NULL;
1862 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1863 	    pcbinfo->ipi_hashmask)];
1864 	LIST_FOREACH(inp, head, inp_hash) {
1865 #ifdef INET6
1866 		/* XXX inp locking */
1867 		if ((inp->inp_vflag & INP_IPV4) == 0)
1868 			continue;
1869 #endif
1870 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1871 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1872 		    inp->inp_fport == fport &&
1873 		    inp->inp_lport == lport) {
1874 			/*
1875 			 * XXX We should be able to directly return
1876 			 * the inp here, without any checks.
1877 			 * Well unless both bound with SO_REUSEPORT?
1878 			 */
1879 			if (prison_flag(inp->inp_cred, PR_IP4))
1880 				return (inp);
1881 			if (tmpinp == NULL)
1882 				tmpinp = inp;
1883 		}
1884 	}
1885 	if (tmpinp != NULL)
1886 		return (tmpinp);
1887 
1888 	/*
1889 	 * Then look for a wildcard match, if requested.
1890 	 */
1891 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1892 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1893 #ifdef INET6
1894 		struct inpcb *local_wild_mapped = NULL;
1895 #endif
1896 		struct inpcb *jail_wild = NULL;
1897 		int injail;
1898 
1899 		/*
1900 		 * Order of socket selection - we always prefer jails.
1901 		 *      1. jailed, non-wild.
1902 		 *      2. jailed, wild.
1903 		 *      3. non-jailed, non-wild.
1904 		 *      4. non-jailed, wild.
1905 		 */
1906 
1907 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1908 		    0, pcbinfo->ipi_hashmask)];
1909 		LIST_FOREACH(inp, head, inp_hash) {
1910 #ifdef INET6
1911 			/* XXX inp locking */
1912 			if ((inp->inp_vflag & INP_IPV4) == 0)
1913 				continue;
1914 #endif
1915 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1916 			    inp->inp_lport != lport)
1917 				continue;
1918 
1919 			injail = prison_flag(inp->inp_cred, PR_IP4);
1920 			if (injail) {
1921 				if (prison_check_ip4(inp->inp_cred,
1922 				    &laddr) != 0)
1923 					continue;
1924 			} else {
1925 				if (local_exact != NULL)
1926 					continue;
1927 			}
1928 
1929 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1930 				if (injail)
1931 					return (inp);
1932 				else
1933 					local_exact = inp;
1934 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1935 #ifdef INET6
1936 				/* XXX inp locking, NULL check */
1937 				if (inp->inp_vflag & INP_IPV6PROTO)
1938 					local_wild_mapped = inp;
1939 				else
1940 #endif
1941 					if (injail)
1942 						jail_wild = inp;
1943 					else
1944 						local_wild = inp;
1945 			}
1946 		} /* LIST_FOREACH */
1947 		if (jail_wild != NULL)
1948 			return (jail_wild);
1949 		if (local_exact != NULL)
1950 			return (local_exact);
1951 		if (local_wild != NULL)
1952 			return (local_wild);
1953 #ifdef INET6
1954 		if (local_wild_mapped != NULL)
1955 			return (local_wild_mapped);
1956 #endif
1957 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1958 
1959 	return (NULL);
1960 }
1961 
1962 /*
1963  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1964  * hash list lock, and will return the inpcb locked (i.e., requires
1965  * INPLOOKUP_LOCKPCB).
1966  */
1967 static struct inpcb *
1968 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1969     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1970     struct ifnet *ifp)
1971 {
1972 	struct inpcb *inp;
1973 
1974 	INP_HASH_RLOCK(pcbinfo);
1975 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1976 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1977 	if (inp != NULL) {
1978 		in_pcbref(inp);
1979 		INP_HASH_RUNLOCK(pcbinfo);
1980 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1981 			INP_WLOCK(inp);
1982 			if (in_pcbrele_wlocked(inp))
1983 				return (NULL);
1984 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1985 			INP_RLOCK(inp);
1986 			if (in_pcbrele_rlocked(inp))
1987 				return (NULL);
1988 		} else
1989 			panic("%s: locking bug", __func__);
1990 	} else
1991 		INP_HASH_RUNLOCK(pcbinfo);
1992 	return (inp);
1993 }
1994 
1995 /*
1996  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1997  * from which a pre-calculated hash value may be extracted.
1998  *
1999  * Possibly more of this logic should be in in_pcbgroup.c.
2000  */
2001 struct inpcb *
2002 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2003     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2004 {
2005 #if defined(PCBGROUP) && !defined(RSS)
2006 	struct inpcbgroup *pcbgroup;
2007 #endif
2008 
2009 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2010 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2011 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2012 	    ("%s: LOCKPCB not set", __func__));
2013 
2014 	/*
2015 	 * When not using RSS, use connection groups in preference to the
2016 	 * reservation table when looking up 4-tuples.  When using RSS, just
2017 	 * use the reservation table, due to the cost of the Toeplitz hash
2018 	 * in software.
2019 	 *
2020 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2021 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2022 	 * in software.
2023 	 */
2024 #if defined(PCBGROUP) && !defined(RSS)
2025 	if (in_pcbgroup_enabled(pcbinfo)) {
2026 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2027 		    fport);
2028 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2029 		    laddr, lport, lookupflags, ifp));
2030 	}
2031 #endif
2032 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2033 	    lookupflags, ifp));
2034 }
2035 
2036 struct inpcb *
2037 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2038     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2039     struct ifnet *ifp, struct mbuf *m)
2040 {
2041 #ifdef PCBGROUP
2042 	struct inpcbgroup *pcbgroup;
2043 #endif
2044 
2045 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2046 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2047 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2048 	    ("%s: LOCKPCB not set", __func__));
2049 
2050 #ifdef PCBGROUP
2051 	/*
2052 	 * If we can use a hardware-generated hash to look up the connection
2053 	 * group, use that connection group to find the inpcb.  Otherwise
2054 	 * fall back on a software hash -- or the reservation table if we're
2055 	 * using RSS.
2056 	 *
2057 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2058 	 */
2059 	if (in_pcbgroup_enabled(pcbinfo) &&
2060 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2061 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2062 		    m->m_pkthdr.flowid);
2063 		if (pcbgroup != NULL)
2064 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2065 			    fport, laddr, lport, lookupflags, ifp));
2066 #ifndef RSS
2067 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2068 		    fport);
2069 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2070 		    laddr, lport, lookupflags, ifp));
2071 #endif
2072 	}
2073 #endif
2074 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2075 	    lookupflags, ifp));
2076 }
2077 #endif /* INET */
2078 
2079 /*
2080  * Insert PCB onto various hash lists.
2081  */
2082 static int
2083 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2084 {
2085 	struct inpcbhead *pcbhash;
2086 	struct inpcbporthead *pcbporthash;
2087 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2088 	struct inpcbport *phd;
2089 	u_int32_t hashkey_faddr;
2090 
2091 	INP_WLOCK_ASSERT(inp);
2092 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2093 
2094 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2095 	    ("in_pcbinshash: INP_INHASHLIST"));
2096 
2097 #ifdef INET6
2098 	if (inp->inp_vflag & INP_IPV6)
2099 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2100 	else
2101 #endif
2102 	hashkey_faddr = inp->inp_faddr.s_addr;
2103 
2104 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2105 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2106 
2107 	pcbporthash = &pcbinfo->ipi_porthashbase[
2108 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2109 
2110 	/*
2111 	 * Go through port list and look for a head for this lport.
2112 	 */
2113 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2114 		if (phd->phd_port == inp->inp_lport)
2115 			break;
2116 	}
2117 	/*
2118 	 * If none exists, malloc one and tack it on.
2119 	 */
2120 	if (phd == NULL) {
2121 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2122 		if (phd == NULL) {
2123 			return (ENOBUFS); /* XXX */
2124 		}
2125 		phd->phd_port = inp->inp_lport;
2126 		LIST_INIT(&phd->phd_pcblist);
2127 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2128 	}
2129 	inp->inp_phd = phd;
2130 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2131 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2132 	inp->inp_flags |= INP_INHASHLIST;
2133 #ifdef PCBGROUP
2134 	if (do_pcbgroup_update)
2135 		in_pcbgroup_update(inp);
2136 #endif
2137 	return (0);
2138 }
2139 
2140 /*
2141  * For now, there are two public interfaces to insert an inpcb into the hash
2142  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2143  * is used only in the TCP syncache, where in_pcbinshash is called before the
2144  * full 4-tuple is set for the inpcb, and we don't want to install in the
2145  * pcbgroup until later.
2146  *
2147  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2148  * connection groups, and partially initialised inpcbs should not be exposed
2149  * to either reservation hash tables or pcbgroups.
2150  */
2151 int
2152 in_pcbinshash(struct inpcb *inp)
2153 {
2154 
2155 	return (in_pcbinshash_internal(inp, 1));
2156 }
2157 
2158 int
2159 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2160 {
2161 
2162 	return (in_pcbinshash_internal(inp, 0));
2163 }
2164 
2165 /*
2166  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2167  * changed. NOTE: This does not handle the case of the lport changing (the
2168  * hashed port list would have to be updated as well), so the lport must
2169  * not change after in_pcbinshash() has been called.
2170  */
2171 void
2172 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2173 {
2174 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2175 	struct inpcbhead *head;
2176 	u_int32_t hashkey_faddr;
2177 
2178 	INP_WLOCK_ASSERT(inp);
2179 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2180 
2181 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2182 	    ("in_pcbrehash: !INP_INHASHLIST"));
2183 
2184 #ifdef INET6
2185 	if (inp->inp_vflag & INP_IPV6)
2186 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2187 	else
2188 #endif
2189 	hashkey_faddr = inp->inp_faddr.s_addr;
2190 
2191 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2192 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2193 
2194 	LIST_REMOVE(inp, inp_hash);
2195 	LIST_INSERT_HEAD(head, inp, inp_hash);
2196 
2197 #ifdef PCBGROUP
2198 	if (m != NULL)
2199 		in_pcbgroup_update_mbuf(inp, m);
2200 	else
2201 		in_pcbgroup_update(inp);
2202 #endif
2203 }
2204 
2205 void
2206 in_pcbrehash(struct inpcb *inp)
2207 {
2208 
2209 	in_pcbrehash_mbuf(inp, NULL);
2210 }
2211 
2212 /*
2213  * Remove PCB from various lists.
2214  */
2215 static void
2216 in_pcbremlists(struct inpcb *inp)
2217 {
2218 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2219 
2220 #ifdef INVARIANTS
2221 	if (pcbinfo == &V_tcbinfo) {
2222 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2223 	} else {
2224 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2225 	}
2226 #endif
2227 
2228 	INP_WLOCK_ASSERT(inp);
2229 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2230 
2231 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2232 	if (inp->inp_flags & INP_INHASHLIST) {
2233 		struct inpcbport *phd = inp->inp_phd;
2234 
2235 		INP_HASH_WLOCK(pcbinfo);
2236 		LIST_REMOVE(inp, inp_hash);
2237 		LIST_REMOVE(inp, inp_portlist);
2238 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2239 			LIST_REMOVE(phd, phd_hash);
2240 			free(phd, M_PCB);
2241 		}
2242 		INP_HASH_WUNLOCK(pcbinfo);
2243 		inp->inp_flags &= ~INP_INHASHLIST;
2244 	}
2245 	LIST_REMOVE(inp, inp_list);
2246 	pcbinfo->ipi_count--;
2247 #ifdef PCBGROUP
2248 	in_pcbgroup_remove(inp);
2249 #endif
2250 }
2251 
2252 /*
2253  * Check for alternatives when higher level complains
2254  * about service problems.  For now, invalidate cached
2255  * routing information.  If the route was created dynamically
2256  * (by a redirect), time to try a default gateway again.
2257  */
2258 void
2259 in_losing(struct inpcb *inp)
2260 {
2261 
2262 	RO_RTFREE(&inp->inp_route);
2263 	if (inp->inp_route.ro_lle)
2264 		LLE_FREE(inp->inp_route.ro_lle);	/* zeros ro_lle */
2265 	return;
2266 }
2267 
2268 /*
2269  * A set label operation has occurred at the socket layer, propagate the
2270  * label change into the in_pcb for the socket.
2271  */
2272 void
2273 in_pcbsosetlabel(struct socket *so)
2274 {
2275 #ifdef MAC
2276 	struct inpcb *inp;
2277 
2278 	inp = sotoinpcb(so);
2279 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2280 
2281 	INP_WLOCK(inp);
2282 	SOCK_LOCK(so);
2283 	mac_inpcb_sosetlabel(so, inp);
2284 	SOCK_UNLOCK(so);
2285 	INP_WUNLOCK(inp);
2286 #endif
2287 }
2288 
2289 /*
2290  * ipport_tick runs once per second, determining if random port allocation
2291  * should be continued.  If more than ipport_randomcps ports have been
2292  * allocated in the last second, then we return to sequential port
2293  * allocation. We return to random allocation only once we drop below
2294  * ipport_randomcps for at least ipport_randomtime seconds.
2295  */
2296 static void
2297 ipport_tick(void *xtp)
2298 {
2299 	VNET_ITERATOR_DECL(vnet_iter);
2300 
2301 	VNET_LIST_RLOCK_NOSLEEP();
2302 	VNET_FOREACH(vnet_iter) {
2303 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2304 		if (V_ipport_tcpallocs <=
2305 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2306 			if (V_ipport_stoprandom > 0)
2307 				V_ipport_stoprandom--;
2308 		} else
2309 			V_ipport_stoprandom = V_ipport_randomtime;
2310 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2311 		CURVNET_RESTORE();
2312 	}
2313 	VNET_LIST_RUNLOCK_NOSLEEP();
2314 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2315 }
2316 
2317 static void
2318 ip_fini(void *xtp)
2319 {
2320 
2321 	callout_stop(&ipport_tick_callout);
2322 }
2323 
2324 /*
2325  * The ipport_callout should start running at about the time we attach the
2326  * inet or inet6 domains.
2327  */
2328 static void
2329 ipport_tick_init(const void *unused __unused)
2330 {
2331 
2332 	/* Start ipport_tick. */
2333 	callout_init(&ipport_tick_callout, 1);
2334 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2335 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2336 		SHUTDOWN_PRI_DEFAULT);
2337 }
2338 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2339     ipport_tick_init, NULL);
2340 
2341 void
2342 inp_wlock(struct inpcb *inp)
2343 {
2344 
2345 	INP_WLOCK(inp);
2346 }
2347 
2348 void
2349 inp_wunlock(struct inpcb *inp)
2350 {
2351 
2352 	INP_WUNLOCK(inp);
2353 }
2354 
2355 void
2356 inp_rlock(struct inpcb *inp)
2357 {
2358 
2359 	INP_RLOCK(inp);
2360 }
2361 
2362 void
2363 inp_runlock(struct inpcb *inp)
2364 {
2365 
2366 	INP_RUNLOCK(inp);
2367 }
2368 
2369 #ifdef INVARIANT_SUPPORT
2370 void
2371 inp_lock_assert(struct inpcb *inp)
2372 {
2373 
2374 	INP_WLOCK_ASSERT(inp);
2375 }
2376 
2377 void
2378 inp_unlock_assert(struct inpcb *inp)
2379 {
2380 
2381 	INP_UNLOCK_ASSERT(inp);
2382 }
2383 #endif
2384 
2385 void
2386 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2387 {
2388 	struct inpcb *inp;
2389 
2390 	INP_INFO_WLOCK(&V_tcbinfo);
2391 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2392 		INP_WLOCK(inp);
2393 		func(inp, arg);
2394 		INP_WUNLOCK(inp);
2395 	}
2396 	INP_INFO_WUNLOCK(&V_tcbinfo);
2397 }
2398 
2399 struct socket *
2400 inp_inpcbtosocket(struct inpcb *inp)
2401 {
2402 
2403 	INP_WLOCK_ASSERT(inp);
2404 	return (inp->inp_socket);
2405 }
2406 
2407 struct tcpcb *
2408 inp_inpcbtotcpcb(struct inpcb *inp)
2409 {
2410 
2411 	INP_WLOCK_ASSERT(inp);
2412 	return ((struct tcpcb *)inp->inp_ppcb);
2413 }
2414 
2415 int
2416 inp_ip_tos_get(const struct inpcb *inp)
2417 {
2418 
2419 	return (inp->inp_ip_tos);
2420 }
2421 
2422 void
2423 inp_ip_tos_set(struct inpcb *inp, int val)
2424 {
2425 
2426 	inp->inp_ip_tos = val;
2427 }
2428 
2429 void
2430 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2431     uint32_t *faddr, uint16_t *fp)
2432 {
2433 
2434 	INP_LOCK_ASSERT(inp);
2435 	*laddr = inp->inp_laddr.s_addr;
2436 	*faddr = inp->inp_faddr.s_addr;
2437 	*lp = inp->inp_lport;
2438 	*fp = inp->inp_fport;
2439 }
2440 
2441 struct inpcb *
2442 so_sotoinpcb(struct socket *so)
2443 {
2444 
2445 	return (sotoinpcb(so));
2446 }
2447 
2448 struct tcpcb *
2449 so_sototcpcb(struct socket *so)
2450 {
2451 
2452 	return (sototcpcb(so));
2453 }
2454 
2455 /*
2456  * Create an external-format (``xinpcb'') structure using the information in
2457  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2458  * reduce the spew of irrelevant information over this interface, to isolate
2459  * user code from changes in the kernel structure, and potentially to provide
2460  * information-hiding if we decide that some of this information should be
2461  * hidden from users.
2462  */
2463 void
2464 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2465 {
2466 
2467 	xi->xi_len = sizeof(struct xinpcb);
2468 	if (inp->inp_socket)
2469 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2470 	else
2471 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2472 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2473 	xi->inp_gencnt = inp->inp_gencnt;
2474 	xi->inp_ppcb = inp->inp_ppcb;
2475 	xi->inp_flow = inp->inp_flow;
2476 	xi->inp_flowid = inp->inp_flowid;
2477 	xi->inp_flowtype = inp->inp_flowtype;
2478 	xi->inp_flags = inp->inp_flags;
2479 	xi->inp_flags2 = inp->inp_flags2;
2480 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2481 	xi->in6p_cksum = inp->in6p_cksum;
2482 	xi->in6p_hops = inp->in6p_hops;
2483 	xi->inp_ip_tos = inp->inp_ip_tos;
2484 	xi->inp_vflag = inp->inp_vflag;
2485 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2486 	xi->inp_ip_p = inp->inp_ip_p;
2487 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2488 }
2489 
2490 #ifdef DDB
2491 static void
2492 db_print_indent(int indent)
2493 {
2494 	int i;
2495 
2496 	for (i = 0; i < indent; i++)
2497 		db_printf(" ");
2498 }
2499 
2500 static void
2501 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2502 {
2503 	char faddr_str[48], laddr_str[48];
2504 
2505 	db_print_indent(indent);
2506 	db_printf("%s at %p\n", name, inc);
2507 
2508 	indent += 2;
2509 
2510 #ifdef INET6
2511 	if (inc->inc_flags & INC_ISIPV6) {
2512 		/* IPv6. */
2513 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2514 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2515 	} else
2516 #endif
2517 	{
2518 		/* IPv4. */
2519 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2520 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2521 	}
2522 	db_print_indent(indent);
2523 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2524 	    ntohs(inc->inc_lport));
2525 	db_print_indent(indent);
2526 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2527 	    ntohs(inc->inc_fport));
2528 }
2529 
2530 static void
2531 db_print_inpflags(int inp_flags)
2532 {
2533 	int comma;
2534 
2535 	comma = 0;
2536 	if (inp_flags & INP_RECVOPTS) {
2537 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2538 		comma = 1;
2539 	}
2540 	if (inp_flags & INP_RECVRETOPTS) {
2541 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2542 		comma = 1;
2543 	}
2544 	if (inp_flags & INP_RECVDSTADDR) {
2545 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2546 		comma = 1;
2547 	}
2548 	if (inp_flags & INP_ORIGDSTADDR) {
2549 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2550 		comma = 1;
2551 	}
2552 	if (inp_flags & INP_HDRINCL) {
2553 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2554 		comma = 1;
2555 	}
2556 	if (inp_flags & INP_HIGHPORT) {
2557 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2558 		comma = 1;
2559 	}
2560 	if (inp_flags & INP_LOWPORT) {
2561 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2562 		comma = 1;
2563 	}
2564 	if (inp_flags & INP_ANONPORT) {
2565 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2566 		comma = 1;
2567 	}
2568 	if (inp_flags & INP_RECVIF) {
2569 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2570 		comma = 1;
2571 	}
2572 	if (inp_flags & INP_MTUDISC) {
2573 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2574 		comma = 1;
2575 	}
2576 	if (inp_flags & INP_RECVTTL) {
2577 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2578 		comma = 1;
2579 	}
2580 	if (inp_flags & INP_DONTFRAG) {
2581 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2582 		comma = 1;
2583 	}
2584 	if (inp_flags & INP_RECVTOS) {
2585 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2586 		comma = 1;
2587 	}
2588 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2589 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2590 		comma = 1;
2591 	}
2592 	if (inp_flags & IN6P_PKTINFO) {
2593 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2594 		comma = 1;
2595 	}
2596 	if (inp_flags & IN6P_HOPLIMIT) {
2597 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2598 		comma = 1;
2599 	}
2600 	if (inp_flags & IN6P_HOPOPTS) {
2601 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2602 		comma = 1;
2603 	}
2604 	if (inp_flags & IN6P_DSTOPTS) {
2605 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2606 		comma = 1;
2607 	}
2608 	if (inp_flags & IN6P_RTHDR) {
2609 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2610 		comma = 1;
2611 	}
2612 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2613 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2614 		comma = 1;
2615 	}
2616 	if (inp_flags & IN6P_TCLASS) {
2617 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2618 		comma = 1;
2619 	}
2620 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2621 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2622 		comma = 1;
2623 	}
2624 	if (inp_flags & INP_TIMEWAIT) {
2625 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2626 		comma  = 1;
2627 	}
2628 	if (inp_flags & INP_ONESBCAST) {
2629 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2630 		comma  = 1;
2631 	}
2632 	if (inp_flags & INP_DROPPED) {
2633 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2634 		comma  = 1;
2635 	}
2636 	if (inp_flags & INP_SOCKREF) {
2637 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2638 		comma  = 1;
2639 	}
2640 	if (inp_flags & IN6P_RFC2292) {
2641 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2642 		comma = 1;
2643 	}
2644 	if (inp_flags & IN6P_MTU) {
2645 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2646 		comma = 1;
2647 	}
2648 }
2649 
2650 static void
2651 db_print_inpvflag(u_char inp_vflag)
2652 {
2653 	int comma;
2654 
2655 	comma = 0;
2656 	if (inp_vflag & INP_IPV4) {
2657 		db_printf("%sINP_IPV4", comma ? ", " : "");
2658 		comma  = 1;
2659 	}
2660 	if (inp_vflag & INP_IPV6) {
2661 		db_printf("%sINP_IPV6", comma ? ", " : "");
2662 		comma  = 1;
2663 	}
2664 	if (inp_vflag & INP_IPV6PROTO) {
2665 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2666 		comma  = 1;
2667 	}
2668 }
2669 
2670 static void
2671 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2672 {
2673 
2674 	db_print_indent(indent);
2675 	db_printf("%s at %p\n", name, inp);
2676 
2677 	indent += 2;
2678 
2679 	db_print_indent(indent);
2680 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2681 
2682 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2683 
2684 	db_print_indent(indent);
2685 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2686 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2687 
2688 	db_print_indent(indent);
2689 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2690 	   inp->inp_label, inp->inp_flags);
2691 	db_print_inpflags(inp->inp_flags);
2692 	db_printf(")\n");
2693 
2694 	db_print_indent(indent);
2695 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2696 	    inp->inp_vflag);
2697 	db_print_inpvflag(inp->inp_vflag);
2698 	db_printf(")\n");
2699 
2700 	db_print_indent(indent);
2701 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2702 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2703 
2704 	db_print_indent(indent);
2705 #ifdef INET6
2706 	if (inp->inp_vflag & INP_IPV6) {
2707 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2708 		    "in6p_moptions: %p\n", inp->in6p_options,
2709 		    inp->in6p_outputopts, inp->in6p_moptions);
2710 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2711 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2712 		    inp->in6p_hops);
2713 	} else
2714 #endif
2715 	{
2716 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2717 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2718 		    inp->inp_options, inp->inp_moptions);
2719 	}
2720 
2721 	db_print_indent(indent);
2722 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2723 	    (uintmax_t)inp->inp_gencnt);
2724 }
2725 
2726 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2727 {
2728 	struct inpcb *inp;
2729 
2730 	if (!have_addr) {
2731 		db_printf("usage: show inpcb <addr>\n");
2732 		return;
2733 	}
2734 	inp = (struct inpcb *)addr;
2735 
2736 	db_print_inpcb(inp, "inpcb", 0);
2737 }
2738 #endif /* DDB */
2739 
2740 #ifdef RATELIMIT
2741 /*
2742  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2743  * if any.
2744  */
2745 int
2746 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2747 {
2748 	union if_snd_tag_modify_params params = {
2749 		.rate_limit.max_rate = max_pacing_rate,
2750 	};
2751 	struct m_snd_tag *mst;
2752 	struct ifnet *ifp;
2753 	int error;
2754 
2755 	mst = inp->inp_snd_tag;
2756 	if (mst == NULL)
2757 		return (EINVAL);
2758 
2759 	ifp = mst->ifp;
2760 	if (ifp == NULL)
2761 		return (EINVAL);
2762 
2763 	if (ifp->if_snd_tag_modify == NULL) {
2764 		error = EOPNOTSUPP;
2765 	} else {
2766 		error = ifp->if_snd_tag_modify(mst, &params);
2767 	}
2768 	return (error);
2769 }
2770 
2771 /*
2772  * Query existing TX rate limit based on the existing
2773  * "inp->inp_snd_tag", if any.
2774  */
2775 int
2776 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2777 {
2778 	union if_snd_tag_query_params params = { };
2779 	struct m_snd_tag *mst;
2780 	struct ifnet *ifp;
2781 	int error;
2782 
2783 	mst = inp->inp_snd_tag;
2784 	if (mst == NULL)
2785 		return (EINVAL);
2786 
2787 	ifp = mst->ifp;
2788 	if (ifp == NULL)
2789 		return (EINVAL);
2790 
2791 	if (ifp->if_snd_tag_query == NULL) {
2792 		error = EOPNOTSUPP;
2793 	} else {
2794 		error = ifp->if_snd_tag_query(mst, &params);
2795 		if (error == 0 &&  p_max_pacing_rate != NULL)
2796 			*p_max_pacing_rate = params.rate_limit.max_rate;
2797 	}
2798 	return (error);
2799 }
2800 
2801 /*
2802  * Query existing TX queue level based on the existing
2803  * "inp->inp_snd_tag", if any.
2804  */
2805 int
2806 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2807 {
2808 	union if_snd_tag_query_params params = { };
2809 	struct m_snd_tag *mst;
2810 	struct ifnet *ifp;
2811 	int error;
2812 
2813 	mst = inp->inp_snd_tag;
2814 	if (mst == NULL)
2815 		return (EINVAL);
2816 
2817 	ifp = mst->ifp;
2818 	if (ifp == NULL)
2819 		return (EINVAL);
2820 
2821 	if (ifp->if_snd_tag_query == NULL)
2822 		return (EOPNOTSUPP);
2823 
2824 	error = ifp->if_snd_tag_query(mst, &params);
2825 	if (error == 0 &&  p_txqueue_level != NULL)
2826 		*p_txqueue_level = params.rate_limit.queue_level;
2827 	return (error);
2828 }
2829 
2830 /*
2831  * Allocate a new TX rate limit send tag from the network interface
2832  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2833  */
2834 int
2835 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2836     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2837 {
2838 	union if_snd_tag_alloc_params params = {
2839 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2840 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2841 		.rate_limit.hdr.flowid = flowid,
2842 		.rate_limit.hdr.flowtype = flowtype,
2843 		.rate_limit.max_rate = max_pacing_rate,
2844 	};
2845 	int error;
2846 
2847 	INP_WLOCK_ASSERT(inp);
2848 
2849 	if (inp->inp_snd_tag != NULL)
2850 		return (EINVAL);
2851 
2852 	if (ifp->if_snd_tag_alloc == NULL) {
2853 		error = EOPNOTSUPP;
2854 	} else {
2855 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2856 
2857 		/*
2858 		 * At success increment the refcount on
2859 		 * the send tag's network interface:
2860 		 */
2861 		if (error == 0)
2862 			if_ref(inp->inp_snd_tag->ifp);
2863 	}
2864 	return (error);
2865 }
2866 
2867 /*
2868  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2869  * if any:
2870  */
2871 void
2872 in_pcbdetach_txrtlmt(struct inpcb *inp)
2873 {
2874 	struct m_snd_tag *mst;
2875 	struct ifnet *ifp;
2876 
2877 	INP_WLOCK_ASSERT(inp);
2878 
2879 	mst = inp->inp_snd_tag;
2880 	inp->inp_snd_tag = NULL;
2881 
2882 	if (mst == NULL)
2883 		return;
2884 
2885 	ifp = mst->ifp;
2886 	if (ifp == NULL)
2887 		return;
2888 
2889 	/*
2890 	 * If the device was detached while we still had reference(s)
2891 	 * on the ifp, we assume if_snd_tag_free() was replaced with
2892 	 * stubs.
2893 	 */
2894 	ifp->if_snd_tag_free(mst);
2895 
2896 	/* release reference count on network interface */
2897 	if_rele(ifp);
2898 }
2899 
2900 /*
2901  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
2902  * is set in the fast path and will attach/detach/modify the TX rate
2903  * limit send tag based on the socket's so_max_pacing_rate value.
2904  */
2905 void
2906 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
2907 {
2908 	struct socket *socket;
2909 	uint32_t max_pacing_rate;
2910 	bool did_upgrade;
2911 	int error;
2912 
2913 	if (inp == NULL)
2914 		return;
2915 
2916 	socket = inp->inp_socket;
2917 	if (socket == NULL)
2918 		return;
2919 
2920 	if (!INP_WLOCKED(inp)) {
2921 		/*
2922 		 * NOTE: If the write locking fails, we need to bail
2923 		 * out and use the non-ratelimited ring for the
2924 		 * transmit until there is a new chance to get the
2925 		 * write lock.
2926 		 */
2927 		if (!INP_TRY_UPGRADE(inp))
2928 			return;
2929 		did_upgrade = 1;
2930 	} else {
2931 		did_upgrade = 0;
2932 	}
2933 
2934 	/*
2935 	 * NOTE: The so_max_pacing_rate value is read unlocked,
2936 	 * because atomic updates are not required since the variable
2937 	 * is checked at every mbuf we send. It is assumed that the
2938 	 * variable read itself will be atomic.
2939 	 */
2940 	max_pacing_rate = socket->so_max_pacing_rate;
2941 
2942 	/*
2943 	 * NOTE: When attaching to a network interface a reference is
2944 	 * made to ensure the network interface doesn't go away until
2945 	 * all ratelimit connections are gone. The network interface
2946 	 * pointers compared below represent valid network interfaces,
2947 	 * except when comparing towards NULL.
2948 	 */
2949 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
2950 		error = 0;
2951 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
2952 		if (inp->inp_snd_tag != NULL)
2953 			in_pcbdetach_txrtlmt(inp);
2954 		error = 0;
2955 	} else if (inp->inp_snd_tag == NULL) {
2956 		/*
2957 		 * In order to utilize packet pacing with RSS, we need
2958 		 * to wait until there is a valid RSS hash before we
2959 		 * can proceed:
2960 		 */
2961 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
2962 			error = EAGAIN;
2963 		} else {
2964 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
2965 			    mb->m_pkthdr.flowid, max_pacing_rate);
2966 		}
2967 	} else {
2968 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
2969 	}
2970 	if (error == 0 || error == EOPNOTSUPP)
2971 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
2972 	if (did_upgrade)
2973 		INP_DOWNGRADE(inp);
2974 }
2975 
2976 /*
2977  * Track route changes for TX rate limiting.
2978  */
2979 void
2980 in_pcboutput_eagain(struct inpcb *inp)
2981 {
2982 	struct socket *socket;
2983 	bool did_upgrade;
2984 
2985 	if (inp == NULL)
2986 		return;
2987 
2988 	socket = inp->inp_socket;
2989 	if (socket == NULL)
2990 		return;
2991 
2992 	if (inp->inp_snd_tag == NULL)
2993 		return;
2994 
2995 	if (!INP_WLOCKED(inp)) {
2996 		/*
2997 		 * NOTE: If the write locking fails, we need to bail
2998 		 * out and use the non-ratelimited ring for the
2999 		 * transmit until there is a new chance to get the
3000 		 * write lock.
3001 		 */
3002 		if (!INP_TRY_UPGRADE(inp))
3003 			return;
3004 		did_upgrade = 1;
3005 	} else {
3006 		did_upgrade = 0;
3007 	}
3008 
3009 	/* detach rate limiting */
3010 	in_pcbdetach_txrtlmt(inp);
3011 
3012 	/* make sure new mbuf send tag allocation is made */
3013 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3014 
3015 	if (did_upgrade)
3016 		INP_DOWNGRADE(inp);
3017 }
3018 #endif /* RATELIMIT */
3019