xref: /freebsd/sys/netpfil/pf/pf.c (revision 190cef3d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_bpf.h"
46 #include "opt_pf.h"
47 
48 #include <sys/param.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64 
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 #include <net/route.h>
70 #include <net/radix_mpath.h>
71 #include <net/vnet.h>
72 
73 #include <net/pfil.h>
74 #include <net/pfvar.h>
75 #include <net/if_pflog.h>
76 #include <net/if_pfsync.h>
77 
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_var.h>
80 #include <netinet/in_fib.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_fw.h>
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/udp.h>
92 #include <netinet/udp_var.h>
93 
94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */
95 
96 #ifdef INET6
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_fib.h>
103 #include <netinet6/scope6_var.h>
104 #endif /* INET6 */
105 
106 #include <machine/in_cksum.h>
107 #include <security/mac/mac_framework.h>
108 
109 #define	DPFPRINTF(n, x)	if (V_pf_status.debug >= (n)) printf x
110 
111 /*
112  * Global variables
113  */
114 
115 /* state tables */
116 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[2]);
117 VNET_DEFINE(struct pf_palist,		 pf_pabuf);
118 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
119 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
120 VNET_DEFINE(struct pf_kstatus,		 pf_status);
121 
122 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
123 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
124 VNET_DEFINE(int,			 altqs_inactive_open);
125 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
126 
127 VNET_DEFINE(MD5_CTX,			 pf_tcp_secret_ctx);
128 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
129 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
130 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
131 VNET_DEFINE(int,			 pf_tcp_secret_init);
132 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
133 VNET_DEFINE(int,			 pf_tcp_iss_off);
134 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
135 VNET_DECLARE(int,			 pf_vnet_active);
136 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
137 
138 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
139 #define V_pf_purge_idx	VNET(pf_purge_idx)
140 
141 /*
142  * Queue for pf_intr() sends.
143  */
144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
145 struct pf_send_entry {
146 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
147 	struct mbuf			*pfse_m;
148 	enum {
149 		PFSE_IP,
150 		PFSE_IP6,
151 		PFSE_ICMP,
152 		PFSE_ICMP6,
153 	}				pfse_type;
154 	struct {
155 		int		type;
156 		int		code;
157 		int		mtu;
158 	} icmpopts;
159 };
160 
161 STAILQ_HEAD(pf_send_head, pf_send_entry);
162 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
163 #define	V_pf_sendqueue	VNET(pf_sendqueue)
164 
165 static struct mtx pf_sendqueue_mtx;
166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
167 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
168 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
169 
170 /*
171  * Queue for pf_overload_task() tasks.
172  */
173 struct pf_overload_entry {
174 	SLIST_ENTRY(pf_overload_entry)	next;
175 	struct pf_addr  		addr;
176 	sa_family_t			af;
177 	uint8_t				dir;
178 	struct pf_rule  		*rule;
179 };
180 
181 SLIST_HEAD(pf_overload_head, pf_overload_entry);
182 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
183 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
184 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
185 #define	V_pf_overloadtask	VNET(pf_overloadtask)
186 
187 static struct mtx pf_overloadqueue_mtx;
188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
189     "pf overload/flush queue", MTX_DEF);
190 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
191 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
192 
193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules);
194 struct mtx pf_unlnkdrules_mtx;
195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
196     MTX_DEF);
197 
198 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
199 #define	V_pf_sources_z	VNET(pf_sources_z)
200 uma_zone_t		pf_mtag_z;
201 VNET_DEFINE(uma_zone_t,	 pf_state_z);
202 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
203 
204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]);
205 #define	PFID_CPUBITS	8
206 #define	PFID_CPUSHIFT	(sizeof(uint64_t) * NBBY - PFID_CPUBITS)
207 #define	PFID_CPUMASK	((uint64_t)((1 << PFID_CPUBITS) - 1) <<	PFID_CPUSHIFT)
208 #define	PFID_MAXID	(~PFID_CPUMASK)
209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU);
210 
211 static void		 pf_src_tree_remove_state(struct pf_state *);
212 static void		 pf_init_threshold(struct pf_threshold *, u_int32_t,
213 			    u_int32_t);
214 static void		 pf_add_threshold(struct pf_threshold *);
215 static int		 pf_check_threshold(struct pf_threshold *);
216 
217 static void		 pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
218 			    u_int16_t *, u_int16_t *, struct pf_addr *,
219 			    u_int16_t, u_int8_t, sa_family_t);
220 static int		 pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *,
221 			    struct tcphdr *, struct pf_state_peer *);
222 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
223 			    struct pf_addr *, struct pf_addr *, u_int16_t,
224 			    u_int16_t *, u_int16_t *, u_int16_t *,
225 			    u_int16_t *, u_int8_t, sa_family_t);
226 static void		 pf_send_tcp(struct mbuf *,
227 			    const struct pf_rule *, sa_family_t,
228 			    const struct pf_addr *, const struct pf_addr *,
229 			    u_int16_t, u_int16_t, u_int32_t, u_int32_t,
230 			    u_int8_t, u_int16_t, u_int16_t, u_int8_t, int,
231 			    u_int16_t, struct ifnet *);
232 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
233 			    sa_family_t, struct pf_rule *);
234 static void		 pf_detach_state(struct pf_state *);
235 static int		 pf_state_key_attach(struct pf_state_key *,
236 			    struct pf_state_key *, struct pf_state *);
237 static void		 pf_state_key_detach(struct pf_state *, int);
238 static int		 pf_state_key_ctor(void *, int, void *, int);
239 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
240 static int		 pf_test_rule(struct pf_rule **, struct pf_state **,
241 			    int, struct pfi_kif *, struct mbuf *, int,
242 			    struct pf_pdesc *, struct pf_rule **,
243 			    struct pf_ruleset **, struct inpcb *);
244 static int		 pf_create_state(struct pf_rule *, struct pf_rule *,
245 			    struct pf_rule *, struct pf_pdesc *,
246 			    struct pf_src_node *, struct pf_state_key *,
247 			    struct pf_state_key *, struct mbuf *, int,
248 			    u_int16_t, u_int16_t, int *, struct pfi_kif *,
249 			    struct pf_state **, int, u_int16_t, u_int16_t,
250 			    int);
251 static int		 pf_test_fragment(struct pf_rule **, int,
252 			    struct pfi_kif *, struct mbuf *, void *,
253 			    struct pf_pdesc *, struct pf_rule **,
254 			    struct pf_ruleset **);
255 static int		 pf_tcp_track_full(struct pf_state_peer *,
256 			    struct pf_state_peer *, struct pf_state **,
257 			    struct pfi_kif *, struct mbuf *, int,
258 			    struct pf_pdesc *, u_short *, int *);
259 static int		 pf_tcp_track_sloppy(struct pf_state_peer *,
260 			    struct pf_state_peer *, struct pf_state **,
261 			    struct pf_pdesc *, u_short *);
262 static int		 pf_test_state_tcp(struct pf_state **, int,
263 			    struct pfi_kif *, struct mbuf *, int,
264 			    void *, struct pf_pdesc *, u_short *);
265 static int		 pf_test_state_udp(struct pf_state **, int,
266 			    struct pfi_kif *, struct mbuf *, int,
267 			    void *, struct pf_pdesc *);
268 static int		 pf_test_state_icmp(struct pf_state **, int,
269 			    struct pfi_kif *, struct mbuf *, int,
270 			    void *, struct pf_pdesc *, u_short *);
271 static int		 pf_test_state_other(struct pf_state **, int,
272 			    struct pfi_kif *, struct mbuf *, struct pf_pdesc *);
273 static u_int8_t		 pf_get_wscale(struct mbuf *, int, u_int16_t,
274 			    sa_family_t);
275 static u_int16_t	 pf_get_mss(struct mbuf *, int, u_int16_t,
276 			    sa_family_t);
277 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
278 				int, u_int16_t);
279 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
280 			    u_int8_t, sa_family_t);
281 static void		 pf_print_state_parts(struct pf_state *,
282 			    struct pf_state_key *, struct pf_state_key *);
283 static int		 pf_addr_wrap_neq(struct pf_addr_wrap *,
284 			    struct pf_addr_wrap *);
285 static struct pf_state	*pf_find_state(struct pfi_kif *,
286 			    struct pf_state_key_cmp *, u_int);
287 static int		 pf_src_connlimit(struct pf_state **);
288 static void		 pf_overload_task(void *v, int pending);
289 static int		 pf_insert_src_node(struct pf_src_node **,
290 			    struct pf_rule *, struct pf_addr *, sa_family_t);
291 static u_int		 pf_purge_expired_states(u_int, int);
292 static void		 pf_purge_unlinked_rules(void);
293 static int		 pf_mtag_uminit(void *, int, int);
294 static void		 pf_mtag_free(struct m_tag *);
295 #ifdef INET
296 static void		 pf_route(struct mbuf **, struct pf_rule *, int,
297 			    struct ifnet *, struct pf_state *,
298 			    struct pf_pdesc *, struct inpcb *);
299 #endif /* INET */
300 #ifdef INET6
301 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
302 			    struct pf_addr *, u_int8_t);
303 static void		 pf_route6(struct mbuf **, struct pf_rule *, int,
304 			    struct ifnet *, struct pf_state *,
305 			    struct pf_pdesc *, struct inpcb *);
306 #endif /* INET6 */
307 
308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
309 
310 extern int pf_end_threads;
311 extern struct proc *pf_purge_proc;
312 
313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
314 
315 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
316 				 (pd)->pf_mtag->flags & PF_PACKET_LOOPED)
317 
318 #define	STATE_LOOKUP(i, k, d, s, pd)					\
319 	do {								\
320 		(s) = pf_find_state((i), (k), (d));			\
321 		if ((s) == NULL)					\
322 			return (PF_DROP);				\
323 		if (PACKET_LOOPED(pd))					\
324 			return (PF_PASS);				\
325 		if ((d) == PF_OUT &&					\
326 		    (((s)->rule.ptr->rt == PF_ROUTETO &&		\
327 		    (s)->rule.ptr->direction == PF_OUT) ||		\
328 		    ((s)->rule.ptr->rt == PF_REPLYTO &&			\
329 		    (s)->rule.ptr->direction == PF_IN)) &&		\
330 		    (s)->rt_kif != NULL &&				\
331 		    (s)->rt_kif != (i))					\
332 			return (PF_PASS);				\
333 	} while (0)
334 
335 #define	BOUND_IFACE(r, k) \
336 	((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all
337 
338 #define	STATE_INC_COUNTERS(s)						\
339 	do {								\
340 		counter_u64_add(s->rule.ptr->states_cur, 1);		\
341 		counter_u64_add(s->rule.ptr->states_tot, 1);		\
342 		if (s->anchor.ptr != NULL) {				\
343 			counter_u64_add(s->anchor.ptr->states_cur, 1);	\
344 			counter_u64_add(s->anchor.ptr->states_tot, 1);	\
345 		}							\
346 		if (s->nat_rule.ptr != NULL) {				\
347 			counter_u64_add(s->nat_rule.ptr->states_cur, 1);\
348 			counter_u64_add(s->nat_rule.ptr->states_tot, 1);\
349 		}							\
350 	} while (0)
351 
352 #define	STATE_DEC_COUNTERS(s)						\
353 	do {								\
354 		if (s->nat_rule.ptr != NULL)				\
355 			counter_u64_add(s->nat_rule.ptr->states_cur, -1);\
356 		if (s->anchor.ptr != NULL)				\
357 			counter_u64_add(s->anchor.ptr->states_cur, -1);	\
358 		counter_u64_add(s->rule.ptr->states_cur, -1);		\
359 	} while (0)
360 
361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
363 VNET_DEFINE(struct pf_idhash *, pf_idhash);
364 VNET_DEFINE(struct pf_srchash *, pf_srchash);
365 
366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)");
367 
368 u_long	pf_hashmask;
369 u_long	pf_srchashmask;
370 static u_long	pf_hashsize;
371 static u_long	pf_srchashsize;
372 u_long	pf_ioctl_maxcount = 65535;
373 
374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN,
375     &pf_hashsize, 0, "Size of pf(4) states hashtable");
376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN,
377     &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable");
378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN,
379     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
380 
381 VNET_DEFINE(void *, pf_swi_cookie);
382 
383 VNET_DEFINE(uint32_t, pf_hashseed);
384 #define	V_pf_hashseed	VNET(pf_hashseed)
385 
386 int
387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
388 {
389 
390 	switch (af) {
391 #ifdef INET
392 	case AF_INET:
393 		if (a->addr32[0] > b->addr32[0])
394 			return (1);
395 		if (a->addr32[0] < b->addr32[0])
396 			return (-1);
397 		break;
398 #endif /* INET */
399 #ifdef INET6
400 	case AF_INET6:
401 		if (a->addr32[3] > b->addr32[3])
402 			return (1);
403 		if (a->addr32[3] < b->addr32[3])
404 			return (-1);
405 		if (a->addr32[2] > b->addr32[2])
406 			return (1);
407 		if (a->addr32[2] < b->addr32[2])
408 			return (-1);
409 		if (a->addr32[1] > b->addr32[1])
410 			return (1);
411 		if (a->addr32[1] < b->addr32[1])
412 			return (-1);
413 		if (a->addr32[0] > b->addr32[0])
414 			return (1);
415 		if (a->addr32[0] < b->addr32[0])
416 			return (-1);
417 		break;
418 #endif /* INET6 */
419 	default:
420 		panic("%s: unknown address family %u", __func__, af);
421 	}
422 	return (0);
423 }
424 
425 static __inline uint32_t
426 pf_hashkey(struct pf_state_key *sk)
427 {
428 	uint32_t h;
429 
430 	h = murmur3_32_hash32((uint32_t *)sk,
431 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
432 	    V_pf_hashseed);
433 
434 	return (h & pf_hashmask);
435 }
436 
437 static __inline uint32_t
438 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
439 {
440 	uint32_t h;
441 
442 	switch (af) {
443 	case AF_INET:
444 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
445 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
446 		break;
447 	case AF_INET6:
448 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
449 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
450 		break;
451 	default:
452 		panic("%s: unknown address family %u", __func__, af);
453 	}
454 
455 	return (h & pf_srchashmask);
456 }
457 
458 #ifdef ALTQ
459 static int
460 pf_state_hash(struct pf_state *s)
461 {
462 	u_int32_t hv = (intptr_t)s / sizeof(*s);
463 
464 	hv ^= crc32(&s->src, sizeof(s->src));
465 	hv ^= crc32(&s->dst, sizeof(s->dst));
466 	if (hv == 0)
467 		hv = 1;
468 	return (hv);
469 }
470 #endif
471 
472 #ifdef INET6
473 void
474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
475 {
476 	switch (af) {
477 #ifdef INET
478 	case AF_INET:
479 		dst->addr32[0] = src->addr32[0];
480 		break;
481 #endif /* INET */
482 	case AF_INET6:
483 		dst->addr32[0] = src->addr32[0];
484 		dst->addr32[1] = src->addr32[1];
485 		dst->addr32[2] = src->addr32[2];
486 		dst->addr32[3] = src->addr32[3];
487 		break;
488 	}
489 }
490 #endif /* INET6 */
491 
492 static void
493 pf_init_threshold(struct pf_threshold *threshold,
494     u_int32_t limit, u_int32_t seconds)
495 {
496 	threshold->limit = limit * PF_THRESHOLD_MULT;
497 	threshold->seconds = seconds;
498 	threshold->count = 0;
499 	threshold->last = time_uptime;
500 }
501 
502 static void
503 pf_add_threshold(struct pf_threshold *threshold)
504 {
505 	u_int32_t t = time_uptime, diff = t - threshold->last;
506 
507 	if (diff >= threshold->seconds)
508 		threshold->count = 0;
509 	else
510 		threshold->count -= threshold->count * diff /
511 		    threshold->seconds;
512 	threshold->count += PF_THRESHOLD_MULT;
513 	threshold->last = t;
514 }
515 
516 static int
517 pf_check_threshold(struct pf_threshold *threshold)
518 {
519 	return (threshold->count > threshold->limit);
520 }
521 
522 static int
523 pf_src_connlimit(struct pf_state **state)
524 {
525 	struct pf_overload_entry *pfoe;
526 	int bad = 0;
527 
528 	PF_STATE_LOCK_ASSERT(*state);
529 
530 	(*state)->src_node->conn++;
531 	(*state)->src.tcp_est = 1;
532 	pf_add_threshold(&(*state)->src_node->conn_rate);
533 
534 	if ((*state)->rule.ptr->max_src_conn &&
535 	    (*state)->rule.ptr->max_src_conn <
536 	    (*state)->src_node->conn) {
537 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
538 		bad++;
539 	}
540 
541 	if ((*state)->rule.ptr->max_src_conn_rate.limit &&
542 	    pf_check_threshold(&(*state)->src_node->conn_rate)) {
543 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
544 		bad++;
545 	}
546 
547 	if (!bad)
548 		return (0);
549 
550 	/* Kill this state. */
551 	(*state)->timeout = PFTM_PURGE;
552 	(*state)->src.state = (*state)->dst.state = TCPS_CLOSED;
553 
554 	if ((*state)->rule.ptr->overload_tbl == NULL)
555 		return (1);
556 
557 	/* Schedule overloading and flushing task. */
558 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
559 	if (pfoe == NULL)
560 		return (1);	/* too bad :( */
561 
562 	bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
563 	pfoe->af = (*state)->key[PF_SK_WIRE]->af;
564 	pfoe->rule = (*state)->rule.ptr;
565 	pfoe->dir = (*state)->direction;
566 	PF_OVERLOADQ_LOCK();
567 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
568 	PF_OVERLOADQ_UNLOCK();
569 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
570 
571 	return (1);
572 }
573 
574 static void
575 pf_overload_task(void *v, int pending)
576 {
577 	struct pf_overload_head queue;
578 	struct pfr_addr p;
579 	struct pf_overload_entry *pfoe, *pfoe1;
580 	uint32_t killed = 0;
581 
582 	CURVNET_SET((struct vnet *)v);
583 
584 	PF_OVERLOADQ_LOCK();
585 	queue = V_pf_overloadqueue;
586 	SLIST_INIT(&V_pf_overloadqueue);
587 	PF_OVERLOADQ_UNLOCK();
588 
589 	bzero(&p, sizeof(p));
590 	SLIST_FOREACH(pfoe, &queue, next) {
591 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
592 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
593 			printf("%s: blocking address ", __func__);
594 			pf_print_host(&pfoe->addr, 0, pfoe->af);
595 			printf("\n");
596 		}
597 
598 		p.pfra_af = pfoe->af;
599 		switch (pfoe->af) {
600 #ifdef INET
601 		case AF_INET:
602 			p.pfra_net = 32;
603 			p.pfra_ip4addr = pfoe->addr.v4;
604 			break;
605 #endif
606 #ifdef INET6
607 		case AF_INET6:
608 			p.pfra_net = 128;
609 			p.pfra_ip6addr = pfoe->addr.v6;
610 			break;
611 #endif
612 		}
613 
614 		PF_RULES_WLOCK();
615 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
616 		PF_RULES_WUNLOCK();
617 	}
618 
619 	/*
620 	 * Remove those entries, that don't need flushing.
621 	 */
622 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
623 		if (pfoe->rule->flush == 0) {
624 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
625 			free(pfoe, M_PFTEMP);
626 		} else
627 			counter_u64_add(
628 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
629 
630 	/* If nothing to flush, return. */
631 	if (SLIST_EMPTY(&queue)) {
632 		CURVNET_RESTORE();
633 		return;
634 	}
635 
636 	for (int i = 0; i <= pf_hashmask; i++) {
637 		struct pf_idhash *ih = &V_pf_idhash[i];
638 		struct pf_state_key *sk;
639 		struct pf_state *s;
640 
641 		PF_HASHROW_LOCK(ih);
642 		LIST_FOREACH(s, &ih->states, entry) {
643 		    sk = s->key[PF_SK_WIRE];
644 		    SLIST_FOREACH(pfoe, &queue, next)
645 			if (sk->af == pfoe->af &&
646 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
647 			    pfoe->rule == s->rule.ptr) &&
648 			    ((pfoe->dir == PF_OUT &&
649 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
650 			    (pfoe->dir == PF_IN &&
651 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
652 				s->timeout = PFTM_PURGE;
653 				s->src.state = s->dst.state = TCPS_CLOSED;
654 				killed++;
655 			}
656 		}
657 		PF_HASHROW_UNLOCK(ih);
658 	}
659 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
660 		free(pfoe, M_PFTEMP);
661 	if (V_pf_status.debug >= PF_DEBUG_MISC)
662 		printf("%s: %u states killed", __func__, killed);
663 
664 	CURVNET_RESTORE();
665 }
666 
667 /*
668  * Can return locked on failure, so that we can consistently
669  * allocate and insert a new one.
670  */
671 struct pf_src_node *
672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af,
673 	int returnlocked)
674 {
675 	struct pf_srchash *sh;
676 	struct pf_src_node *n;
677 
678 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
679 
680 	sh = &V_pf_srchash[pf_hashsrc(src, af)];
681 	PF_HASHROW_LOCK(sh);
682 	LIST_FOREACH(n, &sh->nodes, entry)
683 		if (n->rule.ptr == rule && n->af == af &&
684 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
685 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
686 			break;
687 	if (n != NULL) {
688 		n->states++;
689 		PF_HASHROW_UNLOCK(sh);
690 	} else if (returnlocked == 0)
691 		PF_HASHROW_UNLOCK(sh);
692 
693 	return (n);
694 }
695 
696 static int
697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule,
698     struct pf_addr *src, sa_family_t af)
699 {
700 
701 	KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK ||
702 	    rule->rpool.opts & PF_POOL_STICKYADDR),
703 	    ("%s for non-tracking rule %p", __func__, rule));
704 
705 	if (*sn == NULL)
706 		*sn = pf_find_src_node(src, rule, af, 1);
707 
708 	if (*sn == NULL) {
709 		struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)];
710 
711 		PF_HASHROW_ASSERT(sh);
712 
713 		if (!rule->max_src_nodes ||
714 		    counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes)
715 			(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
716 		else
717 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES],
718 			    1);
719 		if ((*sn) == NULL) {
720 			PF_HASHROW_UNLOCK(sh);
721 			return (-1);
722 		}
723 
724 		pf_init_threshold(&(*sn)->conn_rate,
725 		    rule->max_src_conn_rate.limit,
726 		    rule->max_src_conn_rate.seconds);
727 
728 		(*sn)->af = af;
729 		(*sn)->rule.ptr = rule;
730 		PF_ACPY(&(*sn)->addr, src, af);
731 		LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
732 		(*sn)->creation = time_uptime;
733 		(*sn)->ruletype = rule->action;
734 		(*sn)->states = 1;
735 		if ((*sn)->rule.ptr != NULL)
736 			counter_u64_add((*sn)->rule.ptr->src_nodes, 1);
737 		PF_HASHROW_UNLOCK(sh);
738 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
739 	} else {
740 		if (rule->max_src_states &&
741 		    (*sn)->states >= rule->max_src_states) {
742 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
743 			    1);
744 			return (-1);
745 		}
746 	}
747 	return (0);
748 }
749 
750 void
751 pf_unlink_src_node(struct pf_src_node *src)
752 {
753 
754 	PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]);
755 	LIST_REMOVE(src, entry);
756 	if (src->rule.ptr)
757 		counter_u64_add(src->rule.ptr->src_nodes, -1);
758 }
759 
760 u_int
761 pf_free_src_nodes(struct pf_src_node_list *head)
762 {
763 	struct pf_src_node *sn, *tmp;
764 	u_int count = 0;
765 
766 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
767 		uma_zfree(V_pf_sources_z, sn);
768 		count++;
769 	}
770 
771 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
772 
773 	return (count);
774 }
775 
776 void
777 pf_mtag_initialize()
778 {
779 
780 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
781 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
782 	    UMA_ALIGN_PTR, 0);
783 }
784 
785 /* Per-vnet data storage structures initialization. */
786 void
787 pf_initialize()
788 {
789 	struct pf_keyhash	*kh;
790 	struct pf_idhash	*ih;
791 	struct pf_srchash	*sh;
792 	u_int i;
793 
794 	if (pf_hashsize == 0 || !powerof2(pf_hashsize))
795 		pf_hashsize = PF_HASHSIZ;
796 	if (pf_srchashsize == 0 || !powerof2(pf_srchashsize))
797 		pf_srchashsize = PF_SRCHASHSIZ;
798 
799 	V_pf_hashseed = arc4random();
800 
801 	/* States and state keys storage. */
802 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state),
803 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
804 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
805 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
806 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
807 
808 	V_pf_state_key_z = uma_zcreate("pf state keys",
809 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
810 	    UMA_ALIGN_PTR, 0);
811 
812 	V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash),
813 	    M_PFHASH, M_NOWAIT | M_ZERO);
814 	V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash),
815 	    M_PFHASH, M_NOWAIT | M_ZERO);
816 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
817 		printf("pf: Unable to allocate memory for "
818 		    "state_hashsize %lu.\n", pf_hashsize);
819 
820 		free(V_pf_keyhash, M_PFHASH);
821 		free(V_pf_idhash, M_PFHASH);
822 
823 		pf_hashsize = PF_HASHSIZ;
824 		V_pf_keyhash = mallocarray(pf_hashsize,
825 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
826 		V_pf_idhash = mallocarray(pf_hashsize,
827 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
828 	}
829 
830 	pf_hashmask = pf_hashsize - 1;
831 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
832 	    i++, kh++, ih++) {
833 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
834 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
835 	}
836 
837 	/* Source nodes. */
838 	V_pf_sources_z = uma_zcreate("pf source nodes",
839 	    sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
840 	    0);
841 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
842 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
843 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
844 
845 	V_pf_srchash = mallocarray(pf_srchashsize,
846 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
847 	if (V_pf_srchash == NULL) {
848 		printf("pf: Unable to allocate memory for "
849 		    "source_hashsize %lu.\n", pf_srchashsize);
850 
851 		pf_srchashsize = PF_SRCHASHSIZ;
852 		V_pf_srchash = mallocarray(pf_srchashsize,
853 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
854 	}
855 
856 	pf_srchashmask = pf_srchashsize - 1;
857 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++)
858 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
859 
860 	/* ALTQ */
861 	TAILQ_INIT(&V_pf_altqs[0]);
862 	TAILQ_INIT(&V_pf_altqs[1]);
863 	TAILQ_INIT(&V_pf_pabuf);
864 	V_pf_altqs_active = &V_pf_altqs[0];
865 	V_pf_altqs_inactive = &V_pf_altqs[1];
866 
867 	/* Send & overload+flush queues. */
868 	STAILQ_INIT(&V_pf_sendqueue);
869 	SLIST_INIT(&V_pf_overloadqueue);
870 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
871 
872 	/* Unlinked, but may be referenced rules. */
873 	TAILQ_INIT(&V_pf_unlinked_rules);
874 }
875 
876 void
877 pf_mtag_cleanup()
878 {
879 
880 	uma_zdestroy(pf_mtag_z);
881 }
882 
883 void
884 pf_cleanup()
885 {
886 	struct pf_keyhash	*kh;
887 	struct pf_idhash	*ih;
888 	struct pf_srchash	*sh;
889 	struct pf_send_entry	*pfse, *next;
890 	u_int i;
891 
892 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask;
893 	    i++, kh++, ih++) {
894 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
895 		    __func__));
896 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
897 		    __func__));
898 		mtx_destroy(&kh->lock);
899 		mtx_destroy(&ih->lock);
900 	}
901 	free(V_pf_keyhash, M_PFHASH);
902 	free(V_pf_idhash, M_PFHASH);
903 
904 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
905 		KASSERT(LIST_EMPTY(&sh->nodes),
906 		    ("%s: source node hash not empty", __func__));
907 		mtx_destroy(&sh->lock);
908 	}
909 	free(V_pf_srchash, M_PFHASH);
910 
911 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
912 		m_freem(pfse->pfse_m);
913 		free(pfse, M_PFTEMP);
914 	}
915 
916 	uma_zdestroy(V_pf_sources_z);
917 	uma_zdestroy(V_pf_state_z);
918 	uma_zdestroy(V_pf_state_key_z);
919 }
920 
921 static int
922 pf_mtag_uminit(void *mem, int size, int how)
923 {
924 	struct m_tag *t;
925 
926 	t = (struct m_tag *)mem;
927 	t->m_tag_cookie = MTAG_ABI_COMPAT;
928 	t->m_tag_id = PACKET_TAG_PF;
929 	t->m_tag_len = sizeof(struct pf_mtag);
930 	t->m_tag_free = pf_mtag_free;
931 
932 	return (0);
933 }
934 
935 static void
936 pf_mtag_free(struct m_tag *t)
937 {
938 
939 	uma_zfree(pf_mtag_z, t);
940 }
941 
942 struct pf_mtag *
943 pf_get_mtag(struct mbuf *m)
944 {
945 	struct m_tag *mtag;
946 
947 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
948 		return ((struct pf_mtag *)(mtag + 1));
949 
950 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
951 	if (mtag == NULL)
952 		return (NULL);
953 	bzero(mtag + 1, sizeof(struct pf_mtag));
954 	m_tag_prepend(m, mtag);
955 
956 	return ((struct pf_mtag *)(mtag + 1));
957 }
958 
959 static int
960 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
961     struct pf_state *s)
962 {
963 	struct pf_keyhash	*khs, *khw, *kh;
964 	struct pf_state_key	*sk, *cur;
965 	struct pf_state		*si, *olds = NULL;
966 	int idx;
967 
968 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
969 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
970 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
971 
972 	/*
973 	 * We need to lock hash slots of both keys. To avoid deadlock
974 	 * we always lock the slot with lower address first. Unlock order
975 	 * isn't important.
976 	 *
977 	 * We also need to lock ID hash slot before dropping key
978 	 * locks. On success we return with ID hash slot locked.
979 	 */
980 
981 	if (skw == sks) {
982 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
983 		PF_HASHROW_LOCK(khs);
984 	} else {
985 		khs = &V_pf_keyhash[pf_hashkey(sks)];
986 		khw = &V_pf_keyhash[pf_hashkey(skw)];
987 		if (khs == khw) {
988 			PF_HASHROW_LOCK(khs);
989 		} else if (khs < khw) {
990 			PF_HASHROW_LOCK(khs);
991 			PF_HASHROW_LOCK(khw);
992 		} else {
993 			PF_HASHROW_LOCK(khw);
994 			PF_HASHROW_LOCK(khs);
995 		}
996 	}
997 
998 #define	KEYS_UNLOCK()	do {			\
999 	if (khs != khw) {			\
1000 		PF_HASHROW_UNLOCK(khs);		\
1001 		PF_HASHROW_UNLOCK(khw);		\
1002 	} else					\
1003 		PF_HASHROW_UNLOCK(khs);		\
1004 } while (0)
1005 
1006 	/*
1007 	 * First run: start with wire key.
1008 	 */
1009 	sk = skw;
1010 	kh = khw;
1011 	idx = PF_SK_WIRE;
1012 
1013 keyattach:
1014 	LIST_FOREACH(cur, &kh->keys, entry)
1015 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1016 			break;
1017 
1018 	if (cur != NULL) {
1019 		/* Key exists. Check for same kif, if none, add to key. */
1020 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1021 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1022 
1023 			PF_HASHROW_LOCK(ih);
1024 			if (si->kif == s->kif &&
1025 			    si->direction == s->direction) {
1026 				if (sk->proto == IPPROTO_TCP &&
1027 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1028 				    si->dst.state >= TCPS_FIN_WAIT_2) {
1029 					/*
1030 					 * New state matches an old >FIN_WAIT_2
1031 					 * state. We can't drop key hash locks,
1032 					 * thus we can't unlink it properly.
1033 					 *
1034 					 * As a workaround we drop it into
1035 					 * TCPS_CLOSED state, schedule purge
1036 					 * ASAP and push it into the very end
1037 					 * of the slot TAILQ, so that it won't
1038 					 * conflict with our new state.
1039 					 */
1040 					si->src.state = si->dst.state =
1041 					    TCPS_CLOSED;
1042 					si->timeout = PFTM_PURGE;
1043 					olds = si;
1044 				} else {
1045 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1046 						printf("pf: %s key attach "
1047 						    "failed on %s: ",
1048 						    (idx == PF_SK_WIRE) ?
1049 						    "wire" : "stack",
1050 						    s->kif->pfik_name);
1051 						pf_print_state_parts(s,
1052 						    (idx == PF_SK_WIRE) ?
1053 						    sk : NULL,
1054 						    (idx == PF_SK_STACK) ?
1055 						    sk : NULL);
1056 						printf(", existing: ");
1057 						pf_print_state_parts(si,
1058 						    (idx == PF_SK_WIRE) ?
1059 						    sk : NULL,
1060 						    (idx == PF_SK_STACK) ?
1061 						    sk : NULL);
1062 						printf("\n");
1063 					}
1064 					PF_HASHROW_UNLOCK(ih);
1065 					KEYS_UNLOCK();
1066 					uma_zfree(V_pf_state_key_z, sk);
1067 					if (idx == PF_SK_STACK)
1068 						pf_detach_state(s);
1069 					return (EEXIST); /* collision! */
1070 				}
1071 			}
1072 			PF_HASHROW_UNLOCK(ih);
1073 		}
1074 		uma_zfree(V_pf_state_key_z, sk);
1075 		s->key[idx] = cur;
1076 	} else {
1077 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1078 		s->key[idx] = sk;
1079 	}
1080 
1081 stateattach:
1082 	/* List is sorted, if-bound states before floating. */
1083 	if (s->kif == V_pfi_all)
1084 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1085 	else
1086 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1087 
1088 	if (olds) {
1089 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1090 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1091 		    key_list[idx]);
1092 		olds = NULL;
1093 	}
1094 
1095 	/*
1096 	 * Attach done. See how should we (or should not?)
1097 	 * attach a second key.
1098 	 */
1099 	if (sks == skw) {
1100 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1101 		idx = PF_SK_STACK;
1102 		sks = NULL;
1103 		goto stateattach;
1104 	} else if (sks != NULL) {
1105 		/*
1106 		 * Continue attaching with stack key.
1107 		 */
1108 		sk = sks;
1109 		kh = khs;
1110 		idx = PF_SK_STACK;
1111 		sks = NULL;
1112 		goto keyattach;
1113 	}
1114 
1115 	PF_STATE_LOCK(s);
1116 	KEYS_UNLOCK();
1117 
1118 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1119 	    ("%s failure", __func__));
1120 
1121 	return (0);
1122 #undef	KEYS_UNLOCK
1123 }
1124 
1125 static void
1126 pf_detach_state(struct pf_state *s)
1127 {
1128 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1129 	struct pf_keyhash *kh;
1130 
1131 	if (sks != NULL) {
1132 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1133 		PF_HASHROW_LOCK(kh);
1134 		if (s->key[PF_SK_STACK] != NULL)
1135 			pf_state_key_detach(s, PF_SK_STACK);
1136 		/*
1137 		 * If both point to same key, then we are done.
1138 		 */
1139 		if (sks == s->key[PF_SK_WIRE]) {
1140 			pf_state_key_detach(s, PF_SK_WIRE);
1141 			PF_HASHROW_UNLOCK(kh);
1142 			return;
1143 		}
1144 		PF_HASHROW_UNLOCK(kh);
1145 	}
1146 
1147 	if (s->key[PF_SK_WIRE] != NULL) {
1148 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1149 		PF_HASHROW_LOCK(kh);
1150 		if (s->key[PF_SK_WIRE] != NULL)
1151 			pf_state_key_detach(s, PF_SK_WIRE);
1152 		PF_HASHROW_UNLOCK(kh);
1153 	}
1154 }
1155 
1156 static void
1157 pf_state_key_detach(struct pf_state *s, int idx)
1158 {
1159 	struct pf_state_key *sk = s->key[idx];
1160 #ifdef INVARIANTS
1161 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1162 
1163 	PF_HASHROW_ASSERT(kh);
1164 #endif
1165 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1166 	s->key[idx] = NULL;
1167 
1168 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1169 		LIST_REMOVE(sk, entry);
1170 		uma_zfree(V_pf_state_key_z, sk);
1171 	}
1172 }
1173 
1174 static int
1175 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1176 {
1177 	struct pf_state_key *sk = mem;
1178 
1179 	bzero(sk, sizeof(struct pf_state_key_cmp));
1180 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1181 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1182 
1183 	return (0);
1184 }
1185 
1186 struct pf_state_key *
1187 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr,
1188 	struct pf_addr *daddr, u_int16_t sport, u_int16_t dport)
1189 {
1190 	struct pf_state_key *sk;
1191 
1192 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1193 	if (sk == NULL)
1194 		return (NULL);
1195 
1196 	PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af);
1197 	PF_ACPY(&sk->addr[pd->didx], daddr, pd->af);
1198 	sk->port[pd->sidx] = sport;
1199 	sk->port[pd->didx] = dport;
1200 	sk->proto = pd->proto;
1201 	sk->af = pd->af;
1202 
1203 	return (sk);
1204 }
1205 
1206 struct pf_state_key *
1207 pf_state_key_clone(struct pf_state_key *orig)
1208 {
1209 	struct pf_state_key *sk;
1210 
1211 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1212 	if (sk == NULL)
1213 		return (NULL);
1214 
1215 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1216 
1217 	return (sk);
1218 }
1219 
1220 int
1221 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw,
1222     struct pf_state_key *sks, struct pf_state *s)
1223 {
1224 	struct pf_idhash *ih;
1225 	struct pf_state *cur;
1226 	int error;
1227 
1228 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1229 	    ("%s: sks not pristine", __func__));
1230 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1231 	    ("%s: skw not pristine", __func__));
1232 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1233 
1234 	s->kif = kif;
1235 
1236 	if (s->id == 0 && s->creatorid == 0) {
1237 		/* XXX: should be atomic, but probability of collision low */
1238 		if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID)
1239 			V_pf_stateid[curcpu] = 1;
1240 		s->id |= (uint64_t )curcpu << PFID_CPUSHIFT;
1241 		s->id = htobe64(s->id);
1242 		s->creatorid = V_pf_status.hostid;
1243 	}
1244 
1245 	/* Returns with ID locked on success. */
1246 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1247 		return (error);
1248 
1249 	ih = &V_pf_idhash[PF_IDHASH(s)];
1250 	PF_HASHROW_ASSERT(ih);
1251 	LIST_FOREACH(cur, &ih->states, entry)
1252 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1253 			break;
1254 
1255 	if (cur != NULL) {
1256 		PF_HASHROW_UNLOCK(ih);
1257 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1258 			printf("pf: state ID collision: "
1259 			    "id: %016llx creatorid: %08x\n",
1260 			    (unsigned long long)be64toh(s->id),
1261 			    ntohl(s->creatorid));
1262 		}
1263 		pf_detach_state(s);
1264 		return (EEXIST);
1265 	}
1266 	LIST_INSERT_HEAD(&ih->states, s, entry);
1267 	/* One for keys, one for ID hash. */
1268 	refcount_init(&s->refs, 2);
1269 
1270 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1271 	if (pfsync_insert_state_ptr != NULL)
1272 		pfsync_insert_state_ptr(s);
1273 
1274 	/* Returns locked. */
1275 	return (0);
1276 }
1277 
1278 /*
1279  * Find state by ID: returns with locked row on success.
1280  */
1281 struct pf_state *
1282 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1283 {
1284 	struct pf_idhash *ih;
1285 	struct pf_state *s;
1286 
1287 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1288 
1289 	ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))];
1290 
1291 	PF_HASHROW_LOCK(ih);
1292 	LIST_FOREACH(s, &ih->states, entry)
1293 		if (s->id == id && s->creatorid == creatorid)
1294 			break;
1295 
1296 	if (s == NULL)
1297 		PF_HASHROW_UNLOCK(ih);
1298 
1299 	return (s);
1300 }
1301 
1302 /*
1303  * Find state by key.
1304  * Returns with ID hash slot locked on success.
1305  */
1306 static struct pf_state *
1307 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir)
1308 {
1309 	struct pf_keyhash	*kh;
1310 	struct pf_state_key	*sk;
1311 	struct pf_state		*s;
1312 	int idx;
1313 
1314 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1315 
1316 	kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
1317 
1318 	PF_HASHROW_LOCK(kh);
1319 	LIST_FOREACH(sk, &kh->keys, entry)
1320 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1321 			break;
1322 	if (sk == NULL) {
1323 		PF_HASHROW_UNLOCK(kh);
1324 		return (NULL);
1325 	}
1326 
1327 	idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1328 
1329 	/* List is sorted, if-bound states before floating ones. */
1330 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1331 		if (s->kif == V_pfi_all || s->kif == kif) {
1332 			PF_STATE_LOCK(s);
1333 			PF_HASHROW_UNLOCK(kh);
1334 			if (s->timeout >= PFTM_MAX) {
1335 				/*
1336 				 * State is either being processed by
1337 				 * pf_unlink_state() in an other thread, or
1338 				 * is scheduled for immediate expiry.
1339 				 */
1340 				PF_STATE_UNLOCK(s);
1341 				return (NULL);
1342 			}
1343 			return (s);
1344 		}
1345 	PF_HASHROW_UNLOCK(kh);
1346 
1347 	return (NULL);
1348 }
1349 
1350 struct pf_state *
1351 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more)
1352 {
1353 	struct pf_keyhash	*kh;
1354 	struct pf_state_key	*sk;
1355 	struct pf_state		*s, *ret = NULL;
1356 	int			 idx, inout = 0;
1357 
1358 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1359 
1360 	kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)];
1361 
1362 	PF_HASHROW_LOCK(kh);
1363 	LIST_FOREACH(sk, &kh->keys, entry)
1364 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1365 			break;
1366 	if (sk == NULL) {
1367 		PF_HASHROW_UNLOCK(kh);
1368 		return (NULL);
1369 	}
1370 	switch (dir) {
1371 	case PF_IN:
1372 		idx = PF_SK_WIRE;
1373 		break;
1374 	case PF_OUT:
1375 		idx = PF_SK_STACK;
1376 		break;
1377 	case PF_INOUT:
1378 		idx = PF_SK_WIRE;
1379 		inout = 1;
1380 		break;
1381 	default:
1382 		panic("%s: dir %u", __func__, dir);
1383 	}
1384 second_run:
1385 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1386 		if (more == NULL) {
1387 			PF_HASHROW_UNLOCK(kh);
1388 			return (s);
1389 		}
1390 
1391 		if (ret)
1392 			(*more)++;
1393 		else
1394 			ret = s;
1395 	}
1396 	if (inout == 1) {
1397 		inout = 0;
1398 		idx = PF_SK_STACK;
1399 		goto second_run;
1400 	}
1401 	PF_HASHROW_UNLOCK(kh);
1402 
1403 	return (ret);
1404 }
1405 
1406 /* END state table stuff */
1407 
1408 static void
1409 pf_send(struct pf_send_entry *pfse)
1410 {
1411 
1412 	PF_SENDQ_LOCK();
1413 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
1414 	PF_SENDQ_UNLOCK();
1415 	swi_sched(V_pf_swi_cookie, 0);
1416 }
1417 
1418 void
1419 pf_intr(void *v)
1420 {
1421 	struct pf_send_head queue;
1422 	struct pf_send_entry *pfse, *next;
1423 
1424 	CURVNET_SET((struct vnet *)v);
1425 
1426 	PF_SENDQ_LOCK();
1427 	queue = V_pf_sendqueue;
1428 	STAILQ_INIT(&V_pf_sendqueue);
1429 	PF_SENDQ_UNLOCK();
1430 
1431 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
1432 		switch (pfse->pfse_type) {
1433 #ifdef INET
1434 		case PFSE_IP:
1435 			ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL);
1436 			break;
1437 		case PFSE_ICMP:
1438 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
1439 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
1440 			break;
1441 #endif /* INET */
1442 #ifdef INET6
1443 		case PFSE_IP6:
1444 			ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL,
1445 			    NULL);
1446 			break;
1447 		case PFSE_ICMP6:
1448 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
1449 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
1450 			break;
1451 #endif /* INET6 */
1452 		default:
1453 			panic("%s: unknown type", __func__);
1454 		}
1455 		free(pfse, M_PFTEMP);
1456 	}
1457 	CURVNET_RESTORE();
1458 }
1459 
1460 void
1461 pf_purge_thread(void *unused __unused)
1462 {
1463 	VNET_ITERATOR_DECL(vnet_iter);
1464 
1465 	sx_xlock(&pf_end_lock);
1466 	while (pf_end_threads == 0) {
1467 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10);
1468 
1469 		VNET_LIST_RLOCK();
1470 		VNET_FOREACH(vnet_iter) {
1471 			CURVNET_SET(vnet_iter);
1472 
1473 
1474 			/* Wait until V_pf_default_rule is initialized. */
1475 			if (V_pf_vnet_active == 0) {
1476 				CURVNET_RESTORE();
1477 				continue;
1478 			}
1479 
1480 			/*
1481 			 *  Process 1/interval fraction of the state
1482 			 * table every run.
1483 			 */
1484 			V_pf_purge_idx =
1485 			    pf_purge_expired_states(V_pf_purge_idx, pf_hashmask /
1486 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
1487 
1488 			/*
1489 			 * Purge other expired types every
1490 			 * PFTM_INTERVAL seconds.
1491 			 */
1492 			if (V_pf_purge_idx == 0) {
1493 				/*
1494 				 * Order is important:
1495 				 * - states and src nodes reference rules
1496 				 * - states and rules reference kifs
1497 				 */
1498 				pf_purge_expired_fragments();
1499 				pf_purge_expired_src_nodes();
1500 				pf_purge_unlinked_rules();
1501 				pfi_kif_purge();
1502 			}
1503 			CURVNET_RESTORE();
1504 		}
1505 		VNET_LIST_RUNLOCK();
1506 	}
1507 
1508 	pf_end_threads++;
1509 	sx_xunlock(&pf_end_lock);
1510 	kproc_exit(0);
1511 }
1512 
1513 void
1514 pf_unload_vnet_purge(void)
1515 {
1516 
1517 	/*
1518 	 * To cleanse up all kifs and rules we need
1519 	 * two runs: first one clears reference flags,
1520 	 * then pf_purge_expired_states() doesn't
1521 	 * raise them, and then second run frees.
1522 	 */
1523 	pf_purge_unlinked_rules();
1524 	pfi_kif_purge();
1525 
1526 	/*
1527 	 * Now purge everything.
1528 	 */
1529 	pf_purge_expired_states(0, pf_hashmask);
1530 	pf_purge_fragments(UINT_MAX);
1531 	pf_purge_expired_src_nodes();
1532 
1533 	/*
1534 	 * Now all kifs & rules should be unreferenced,
1535 	 * thus should be successfully freed.
1536 	 */
1537 	pf_purge_unlinked_rules();
1538 	pfi_kif_purge();
1539 }
1540 
1541 
1542 u_int32_t
1543 pf_state_expires(const struct pf_state *state)
1544 {
1545 	u_int32_t	timeout;
1546 	u_int32_t	start;
1547 	u_int32_t	end;
1548 	u_int32_t	states;
1549 
1550 	/* handle all PFTM_* > PFTM_MAX here */
1551 	if (state->timeout == PFTM_PURGE)
1552 		return (time_uptime);
1553 	KASSERT(state->timeout != PFTM_UNLINKED,
1554 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
1555 	KASSERT((state->timeout < PFTM_MAX),
1556 	    ("pf_state_expires: timeout > PFTM_MAX"));
1557 	timeout = state->rule.ptr->timeout[state->timeout];
1558 	if (!timeout)
1559 		timeout = V_pf_default_rule.timeout[state->timeout];
1560 	start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START];
1561 	if (start) {
1562 		end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END];
1563 		states = counter_u64_fetch(state->rule.ptr->states_cur);
1564 	} else {
1565 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
1566 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
1567 		states = V_pf_status.states;
1568 	}
1569 	if (end && states > start && start < end) {
1570 		if (states < end)
1571 			return (state->expire + timeout * (end - states) /
1572 			    (end - start));
1573 		else
1574 			return (time_uptime);
1575 	}
1576 	return (state->expire + timeout);
1577 }
1578 
1579 void
1580 pf_purge_expired_src_nodes()
1581 {
1582 	struct pf_src_node_list	 freelist;
1583 	struct pf_srchash	*sh;
1584 	struct pf_src_node	*cur, *next;
1585 	int i;
1586 
1587 	LIST_INIT(&freelist);
1588 	for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) {
1589 	    PF_HASHROW_LOCK(sh);
1590 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
1591 		if (cur->states == 0 && cur->expire <= time_uptime) {
1592 			pf_unlink_src_node(cur);
1593 			LIST_INSERT_HEAD(&freelist, cur, entry);
1594 		} else if (cur->rule.ptr != NULL)
1595 			cur->rule.ptr->rule_flag |= PFRULE_REFS;
1596 	    PF_HASHROW_UNLOCK(sh);
1597 	}
1598 
1599 	pf_free_src_nodes(&freelist);
1600 
1601 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
1602 }
1603 
1604 static void
1605 pf_src_tree_remove_state(struct pf_state *s)
1606 {
1607 	struct pf_src_node *sn;
1608 	struct pf_srchash *sh;
1609 	uint32_t timeout;
1610 
1611 	timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ?
1612 	    s->rule.ptr->timeout[PFTM_SRC_NODE] :
1613 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
1614 
1615 	if (s->src_node != NULL) {
1616 		sn = s->src_node;
1617 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
1618 	    	PF_HASHROW_LOCK(sh);
1619 		if (s->src.tcp_est)
1620 			--sn->conn;
1621 		if (--sn->states == 0)
1622 			sn->expire = time_uptime + timeout;
1623 	    	PF_HASHROW_UNLOCK(sh);
1624 	}
1625 	if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
1626 		sn = s->nat_src_node;
1627 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
1628 	    	PF_HASHROW_LOCK(sh);
1629 		if (--sn->states == 0)
1630 			sn->expire = time_uptime + timeout;
1631 	    	PF_HASHROW_UNLOCK(sh);
1632 	}
1633 	s->src_node = s->nat_src_node = NULL;
1634 }
1635 
1636 /*
1637  * Unlink and potentilly free a state. Function may be
1638  * called with ID hash row locked, but always returns
1639  * unlocked, since it needs to go through key hash locking.
1640  */
1641 int
1642 pf_unlink_state(struct pf_state *s, u_int flags)
1643 {
1644 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
1645 
1646 	if ((flags & PF_ENTER_LOCKED) == 0)
1647 		PF_HASHROW_LOCK(ih);
1648 	else
1649 		PF_HASHROW_ASSERT(ih);
1650 
1651 	if (s->timeout == PFTM_UNLINKED) {
1652 		/*
1653 		 * State is being processed
1654 		 * by pf_unlink_state() in
1655 		 * an other thread.
1656 		 */
1657 		PF_HASHROW_UNLOCK(ih);
1658 		return (0);	/* XXXGL: undefined actually */
1659 	}
1660 
1661 	if (s->src.state == PF_TCPS_PROXY_DST) {
1662 		/* XXX wire key the right one? */
1663 		pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af,
1664 		    &s->key[PF_SK_WIRE]->addr[1],
1665 		    &s->key[PF_SK_WIRE]->addr[0],
1666 		    s->key[PF_SK_WIRE]->port[1],
1667 		    s->key[PF_SK_WIRE]->port[0],
1668 		    s->src.seqhi, s->src.seqlo + 1,
1669 		    TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL);
1670 	}
1671 
1672 	LIST_REMOVE(s, entry);
1673 	pf_src_tree_remove_state(s);
1674 
1675 	if (pfsync_delete_state_ptr != NULL)
1676 		pfsync_delete_state_ptr(s);
1677 
1678 	STATE_DEC_COUNTERS(s);
1679 
1680 	s->timeout = PFTM_UNLINKED;
1681 
1682 	PF_HASHROW_UNLOCK(ih);
1683 
1684 	pf_detach_state(s);
1685 	/* pf_state_insert() initialises refs to 2, so we can never release the
1686 	 * last reference here, only in pf_release_state(). */
1687 	(void)refcount_release(&s->refs);
1688 
1689 	return (pf_release_state(s));
1690 }
1691 
1692 void
1693 pf_free_state(struct pf_state *cur)
1694 {
1695 
1696 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
1697 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
1698 	    cur->timeout));
1699 
1700 	pf_normalize_tcp_cleanup(cur);
1701 	uma_zfree(V_pf_state_z, cur);
1702 	counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
1703 }
1704 
1705 /*
1706  * Called only from pf_purge_thread(), thus serialized.
1707  */
1708 static u_int
1709 pf_purge_expired_states(u_int i, int maxcheck)
1710 {
1711 	struct pf_idhash *ih;
1712 	struct pf_state *s;
1713 
1714 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1715 
1716 	/*
1717 	 * Go through hash and unlink states that expire now.
1718 	 */
1719 	while (maxcheck > 0) {
1720 
1721 		ih = &V_pf_idhash[i];
1722 relock:
1723 		PF_HASHROW_LOCK(ih);
1724 		LIST_FOREACH(s, &ih->states, entry) {
1725 			if (pf_state_expires(s) <= time_uptime) {
1726 				V_pf_status.states -=
1727 				    pf_unlink_state(s, PF_ENTER_LOCKED);
1728 				goto relock;
1729 			}
1730 			s->rule.ptr->rule_flag |= PFRULE_REFS;
1731 			if (s->nat_rule.ptr != NULL)
1732 				s->nat_rule.ptr->rule_flag |= PFRULE_REFS;
1733 			if (s->anchor.ptr != NULL)
1734 				s->anchor.ptr->rule_flag |= PFRULE_REFS;
1735 			s->kif->pfik_flags |= PFI_IFLAG_REFS;
1736 			if (s->rt_kif)
1737 				s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
1738 		}
1739 		PF_HASHROW_UNLOCK(ih);
1740 
1741 		/* Return when we hit end of hash. */
1742 		if (++i > pf_hashmask) {
1743 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1744 			return (0);
1745 		}
1746 
1747 		maxcheck--;
1748 	}
1749 
1750 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
1751 
1752 	return (i);
1753 }
1754 
1755 static void
1756 pf_purge_unlinked_rules()
1757 {
1758 	struct pf_rulequeue tmpq;
1759 	struct pf_rule *r, *r1;
1760 
1761 	/*
1762 	 * If we have overloading task pending, then we'd
1763 	 * better skip purging this time. There is a tiny
1764 	 * probability that overloading task references
1765 	 * an already unlinked rule.
1766 	 */
1767 	PF_OVERLOADQ_LOCK();
1768 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
1769 		PF_OVERLOADQ_UNLOCK();
1770 		return;
1771 	}
1772 	PF_OVERLOADQ_UNLOCK();
1773 
1774 	/*
1775 	 * Do naive mark-and-sweep garbage collecting of old rules.
1776 	 * Reference flag is raised by pf_purge_expired_states()
1777 	 * and pf_purge_expired_src_nodes().
1778 	 *
1779 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
1780 	 * use a temporary queue.
1781 	 */
1782 	TAILQ_INIT(&tmpq);
1783 	PF_UNLNKDRULES_LOCK();
1784 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
1785 		if (!(r->rule_flag & PFRULE_REFS)) {
1786 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
1787 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
1788 		} else
1789 			r->rule_flag &= ~PFRULE_REFS;
1790 	}
1791 	PF_UNLNKDRULES_UNLOCK();
1792 
1793 	if (!TAILQ_EMPTY(&tmpq)) {
1794 		PF_RULES_WLOCK();
1795 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
1796 			TAILQ_REMOVE(&tmpq, r, entries);
1797 			pf_free_rule(r);
1798 		}
1799 		PF_RULES_WUNLOCK();
1800 	}
1801 }
1802 
1803 void
1804 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
1805 {
1806 	switch (af) {
1807 #ifdef INET
1808 	case AF_INET: {
1809 		u_int32_t a = ntohl(addr->addr32[0]);
1810 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
1811 		    (a>>8)&255, a&255);
1812 		if (p) {
1813 			p = ntohs(p);
1814 			printf(":%u", p);
1815 		}
1816 		break;
1817 	}
1818 #endif /* INET */
1819 #ifdef INET6
1820 	case AF_INET6: {
1821 		u_int16_t b;
1822 		u_int8_t i, curstart, curend, maxstart, maxend;
1823 		curstart = curend = maxstart = maxend = 255;
1824 		for (i = 0; i < 8; i++) {
1825 			if (!addr->addr16[i]) {
1826 				if (curstart == 255)
1827 					curstart = i;
1828 				curend = i;
1829 			} else {
1830 				if ((curend - curstart) >
1831 				    (maxend - maxstart)) {
1832 					maxstart = curstart;
1833 					maxend = curend;
1834 				}
1835 				curstart = curend = 255;
1836 			}
1837 		}
1838 		if ((curend - curstart) >
1839 		    (maxend - maxstart)) {
1840 			maxstart = curstart;
1841 			maxend = curend;
1842 		}
1843 		for (i = 0; i < 8; i++) {
1844 			if (i >= maxstart && i <= maxend) {
1845 				if (i == 0)
1846 					printf(":");
1847 				if (i == maxend)
1848 					printf(":");
1849 			} else {
1850 				b = ntohs(addr->addr16[i]);
1851 				printf("%x", b);
1852 				if (i < 7)
1853 					printf(":");
1854 			}
1855 		}
1856 		if (p) {
1857 			p = ntohs(p);
1858 			printf("[%u]", p);
1859 		}
1860 		break;
1861 	}
1862 #endif /* INET6 */
1863 	}
1864 }
1865 
1866 void
1867 pf_print_state(struct pf_state *s)
1868 {
1869 	pf_print_state_parts(s, NULL, NULL);
1870 }
1871 
1872 static void
1873 pf_print_state_parts(struct pf_state *s,
1874     struct pf_state_key *skwp, struct pf_state_key *sksp)
1875 {
1876 	struct pf_state_key *skw, *sks;
1877 	u_int8_t proto, dir;
1878 
1879 	/* Do our best to fill these, but they're skipped if NULL */
1880 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
1881 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
1882 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
1883 	dir = s ? s->direction : 0;
1884 
1885 	switch (proto) {
1886 	case IPPROTO_IPV4:
1887 		printf("IPv4");
1888 		break;
1889 	case IPPROTO_IPV6:
1890 		printf("IPv6");
1891 		break;
1892 	case IPPROTO_TCP:
1893 		printf("TCP");
1894 		break;
1895 	case IPPROTO_UDP:
1896 		printf("UDP");
1897 		break;
1898 	case IPPROTO_ICMP:
1899 		printf("ICMP");
1900 		break;
1901 	case IPPROTO_ICMPV6:
1902 		printf("ICMPv6");
1903 		break;
1904 	default:
1905 		printf("%u", proto);
1906 		break;
1907 	}
1908 	switch (dir) {
1909 	case PF_IN:
1910 		printf(" in");
1911 		break;
1912 	case PF_OUT:
1913 		printf(" out");
1914 		break;
1915 	}
1916 	if (skw) {
1917 		printf(" wire: ");
1918 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
1919 		printf(" ");
1920 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
1921 	}
1922 	if (sks) {
1923 		printf(" stack: ");
1924 		if (sks != skw) {
1925 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
1926 			printf(" ");
1927 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
1928 		} else
1929 			printf("-");
1930 	}
1931 	if (s) {
1932 		if (proto == IPPROTO_TCP) {
1933 			printf(" [lo=%u high=%u win=%u modulator=%u",
1934 			    s->src.seqlo, s->src.seqhi,
1935 			    s->src.max_win, s->src.seqdiff);
1936 			if (s->src.wscale && s->dst.wscale)
1937 				printf(" wscale=%u",
1938 				    s->src.wscale & PF_WSCALE_MASK);
1939 			printf("]");
1940 			printf(" [lo=%u high=%u win=%u modulator=%u",
1941 			    s->dst.seqlo, s->dst.seqhi,
1942 			    s->dst.max_win, s->dst.seqdiff);
1943 			if (s->src.wscale && s->dst.wscale)
1944 				printf(" wscale=%u",
1945 				s->dst.wscale & PF_WSCALE_MASK);
1946 			printf("]");
1947 		}
1948 		printf(" %u:%u", s->src.state, s->dst.state);
1949 	}
1950 }
1951 
1952 void
1953 pf_print_flags(u_int8_t f)
1954 {
1955 	if (f)
1956 		printf(" ");
1957 	if (f & TH_FIN)
1958 		printf("F");
1959 	if (f & TH_SYN)
1960 		printf("S");
1961 	if (f & TH_RST)
1962 		printf("R");
1963 	if (f & TH_PUSH)
1964 		printf("P");
1965 	if (f & TH_ACK)
1966 		printf("A");
1967 	if (f & TH_URG)
1968 		printf("U");
1969 	if (f & TH_ECE)
1970 		printf("E");
1971 	if (f & TH_CWR)
1972 		printf("W");
1973 }
1974 
1975 #define	PF_SET_SKIP_STEPS(i)					\
1976 	do {							\
1977 		while (head[i] != cur) {			\
1978 			head[i]->skip[i].ptr = cur;		\
1979 			head[i] = TAILQ_NEXT(head[i], entries);	\
1980 		}						\
1981 	} while (0)
1982 
1983 void
1984 pf_calc_skip_steps(struct pf_rulequeue *rules)
1985 {
1986 	struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT];
1987 	int i;
1988 
1989 	cur = TAILQ_FIRST(rules);
1990 	prev = cur;
1991 	for (i = 0; i < PF_SKIP_COUNT; ++i)
1992 		head[i] = cur;
1993 	while (cur != NULL) {
1994 
1995 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
1996 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
1997 		if (cur->direction != prev->direction)
1998 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
1999 		if (cur->af != prev->af)
2000 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
2001 		if (cur->proto != prev->proto)
2002 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2003 		if (cur->src.neg != prev->src.neg ||
2004 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2005 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2006 		if (cur->src.port[0] != prev->src.port[0] ||
2007 		    cur->src.port[1] != prev->src.port[1] ||
2008 		    cur->src.port_op != prev->src.port_op)
2009 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2010 		if (cur->dst.neg != prev->dst.neg ||
2011 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2012 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2013 		if (cur->dst.port[0] != prev->dst.port[0] ||
2014 		    cur->dst.port[1] != prev->dst.port[1] ||
2015 		    cur->dst.port_op != prev->dst.port_op)
2016 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
2017 
2018 		prev = cur;
2019 		cur = TAILQ_NEXT(cur, entries);
2020 	}
2021 	for (i = 0; i < PF_SKIP_COUNT; ++i)
2022 		PF_SET_SKIP_STEPS(i);
2023 }
2024 
2025 static int
2026 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
2027 {
2028 	if (aw1->type != aw2->type)
2029 		return (1);
2030 	switch (aw1->type) {
2031 	case PF_ADDR_ADDRMASK:
2032 	case PF_ADDR_RANGE:
2033 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
2034 			return (1);
2035 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
2036 			return (1);
2037 		return (0);
2038 	case PF_ADDR_DYNIFTL:
2039 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
2040 	case PF_ADDR_NOROUTE:
2041 	case PF_ADDR_URPFFAILED:
2042 		return (0);
2043 	case PF_ADDR_TABLE:
2044 		return (aw1->p.tbl != aw2->p.tbl);
2045 	default:
2046 		printf("invalid address type: %d\n", aw1->type);
2047 		return (1);
2048 	}
2049 }
2050 
2051 /**
2052  * Checksum updates are a little complicated because the checksum in the TCP/UDP
2053  * header isn't always a full checksum. In some cases (i.e. output) it's a
2054  * pseudo-header checksum, which is a partial checksum over src/dst IP
2055  * addresses, protocol number and length.
2056  *
2057  * That means we have the following cases:
2058  *  * Input or forwarding: we don't have TSO, the checksum fields are full
2059  *  	checksums, we need to update the checksum whenever we change anything.
2060  *  * Output (i.e. the checksum is a pseudo-header checksum):
2061  *  	x The field being updated is src/dst address or affects the length of
2062  *  	the packet. We need to update the pseudo-header checksum (note that this
2063  *  	checksum is not ones' complement).
2064  *  	x Some other field is being modified (e.g. src/dst port numbers): We
2065  *  	don't have to update anything.
2066  **/
2067 u_int16_t
2068 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
2069 {
2070 	u_int32_t	l;
2071 
2072 	if (udp && !cksum)
2073 		return (0x0000);
2074 	l = cksum + old - new;
2075 	l = (l >> 16) + (l & 65535);
2076 	l = l & 65535;
2077 	if (udp && !l)
2078 		return (0xFFFF);
2079 	return (l);
2080 }
2081 
2082 u_int16_t
2083 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
2084         u_int16_t new, u_int8_t udp)
2085 {
2086 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2087 		return (cksum);
2088 
2089 	return (pf_cksum_fixup(cksum, old, new, udp));
2090 }
2091 
2092 static void
2093 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
2094         u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
2095         sa_family_t af)
2096 {
2097 	struct pf_addr	ao;
2098 	u_int16_t	po = *p;
2099 
2100 	PF_ACPY(&ao, a, af);
2101 	PF_ACPY(a, an, af);
2102 
2103 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
2104 		*pc = ~*pc;
2105 
2106 	*p = pn;
2107 
2108 	switch (af) {
2109 #ifdef INET
2110 	case AF_INET:
2111 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
2112 		    ao.addr16[0], an->addr16[0], 0),
2113 		    ao.addr16[1], an->addr16[1], 0);
2114 		*p = pn;
2115 
2116 		*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
2117 		    ao.addr16[0], an->addr16[0], u),
2118 		    ao.addr16[1], an->addr16[1], u);
2119 
2120 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
2121 		break;
2122 #endif /* INET */
2123 #ifdef INET6
2124 	case AF_INET6:
2125 		*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2126 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2127 		    pf_cksum_fixup(pf_cksum_fixup(*pc,
2128 		    ao.addr16[0], an->addr16[0], u),
2129 		    ao.addr16[1], an->addr16[1], u),
2130 		    ao.addr16[2], an->addr16[2], u),
2131 		    ao.addr16[3], an->addr16[3], u),
2132 		    ao.addr16[4], an->addr16[4], u),
2133 		    ao.addr16[5], an->addr16[5], u),
2134 		    ao.addr16[6], an->addr16[6], u),
2135 		    ao.addr16[7], an->addr16[7], u);
2136 
2137 		*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
2138 		break;
2139 #endif /* INET6 */
2140 	}
2141 
2142 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
2143 	    CSUM_DELAY_DATA_IPV6)) {
2144 		*pc = ~*pc;
2145 		if (! *pc)
2146 			*pc = 0xffff;
2147 	}
2148 }
2149 
2150 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
2151 void
2152 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
2153 {
2154 	u_int32_t	ao;
2155 
2156 	memcpy(&ao, a, sizeof(ao));
2157 	memcpy(a, &an, sizeof(u_int32_t));
2158 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
2159 	    ao % 65536, an % 65536, u);
2160 }
2161 
2162 void
2163 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
2164 {
2165 	u_int32_t	ao;
2166 
2167 	memcpy(&ao, a, sizeof(ao));
2168 	memcpy(a, &an, sizeof(u_int32_t));
2169 
2170 	*c = pf_proto_cksum_fixup(m,
2171 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
2172 	    ao % 65536, an % 65536, udp);
2173 }
2174 
2175 #ifdef INET6
2176 static void
2177 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
2178 {
2179 	struct pf_addr	ao;
2180 
2181 	PF_ACPY(&ao, a, AF_INET6);
2182 	PF_ACPY(a, an, AF_INET6);
2183 
2184 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2185 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2186 	    pf_cksum_fixup(pf_cksum_fixup(*c,
2187 	    ao.addr16[0], an->addr16[0], u),
2188 	    ao.addr16[1], an->addr16[1], u),
2189 	    ao.addr16[2], an->addr16[2], u),
2190 	    ao.addr16[3], an->addr16[3], u),
2191 	    ao.addr16[4], an->addr16[4], u),
2192 	    ao.addr16[5], an->addr16[5], u),
2193 	    ao.addr16[6], an->addr16[6], u),
2194 	    ao.addr16[7], an->addr16[7], u);
2195 }
2196 #endif /* INET6 */
2197 
2198 static void
2199 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
2200     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
2201     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
2202 {
2203 	struct pf_addr	oia, ooa;
2204 
2205 	PF_ACPY(&oia, ia, af);
2206 	if (oa)
2207 		PF_ACPY(&ooa, oa, af);
2208 
2209 	/* Change inner protocol port, fix inner protocol checksum. */
2210 	if (ip != NULL) {
2211 		u_int16_t	oip = *ip;
2212 		u_int32_t	opc;
2213 
2214 		if (pc != NULL)
2215 			opc = *pc;
2216 		*ip = np;
2217 		if (pc != NULL)
2218 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
2219 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
2220 		if (pc != NULL)
2221 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
2222 	}
2223 	/* Change inner ip address, fix inner ip and icmp checksums. */
2224 	PF_ACPY(ia, na, af);
2225 	switch (af) {
2226 #ifdef INET
2227 	case AF_INET: {
2228 		u_int32_t	 oh2c = *h2c;
2229 
2230 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
2231 		    oia.addr16[0], ia->addr16[0], 0),
2232 		    oia.addr16[1], ia->addr16[1], 0);
2233 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
2234 		    oia.addr16[0], ia->addr16[0], 0),
2235 		    oia.addr16[1], ia->addr16[1], 0);
2236 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
2237 		break;
2238 	}
2239 #endif /* INET */
2240 #ifdef INET6
2241 	case AF_INET6:
2242 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2243 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2244 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
2245 		    oia.addr16[0], ia->addr16[0], u),
2246 		    oia.addr16[1], ia->addr16[1], u),
2247 		    oia.addr16[2], ia->addr16[2], u),
2248 		    oia.addr16[3], ia->addr16[3], u),
2249 		    oia.addr16[4], ia->addr16[4], u),
2250 		    oia.addr16[5], ia->addr16[5], u),
2251 		    oia.addr16[6], ia->addr16[6], u),
2252 		    oia.addr16[7], ia->addr16[7], u);
2253 		break;
2254 #endif /* INET6 */
2255 	}
2256 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
2257 	if (oa) {
2258 		PF_ACPY(oa, na, af);
2259 		switch (af) {
2260 #ifdef INET
2261 		case AF_INET:
2262 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
2263 			    ooa.addr16[0], oa->addr16[0], 0),
2264 			    ooa.addr16[1], oa->addr16[1], 0);
2265 			break;
2266 #endif /* INET */
2267 #ifdef INET6
2268 		case AF_INET6:
2269 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2270 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
2271 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
2272 			    ooa.addr16[0], oa->addr16[0], u),
2273 			    ooa.addr16[1], oa->addr16[1], u),
2274 			    ooa.addr16[2], oa->addr16[2], u),
2275 			    ooa.addr16[3], oa->addr16[3], u),
2276 			    ooa.addr16[4], oa->addr16[4], u),
2277 			    ooa.addr16[5], oa->addr16[5], u),
2278 			    ooa.addr16[6], oa->addr16[6], u),
2279 			    ooa.addr16[7], oa->addr16[7], u);
2280 			break;
2281 #endif /* INET6 */
2282 		}
2283 	}
2284 }
2285 
2286 
2287 /*
2288  * Need to modulate the sequence numbers in the TCP SACK option
2289  * (credits to Krzysztof Pfaff for report and patch)
2290  */
2291 static int
2292 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd,
2293     struct tcphdr *th, struct pf_state_peer *dst)
2294 {
2295 	int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
2296 	u_int8_t opts[TCP_MAXOLEN], *opt = opts;
2297 	int copyback = 0, i, olen;
2298 	struct sackblk sack;
2299 
2300 #define	TCPOLEN_SACKLEN	(TCPOLEN_SACK + 2)
2301 	if (hlen < TCPOLEN_SACKLEN ||
2302 	    !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
2303 		return 0;
2304 
2305 	while (hlen >= TCPOLEN_SACKLEN) {
2306 		olen = opt[1];
2307 		switch (*opt) {
2308 		case TCPOPT_EOL:	/* FALLTHROUGH */
2309 		case TCPOPT_NOP:
2310 			opt++;
2311 			hlen--;
2312 			break;
2313 		case TCPOPT_SACK:
2314 			if (olen > hlen)
2315 				olen = hlen;
2316 			if (olen >= TCPOLEN_SACKLEN) {
2317 				for (i = 2; i + TCPOLEN_SACK <= olen;
2318 				    i += TCPOLEN_SACK) {
2319 					memcpy(&sack, &opt[i], sizeof(sack));
2320 					pf_change_proto_a(m, &sack.start, &th->th_sum,
2321 					    htonl(ntohl(sack.start) - dst->seqdiff), 0);
2322 					pf_change_proto_a(m, &sack.end, &th->th_sum,
2323 					    htonl(ntohl(sack.end) - dst->seqdiff), 0);
2324 					memcpy(&opt[i], &sack, sizeof(sack));
2325 				}
2326 				copyback = 1;
2327 			}
2328 			/* FALLTHROUGH */
2329 		default:
2330 			if (olen < 2)
2331 				olen = 2;
2332 			hlen -= olen;
2333 			opt += olen;
2334 		}
2335 	}
2336 
2337 	if (copyback)
2338 		m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts);
2339 	return (copyback);
2340 }
2341 
2342 static void
2343 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af,
2344     const struct pf_addr *saddr, const struct pf_addr *daddr,
2345     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
2346     u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
2347     u_int16_t rtag, struct ifnet *ifp)
2348 {
2349 	struct pf_send_entry *pfse;
2350 	struct mbuf	*m;
2351 	int		 len, tlen;
2352 #ifdef INET
2353 	struct ip	*h = NULL;
2354 #endif /* INET */
2355 #ifdef INET6
2356 	struct ip6_hdr	*h6 = NULL;
2357 #endif /* INET6 */
2358 	struct tcphdr	*th;
2359 	char		*opt;
2360 	struct pf_mtag  *pf_mtag;
2361 
2362 	len = 0;
2363 	th = NULL;
2364 
2365 	/* maximum segment size tcp option */
2366 	tlen = sizeof(struct tcphdr);
2367 	if (mss)
2368 		tlen += 4;
2369 
2370 	switch (af) {
2371 #ifdef INET
2372 	case AF_INET:
2373 		len = sizeof(struct ip) + tlen;
2374 		break;
2375 #endif /* INET */
2376 #ifdef INET6
2377 	case AF_INET6:
2378 		len = sizeof(struct ip6_hdr) + tlen;
2379 		break;
2380 #endif /* INET6 */
2381 	default:
2382 		panic("%s: unsupported af %d", __func__, af);
2383 	}
2384 
2385 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
2386 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
2387 	if (pfse == NULL)
2388 		return;
2389 	m = m_gethdr(M_NOWAIT, MT_DATA);
2390 	if (m == NULL) {
2391 		free(pfse, M_PFTEMP);
2392 		return;
2393 	}
2394 #ifdef MAC
2395 	mac_netinet_firewall_send(m);
2396 #endif
2397 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
2398 		free(pfse, M_PFTEMP);
2399 		m_freem(m);
2400 		return;
2401 	}
2402 	if (tag)
2403 		m->m_flags |= M_SKIP_FIREWALL;
2404 	pf_mtag->tag = rtag;
2405 
2406 	if (r != NULL && r->rtableid >= 0)
2407 		M_SETFIB(m, r->rtableid);
2408 
2409 #ifdef ALTQ
2410 	if (r != NULL && r->qid) {
2411 		pf_mtag->qid = r->qid;
2412 
2413 		/* add hints for ecn */
2414 		pf_mtag->hdr = mtod(m, struct ip *);
2415 	}
2416 #endif /* ALTQ */
2417 	m->m_data += max_linkhdr;
2418 	m->m_pkthdr.len = m->m_len = len;
2419 	m->m_pkthdr.rcvif = NULL;
2420 	bzero(m->m_data, len);
2421 	switch (af) {
2422 #ifdef INET
2423 	case AF_INET:
2424 		h = mtod(m, struct ip *);
2425 
2426 		/* IP header fields included in the TCP checksum */
2427 		h->ip_p = IPPROTO_TCP;
2428 		h->ip_len = htons(tlen);
2429 		h->ip_src.s_addr = saddr->v4.s_addr;
2430 		h->ip_dst.s_addr = daddr->v4.s_addr;
2431 
2432 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
2433 		break;
2434 #endif /* INET */
2435 #ifdef INET6
2436 	case AF_INET6:
2437 		h6 = mtod(m, struct ip6_hdr *);
2438 
2439 		/* IP header fields included in the TCP checksum */
2440 		h6->ip6_nxt = IPPROTO_TCP;
2441 		h6->ip6_plen = htons(tlen);
2442 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
2443 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
2444 
2445 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
2446 		break;
2447 #endif /* INET6 */
2448 	}
2449 
2450 	/* TCP header */
2451 	th->th_sport = sport;
2452 	th->th_dport = dport;
2453 	th->th_seq = htonl(seq);
2454 	th->th_ack = htonl(ack);
2455 	th->th_off = tlen >> 2;
2456 	th->th_flags = flags;
2457 	th->th_win = htons(win);
2458 
2459 	if (mss) {
2460 		opt = (char *)(th + 1);
2461 		opt[0] = TCPOPT_MAXSEG;
2462 		opt[1] = 4;
2463 		HTONS(mss);
2464 		bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
2465 	}
2466 
2467 	switch (af) {
2468 #ifdef INET
2469 	case AF_INET:
2470 		/* TCP checksum */
2471 		th->th_sum = in_cksum(m, len);
2472 
2473 		/* Finish the IP header */
2474 		h->ip_v = 4;
2475 		h->ip_hl = sizeof(*h) >> 2;
2476 		h->ip_tos = IPTOS_LOWDELAY;
2477 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
2478 		h->ip_len = htons(len);
2479 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
2480 		h->ip_sum = 0;
2481 
2482 		pfse->pfse_type = PFSE_IP;
2483 		break;
2484 #endif /* INET */
2485 #ifdef INET6
2486 	case AF_INET6:
2487 		/* TCP checksum */
2488 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
2489 		    sizeof(struct ip6_hdr), tlen);
2490 
2491 		h6->ip6_vfc |= IPV6_VERSION;
2492 		h6->ip6_hlim = IPV6_DEFHLIM;
2493 
2494 		pfse->pfse_type = PFSE_IP6;
2495 		break;
2496 #endif /* INET6 */
2497 	}
2498 	pfse->pfse_m = m;
2499 	pf_send(pfse);
2500 }
2501 
2502 static void
2503 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd,
2504     struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th,
2505     struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen,
2506     u_short *reason)
2507 {
2508 	struct pf_addr	* const saddr = pd->src;
2509 	struct pf_addr	* const daddr = pd->dst;
2510 	sa_family_t	 af = pd->af;
2511 
2512 	/* undo NAT changes, if they have taken place */
2513 	if (nr != NULL) {
2514 		PF_ACPY(saddr, &sk->addr[pd->sidx], af);
2515 		PF_ACPY(daddr, &sk->addr[pd->didx], af);
2516 		if (pd->sport)
2517 			*pd->sport = sk->port[pd->sidx];
2518 		if (pd->dport)
2519 			*pd->dport = sk->port[pd->didx];
2520 		if (pd->proto_sum)
2521 			*pd->proto_sum = bproto_sum;
2522 		if (pd->ip_sum)
2523 			*pd->ip_sum = bip_sum;
2524 		m_copyback(m, off, hdrlen, pd->hdr.any);
2525 	}
2526 	if (pd->proto == IPPROTO_TCP &&
2527 	    ((r->rule_flag & PFRULE_RETURNRST) ||
2528 	    (r->rule_flag & PFRULE_RETURN)) &&
2529 	    !(th->th_flags & TH_RST)) {
2530 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
2531 		int		 len = 0;
2532 #ifdef INET
2533 		struct ip	*h4;
2534 #endif
2535 #ifdef INET6
2536 		struct ip6_hdr	*h6;
2537 #endif
2538 
2539 		switch (af) {
2540 #ifdef INET
2541 		case AF_INET:
2542 			h4 = mtod(m, struct ip *);
2543 			len = ntohs(h4->ip_len) - off;
2544 			break;
2545 #endif
2546 #ifdef INET6
2547 		case AF_INET6:
2548 			h6 = mtod(m, struct ip6_hdr *);
2549 			len = ntohs(h6->ip6_plen) - (off - sizeof(*h6));
2550 			break;
2551 #endif
2552 		}
2553 
2554 		if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af))
2555 			REASON_SET(reason, PFRES_PROTCKSUM);
2556 		else {
2557 			if (th->th_flags & TH_SYN)
2558 				ack++;
2559 			if (th->th_flags & TH_FIN)
2560 				ack++;
2561 			pf_send_tcp(m, r, af, pd->dst,
2562 				pd->src, th->th_dport, th->th_sport,
2563 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
2564 				r->return_ttl, 1, 0, kif->pfik_ifp);
2565 		}
2566 	} else if (pd->proto != IPPROTO_ICMP && af == AF_INET &&
2567 		r->return_icmp)
2568 		pf_send_icmp(m, r->return_icmp >> 8,
2569 			r->return_icmp & 255, af, r);
2570 	else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 &&
2571 		r->return_icmp6)
2572 		pf_send_icmp(m, r->return_icmp6 >> 8,
2573 			r->return_icmp6 & 255, af, r);
2574 }
2575 
2576 
2577 static int
2578 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio)
2579 {
2580 	struct m_tag *mtag;
2581 
2582 	KASSERT(prio <= PF_PRIO_MAX,
2583 	    ("%s with invalid pcp", __func__));
2584 
2585 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL);
2586 	if (mtag == NULL) {
2587 		mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT,
2588 		    sizeof(uint8_t), M_NOWAIT);
2589 		if (mtag == NULL)
2590 			return (ENOMEM);
2591 		m_tag_prepend(m, mtag);
2592 	}
2593 
2594 	*(uint8_t *)(mtag + 1) = prio;
2595 	return (0);
2596 }
2597 
2598 static int
2599 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
2600 {
2601 	struct m_tag *mtag;
2602 	u_int8_t mpcp;
2603 
2604 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
2605 	if (mtag == NULL)
2606 		return (0);
2607 
2608 	if (prio == PF_PRIO_ZERO)
2609 		prio = 0;
2610 
2611 	mpcp = *(uint8_t *)(mtag + 1);
2612 
2613 	return (mpcp == prio);
2614 }
2615 
2616 static void
2617 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
2618     struct pf_rule *r)
2619 {
2620 	struct pf_send_entry *pfse;
2621 	struct mbuf *m0;
2622 	struct pf_mtag *pf_mtag;
2623 
2624 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
2625 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
2626 	if (pfse == NULL)
2627 		return;
2628 
2629 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
2630 		free(pfse, M_PFTEMP);
2631 		return;
2632 	}
2633 
2634 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
2635 		free(pfse, M_PFTEMP);
2636 		return;
2637 	}
2638 	/* XXX: revisit */
2639 	m0->m_flags |= M_SKIP_FIREWALL;
2640 
2641 	if (r->rtableid >= 0)
2642 		M_SETFIB(m0, r->rtableid);
2643 
2644 #ifdef ALTQ
2645 	if (r->qid) {
2646 		pf_mtag->qid = r->qid;
2647 		/* add hints for ecn */
2648 		pf_mtag->hdr = mtod(m0, struct ip *);
2649 	}
2650 #endif /* ALTQ */
2651 
2652 	switch (af) {
2653 #ifdef INET
2654 	case AF_INET:
2655 		pfse->pfse_type = PFSE_ICMP;
2656 		break;
2657 #endif /* INET */
2658 #ifdef INET6
2659 	case AF_INET6:
2660 		pfse->pfse_type = PFSE_ICMP6;
2661 		break;
2662 #endif /* INET6 */
2663 	}
2664 	pfse->pfse_m = m0;
2665 	pfse->icmpopts.type = type;
2666 	pfse->icmpopts.code = code;
2667 	pf_send(pfse);
2668 }
2669 
2670 /*
2671  * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
2672  * If n is 0, they match if they are equal. If n is != 0, they match if they
2673  * are different.
2674  */
2675 int
2676 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
2677     struct pf_addr *b, sa_family_t af)
2678 {
2679 	int	match = 0;
2680 
2681 	switch (af) {
2682 #ifdef INET
2683 	case AF_INET:
2684 		if ((a->addr32[0] & m->addr32[0]) ==
2685 		    (b->addr32[0] & m->addr32[0]))
2686 			match++;
2687 		break;
2688 #endif /* INET */
2689 #ifdef INET6
2690 	case AF_INET6:
2691 		if (((a->addr32[0] & m->addr32[0]) ==
2692 		     (b->addr32[0] & m->addr32[0])) &&
2693 		    ((a->addr32[1] & m->addr32[1]) ==
2694 		     (b->addr32[1] & m->addr32[1])) &&
2695 		    ((a->addr32[2] & m->addr32[2]) ==
2696 		     (b->addr32[2] & m->addr32[2])) &&
2697 		    ((a->addr32[3] & m->addr32[3]) ==
2698 		     (b->addr32[3] & m->addr32[3])))
2699 			match++;
2700 		break;
2701 #endif /* INET6 */
2702 	}
2703 	if (match) {
2704 		if (n)
2705 			return (0);
2706 		else
2707 			return (1);
2708 	} else {
2709 		if (n)
2710 			return (1);
2711 		else
2712 			return (0);
2713 	}
2714 }
2715 
2716 /*
2717  * Return 1 if b <= a <= e, otherwise return 0.
2718  */
2719 int
2720 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
2721     struct pf_addr *a, sa_family_t af)
2722 {
2723 	switch (af) {
2724 #ifdef INET
2725 	case AF_INET:
2726 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
2727 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
2728 			return (0);
2729 		break;
2730 #endif /* INET */
2731 #ifdef INET6
2732 	case AF_INET6: {
2733 		int	i;
2734 
2735 		/* check a >= b */
2736 		for (i = 0; i < 4; ++i)
2737 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
2738 				break;
2739 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
2740 				return (0);
2741 		/* check a <= e */
2742 		for (i = 0; i < 4; ++i)
2743 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
2744 				break;
2745 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
2746 				return (0);
2747 		break;
2748 	}
2749 #endif /* INET6 */
2750 	}
2751 	return (1);
2752 }
2753 
2754 static int
2755 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
2756 {
2757 	switch (op) {
2758 	case PF_OP_IRG:
2759 		return ((p > a1) && (p < a2));
2760 	case PF_OP_XRG:
2761 		return ((p < a1) || (p > a2));
2762 	case PF_OP_RRG:
2763 		return ((p >= a1) && (p <= a2));
2764 	case PF_OP_EQ:
2765 		return (p == a1);
2766 	case PF_OP_NE:
2767 		return (p != a1);
2768 	case PF_OP_LT:
2769 		return (p < a1);
2770 	case PF_OP_LE:
2771 		return (p <= a1);
2772 	case PF_OP_GT:
2773 		return (p > a1);
2774 	case PF_OP_GE:
2775 		return (p >= a1);
2776 	}
2777 	return (0); /* never reached */
2778 }
2779 
2780 int
2781 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
2782 {
2783 	NTOHS(a1);
2784 	NTOHS(a2);
2785 	NTOHS(p);
2786 	return (pf_match(op, a1, a2, p));
2787 }
2788 
2789 static int
2790 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
2791 {
2792 	if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
2793 		return (0);
2794 	return (pf_match(op, a1, a2, u));
2795 }
2796 
2797 static int
2798 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
2799 {
2800 	if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
2801 		return (0);
2802 	return (pf_match(op, a1, a2, g));
2803 }
2804 
2805 int
2806 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag)
2807 {
2808 	if (*tag == -1)
2809 		*tag = mtag;
2810 
2811 	return ((!r->match_tag_not && r->match_tag == *tag) ||
2812 	    (r->match_tag_not && r->match_tag != *tag));
2813 }
2814 
2815 int
2816 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag)
2817 {
2818 
2819 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
2820 
2821 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL))
2822 		return (ENOMEM);
2823 
2824 	pd->pf_mtag->tag = tag;
2825 
2826 	return (0);
2827 }
2828 
2829 #define	PF_ANCHOR_STACKSIZE	32
2830 struct pf_anchor_stackframe {
2831 	struct pf_ruleset	*rs;
2832 	struct pf_rule		*r;	/* XXX: + match bit */
2833 	struct pf_anchor	*child;
2834 };
2835 
2836 /*
2837  * XXX: We rely on malloc(9) returning pointer aligned addresses.
2838  */
2839 #define	PF_ANCHORSTACK_MATCH	0x00000001
2840 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
2841 
2842 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
2843 #define	PF_ANCHOR_RULE(f)	(struct pf_rule *)			\
2844 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
2845 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
2846 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
2847 } while (0)
2848 
2849 void
2850 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth,
2851     struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a,
2852     int *match)
2853 {
2854 	struct pf_anchor_stackframe	*f;
2855 
2856 	PF_RULES_RASSERT();
2857 
2858 	if (match)
2859 		*match = 0;
2860 	if (*depth >= PF_ANCHOR_STACKSIZE) {
2861 		printf("%s: anchor stack overflow on %s\n",
2862 		    __func__, (*r)->anchor->name);
2863 		*r = TAILQ_NEXT(*r, entries);
2864 		return;
2865 	} else if (*depth == 0 && a != NULL)
2866 		*a = *r;
2867 	f = stack + (*depth)++;
2868 	f->rs = *rs;
2869 	f->r = *r;
2870 	if ((*r)->anchor_wildcard) {
2871 		struct pf_anchor_node *parent = &(*r)->anchor->children;
2872 
2873 		if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) {
2874 			*r = NULL;
2875 			return;
2876 		}
2877 		*rs = &f->child->ruleset;
2878 	} else {
2879 		f->child = NULL;
2880 		*rs = &(*r)->anchor->ruleset;
2881 	}
2882 	*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
2883 }
2884 
2885 int
2886 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth,
2887     struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a,
2888     int *match)
2889 {
2890 	struct pf_anchor_stackframe	*f;
2891 	struct pf_rule *fr;
2892 	int quick = 0;
2893 
2894 	PF_RULES_RASSERT();
2895 
2896 	do {
2897 		if (*depth <= 0)
2898 			break;
2899 		f = stack + *depth - 1;
2900 		fr = PF_ANCHOR_RULE(f);
2901 		if (f->child != NULL) {
2902 			struct pf_anchor_node *parent;
2903 
2904 			/*
2905 			 * This block traverses through
2906 			 * a wildcard anchor.
2907 			 */
2908 			parent = &fr->anchor->children;
2909 			if (match != NULL && *match) {
2910 				/*
2911 				 * If any of "*" matched, then
2912 				 * "foo/ *" matched, mark frame
2913 				 * appropriately.
2914 				 */
2915 				PF_ANCHOR_SET_MATCH(f);
2916 				*match = 0;
2917 			}
2918 			f->child = RB_NEXT(pf_anchor_node, parent, f->child);
2919 			if (f->child != NULL) {
2920 				*rs = &f->child->ruleset;
2921 				*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
2922 				if (*r == NULL)
2923 					continue;
2924 				else
2925 					break;
2926 			}
2927 		}
2928 		(*depth)--;
2929 		if (*depth == 0 && a != NULL)
2930 			*a = NULL;
2931 		*rs = f->rs;
2932 		if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
2933 			quick = fr->quick;
2934 		*r = TAILQ_NEXT(fr, entries);
2935 	} while (*r == NULL);
2936 
2937 	return (quick);
2938 }
2939 
2940 #ifdef INET6
2941 void
2942 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
2943     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
2944 {
2945 	switch (af) {
2946 #ifdef INET
2947 	case AF_INET:
2948 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
2949 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
2950 		break;
2951 #endif /* INET */
2952 	case AF_INET6:
2953 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
2954 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
2955 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
2956 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
2957 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
2958 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
2959 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
2960 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
2961 		break;
2962 	}
2963 }
2964 
2965 void
2966 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
2967 {
2968 	switch (af) {
2969 #ifdef INET
2970 	case AF_INET:
2971 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
2972 		break;
2973 #endif /* INET */
2974 	case AF_INET6:
2975 		if (addr->addr32[3] == 0xffffffff) {
2976 			addr->addr32[3] = 0;
2977 			if (addr->addr32[2] == 0xffffffff) {
2978 				addr->addr32[2] = 0;
2979 				if (addr->addr32[1] == 0xffffffff) {
2980 					addr->addr32[1] = 0;
2981 					addr->addr32[0] =
2982 					    htonl(ntohl(addr->addr32[0]) + 1);
2983 				} else
2984 					addr->addr32[1] =
2985 					    htonl(ntohl(addr->addr32[1]) + 1);
2986 			} else
2987 				addr->addr32[2] =
2988 				    htonl(ntohl(addr->addr32[2]) + 1);
2989 		} else
2990 			addr->addr32[3] =
2991 			    htonl(ntohl(addr->addr32[3]) + 1);
2992 		break;
2993 	}
2994 }
2995 #endif /* INET6 */
2996 
2997 int
2998 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m)
2999 {
3000 	struct pf_addr		*saddr, *daddr;
3001 	u_int16_t		 sport, dport;
3002 	struct inpcbinfo	*pi;
3003 	struct inpcb		*inp;
3004 
3005 	pd->lookup.uid = UID_MAX;
3006 	pd->lookup.gid = GID_MAX;
3007 
3008 	switch (pd->proto) {
3009 	case IPPROTO_TCP:
3010 		if (pd->hdr.tcp == NULL)
3011 			return (-1);
3012 		sport = pd->hdr.tcp->th_sport;
3013 		dport = pd->hdr.tcp->th_dport;
3014 		pi = &V_tcbinfo;
3015 		break;
3016 	case IPPROTO_UDP:
3017 		if (pd->hdr.udp == NULL)
3018 			return (-1);
3019 		sport = pd->hdr.udp->uh_sport;
3020 		dport = pd->hdr.udp->uh_dport;
3021 		pi = &V_udbinfo;
3022 		break;
3023 	default:
3024 		return (-1);
3025 	}
3026 	if (direction == PF_IN) {
3027 		saddr = pd->src;
3028 		daddr = pd->dst;
3029 	} else {
3030 		u_int16_t	p;
3031 
3032 		p = sport;
3033 		sport = dport;
3034 		dport = p;
3035 		saddr = pd->dst;
3036 		daddr = pd->src;
3037 	}
3038 	switch (pd->af) {
3039 #ifdef INET
3040 	case AF_INET:
3041 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
3042 		    dport, INPLOOKUP_RLOCKPCB, NULL, m);
3043 		if (inp == NULL) {
3044 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
3045 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
3046 			   INPLOOKUP_RLOCKPCB, NULL, m);
3047 			if (inp == NULL)
3048 				return (-1);
3049 		}
3050 		break;
3051 #endif /* INET */
3052 #ifdef INET6
3053 	case AF_INET6:
3054 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
3055 		    dport, INPLOOKUP_RLOCKPCB, NULL, m);
3056 		if (inp == NULL) {
3057 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
3058 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
3059 			    INPLOOKUP_RLOCKPCB, NULL, m);
3060 			if (inp == NULL)
3061 				return (-1);
3062 		}
3063 		break;
3064 #endif /* INET6 */
3065 
3066 	default:
3067 		return (-1);
3068 	}
3069 	INP_RLOCK_ASSERT(inp);
3070 	pd->lookup.uid = inp->inp_cred->cr_uid;
3071 	pd->lookup.gid = inp->inp_cred->cr_groups[0];
3072 	INP_RUNLOCK(inp);
3073 
3074 	return (1);
3075 }
3076 
3077 static u_int8_t
3078 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
3079 {
3080 	int		 hlen;
3081 	u_int8_t	 hdr[60];
3082 	u_int8_t	*opt, optlen;
3083 	u_int8_t	 wscale = 0;
3084 
3085 	hlen = th_off << 2;		/* hlen <= sizeof(hdr) */
3086 	if (hlen <= sizeof(struct tcphdr))
3087 		return (0);
3088 	if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
3089 		return (0);
3090 	opt = hdr + sizeof(struct tcphdr);
3091 	hlen -= sizeof(struct tcphdr);
3092 	while (hlen >= 3) {
3093 		switch (*opt) {
3094 		case TCPOPT_EOL:
3095 		case TCPOPT_NOP:
3096 			++opt;
3097 			--hlen;
3098 			break;
3099 		case TCPOPT_WINDOW:
3100 			wscale = opt[2];
3101 			if (wscale > TCP_MAX_WINSHIFT)
3102 				wscale = TCP_MAX_WINSHIFT;
3103 			wscale |= PF_WSCALE_FLAG;
3104 			/* FALLTHROUGH */
3105 		default:
3106 			optlen = opt[1];
3107 			if (optlen < 2)
3108 				optlen = 2;
3109 			hlen -= optlen;
3110 			opt += optlen;
3111 			break;
3112 		}
3113 	}
3114 	return (wscale);
3115 }
3116 
3117 static u_int16_t
3118 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af)
3119 {
3120 	int		 hlen;
3121 	u_int8_t	 hdr[60];
3122 	u_int8_t	*opt, optlen;
3123 	u_int16_t	 mss = V_tcp_mssdflt;
3124 
3125 	hlen = th_off << 2;	/* hlen <= sizeof(hdr) */
3126 	if (hlen <= sizeof(struct tcphdr))
3127 		return (0);
3128 	if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af))
3129 		return (0);
3130 	opt = hdr + sizeof(struct tcphdr);
3131 	hlen -= sizeof(struct tcphdr);
3132 	while (hlen >= TCPOLEN_MAXSEG) {
3133 		switch (*opt) {
3134 		case TCPOPT_EOL:
3135 		case TCPOPT_NOP:
3136 			++opt;
3137 			--hlen;
3138 			break;
3139 		case TCPOPT_MAXSEG:
3140 			bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
3141 			NTOHS(mss);
3142 			/* FALLTHROUGH */
3143 		default:
3144 			optlen = opt[1];
3145 			if (optlen < 2)
3146 				optlen = 2;
3147 			hlen -= optlen;
3148 			opt += optlen;
3149 			break;
3150 		}
3151 	}
3152 	return (mss);
3153 }
3154 
3155 static u_int16_t
3156 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
3157 {
3158 #ifdef INET
3159 	struct nhop4_basic	nh4;
3160 #endif /* INET */
3161 #ifdef INET6
3162 	struct nhop6_basic	nh6;
3163 	struct in6_addr		dst6;
3164 	uint32_t		scopeid;
3165 #endif /* INET6 */
3166 	int			 hlen = 0;
3167 	uint16_t		 mss = 0;
3168 
3169 	switch (af) {
3170 #ifdef INET
3171 	case AF_INET:
3172 		hlen = sizeof(struct ip);
3173 		if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0)
3174 			mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr);
3175 		break;
3176 #endif /* INET */
3177 #ifdef INET6
3178 	case AF_INET6:
3179 		hlen = sizeof(struct ip6_hdr);
3180 		in6_splitscope(&addr->v6, &dst6, &scopeid);
3181 		if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0)
3182 			mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr);
3183 		break;
3184 #endif /* INET6 */
3185 	}
3186 
3187 	mss = max(V_tcp_mssdflt, mss);
3188 	mss = min(mss, offer);
3189 	mss = max(mss, 64);		/* sanity - at least max opt space */
3190 	return (mss);
3191 }
3192 
3193 static u_int32_t
3194 pf_tcp_iss(struct pf_pdesc *pd)
3195 {
3196 	MD5_CTX ctx;
3197 	u_int32_t digest[4];
3198 
3199 	if (V_pf_tcp_secret_init == 0) {
3200 		read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
3201 		MD5Init(&V_pf_tcp_secret_ctx);
3202 		MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
3203 		    sizeof(V_pf_tcp_secret));
3204 		V_pf_tcp_secret_init = 1;
3205 	}
3206 
3207 	ctx = V_pf_tcp_secret_ctx;
3208 
3209 	MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short));
3210 	MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short));
3211 	if (pd->af == AF_INET6) {
3212 		MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
3213 		MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
3214 	} else {
3215 		MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
3216 		MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
3217 	}
3218 	MD5Final((u_char *)digest, &ctx);
3219 	V_pf_tcp_iss_off += 4096;
3220 #define	ISN_RANDOM_INCREMENT (4096 - 1)
3221 	return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
3222 	    V_pf_tcp_iss_off);
3223 #undef	ISN_RANDOM_INCREMENT
3224 }
3225 
3226 static int
3227 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction,
3228     struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd,
3229     struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp)
3230 {
3231 	struct pf_rule		*nr = NULL;
3232 	struct pf_addr		* const saddr = pd->src;
3233 	struct pf_addr		* const daddr = pd->dst;
3234 	sa_family_t		 af = pd->af;
3235 	struct pf_rule		*r, *a = NULL;
3236 	struct pf_ruleset	*ruleset = NULL;
3237 	struct pf_src_node	*nsn = NULL;
3238 	struct tcphdr		*th = pd->hdr.tcp;
3239 	struct pf_state_key	*sk = NULL, *nk = NULL;
3240 	u_short			 reason;
3241 	int			 rewrite = 0, hdrlen = 0;
3242 	int			 tag = -1, rtableid = -1;
3243 	int			 asd = 0;
3244 	int			 match = 0;
3245 	int			 state_icmp = 0;
3246 	u_int16_t		 sport = 0, dport = 0;
3247 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
3248 	u_int8_t		 icmptype = 0, icmpcode = 0;
3249 	struct pf_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
3250 
3251 	PF_RULES_RASSERT();
3252 
3253 	if (inp != NULL) {
3254 		INP_LOCK_ASSERT(inp);
3255 		pd->lookup.uid = inp->inp_cred->cr_uid;
3256 		pd->lookup.gid = inp->inp_cred->cr_groups[0];
3257 		pd->lookup.done = 1;
3258 	}
3259 
3260 	switch (pd->proto) {
3261 	case IPPROTO_TCP:
3262 		sport = th->th_sport;
3263 		dport = th->th_dport;
3264 		hdrlen = sizeof(*th);
3265 		break;
3266 	case IPPROTO_UDP:
3267 		sport = pd->hdr.udp->uh_sport;
3268 		dport = pd->hdr.udp->uh_dport;
3269 		hdrlen = sizeof(*pd->hdr.udp);
3270 		break;
3271 #ifdef INET
3272 	case IPPROTO_ICMP:
3273 		if (pd->af != AF_INET)
3274 			break;
3275 		sport = dport = pd->hdr.icmp->icmp_id;
3276 		hdrlen = sizeof(*pd->hdr.icmp);
3277 		icmptype = pd->hdr.icmp->icmp_type;
3278 		icmpcode = pd->hdr.icmp->icmp_code;
3279 
3280 		if (icmptype == ICMP_UNREACH ||
3281 		    icmptype == ICMP_SOURCEQUENCH ||
3282 		    icmptype == ICMP_REDIRECT ||
3283 		    icmptype == ICMP_TIMXCEED ||
3284 		    icmptype == ICMP_PARAMPROB)
3285 			state_icmp++;
3286 		break;
3287 #endif /* INET */
3288 #ifdef INET6
3289 	case IPPROTO_ICMPV6:
3290 		if (af != AF_INET6)
3291 			break;
3292 		sport = dport = pd->hdr.icmp6->icmp6_id;
3293 		hdrlen = sizeof(*pd->hdr.icmp6);
3294 		icmptype = pd->hdr.icmp6->icmp6_type;
3295 		icmpcode = pd->hdr.icmp6->icmp6_code;
3296 
3297 		if (icmptype == ICMP6_DST_UNREACH ||
3298 		    icmptype == ICMP6_PACKET_TOO_BIG ||
3299 		    icmptype == ICMP6_TIME_EXCEEDED ||
3300 		    icmptype == ICMP6_PARAM_PROB)
3301 			state_icmp++;
3302 		break;
3303 #endif /* INET6 */
3304 	default:
3305 		sport = dport = hdrlen = 0;
3306 		break;
3307 	}
3308 
3309 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
3310 
3311 	/* check packet for BINAT/NAT/RDR */
3312 	if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk,
3313 	    &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) {
3314 		KASSERT(sk != NULL, ("%s: null sk", __func__));
3315 		KASSERT(nk != NULL, ("%s: null nk", __func__));
3316 
3317 		if (pd->ip_sum)
3318 			bip_sum = *pd->ip_sum;
3319 
3320 		switch (pd->proto) {
3321 		case IPPROTO_TCP:
3322 			bproto_sum = th->th_sum;
3323 			pd->proto_sum = &th->th_sum;
3324 
3325 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
3326 			    nk->port[pd->sidx] != sport) {
3327 				pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum,
3328 				    &th->th_sum, &nk->addr[pd->sidx],
3329 				    nk->port[pd->sidx], 0, af);
3330 				pd->sport = &th->th_sport;
3331 				sport = th->th_sport;
3332 			}
3333 
3334 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
3335 			    nk->port[pd->didx] != dport) {
3336 				pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum,
3337 				    &th->th_sum, &nk->addr[pd->didx],
3338 				    nk->port[pd->didx], 0, af);
3339 				dport = th->th_dport;
3340 				pd->dport = &th->th_dport;
3341 			}
3342 			rewrite++;
3343 			break;
3344 		case IPPROTO_UDP:
3345 			bproto_sum = pd->hdr.udp->uh_sum;
3346 			pd->proto_sum = &pd->hdr.udp->uh_sum;
3347 
3348 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) ||
3349 			    nk->port[pd->sidx] != sport) {
3350 				pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport,
3351 				    pd->ip_sum, &pd->hdr.udp->uh_sum,
3352 				    &nk->addr[pd->sidx],
3353 				    nk->port[pd->sidx], 1, af);
3354 				sport = pd->hdr.udp->uh_sport;
3355 				pd->sport = &pd->hdr.udp->uh_sport;
3356 			}
3357 
3358 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) ||
3359 			    nk->port[pd->didx] != dport) {
3360 				pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport,
3361 				    pd->ip_sum, &pd->hdr.udp->uh_sum,
3362 				    &nk->addr[pd->didx],
3363 				    nk->port[pd->didx], 1, af);
3364 				dport = pd->hdr.udp->uh_dport;
3365 				pd->dport = &pd->hdr.udp->uh_dport;
3366 			}
3367 			rewrite++;
3368 			break;
3369 #ifdef INET
3370 		case IPPROTO_ICMP:
3371 			nk->port[0] = nk->port[1];
3372 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
3373 				pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
3374 				    nk->addr[pd->sidx].v4.s_addr, 0);
3375 
3376 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
3377 				pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
3378 				    nk->addr[pd->didx].v4.s_addr, 0);
3379 
3380 			if (nk->port[1] != pd->hdr.icmp->icmp_id) {
3381 				pd->hdr.icmp->icmp_cksum = pf_cksum_fixup(
3382 				    pd->hdr.icmp->icmp_cksum, sport,
3383 				    nk->port[1], 0);
3384 				pd->hdr.icmp->icmp_id = nk->port[1];
3385 				pd->sport = &pd->hdr.icmp->icmp_id;
3386 			}
3387 			m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp);
3388 			break;
3389 #endif /* INET */
3390 #ifdef INET6
3391 		case IPPROTO_ICMPV6:
3392 			nk->port[0] = nk->port[1];
3393 			if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
3394 				pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum,
3395 				    &nk->addr[pd->sidx], 0);
3396 
3397 			if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
3398 				pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum,
3399 				    &nk->addr[pd->didx], 0);
3400 			rewrite++;
3401 			break;
3402 #endif /* INET */
3403 		default:
3404 			switch (af) {
3405 #ifdef INET
3406 			case AF_INET:
3407 				if (PF_ANEQ(saddr,
3408 				    &nk->addr[pd->sidx], AF_INET))
3409 					pf_change_a(&saddr->v4.s_addr,
3410 					    pd->ip_sum,
3411 					    nk->addr[pd->sidx].v4.s_addr, 0);
3412 
3413 				if (PF_ANEQ(daddr,
3414 				    &nk->addr[pd->didx], AF_INET))
3415 					pf_change_a(&daddr->v4.s_addr,
3416 					    pd->ip_sum,
3417 					    nk->addr[pd->didx].v4.s_addr, 0);
3418 				break;
3419 #endif /* INET */
3420 #ifdef INET6
3421 			case AF_INET6:
3422 				if (PF_ANEQ(saddr,
3423 				    &nk->addr[pd->sidx], AF_INET6))
3424 					PF_ACPY(saddr, &nk->addr[pd->sidx], af);
3425 
3426 				if (PF_ANEQ(daddr,
3427 				    &nk->addr[pd->didx], AF_INET6))
3428 					PF_ACPY(saddr, &nk->addr[pd->didx], af);
3429 				break;
3430 #endif /* INET */
3431 			}
3432 			break;
3433 		}
3434 		if (nr->natpass)
3435 			r = NULL;
3436 		pd->nat_rule = nr;
3437 	}
3438 
3439 	while (r != NULL) {
3440 		r->evaluations++;
3441 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
3442 			r = r->skip[PF_SKIP_IFP].ptr;
3443 		else if (r->direction && r->direction != direction)
3444 			r = r->skip[PF_SKIP_DIR].ptr;
3445 		else if (r->af && r->af != af)
3446 			r = r->skip[PF_SKIP_AF].ptr;
3447 		else if (r->proto && r->proto != pd->proto)
3448 			r = r->skip[PF_SKIP_PROTO].ptr;
3449 		else if (PF_MISMATCHAW(&r->src.addr, saddr, af,
3450 		    r->src.neg, kif, M_GETFIB(m)))
3451 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
3452 		/* tcp/udp only. port_op always 0 in other cases */
3453 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
3454 		    r->src.port[0], r->src.port[1], sport))
3455 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
3456 		else if (PF_MISMATCHAW(&r->dst.addr, daddr, af,
3457 		    r->dst.neg, NULL, M_GETFIB(m)))
3458 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
3459 		/* tcp/udp only. port_op always 0 in other cases */
3460 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
3461 		    r->dst.port[0], r->dst.port[1], dport))
3462 			r = r->skip[PF_SKIP_DST_PORT].ptr;
3463 		/* icmp only. type always 0 in other cases */
3464 		else if (r->type && r->type != icmptype + 1)
3465 			r = TAILQ_NEXT(r, entries);
3466 		/* icmp only. type always 0 in other cases */
3467 		else if (r->code && r->code != icmpcode + 1)
3468 			r = TAILQ_NEXT(r, entries);
3469 		else if (r->tos && !(r->tos == pd->tos))
3470 			r = TAILQ_NEXT(r, entries);
3471 		else if (r->rule_flag & PFRULE_FRAGMENT)
3472 			r = TAILQ_NEXT(r, entries);
3473 		else if (pd->proto == IPPROTO_TCP &&
3474 		    (r->flagset & th->th_flags) != r->flags)
3475 			r = TAILQ_NEXT(r, entries);
3476 		/* tcp/udp only. uid.op always 0 in other cases */
3477 		else if (r->uid.op && (pd->lookup.done || (pd->lookup.done =
3478 		    pf_socket_lookup(direction, pd, m), 1)) &&
3479 		    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
3480 		    pd->lookup.uid))
3481 			r = TAILQ_NEXT(r, entries);
3482 		/* tcp/udp only. gid.op always 0 in other cases */
3483 		else if (r->gid.op && (pd->lookup.done || (pd->lookup.done =
3484 		    pf_socket_lookup(direction, pd, m), 1)) &&
3485 		    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
3486 		    pd->lookup.gid))
3487 			r = TAILQ_NEXT(r, entries);
3488 		else if (r->prio &&
3489 		    !pf_match_ieee8021q_pcp(r->prio, m))
3490 			r = TAILQ_NEXT(r, entries);
3491 		else if (r->prob &&
3492 		    r->prob <= arc4random())
3493 			r = TAILQ_NEXT(r, entries);
3494 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
3495 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
3496 			r = TAILQ_NEXT(r, entries);
3497 		else if (r->os_fingerprint != PF_OSFP_ANY &&
3498 		    (pd->proto != IPPROTO_TCP || !pf_osfp_match(
3499 		    pf_osfp_fingerprint(pd, m, off, th),
3500 		    r->os_fingerprint)))
3501 			r = TAILQ_NEXT(r, entries);
3502 		else {
3503 			if (r->tag)
3504 				tag = r->tag;
3505 			if (r->rtableid >= 0)
3506 				rtableid = r->rtableid;
3507 			if (r->anchor == NULL) {
3508 				match = 1;
3509 				*rm = r;
3510 				*am = a;
3511 				*rsm = ruleset;
3512 				if ((*rm)->quick)
3513 					break;
3514 				r = TAILQ_NEXT(r, entries);
3515 			} else
3516 				pf_step_into_anchor(anchor_stack, &asd,
3517 				    &ruleset, PF_RULESET_FILTER, &r, &a,
3518 				    &match);
3519 		}
3520 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
3521 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
3522 			break;
3523 	}
3524 	r = *rm;
3525 	a = *am;
3526 	ruleset = *rsm;
3527 
3528 	REASON_SET(&reason, PFRES_MATCH);
3529 
3530 	if (r->log || (nr != NULL && nr->log)) {
3531 		if (rewrite)
3532 			m_copyback(m, off, hdrlen, pd->hdr.any);
3533 		PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a,
3534 		    ruleset, pd, 1);
3535 	}
3536 
3537 	if ((r->action == PF_DROP) &&
3538 	    ((r->rule_flag & PFRULE_RETURNRST) ||
3539 	    (r->rule_flag & PFRULE_RETURNICMP) ||
3540 	    (r->rule_flag & PFRULE_RETURN))) {
3541 		pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum,
3542 		    bip_sum, hdrlen, &reason);
3543 	}
3544 
3545 	if (r->action == PF_DROP)
3546 		goto cleanup;
3547 
3548 	if (tag > 0 && pf_tag_packet(m, pd, tag)) {
3549 		REASON_SET(&reason, PFRES_MEMORY);
3550 		goto cleanup;
3551 	}
3552 	if (rtableid >= 0)
3553 		M_SETFIB(m, rtableid);
3554 
3555 	if (!state_icmp && (r->keep_state || nr != NULL ||
3556 	    (pd->flags & PFDESC_TCP_NORM))) {
3557 		int action;
3558 		action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off,
3559 		    sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum,
3560 		    hdrlen);
3561 		if (action != PF_PASS) {
3562 			if (action == PF_DROP &&
3563 			    (r->rule_flag & PFRULE_RETURN))
3564 				pf_return(r, nr, pd, sk, off, m, th, kif,
3565 				    bproto_sum, bip_sum, hdrlen, &reason);
3566 			return (action);
3567 		}
3568 	} else {
3569 		if (sk != NULL)
3570 			uma_zfree(V_pf_state_key_z, sk);
3571 		if (nk != NULL)
3572 			uma_zfree(V_pf_state_key_z, nk);
3573 	}
3574 
3575 	/* copy back packet headers if we performed NAT operations */
3576 	if (rewrite)
3577 		m_copyback(m, off, hdrlen, pd->hdr.any);
3578 
3579 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
3580 	    direction == PF_OUT &&
3581 	    pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m))
3582 		/*
3583 		 * We want the state created, but we dont
3584 		 * want to send this in case a partner
3585 		 * firewall has to know about it to allow
3586 		 * replies through it.
3587 		 */
3588 		return (PF_DEFER);
3589 
3590 	return (PF_PASS);
3591 
3592 cleanup:
3593 	if (sk != NULL)
3594 		uma_zfree(V_pf_state_key_z, sk);
3595 	if (nk != NULL)
3596 		uma_zfree(V_pf_state_key_z, nk);
3597 	return (PF_DROP);
3598 }
3599 
3600 static int
3601 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a,
3602     struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk,
3603     struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport,
3604     u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm,
3605     int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen)
3606 {
3607 	struct pf_state		*s = NULL;
3608 	struct pf_src_node	*sn = NULL;
3609 	struct tcphdr		*th = pd->hdr.tcp;
3610 	u_int16_t		 mss = V_tcp_mssdflt;
3611 	u_short			 reason;
3612 
3613 	/* check maximums */
3614 	if (r->max_states &&
3615 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
3616 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
3617 		REASON_SET(&reason, PFRES_MAXSTATES);
3618 		goto csfailed;
3619 	}
3620 	/* src node for filter rule */
3621 	if ((r->rule_flag & PFRULE_SRCTRACK ||
3622 	    r->rpool.opts & PF_POOL_STICKYADDR) &&
3623 	    pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) {
3624 		REASON_SET(&reason, PFRES_SRCLIMIT);
3625 		goto csfailed;
3626 	}
3627 	/* src node for translation rule */
3628 	if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
3629 	    pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) {
3630 		REASON_SET(&reason, PFRES_SRCLIMIT);
3631 		goto csfailed;
3632 	}
3633 	s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO);
3634 	if (s == NULL) {
3635 		REASON_SET(&reason, PFRES_MEMORY);
3636 		goto csfailed;
3637 	}
3638 	s->rule.ptr = r;
3639 	s->nat_rule.ptr = nr;
3640 	s->anchor.ptr = a;
3641 	STATE_INC_COUNTERS(s);
3642 	if (r->allow_opts)
3643 		s->state_flags |= PFSTATE_ALLOWOPTS;
3644 	if (r->rule_flag & PFRULE_STATESLOPPY)
3645 		s->state_flags |= PFSTATE_SLOPPY;
3646 	s->log = r->log & PF_LOG_ALL;
3647 	s->sync_state = PFSYNC_S_NONE;
3648 	if (nr != NULL)
3649 		s->log |= nr->log & PF_LOG_ALL;
3650 	switch (pd->proto) {
3651 	case IPPROTO_TCP:
3652 		s->src.seqlo = ntohl(th->th_seq);
3653 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
3654 		if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
3655 		    r->keep_state == PF_STATE_MODULATE) {
3656 			/* Generate sequence number modulator */
3657 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
3658 			    0)
3659 				s->src.seqdiff = 1;
3660 			pf_change_proto_a(m, &th->th_seq, &th->th_sum,
3661 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
3662 			*rewrite = 1;
3663 		} else
3664 			s->src.seqdiff = 0;
3665 		if (th->th_flags & TH_SYN) {
3666 			s->src.seqhi++;
3667 			s->src.wscale = pf_get_wscale(m, off,
3668 			    th->th_off, pd->af);
3669 		}
3670 		s->src.max_win = MAX(ntohs(th->th_win), 1);
3671 		if (s->src.wscale & PF_WSCALE_MASK) {
3672 			/* Remove scale factor from initial window */
3673 			int win = s->src.max_win;
3674 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
3675 			s->src.max_win = (win - 1) >>
3676 			    (s->src.wscale & PF_WSCALE_MASK);
3677 		}
3678 		if (th->th_flags & TH_FIN)
3679 			s->src.seqhi++;
3680 		s->dst.seqhi = 1;
3681 		s->dst.max_win = 1;
3682 		s->src.state = TCPS_SYN_SENT;
3683 		s->dst.state = TCPS_CLOSED;
3684 		s->timeout = PFTM_TCP_FIRST_PACKET;
3685 		break;
3686 	case IPPROTO_UDP:
3687 		s->src.state = PFUDPS_SINGLE;
3688 		s->dst.state = PFUDPS_NO_TRAFFIC;
3689 		s->timeout = PFTM_UDP_FIRST_PACKET;
3690 		break;
3691 	case IPPROTO_ICMP:
3692 #ifdef INET6
3693 	case IPPROTO_ICMPV6:
3694 #endif
3695 		s->timeout = PFTM_ICMP_FIRST_PACKET;
3696 		break;
3697 	default:
3698 		s->src.state = PFOTHERS_SINGLE;
3699 		s->dst.state = PFOTHERS_NO_TRAFFIC;
3700 		s->timeout = PFTM_OTHER_FIRST_PACKET;
3701 	}
3702 
3703 	if (r->rt) {
3704 		if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) {
3705 			REASON_SET(&reason, PFRES_MAPFAILED);
3706 			pf_src_tree_remove_state(s);
3707 			STATE_DEC_COUNTERS(s);
3708 			uma_zfree(V_pf_state_z, s);
3709 			goto csfailed;
3710 		}
3711 		s->rt_kif = r->rpool.cur->kif;
3712 	}
3713 
3714 	s->creation = time_uptime;
3715 	s->expire = time_uptime;
3716 
3717 	if (sn != NULL)
3718 		s->src_node = sn;
3719 	if (nsn != NULL) {
3720 		/* XXX We only modify one side for now. */
3721 		PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
3722 		s->nat_src_node = nsn;
3723 	}
3724 	if (pd->proto == IPPROTO_TCP) {
3725 		if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m,
3726 		    off, pd, th, &s->src, &s->dst)) {
3727 			REASON_SET(&reason, PFRES_MEMORY);
3728 			pf_src_tree_remove_state(s);
3729 			STATE_DEC_COUNTERS(s);
3730 			uma_zfree(V_pf_state_z, s);
3731 			return (PF_DROP);
3732 		}
3733 		if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub &&
3734 		    pf_normalize_tcp_stateful(m, off, pd, &reason, th, s,
3735 		    &s->src, &s->dst, rewrite)) {
3736 			/* This really shouldn't happen!!! */
3737 			DPFPRINTF(PF_DEBUG_URGENT,
3738 			    ("pf_normalize_tcp_stateful failed on first pkt"));
3739 			pf_normalize_tcp_cleanup(s);
3740 			pf_src_tree_remove_state(s);
3741 			STATE_DEC_COUNTERS(s);
3742 			uma_zfree(V_pf_state_z, s);
3743 			return (PF_DROP);
3744 		}
3745 	}
3746 	s->direction = pd->dir;
3747 
3748 	/*
3749 	 * sk/nk could already been setup by pf_get_translation().
3750 	 */
3751 	if (nr == NULL) {
3752 		KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
3753 		    __func__, nr, sk, nk));
3754 		sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
3755 		if (sk == NULL)
3756 			goto csfailed;
3757 		nk = sk;
3758 	} else
3759 		KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
3760 		    __func__, nr, sk, nk));
3761 
3762 	/* Swap sk/nk for PF_OUT. */
3763 	if (pf_state_insert(BOUND_IFACE(r, kif),
3764 	    (pd->dir == PF_IN) ? sk : nk,
3765 	    (pd->dir == PF_IN) ? nk : sk, s)) {
3766 		if (pd->proto == IPPROTO_TCP)
3767 			pf_normalize_tcp_cleanup(s);
3768 		REASON_SET(&reason, PFRES_STATEINS);
3769 		pf_src_tree_remove_state(s);
3770 		STATE_DEC_COUNTERS(s);
3771 		uma_zfree(V_pf_state_z, s);
3772 		return (PF_DROP);
3773 	} else
3774 		*sm = s;
3775 
3776 	if (tag > 0)
3777 		s->tag = tag;
3778 	if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
3779 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
3780 		s->src.state = PF_TCPS_PROXY_SRC;
3781 		/* undo NAT changes, if they have taken place */
3782 		if (nr != NULL) {
3783 			struct pf_state_key *skt = s->key[PF_SK_WIRE];
3784 			if (pd->dir == PF_OUT)
3785 				skt = s->key[PF_SK_STACK];
3786 			PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
3787 			PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
3788 			if (pd->sport)
3789 				*pd->sport = skt->port[pd->sidx];
3790 			if (pd->dport)
3791 				*pd->dport = skt->port[pd->didx];
3792 			if (pd->proto_sum)
3793 				*pd->proto_sum = bproto_sum;
3794 			if (pd->ip_sum)
3795 				*pd->ip_sum = bip_sum;
3796 			m_copyback(m, off, hdrlen, pd->hdr.any);
3797 		}
3798 		s->src.seqhi = htonl(arc4random());
3799 		/* Find mss option */
3800 		int rtid = M_GETFIB(m);
3801 		mss = pf_get_mss(m, off, th->th_off, pd->af);
3802 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
3803 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
3804 		s->src.mss = mss;
3805 		pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport,
3806 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
3807 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL);
3808 		REASON_SET(&reason, PFRES_SYNPROXY);
3809 		return (PF_SYNPROXY_DROP);
3810 	}
3811 
3812 	return (PF_PASS);
3813 
3814 csfailed:
3815 	if (sk != NULL)
3816 		uma_zfree(V_pf_state_key_z, sk);
3817 	if (nk != NULL)
3818 		uma_zfree(V_pf_state_key_z, nk);
3819 
3820 	if (sn != NULL) {
3821 		struct pf_srchash *sh;
3822 
3823 		sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)];
3824 		PF_HASHROW_LOCK(sh);
3825 		if (--sn->states == 0 && sn->expire == 0) {
3826 			pf_unlink_src_node(sn);
3827 			uma_zfree(V_pf_sources_z, sn);
3828 			counter_u64_add(
3829 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
3830 		}
3831 		PF_HASHROW_UNLOCK(sh);
3832 	}
3833 
3834 	if (nsn != sn && nsn != NULL) {
3835 		struct pf_srchash *sh;
3836 
3837 		sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)];
3838 		PF_HASHROW_LOCK(sh);
3839 		if (--nsn->states == 0 && nsn->expire == 0) {
3840 			pf_unlink_src_node(nsn);
3841 			uma_zfree(V_pf_sources_z, nsn);
3842 			counter_u64_add(
3843 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
3844 		}
3845 		PF_HASHROW_UNLOCK(sh);
3846 	}
3847 
3848 	return (PF_DROP);
3849 }
3850 
3851 static int
3852 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif,
3853     struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am,
3854     struct pf_ruleset **rsm)
3855 {
3856 	struct pf_rule		*r, *a = NULL;
3857 	struct pf_ruleset	*ruleset = NULL;
3858 	sa_family_t		 af = pd->af;
3859 	u_short			 reason;
3860 	int			 tag = -1;
3861 	int			 asd = 0;
3862 	int			 match = 0;
3863 	struct pf_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
3864 
3865 	PF_RULES_RASSERT();
3866 
3867 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
3868 	while (r != NULL) {
3869 		r->evaluations++;
3870 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
3871 			r = r->skip[PF_SKIP_IFP].ptr;
3872 		else if (r->direction && r->direction != direction)
3873 			r = r->skip[PF_SKIP_DIR].ptr;
3874 		else if (r->af && r->af != af)
3875 			r = r->skip[PF_SKIP_AF].ptr;
3876 		else if (r->proto && r->proto != pd->proto)
3877 			r = r->skip[PF_SKIP_PROTO].ptr;
3878 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
3879 		    r->src.neg, kif, M_GETFIB(m)))
3880 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
3881 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
3882 		    r->dst.neg, NULL, M_GETFIB(m)))
3883 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
3884 		else if (r->tos && !(r->tos == pd->tos))
3885 			r = TAILQ_NEXT(r, entries);
3886 		else if (r->os_fingerprint != PF_OSFP_ANY)
3887 			r = TAILQ_NEXT(r, entries);
3888 		else if (pd->proto == IPPROTO_UDP &&
3889 		    (r->src.port_op || r->dst.port_op))
3890 			r = TAILQ_NEXT(r, entries);
3891 		else if (pd->proto == IPPROTO_TCP &&
3892 		    (r->src.port_op || r->dst.port_op || r->flagset))
3893 			r = TAILQ_NEXT(r, entries);
3894 		else if ((pd->proto == IPPROTO_ICMP ||
3895 		    pd->proto == IPPROTO_ICMPV6) &&
3896 		    (r->type || r->code))
3897 			r = TAILQ_NEXT(r, entries);
3898 		else if (r->prio &&
3899 		    !pf_match_ieee8021q_pcp(r->prio, m))
3900 			r = TAILQ_NEXT(r, entries);
3901 		else if (r->prob && r->prob <=
3902 		    (arc4random() % (UINT_MAX - 1) + 1))
3903 			r = TAILQ_NEXT(r, entries);
3904 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
3905 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
3906 			r = TAILQ_NEXT(r, entries);
3907 		else {
3908 			if (r->anchor == NULL) {
3909 				match = 1;
3910 				*rm = r;
3911 				*am = a;
3912 				*rsm = ruleset;
3913 				if ((*rm)->quick)
3914 					break;
3915 				r = TAILQ_NEXT(r, entries);
3916 			} else
3917 				pf_step_into_anchor(anchor_stack, &asd,
3918 				    &ruleset, PF_RULESET_FILTER, &r, &a,
3919 				    &match);
3920 		}
3921 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
3922 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
3923 			break;
3924 	}
3925 	r = *rm;
3926 	a = *am;
3927 	ruleset = *rsm;
3928 
3929 	REASON_SET(&reason, PFRES_MATCH);
3930 
3931 	if (r->log)
3932 		PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd,
3933 		    1);
3934 
3935 	if (r->action != PF_PASS)
3936 		return (PF_DROP);
3937 
3938 	if (tag > 0 && pf_tag_packet(m, pd, tag)) {
3939 		REASON_SET(&reason, PFRES_MEMORY);
3940 		return (PF_DROP);
3941 	}
3942 
3943 	return (PF_PASS);
3944 }
3945 
3946 static int
3947 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst,
3948 	struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off,
3949 	struct pf_pdesc *pd, u_short *reason, int *copyback)
3950 {
3951 	struct tcphdr		*th = pd->hdr.tcp;
3952 	u_int16_t		 win = ntohs(th->th_win);
3953 	u_int32_t		 ack, end, seq, orig_seq;
3954 	u_int8_t		 sws, dws;
3955 	int			 ackskew;
3956 
3957 	if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
3958 		sws = src->wscale & PF_WSCALE_MASK;
3959 		dws = dst->wscale & PF_WSCALE_MASK;
3960 	} else
3961 		sws = dws = 0;
3962 
3963 	/*
3964 	 * Sequence tracking algorithm from Guido van Rooij's paper:
3965 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
3966 	 *	tcp_filtering.ps
3967 	 */
3968 
3969 	orig_seq = seq = ntohl(th->th_seq);
3970 	if (src->seqlo == 0) {
3971 		/* First packet from this end. Set its state */
3972 
3973 		if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) &&
3974 		    src->scrub == NULL) {
3975 			if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) {
3976 				REASON_SET(reason, PFRES_MEMORY);
3977 				return (PF_DROP);
3978 			}
3979 		}
3980 
3981 		/* Deferred generation of sequence number modulator */
3982 		if (dst->seqdiff && !src->seqdiff) {
3983 			/* use random iss for the TCP server */
3984 			while ((src->seqdiff = arc4random() - seq) == 0)
3985 				;
3986 			ack = ntohl(th->th_ack) - dst->seqdiff;
3987 			pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
3988 			    src->seqdiff), 0);
3989 			pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
3990 			*copyback = 1;
3991 		} else {
3992 			ack = ntohl(th->th_ack);
3993 		}
3994 
3995 		end = seq + pd->p_len;
3996 		if (th->th_flags & TH_SYN) {
3997 			end++;
3998 			if (dst->wscale & PF_WSCALE_FLAG) {
3999 				src->wscale = pf_get_wscale(m, off, th->th_off,
4000 				    pd->af);
4001 				if (src->wscale & PF_WSCALE_FLAG) {
4002 					/* Remove scale factor from initial
4003 					 * window */
4004 					sws = src->wscale & PF_WSCALE_MASK;
4005 					win = ((u_int32_t)win + (1 << sws) - 1)
4006 					    >> sws;
4007 					dws = dst->wscale & PF_WSCALE_MASK;
4008 				} else {
4009 					/* fixup other window */
4010 					dst->max_win <<= dst->wscale &
4011 					    PF_WSCALE_MASK;
4012 					/* in case of a retrans SYN|ACK */
4013 					dst->wscale = 0;
4014 				}
4015 			}
4016 		}
4017 		if (th->th_flags & TH_FIN)
4018 			end++;
4019 
4020 		src->seqlo = seq;
4021 		if (src->state < TCPS_SYN_SENT)
4022 			src->state = TCPS_SYN_SENT;
4023 
4024 		/*
4025 		 * May need to slide the window (seqhi may have been set by
4026 		 * the crappy stack check or if we picked up the connection
4027 		 * after establishment)
4028 		 */
4029 		if (src->seqhi == 1 ||
4030 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
4031 			src->seqhi = end + MAX(1, dst->max_win << dws);
4032 		if (win > src->max_win)
4033 			src->max_win = win;
4034 
4035 	} else {
4036 		ack = ntohl(th->th_ack) - dst->seqdiff;
4037 		if (src->seqdiff) {
4038 			/* Modulate sequence numbers */
4039 			pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq +
4040 			    src->seqdiff), 0);
4041 			pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0);
4042 			*copyback = 1;
4043 		}
4044 		end = seq + pd->p_len;
4045 		if (th->th_flags & TH_SYN)
4046 			end++;
4047 		if (th->th_flags & TH_FIN)
4048 			end++;
4049 	}
4050 
4051 	if ((th->th_flags & TH_ACK) == 0) {
4052 		/* Let it pass through the ack skew check */
4053 		ack = dst->seqlo;
4054 	} else if ((ack == 0 &&
4055 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
4056 	    /* broken tcp stacks do not set ack */
4057 	    (dst->state < TCPS_SYN_SENT)) {
4058 		/*
4059 		 * Many stacks (ours included) will set the ACK number in an
4060 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
4061 		 */
4062 		ack = dst->seqlo;
4063 	}
4064 
4065 	if (seq == end) {
4066 		/* Ease sequencing restrictions on no data packets */
4067 		seq = src->seqlo;
4068 		end = seq;
4069 	}
4070 
4071 	ackskew = dst->seqlo - ack;
4072 
4073 
4074 	/*
4075 	 * Need to demodulate the sequence numbers in any TCP SACK options
4076 	 * (Selective ACK). We could optionally validate the SACK values
4077 	 * against the current ACK window, either forwards or backwards, but
4078 	 * I'm not confident that SACK has been implemented properly
4079 	 * everywhere. It wouldn't surprise me if several stacks accidentally
4080 	 * SACK too far backwards of previously ACKed data. There really aren't
4081 	 * any security implications of bad SACKing unless the target stack
4082 	 * doesn't validate the option length correctly. Someone trying to
4083 	 * spoof into a TCP connection won't bother blindly sending SACK
4084 	 * options anyway.
4085 	 */
4086 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
4087 		if (pf_modulate_sack(m, off, pd, th, dst))
4088 			*copyback = 1;
4089 	}
4090 
4091 
4092 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
4093 	if (SEQ_GEQ(src->seqhi, end) &&
4094 	    /* Last octet inside other's window space */
4095 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
4096 	    /* Retrans: not more than one window back */
4097 	    (ackskew >= -MAXACKWINDOW) &&
4098 	    /* Acking not more than one reassembled fragment backwards */
4099 	    (ackskew <= (MAXACKWINDOW << sws)) &&
4100 	    /* Acking not more than one window forward */
4101 	    ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
4102 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
4103 	    (pd->flags & PFDESC_IP_REAS) == 0)) {
4104 	    /* Require an exact/+1 sequence match on resets when possible */
4105 
4106 		if (dst->scrub || src->scrub) {
4107 			if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
4108 			    *state, src, dst, copyback))
4109 				return (PF_DROP);
4110 		}
4111 
4112 		/* update max window */
4113 		if (src->max_win < win)
4114 			src->max_win = win;
4115 		/* synchronize sequencing */
4116 		if (SEQ_GT(end, src->seqlo))
4117 			src->seqlo = end;
4118 		/* slide the window of what the other end can send */
4119 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
4120 			dst->seqhi = ack + MAX((win << sws), 1);
4121 
4122 
4123 		/* update states */
4124 		if (th->th_flags & TH_SYN)
4125 			if (src->state < TCPS_SYN_SENT)
4126 				src->state = TCPS_SYN_SENT;
4127 		if (th->th_flags & TH_FIN)
4128 			if (src->state < TCPS_CLOSING)
4129 				src->state = TCPS_CLOSING;
4130 		if (th->th_flags & TH_ACK) {
4131 			if (dst->state == TCPS_SYN_SENT) {
4132 				dst->state = TCPS_ESTABLISHED;
4133 				if (src->state == TCPS_ESTABLISHED &&
4134 				    (*state)->src_node != NULL &&
4135 				    pf_src_connlimit(state)) {
4136 					REASON_SET(reason, PFRES_SRCLIMIT);
4137 					return (PF_DROP);
4138 				}
4139 			} else if (dst->state == TCPS_CLOSING)
4140 				dst->state = TCPS_FIN_WAIT_2;
4141 		}
4142 		if (th->th_flags & TH_RST)
4143 			src->state = dst->state = TCPS_TIME_WAIT;
4144 
4145 		/* update expire time */
4146 		(*state)->expire = time_uptime;
4147 		if (src->state >= TCPS_FIN_WAIT_2 &&
4148 		    dst->state >= TCPS_FIN_WAIT_2)
4149 			(*state)->timeout = PFTM_TCP_CLOSED;
4150 		else if (src->state >= TCPS_CLOSING &&
4151 		    dst->state >= TCPS_CLOSING)
4152 			(*state)->timeout = PFTM_TCP_FIN_WAIT;
4153 		else if (src->state < TCPS_ESTABLISHED ||
4154 		    dst->state < TCPS_ESTABLISHED)
4155 			(*state)->timeout = PFTM_TCP_OPENING;
4156 		else if (src->state >= TCPS_CLOSING ||
4157 		    dst->state >= TCPS_CLOSING)
4158 			(*state)->timeout = PFTM_TCP_CLOSING;
4159 		else
4160 			(*state)->timeout = PFTM_TCP_ESTABLISHED;
4161 
4162 		/* Fall through to PASS packet */
4163 
4164 	} else if ((dst->state < TCPS_SYN_SENT ||
4165 		dst->state >= TCPS_FIN_WAIT_2 ||
4166 		src->state >= TCPS_FIN_WAIT_2) &&
4167 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) &&
4168 	    /* Within a window forward of the originating packet */
4169 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
4170 	    /* Within a window backward of the originating packet */
4171 
4172 		/*
4173 		 * This currently handles three situations:
4174 		 *  1) Stupid stacks will shotgun SYNs before their peer
4175 		 *     replies.
4176 		 *  2) When PF catches an already established stream (the
4177 		 *     firewall rebooted, the state table was flushed, routes
4178 		 *     changed...)
4179 		 *  3) Packets get funky immediately after the connection
4180 		 *     closes (this should catch Solaris spurious ACK|FINs
4181 		 *     that web servers like to spew after a close)
4182 		 *
4183 		 * This must be a little more careful than the above code
4184 		 * since packet floods will also be caught here. We don't
4185 		 * update the TTL here to mitigate the damage of a packet
4186 		 * flood and so the same code can handle awkward establishment
4187 		 * and a loosened connection close.
4188 		 * In the establishment case, a correct peer response will
4189 		 * validate the connection, go through the normal state code
4190 		 * and keep updating the state TTL.
4191 		 */
4192 
4193 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
4194 			printf("pf: loose state match: ");
4195 			pf_print_state(*state);
4196 			pf_print_flags(th->th_flags);
4197 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
4198 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
4199 			    pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
4200 			    (unsigned long long)(*state)->packets[1],
4201 			    pd->dir == PF_IN ? "in" : "out",
4202 			    pd->dir == (*state)->direction ? "fwd" : "rev");
4203 		}
4204 
4205 		if (dst->scrub || src->scrub) {
4206 			if (pf_normalize_tcp_stateful(m, off, pd, reason, th,
4207 			    *state, src, dst, copyback))
4208 				return (PF_DROP);
4209 		}
4210 
4211 		/* update max window */
4212 		if (src->max_win < win)
4213 			src->max_win = win;
4214 		/* synchronize sequencing */
4215 		if (SEQ_GT(end, src->seqlo))
4216 			src->seqlo = end;
4217 		/* slide the window of what the other end can send */
4218 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
4219 			dst->seqhi = ack + MAX((win << sws), 1);
4220 
4221 		/*
4222 		 * Cannot set dst->seqhi here since this could be a shotgunned
4223 		 * SYN and not an already established connection.
4224 		 */
4225 
4226 		if (th->th_flags & TH_FIN)
4227 			if (src->state < TCPS_CLOSING)
4228 				src->state = TCPS_CLOSING;
4229 		if (th->th_flags & TH_RST)
4230 			src->state = dst->state = TCPS_TIME_WAIT;
4231 
4232 		/* Fall through to PASS packet */
4233 
4234 	} else {
4235 		if ((*state)->dst.state == TCPS_SYN_SENT &&
4236 		    (*state)->src.state == TCPS_SYN_SENT) {
4237 			/* Send RST for state mismatches during handshake */
4238 			if (!(th->th_flags & TH_RST))
4239 				pf_send_tcp(NULL, (*state)->rule.ptr, pd->af,
4240 				    pd->dst, pd->src, th->th_dport,
4241 				    th->th_sport, ntohl(th->th_ack), 0,
4242 				    TH_RST, 0, 0,
4243 				    (*state)->rule.ptr->return_ttl, 1, 0,
4244 				    kif->pfik_ifp);
4245 			src->seqlo = 0;
4246 			src->seqhi = 1;
4247 			src->max_win = 1;
4248 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
4249 			printf("pf: BAD state: ");
4250 			pf_print_state(*state);
4251 			pf_print_flags(th->th_flags);
4252 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
4253 			    "pkts=%llu:%llu dir=%s,%s\n",
4254 			    seq, orig_seq, ack, pd->p_len, ackskew,
4255 			    (unsigned long long)(*state)->packets[0],
4256 			    (unsigned long long)(*state)->packets[1],
4257 			    pd->dir == PF_IN ? "in" : "out",
4258 			    pd->dir == (*state)->direction ? "fwd" : "rev");
4259 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
4260 			    SEQ_GEQ(src->seqhi, end) ? ' ' : '1',
4261 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
4262 			    ' ': '2',
4263 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
4264 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
4265 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5',
4266 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
4267 		}
4268 		REASON_SET(reason, PFRES_BADSTATE);
4269 		return (PF_DROP);
4270 	}
4271 
4272 	return (PF_PASS);
4273 }
4274 
4275 static int
4276 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst,
4277 	struct pf_state **state, struct pf_pdesc *pd, u_short *reason)
4278 {
4279 	struct tcphdr		*th = pd->hdr.tcp;
4280 
4281 	if (th->th_flags & TH_SYN)
4282 		if (src->state < TCPS_SYN_SENT)
4283 			src->state = TCPS_SYN_SENT;
4284 	if (th->th_flags & TH_FIN)
4285 		if (src->state < TCPS_CLOSING)
4286 			src->state = TCPS_CLOSING;
4287 	if (th->th_flags & TH_ACK) {
4288 		if (dst->state == TCPS_SYN_SENT) {
4289 			dst->state = TCPS_ESTABLISHED;
4290 			if (src->state == TCPS_ESTABLISHED &&
4291 			    (*state)->src_node != NULL &&
4292 			    pf_src_connlimit(state)) {
4293 				REASON_SET(reason, PFRES_SRCLIMIT);
4294 				return (PF_DROP);
4295 			}
4296 		} else if (dst->state == TCPS_CLOSING) {
4297 			dst->state = TCPS_FIN_WAIT_2;
4298 		} else if (src->state == TCPS_SYN_SENT &&
4299 		    dst->state < TCPS_SYN_SENT) {
4300 			/*
4301 			 * Handle a special sloppy case where we only see one
4302 			 * half of the connection. If there is a ACK after
4303 			 * the initial SYN without ever seeing a packet from
4304 			 * the destination, set the connection to established.
4305 			 */
4306 			dst->state = src->state = TCPS_ESTABLISHED;
4307 			if ((*state)->src_node != NULL &&
4308 			    pf_src_connlimit(state)) {
4309 				REASON_SET(reason, PFRES_SRCLIMIT);
4310 				return (PF_DROP);
4311 			}
4312 		} else if (src->state == TCPS_CLOSING &&
4313 		    dst->state == TCPS_ESTABLISHED &&
4314 		    dst->seqlo == 0) {
4315 			/*
4316 			 * Handle the closing of half connections where we
4317 			 * don't see the full bidirectional FIN/ACK+ACK
4318 			 * handshake.
4319 			 */
4320 			dst->state = TCPS_CLOSING;
4321 		}
4322 	}
4323 	if (th->th_flags & TH_RST)
4324 		src->state = dst->state = TCPS_TIME_WAIT;
4325 
4326 	/* update expire time */
4327 	(*state)->expire = time_uptime;
4328 	if (src->state >= TCPS_FIN_WAIT_2 &&
4329 	    dst->state >= TCPS_FIN_WAIT_2)
4330 		(*state)->timeout = PFTM_TCP_CLOSED;
4331 	else if (src->state >= TCPS_CLOSING &&
4332 	    dst->state >= TCPS_CLOSING)
4333 		(*state)->timeout = PFTM_TCP_FIN_WAIT;
4334 	else if (src->state < TCPS_ESTABLISHED ||
4335 	    dst->state < TCPS_ESTABLISHED)
4336 		(*state)->timeout = PFTM_TCP_OPENING;
4337 	else if (src->state >= TCPS_CLOSING ||
4338 	    dst->state >= TCPS_CLOSING)
4339 		(*state)->timeout = PFTM_TCP_CLOSING;
4340 	else
4341 		(*state)->timeout = PFTM_TCP_ESTABLISHED;
4342 
4343 	return (PF_PASS);
4344 }
4345 
4346 static int
4347 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif,
4348     struct mbuf *m, int off, void *h, struct pf_pdesc *pd,
4349     u_short *reason)
4350 {
4351 	struct pf_state_key_cmp	 key;
4352 	struct tcphdr		*th = pd->hdr.tcp;
4353 	int			 copyback = 0;
4354 	struct pf_state_peer	*src, *dst;
4355 	struct pf_state_key	*sk;
4356 
4357 	bzero(&key, sizeof(key));
4358 	key.af = pd->af;
4359 	key.proto = IPPROTO_TCP;
4360 	if (direction == PF_IN)	{	/* wire side, straight */
4361 		PF_ACPY(&key.addr[0], pd->src, key.af);
4362 		PF_ACPY(&key.addr[1], pd->dst, key.af);
4363 		key.port[0] = th->th_sport;
4364 		key.port[1] = th->th_dport;
4365 	} else {			/* stack side, reverse */
4366 		PF_ACPY(&key.addr[1], pd->src, key.af);
4367 		PF_ACPY(&key.addr[0], pd->dst, key.af);
4368 		key.port[1] = th->th_sport;
4369 		key.port[0] = th->th_dport;
4370 	}
4371 
4372 	STATE_LOOKUP(kif, &key, direction, *state, pd);
4373 
4374 	if (direction == (*state)->direction) {
4375 		src = &(*state)->src;
4376 		dst = &(*state)->dst;
4377 	} else {
4378 		src = &(*state)->dst;
4379 		dst = &(*state)->src;
4380 	}
4381 
4382 	sk = (*state)->key[pd->didx];
4383 
4384 	if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
4385 		if (direction != (*state)->direction) {
4386 			REASON_SET(reason, PFRES_SYNPROXY);
4387 			return (PF_SYNPROXY_DROP);
4388 		}
4389 		if (th->th_flags & TH_SYN) {
4390 			if (ntohl(th->th_seq) != (*state)->src.seqlo) {
4391 				REASON_SET(reason, PFRES_SYNPROXY);
4392 				return (PF_DROP);
4393 			}
4394 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst,
4395 			    pd->src, th->th_dport, th->th_sport,
4396 			    (*state)->src.seqhi, ntohl(th->th_seq) + 1,
4397 			    TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL);
4398 			REASON_SET(reason, PFRES_SYNPROXY);
4399 			return (PF_SYNPROXY_DROP);
4400 		} else if (!(th->th_flags & TH_ACK) ||
4401 		    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
4402 		    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
4403 			REASON_SET(reason, PFRES_SYNPROXY);
4404 			return (PF_DROP);
4405 		} else if ((*state)->src_node != NULL &&
4406 		    pf_src_connlimit(state)) {
4407 			REASON_SET(reason, PFRES_SRCLIMIT);
4408 			return (PF_DROP);
4409 		} else
4410 			(*state)->src.state = PF_TCPS_PROXY_DST;
4411 	}
4412 	if ((*state)->src.state == PF_TCPS_PROXY_DST) {
4413 		if (direction == (*state)->direction) {
4414 			if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
4415 			    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
4416 			    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
4417 				REASON_SET(reason, PFRES_SYNPROXY);
4418 				return (PF_DROP);
4419 			}
4420 			(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
4421 			if ((*state)->dst.seqhi == 1)
4422 				(*state)->dst.seqhi = htonl(arc4random());
4423 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af,
4424 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
4425 			    sk->port[pd->sidx], sk->port[pd->didx],
4426 			    (*state)->dst.seqhi, 0, TH_SYN, 0,
4427 			    (*state)->src.mss, 0, 0, (*state)->tag, NULL);
4428 			REASON_SET(reason, PFRES_SYNPROXY);
4429 			return (PF_SYNPROXY_DROP);
4430 		} else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
4431 		    (TH_SYN|TH_ACK)) ||
4432 		    (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
4433 			REASON_SET(reason, PFRES_SYNPROXY);
4434 			return (PF_DROP);
4435 		} else {
4436 			(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
4437 			(*state)->dst.seqlo = ntohl(th->th_seq);
4438 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst,
4439 			    pd->src, th->th_dport, th->th_sport,
4440 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
4441 			    TH_ACK, (*state)->src.max_win, 0, 0, 0,
4442 			    (*state)->tag, NULL);
4443 			pf_send_tcp(NULL, (*state)->rule.ptr, pd->af,
4444 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
4445 			    sk->port[pd->sidx], sk->port[pd->didx],
4446 			    (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
4447 			    TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL);
4448 			(*state)->src.seqdiff = (*state)->dst.seqhi -
4449 			    (*state)->src.seqlo;
4450 			(*state)->dst.seqdiff = (*state)->src.seqhi -
4451 			    (*state)->dst.seqlo;
4452 			(*state)->src.seqhi = (*state)->src.seqlo +
4453 			    (*state)->dst.max_win;
4454 			(*state)->dst.seqhi = (*state)->dst.seqlo +
4455 			    (*state)->src.max_win;
4456 			(*state)->src.wscale = (*state)->dst.wscale = 0;
4457 			(*state)->src.state = (*state)->dst.state =
4458 			    TCPS_ESTABLISHED;
4459 			REASON_SET(reason, PFRES_SYNPROXY);
4460 			return (PF_SYNPROXY_DROP);
4461 		}
4462 	}
4463 
4464 	if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) &&
4465 	    dst->state >= TCPS_FIN_WAIT_2 &&
4466 	    src->state >= TCPS_FIN_WAIT_2) {
4467 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
4468 			printf("pf: state reuse ");
4469 			pf_print_state(*state);
4470 			pf_print_flags(th->th_flags);
4471 			printf("\n");
4472 		}
4473 		/* XXX make sure it's the same direction ?? */
4474 		(*state)->src.state = (*state)->dst.state = TCPS_CLOSED;
4475 		pf_unlink_state(*state, PF_ENTER_LOCKED);
4476 		*state = NULL;
4477 		return (PF_DROP);
4478 	}
4479 
4480 	if ((*state)->state_flags & PFSTATE_SLOPPY) {
4481 		if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP)
4482 			return (PF_DROP);
4483 	} else {
4484 		if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason,
4485 		    &copyback) == PF_DROP)
4486 			return (PF_DROP);
4487 	}
4488 
4489 	/* translate source/destination address, if necessary */
4490 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4491 		struct pf_state_key *nk = (*state)->key[pd->didx];
4492 
4493 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
4494 		    nk->port[pd->sidx] != th->th_sport)
4495 			pf_change_ap(m, pd->src, &th->th_sport,
4496 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
4497 			    nk->port[pd->sidx], 0, pd->af);
4498 
4499 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
4500 		    nk->port[pd->didx] != th->th_dport)
4501 			pf_change_ap(m, pd->dst, &th->th_dport,
4502 			    pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
4503 			    nk->port[pd->didx], 0, pd->af);
4504 		copyback = 1;
4505 	}
4506 
4507 	/* Copyback sequence modulation or stateful scrub changes if needed */
4508 	if (copyback)
4509 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
4510 
4511 	return (PF_PASS);
4512 }
4513 
4514 static int
4515 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif,
4516     struct mbuf *m, int off, void *h, struct pf_pdesc *pd)
4517 {
4518 	struct pf_state_peer	*src, *dst;
4519 	struct pf_state_key_cmp	 key;
4520 	struct udphdr		*uh = pd->hdr.udp;
4521 
4522 	bzero(&key, sizeof(key));
4523 	key.af = pd->af;
4524 	key.proto = IPPROTO_UDP;
4525 	if (direction == PF_IN)	{	/* wire side, straight */
4526 		PF_ACPY(&key.addr[0], pd->src, key.af);
4527 		PF_ACPY(&key.addr[1], pd->dst, key.af);
4528 		key.port[0] = uh->uh_sport;
4529 		key.port[1] = uh->uh_dport;
4530 	} else {			/* stack side, reverse */
4531 		PF_ACPY(&key.addr[1], pd->src, key.af);
4532 		PF_ACPY(&key.addr[0], pd->dst, key.af);
4533 		key.port[1] = uh->uh_sport;
4534 		key.port[0] = uh->uh_dport;
4535 	}
4536 
4537 	STATE_LOOKUP(kif, &key, direction, *state, pd);
4538 
4539 	if (direction == (*state)->direction) {
4540 		src = &(*state)->src;
4541 		dst = &(*state)->dst;
4542 	} else {
4543 		src = &(*state)->dst;
4544 		dst = &(*state)->src;
4545 	}
4546 
4547 	/* update states */
4548 	if (src->state < PFUDPS_SINGLE)
4549 		src->state = PFUDPS_SINGLE;
4550 	if (dst->state == PFUDPS_SINGLE)
4551 		dst->state = PFUDPS_MULTIPLE;
4552 
4553 	/* update expire time */
4554 	(*state)->expire = time_uptime;
4555 	if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
4556 		(*state)->timeout = PFTM_UDP_MULTIPLE;
4557 	else
4558 		(*state)->timeout = PFTM_UDP_SINGLE;
4559 
4560 	/* translate source/destination address, if necessary */
4561 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4562 		struct pf_state_key *nk = (*state)->key[pd->didx];
4563 
4564 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
4565 		    nk->port[pd->sidx] != uh->uh_sport)
4566 			pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
4567 			    &uh->uh_sum, &nk->addr[pd->sidx],
4568 			    nk->port[pd->sidx], 1, pd->af);
4569 
4570 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
4571 		    nk->port[pd->didx] != uh->uh_dport)
4572 			pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
4573 			    &uh->uh_sum, &nk->addr[pd->didx],
4574 			    nk->port[pd->didx], 1, pd->af);
4575 		m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
4576 	}
4577 
4578 	return (PF_PASS);
4579 }
4580 
4581 static int
4582 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif,
4583     struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason)
4584 {
4585 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
4586 	u_int16_t	 icmpid = 0, *icmpsum;
4587 	u_int8_t	 icmptype;
4588 	int		 state_icmp = 0;
4589 	struct pf_state_key_cmp key;
4590 
4591 	bzero(&key, sizeof(key));
4592 	switch (pd->proto) {
4593 #ifdef INET
4594 	case IPPROTO_ICMP:
4595 		icmptype = pd->hdr.icmp->icmp_type;
4596 		icmpid = pd->hdr.icmp->icmp_id;
4597 		icmpsum = &pd->hdr.icmp->icmp_cksum;
4598 
4599 		if (icmptype == ICMP_UNREACH ||
4600 		    icmptype == ICMP_SOURCEQUENCH ||
4601 		    icmptype == ICMP_REDIRECT ||
4602 		    icmptype == ICMP_TIMXCEED ||
4603 		    icmptype == ICMP_PARAMPROB)
4604 			state_icmp++;
4605 		break;
4606 #endif /* INET */
4607 #ifdef INET6
4608 	case IPPROTO_ICMPV6:
4609 		icmptype = pd->hdr.icmp6->icmp6_type;
4610 		icmpid = pd->hdr.icmp6->icmp6_id;
4611 		icmpsum = &pd->hdr.icmp6->icmp6_cksum;
4612 
4613 		if (icmptype == ICMP6_DST_UNREACH ||
4614 		    icmptype == ICMP6_PACKET_TOO_BIG ||
4615 		    icmptype == ICMP6_TIME_EXCEEDED ||
4616 		    icmptype == ICMP6_PARAM_PROB)
4617 			state_icmp++;
4618 		break;
4619 #endif /* INET6 */
4620 	}
4621 
4622 	if (!state_icmp) {
4623 
4624 		/*
4625 		 * ICMP query/reply message not related to a TCP/UDP packet.
4626 		 * Search for an ICMP state.
4627 		 */
4628 		key.af = pd->af;
4629 		key.proto = pd->proto;
4630 		key.port[0] = key.port[1] = icmpid;
4631 		if (direction == PF_IN)	{	/* wire side, straight */
4632 			PF_ACPY(&key.addr[0], pd->src, key.af);
4633 			PF_ACPY(&key.addr[1], pd->dst, key.af);
4634 		} else {			/* stack side, reverse */
4635 			PF_ACPY(&key.addr[1], pd->src, key.af);
4636 			PF_ACPY(&key.addr[0], pd->dst, key.af);
4637 		}
4638 
4639 		STATE_LOOKUP(kif, &key, direction, *state, pd);
4640 
4641 		(*state)->expire = time_uptime;
4642 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
4643 
4644 		/* translate source/destination address, if necessary */
4645 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
4646 			struct pf_state_key *nk = (*state)->key[pd->didx];
4647 
4648 			switch (pd->af) {
4649 #ifdef INET
4650 			case AF_INET:
4651 				if (PF_ANEQ(pd->src,
4652 				    &nk->addr[pd->sidx], AF_INET))
4653 					pf_change_a(&saddr->v4.s_addr,
4654 					    pd->ip_sum,
4655 					    nk->addr[pd->sidx].v4.s_addr, 0);
4656 
4657 				if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
4658 				    AF_INET))
4659 					pf_change_a(&daddr->v4.s_addr,
4660 					    pd->ip_sum,
4661 					    nk->addr[pd->didx].v4.s_addr, 0);
4662 
4663 				if (nk->port[0] !=
4664 				    pd->hdr.icmp->icmp_id) {
4665 					pd->hdr.icmp->icmp_cksum =
4666 					    pf_cksum_fixup(
4667 					    pd->hdr.icmp->icmp_cksum, icmpid,
4668 					    nk->port[pd->sidx], 0);
4669 					pd->hdr.icmp->icmp_id =
4670 					    nk->port[pd->sidx];
4671 				}
4672 
4673 				m_copyback(m, off, ICMP_MINLEN,
4674 				    (caddr_t )pd->hdr.icmp);
4675 				break;
4676 #endif /* INET */
4677 #ifdef INET6
4678 			case AF_INET6:
4679 				if (PF_ANEQ(pd->src,
4680 				    &nk->addr[pd->sidx], AF_INET6))
4681 					pf_change_a6(saddr,
4682 					    &pd->hdr.icmp6->icmp6_cksum,
4683 					    &nk->addr[pd->sidx], 0);
4684 
4685 				if (PF_ANEQ(pd->dst,
4686 				    &nk->addr[pd->didx], AF_INET6))
4687 					pf_change_a6(daddr,
4688 					    &pd->hdr.icmp6->icmp6_cksum,
4689 					    &nk->addr[pd->didx], 0);
4690 
4691 				m_copyback(m, off, sizeof(struct icmp6_hdr),
4692 				    (caddr_t )pd->hdr.icmp6);
4693 				break;
4694 #endif /* INET6 */
4695 			}
4696 		}
4697 		return (PF_PASS);
4698 
4699 	} else {
4700 		/*
4701 		 * ICMP error message in response to a TCP/UDP packet.
4702 		 * Extract the inner TCP/UDP header and search for that state.
4703 		 */
4704 
4705 		struct pf_pdesc	pd2;
4706 		bzero(&pd2, sizeof pd2);
4707 #ifdef INET
4708 		struct ip	h2;
4709 #endif /* INET */
4710 #ifdef INET6
4711 		struct ip6_hdr	h2_6;
4712 		int		terminal = 0;
4713 #endif /* INET6 */
4714 		int		ipoff2 = 0;
4715 		int		off2 = 0;
4716 
4717 		pd2.af = pd->af;
4718 		/* Payload packet is from the opposite direction. */
4719 		pd2.sidx = (direction == PF_IN) ? 1 : 0;
4720 		pd2.didx = (direction == PF_IN) ? 0 : 1;
4721 		switch (pd->af) {
4722 #ifdef INET
4723 		case AF_INET:
4724 			/* offset of h2 in mbuf chain */
4725 			ipoff2 = off + ICMP_MINLEN;
4726 
4727 			if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2),
4728 			    NULL, reason, pd2.af)) {
4729 				DPFPRINTF(PF_DEBUG_MISC,
4730 				    ("pf: ICMP error message too short "
4731 				    "(ip)\n"));
4732 				return (PF_DROP);
4733 			}
4734 			/*
4735 			 * ICMP error messages don't refer to non-first
4736 			 * fragments
4737 			 */
4738 			if (h2.ip_off & htons(IP_OFFMASK)) {
4739 				REASON_SET(reason, PFRES_FRAG);
4740 				return (PF_DROP);
4741 			}
4742 
4743 			/* offset of protocol header that follows h2 */
4744 			off2 = ipoff2 + (h2.ip_hl << 2);
4745 
4746 			pd2.proto = h2.ip_p;
4747 			pd2.src = (struct pf_addr *)&h2.ip_src;
4748 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
4749 			pd2.ip_sum = &h2.ip_sum;
4750 			break;
4751 #endif /* INET */
4752 #ifdef INET6
4753 		case AF_INET6:
4754 			ipoff2 = off + sizeof(struct icmp6_hdr);
4755 
4756 			if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6),
4757 			    NULL, reason, pd2.af)) {
4758 				DPFPRINTF(PF_DEBUG_MISC,
4759 				    ("pf: ICMP error message too short "
4760 				    "(ip6)\n"));
4761 				return (PF_DROP);
4762 			}
4763 			pd2.proto = h2_6.ip6_nxt;
4764 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
4765 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
4766 			pd2.ip_sum = NULL;
4767 			off2 = ipoff2 + sizeof(h2_6);
4768 			do {
4769 				switch (pd2.proto) {
4770 				case IPPROTO_FRAGMENT:
4771 					/*
4772 					 * ICMPv6 error messages for
4773 					 * non-first fragments
4774 					 */
4775 					REASON_SET(reason, PFRES_FRAG);
4776 					return (PF_DROP);
4777 				case IPPROTO_AH:
4778 				case IPPROTO_HOPOPTS:
4779 				case IPPROTO_ROUTING:
4780 				case IPPROTO_DSTOPTS: {
4781 					/* get next header and header length */
4782 					struct ip6_ext opt6;
4783 
4784 					if (!pf_pull_hdr(m, off2, &opt6,
4785 					    sizeof(opt6), NULL, reason,
4786 					    pd2.af)) {
4787 						DPFPRINTF(PF_DEBUG_MISC,
4788 						    ("pf: ICMPv6 short opt\n"));
4789 						return (PF_DROP);
4790 					}
4791 					if (pd2.proto == IPPROTO_AH)
4792 						off2 += (opt6.ip6e_len + 2) * 4;
4793 					else
4794 						off2 += (opt6.ip6e_len + 1) * 8;
4795 					pd2.proto = opt6.ip6e_nxt;
4796 					/* goto the next header */
4797 					break;
4798 				}
4799 				default:
4800 					terminal++;
4801 					break;
4802 				}
4803 			} while (!terminal);
4804 			break;
4805 #endif /* INET6 */
4806 		}
4807 
4808 		switch (pd2.proto) {
4809 		case IPPROTO_TCP: {
4810 			struct tcphdr		 th;
4811 			u_int32_t		 seq;
4812 			struct pf_state_peer	*src, *dst;
4813 			u_int8_t		 dws;
4814 			int			 copyback = 0;
4815 
4816 			/*
4817 			 * Only the first 8 bytes of the TCP header can be
4818 			 * expected. Don't access any TCP header fields after
4819 			 * th_seq, an ackskew test is not possible.
4820 			 */
4821 			if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason,
4822 			    pd2.af)) {
4823 				DPFPRINTF(PF_DEBUG_MISC,
4824 				    ("pf: ICMP error message too short "
4825 				    "(tcp)\n"));
4826 				return (PF_DROP);
4827 			}
4828 
4829 			key.af = pd2.af;
4830 			key.proto = IPPROTO_TCP;
4831 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
4832 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
4833 			key.port[pd2.sidx] = th.th_sport;
4834 			key.port[pd2.didx] = th.th_dport;
4835 
4836 			STATE_LOOKUP(kif, &key, direction, *state, pd);
4837 
4838 			if (direction == (*state)->direction) {
4839 				src = &(*state)->dst;
4840 				dst = &(*state)->src;
4841 			} else {
4842 				src = &(*state)->src;
4843 				dst = &(*state)->dst;
4844 			}
4845 
4846 			if (src->wscale && dst->wscale)
4847 				dws = dst->wscale & PF_WSCALE_MASK;
4848 			else
4849 				dws = 0;
4850 
4851 			/* Demodulate sequence number */
4852 			seq = ntohl(th.th_seq) - src->seqdiff;
4853 			if (src->seqdiff) {
4854 				pf_change_a(&th.th_seq, icmpsum,
4855 				    htonl(seq), 0);
4856 				copyback = 1;
4857 			}
4858 
4859 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
4860 			    (!SEQ_GEQ(src->seqhi, seq) ||
4861 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
4862 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
4863 					printf("pf: BAD ICMP %d:%d ",
4864 					    icmptype, pd->hdr.icmp->icmp_code);
4865 					pf_print_host(pd->src, 0, pd->af);
4866 					printf(" -> ");
4867 					pf_print_host(pd->dst, 0, pd->af);
4868 					printf(" state: ");
4869 					pf_print_state(*state);
4870 					printf(" seq=%u\n", seq);
4871 				}
4872 				REASON_SET(reason, PFRES_BADSTATE);
4873 				return (PF_DROP);
4874 			} else {
4875 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
4876 					printf("pf: OK ICMP %d:%d ",
4877 					    icmptype, pd->hdr.icmp->icmp_code);
4878 					pf_print_host(pd->src, 0, pd->af);
4879 					printf(" -> ");
4880 					pf_print_host(pd->dst, 0, pd->af);
4881 					printf(" state: ");
4882 					pf_print_state(*state);
4883 					printf(" seq=%u\n", seq);
4884 				}
4885 			}
4886 
4887 			/* translate source/destination address, if necessary */
4888 			if ((*state)->key[PF_SK_WIRE] !=
4889 			    (*state)->key[PF_SK_STACK]) {
4890 				struct pf_state_key *nk =
4891 				    (*state)->key[pd->didx];
4892 
4893 				if (PF_ANEQ(pd2.src,
4894 				    &nk->addr[pd2.sidx], pd2.af) ||
4895 				    nk->port[pd2.sidx] != th.th_sport)
4896 					pf_change_icmp(pd2.src, &th.th_sport,
4897 					    daddr, &nk->addr[pd2.sidx],
4898 					    nk->port[pd2.sidx], NULL,
4899 					    pd2.ip_sum, icmpsum,
4900 					    pd->ip_sum, 0, pd2.af);
4901 
4902 				if (PF_ANEQ(pd2.dst,
4903 				    &nk->addr[pd2.didx], pd2.af) ||
4904 				    nk->port[pd2.didx] != th.th_dport)
4905 					pf_change_icmp(pd2.dst, &th.th_dport,
4906 					    saddr, &nk->addr[pd2.didx],
4907 					    nk->port[pd2.didx], NULL,
4908 					    pd2.ip_sum, icmpsum,
4909 					    pd->ip_sum, 0, pd2.af);
4910 				copyback = 1;
4911 			}
4912 
4913 			if (copyback) {
4914 				switch (pd2.af) {
4915 #ifdef INET
4916 				case AF_INET:
4917 					m_copyback(m, off, ICMP_MINLEN,
4918 					    (caddr_t )pd->hdr.icmp);
4919 					m_copyback(m, ipoff2, sizeof(h2),
4920 					    (caddr_t )&h2);
4921 					break;
4922 #endif /* INET */
4923 #ifdef INET6
4924 				case AF_INET6:
4925 					m_copyback(m, off,
4926 					    sizeof(struct icmp6_hdr),
4927 					    (caddr_t )pd->hdr.icmp6);
4928 					m_copyback(m, ipoff2, sizeof(h2_6),
4929 					    (caddr_t )&h2_6);
4930 					break;
4931 #endif /* INET6 */
4932 				}
4933 				m_copyback(m, off2, 8, (caddr_t)&th);
4934 			}
4935 
4936 			return (PF_PASS);
4937 			break;
4938 		}
4939 		case IPPROTO_UDP: {
4940 			struct udphdr		uh;
4941 
4942 			if (!pf_pull_hdr(m, off2, &uh, sizeof(uh),
4943 			    NULL, reason, pd2.af)) {
4944 				DPFPRINTF(PF_DEBUG_MISC,
4945 				    ("pf: ICMP error message too short "
4946 				    "(udp)\n"));
4947 				return (PF_DROP);
4948 			}
4949 
4950 			key.af = pd2.af;
4951 			key.proto = IPPROTO_UDP;
4952 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
4953 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
4954 			key.port[pd2.sidx] = uh.uh_sport;
4955 			key.port[pd2.didx] = uh.uh_dport;
4956 
4957 			STATE_LOOKUP(kif, &key, direction, *state, pd);
4958 
4959 			/* translate source/destination address, if necessary */
4960 			if ((*state)->key[PF_SK_WIRE] !=
4961 			    (*state)->key[PF_SK_STACK]) {
4962 				struct pf_state_key *nk =
4963 				    (*state)->key[pd->didx];
4964 
4965 				if (PF_ANEQ(pd2.src,
4966 				    &nk->addr[pd2.sidx], pd2.af) ||
4967 				    nk->port[pd2.sidx] != uh.uh_sport)
4968 					pf_change_icmp(pd2.src, &uh.uh_sport,
4969 					    daddr, &nk->addr[pd2.sidx],
4970 					    nk->port[pd2.sidx], &uh.uh_sum,
4971 					    pd2.ip_sum, icmpsum,
4972 					    pd->ip_sum, 1, pd2.af);
4973 
4974 				if (PF_ANEQ(pd2.dst,
4975 				    &nk->addr[pd2.didx], pd2.af) ||
4976 				    nk->port[pd2.didx] != uh.uh_dport)
4977 					pf_change_icmp(pd2.dst, &uh.uh_dport,
4978 					    saddr, &nk->addr[pd2.didx],
4979 					    nk->port[pd2.didx], &uh.uh_sum,
4980 					    pd2.ip_sum, icmpsum,
4981 					    pd->ip_sum, 1, pd2.af);
4982 
4983 				switch (pd2.af) {
4984 #ifdef INET
4985 				case AF_INET:
4986 					m_copyback(m, off, ICMP_MINLEN,
4987 					    (caddr_t )pd->hdr.icmp);
4988 					m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
4989 					break;
4990 #endif /* INET */
4991 #ifdef INET6
4992 				case AF_INET6:
4993 					m_copyback(m, off,
4994 					    sizeof(struct icmp6_hdr),
4995 					    (caddr_t )pd->hdr.icmp6);
4996 					m_copyback(m, ipoff2, sizeof(h2_6),
4997 					    (caddr_t )&h2_6);
4998 					break;
4999 #endif /* INET6 */
5000 				}
5001 				m_copyback(m, off2, sizeof(uh), (caddr_t)&uh);
5002 			}
5003 			return (PF_PASS);
5004 			break;
5005 		}
5006 #ifdef INET
5007 		case IPPROTO_ICMP: {
5008 			struct icmp		iih;
5009 
5010 			if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN,
5011 			    NULL, reason, pd2.af)) {
5012 				DPFPRINTF(PF_DEBUG_MISC,
5013 				    ("pf: ICMP error message too short i"
5014 				    "(icmp)\n"));
5015 				return (PF_DROP);
5016 			}
5017 
5018 			key.af = pd2.af;
5019 			key.proto = IPPROTO_ICMP;
5020 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5021 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5022 			key.port[0] = key.port[1] = iih.icmp_id;
5023 
5024 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5025 
5026 			/* translate source/destination address, if necessary */
5027 			if ((*state)->key[PF_SK_WIRE] !=
5028 			    (*state)->key[PF_SK_STACK]) {
5029 				struct pf_state_key *nk =
5030 				    (*state)->key[pd->didx];
5031 
5032 				if (PF_ANEQ(pd2.src,
5033 				    &nk->addr[pd2.sidx], pd2.af) ||
5034 				    nk->port[pd2.sidx] != iih.icmp_id)
5035 					pf_change_icmp(pd2.src, &iih.icmp_id,
5036 					    daddr, &nk->addr[pd2.sidx],
5037 					    nk->port[pd2.sidx], NULL,
5038 					    pd2.ip_sum, icmpsum,
5039 					    pd->ip_sum, 0, AF_INET);
5040 
5041 				if (PF_ANEQ(pd2.dst,
5042 				    &nk->addr[pd2.didx], pd2.af) ||
5043 				    nk->port[pd2.didx] != iih.icmp_id)
5044 					pf_change_icmp(pd2.dst, &iih.icmp_id,
5045 					    saddr, &nk->addr[pd2.didx],
5046 					    nk->port[pd2.didx], NULL,
5047 					    pd2.ip_sum, icmpsum,
5048 					    pd->ip_sum, 0, AF_INET);
5049 
5050 				m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp);
5051 				m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5052 				m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih);
5053 			}
5054 			return (PF_PASS);
5055 			break;
5056 		}
5057 #endif /* INET */
5058 #ifdef INET6
5059 		case IPPROTO_ICMPV6: {
5060 			struct icmp6_hdr	iih;
5061 
5062 			if (!pf_pull_hdr(m, off2, &iih,
5063 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
5064 				DPFPRINTF(PF_DEBUG_MISC,
5065 				    ("pf: ICMP error message too short "
5066 				    "(icmp6)\n"));
5067 				return (PF_DROP);
5068 			}
5069 
5070 			key.af = pd2.af;
5071 			key.proto = IPPROTO_ICMPV6;
5072 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5073 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5074 			key.port[0] = key.port[1] = iih.icmp6_id;
5075 
5076 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5077 
5078 			/* translate source/destination address, if necessary */
5079 			if ((*state)->key[PF_SK_WIRE] !=
5080 			    (*state)->key[PF_SK_STACK]) {
5081 				struct pf_state_key *nk =
5082 				    (*state)->key[pd->didx];
5083 
5084 				if (PF_ANEQ(pd2.src,
5085 				    &nk->addr[pd2.sidx], pd2.af) ||
5086 				    nk->port[pd2.sidx] != iih.icmp6_id)
5087 					pf_change_icmp(pd2.src, &iih.icmp6_id,
5088 					    daddr, &nk->addr[pd2.sidx],
5089 					    nk->port[pd2.sidx], NULL,
5090 					    pd2.ip_sum, icmpsum,
5091 					    pd->ip_sum, 0, AF_INET6);
5092 
5093 				if (PF_ANEQ(pd2.dst,
5094 				    &nk->addr[pd2.didx], pd2.af) ||
5095 				    nk->port[pd2.didx] != iih.icmp6_id)
5096 					pf_change_icmp(pd2.dst, &iih.icmp6_id,
5097 					    saddr, &nk->addr[pd2.didx],
5098 					    nk->port[pd2.didx], NULL,
5099 					    pd2.ip_sum, icmpsum,
5100 					    pd->ip_sum, 0, AF_INET6);
5101 
5102 				m_copyback(m, off, sizeof(struct icmp6_hdr),
5103 				    (caddr_t)pd->hdr.icmp6);
5104 				m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
5105 				m_copyback(m, off2, sizeof(struct icmp6_hdr),
5106 				    (caddr_t)&iih);
5107 			}
5108 			return (PF_PASS);
5109 			break;
5110 		}
5111 #endif /* INET6 */
5112 		default: {
5113 			key.af = pd2.af;
5114 			key.proto = pd2.proto;
5115 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
5116 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
5117 			key.port[0] = key.port[1] = 0;
5118 
5119 			STATE_LOOKUP(kif, &key, direction, *state, pd);
5120 
5121 			/* translate source/destination address, if necessary */
5122 			if ((*state)->key[PF_SK_WIRE] !=
5123 			    (*state)->key[PF_SK_STACK]) {
5124 				struct pf_state_key *nk =
5125 				    (*state)->key[pd->didx];
5126 
5127 				if (PF_ANEQ(pd2.src,
5128 				    &nk->addr[pd2.sidx], pd2.af))
5129 					pf_change_icmp(pd2.src, NULL, daddr,
5130 					    &nk->addr[pd2.sidx], 0, NULL,
5131 					    pd2.ip_sum, icmpsum,
5132 					    pd->ip_sum, 0, pd2.af);
5133 
5134 				if (PF_ANEQ(pd2.dst,
5135 				    &nk->addr[pd2.didx], pd2.af))
5136 					pf_change_icmp(pd2.dst, NULL, saddr,
5137 					    &nk->addr[pd2.didx], 0, NULL,
5138 					    pd2.ip_sum, icmpsum,
5139 					    pd->ip_sum, 0, pd2.af);
5140 
5141 				switch (pd2.af) {
5142 #ifdef INET
5143 				case AF_INET:
5144 					m_copyback(m, off, ICMP_MINLEN,
5145 					    (caddr_t)pd->hdr.icmp);
5146 					m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2);
5147 					break;
5148 #endif /* INET */
5149 #ifdef INET6
5150 				case AF_INET6:
5151 					m_copyback(m, off,
5152 					    sizeof(struct icmp6_hdr),
5153 					    (caddr_t )pd->hdr.icmp6);
5154 					m_copyback(m, ipoff2, sizeof(h2_6),
5155 					    (caddr_t )&h2_6);
5156 					break;
5157 #endif /* INET6 */
5158 				}
5159 			}
5160 			return (PF_PASS);
5161 			break;
5162 		}
5163 		}
5164 	}
5165 }
5166 
5167 static int
5168 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif,
5169     struct mbuf *m, struct pf_pdesc *pd)
5170 {
5171 	struct pf_state_peer	*src, *dst;
5172 	struct pf_state_key_cmp	 key;
5173 
5174 	bzero(&key, sizeof(key));
5175 	key.af = pd->af;
5176 	key.proto = pd->proto;
5177 	if (direction == PF_IN)	{
5178 		PF_ACPY(&key.addr[0], pd->src, key.af);
5179 		PF_ACPY(&key.addr[1], pd->dst, key.af);
5180 		key.port[0] = key.port[1] = 0;
5181 	} else {
5182 		PF_ACPY(&key.addr[1], pd->src, key.af);
5183 		PF_ACPY(&key.addr[0], pd->dst, key.af);
5184 		key.port[1] = key.port[0] = 0;
5185 	}
5186 
5187 	STATE_LOOKUP(kif, &key, direction, *state, pd);
5188 
5189 	if (direction == (*state)->direction) {
5190 		src = &(*state)->src;
5191 		dst = &(*state)->dst;
5192 	} else {
5193 		src = &(*state)->dst;
5194 		dst = &(*state)->src;
5195 	}
5196 
5197 	/* update states */
5198 	if (src->state < PFOTHERS_SINGLE)
5199 		src->state = PFOTHERS_SINGLE;
5200 	if (dst->state == PFOTHERS_SINGLE)
5201 		dst->state = PFOTHERS_MULTIPLE;
5202 
5203 	/* update expire time */
5204 	(*state)->expire = time_uptime;
5205 	if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
5206 		(*state)->timeout = PFTM_OTHER_MULTIPLE;
5207 	else
5208 		(*state)->timeout = PFTM_OTHER_SINGLE;
5209 
5210 	/* translate source/destination address, if necessary */
5211 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
5212 		struct pf_state_key *nk = (*state)->key[pd->didx];
5213 
5214 		KASSERT(nk, ("%s: nk is null", __func__));
5215 		KASSERT(pd, ("%s: pd is null", __func__));
5216 		KASSERT(pd->src, ("%s: pd->src is null", __func__));
5217 		KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
5218 		switch (pd->af) {
5219 #ifdef INET
5220 		case AF_INET:
5221 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
5222 				pf_change_a(&pd->src->v4.s_addr,
5223 				    pd->ip_sum,
5224 				    nk->addr[pd->sidx].v4.s_addr,
5225 				    0);
5226 
5227 
5228 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
5229 				pf_change_a(&pd->dst->v4.s_addr,
5230 				    pd->ip_sum,
5231 				    nk->addr[pd->didx].v4.s_addr,
5232 				    0);
5233 
5234 				break;
5235 #endif /* INET */
5236 #ifdef INET6
5237 		case AF_INET6:
5238 			if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
5239 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5240 
5241 			if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
5242 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5243 #endif /* INET6 */
5244 		}
5245 	}
5246 	return (PF_PASS);
5247 }
5248 
5249 /*
5250  * ipoff and off are measured from the start of the mbuf chain.
5251  * h must be at "ipoff" on the mbuf chain.
5252  */
5253 void *
5254 pf_pull_hdr(struct mbuf *m, int off, void *p, int len,
5255     u_short *actionp, u_short *reasonp, sa_family_t af)
5256 {
5257 	switch (af) {
5258 #ifdef INET
5259 	case AF_INET: {
5260 		struct ip	*h = mtod(m, struct ip *);
5261 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
5262 
5263 		if (fragoff) {
5264 			if (fragoff >= len)
5265 				ACTION_SET(actionp, PF_PASS);
5266 			else {
5267 				ACTION_SET(actionp, PF_DROP);
5268 				REASON_SET(reasonp, PFRES_FRAG);
5269 			}
5270 			return (NULL);
5271 		}
5272 		if (m->m_pkthdr.len < off + len ||
5273 		    ntohs(h->ip_len) < off + len) {
5274 			ACTION_SET(actionp, PF_DROP);
5275 			REASON_SET(reasonp, PFRES_SHORT);
5276 			return (NULL);
5277 		}
5278 		break;
5279 	}
5280 #endif /* INET */
5281 #ifdef INET6
5282 	case AF_INET6: {
5283 		struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
5284 
5285 		if (m->m_pkthdr.len < off + len ||
5286 		    (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
5287 		    (unsigned)(off + len)) {
5288 			ACTION_SET(actionp, PF_DROP);
5289 			REASON_SET(reasonp, PFRES_SHORT);
5290 			return (NULL);
5291 		}
5292 		break;
5293 	}
5294 #endif /* INET6 */
5295 	}
5296 	m_copydata(m, off, len, p);
5297 	return (p);
5298 }
5299 
5300 #ifdef RADIX_MPATH
5301 static int
5302 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif,
5303     int rtableid)
5304 {
5305 	struct radix_node_head	*rnh;
5306 	struct sockaddr_in	*dst;
5307 	int			 ret = 1;
5308 	int			 check_mpath;
5309 #ifdef INET6
5310 	struct sockaddr_in6	*dst6;
5311 	struct route_in6	 ro;
5312 #else
5313 	struct route		 ro;
5314 #endif
5315 	struct radix_node	*rn;
5316 	struct rtentry		*rt;
5317 	struct ifnet		*ifp;
5318 
5319 	check_mpath = 0;
5320 	/* XXX: stick to table 0 for now */
5321 	rnh = rt_tables_get_rnh(0, af);
5322 	if (rnh != NULL && rn_mpath_capable(rnh))
5323 		check_mpath = 1;
5324 	bzero(&ro, sizeof(ro));
5325 	switch (af) {
5326 	case AF_INET:
5327 		dst = satosin(&ro.ro_dst);
5328 		dst->sin_family = AF_INET;
5329 		dst->sin_len = sizeof(*dst);
5330 		dst->sin_addr = addr->v4;
5331 		break;
5332 #ifdef INET6
5333 	case AF_INET6:
5334 		/*
5335 		 * Skip check for addresses with embedded interface scope,
5336 		 * as they would always match anyway.
5337 		 */
5338 		if (IN6_IS_SCOPE_EMBED(&addr->v6))
5339 			goto out;
5340 		dst6 = (struct sockaddr_in6 *)&ro.ro_dst;
5341 		dst6->sin6_family = AF_INET6;
5342 		dst6->sin6_len = sizeof(*dst6);
5343 		dst6->sin6_addr = addr->v6;
5344 		break;
5345 #endif /* INET6 */
5346 	default:
5347 		return (0);
5348 	}
5349 
5350 	/* Skip checks for ipsec interfaces */
5351 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
5352 		goto out;
5353 
5354 	switch (af) {
5355 #ifdef INET6
5356 	case AF_INET6:
5357 		in6_rtalloc_ign(&ro, 0, rtableid);
5358 		break;
5359 #endif
5360 #ifdef INET
5361 	case AF_INET:
5362 		in_rtalloc_ign((struct route *)&ro, 0, rtableid);
5363 		break;
5364 #endif
5365 	}
5366 
5367 	if (ro.ro_rt != NULL) {
5368 		/* No interface given, this is a no-route check */
5369 		if (kif == NULL)
5370 			goto out;
5371 
5372 		if (kif->pfik_ifp == NULL) {
5373 			ret = 0;
5374 			goto out;
5375 		}
5376 
5377 		/* Perform uRPF check if passed input interface */
5378 		ret = 0;
5379 		rn = (struct radix_node *)ro.ro_rt;
5380 		do {
5381 			rt = (struct rtentry *)rn;
5382 			ifp = rt->rt_ifp;
5383 
5384 			if (kif->pfik_ifp == ifp)
5385 				ret = 1;
5386 			rn = rn_mpath_next(rn);
5387 		} while (check_mpath == 1 && rn != NULL && ret == 0);
5388 	} else
5389 		ret = 0;
5390 out:
5391 	if (ro.ro_rt != NULL)
5392 		RTFREE(ro.ro_rt);
5393 	return (ret);
5394 }
5395 #endif
5396 
5397 int
5398 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif,
5399     int rtableid)
5400 {
5401 #ifdef INET
5402 	struct nhop4_basic	nh4;
5403 #endif
5404 #ifdef INET6
5405 	struct nhop6_basic	nh6;
5406 #endif
5407 	struct ifnet		*ifp;
5408 #ifdef RADIX_MPATH
5409 	struct radix_node_head	*rnh;
5410 
5411 	/* XXX: stick to table 0 for now */
5412 	rnh = rt_tables_get_rnh(0, af);
5413 	if (rnh != NULL && rn_mpath_capable(rnh))
5414 		return (pf_routable_oldmpath(addr, af, kif, rtableid));
5415 #endif
5416 	/*
5417 	 * Skip check for addresses with embedded interface scope,
5418 	 * as they would always match anyway.
5419 	 */
5420 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
5421 		return (1);
5422 
5423 	if (af != AF_INET && af != AF_INET6)
5424 		return (0);
5425 
5426 	/* Skip checks for ipsec interfaces */
5427 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
5428 		return (1);
5429 
5430 	ifp = NULL;
5431 
5432 	switch (af) {
5433 #ifdef INET6
5434 	case AF_INET6:
5435 		if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0)
5436 			return (0);
5437 		ifp = nh6.nh_ifp;
5438 		break;
5439 #endif
5440 #ifdef INET
5441 	case AF_INET:
5442 		if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0)
5443 			return (0);
5444 		ifp = nh4.nh_ifp;
5445 		break;
5446 #endif
5447 	}
5448 
5449 	/* No interface given, this is a no-route check */
5450 	if (kif == NULL)
5451 		return (1);
5452 
5453 	if (kif->pfik_ifp == NULL)
5454 		return (0);
5455 
5456 	/* Perform uRPF check if passed input interface */
5457 	if (kif->pfik_ifp == ifp)
5458 		return (1);
5459 	return (0);
5460 }
5461 
5462 #ifdef INET
5463 static void
5464 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp,
5465     struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp)
5466 {
5467 	struct mbuf		*m0, *m1;
5468 	struct sockaddr_in	dst;
5469 	struct ip		*ip;
5470 	struct ifnet		*ifp = NULL;
5471 	struct pf_addr		 naddr;
5472 	struct pf_src_node	*sn = NULL;
5473 	int			 error = 0;
5474 	uint16_t		 ip_len, ip_off;
5475 
5476 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
5477 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
5478 	    __func__));
5479 
5480 	if ((pd->pf_mtag == NULL &&
5481 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
5482 	    pd->pf_mtag->routed++ > 3) {
5483 		m0 = *m;
5484 		*m = NULL;
5485 		goto bad_locked;
5486 	}
5487 
5488 	if (r->rt == PF_DUPTO) {
5489 		if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) {
5490 			if (s)
5491 				PF_STATE_UNLOCK(s);
5492 			return;
5493 		}
5494 	} else {
5495 		if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
5496 			if (s)
5497 				PF_STATE_UNLOCK(s);
5498 			return;
5499 		}
5500 		m0 = *m;
5501 	}
5502 
5503 	ip = mtod(m0, struct ip *);
5504 
5505 	bzero(&dst, sizeof(dst));
5506 	dst.sin_family = AF_INET;
5507 	dst.sin_len = sizeof(dst);
5508 	dst.sin_addr = ip->ip_dst;
5509 
5510 	if (TAILQ_EMPTY(&r->rpool.list)) {
5511 		DPFPRINTF(PF_DEBUG_URGENT,
5512 		    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
5513 		goto bad_locked;
5514 	}
5515 	if (s == NULL) {
5516 		pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
5517 		    &naddr, NULL, &sn);
5518 		if (!PF_AZERO(&naddr, AF_INET))
5519 			dst.sin_addr.s_addr = naddr.v4.s_addr;
5520 		ifp = r->rpool.cur->kif ?
5521 		    r->rpool.cur->kif->pfik_ifp : NULL;
5522 	} else {
5523 		if (!PF_AZERO(&s->rt_addr, AF_INET))
5524 			dst.sin_addr.s_addr =
5525 			    s->rt_addr.v4.s_addr;
5526 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5527 		PF_STATE_UNLOCK(s);
5528 	}
5529 	if (ifp == NULL)
5530 		goto bad;
5531 
5532 	if (oifp != ifp) {
5533 		if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS)
5534 			goto bad;
5535 		else if (m0 == NULL)
5536 			goto done;
5537 		if (m0->m_len < sizeof(struct ip)) {
5538 			DPFPRINTF(PF_DEBUG_URGENT,
5539 			    ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
5540 			goto bad;
5541 		}
5542 		ip = mtod(m0, struct ip *);
5543 	}
5544 
5545 	if (ifp->if_flags & IFF_LOOPBACK)
5546 		m0->m_flags |= M_SKIP_FIREWALL;
5547 
5548 	ip_len = ntohs(ip->ip_len);
5549 	ip_off = ntohs(ip->ip_off);
5550 
5551 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
5552 	m0->m_pkthdr.csum_flags |= CSUM_IP;
5553 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
5554 		in_delayed_cksum(m0);
5555 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
5556 	}
5557 #ifdef SCTP
5558 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
5559 		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
5560 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
5561 	}
5562 #endif
5563 
5564 	/*
5565 	 * If small enough for interface, or the interface will take
5566 	 * care of the fragmentation for us, we can just send directly.
5567 	 */
5568 	if (ip_len <= ifp->if_mtu ||
5569 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
5570 		ip->ip_sum = 0;
5571 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
5572 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
5573 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
5574 		}
5575 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
5576 		error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
5577 		goto done;
5578 	}
5579 
5580 	/* Balk when DF bit is set or the interface didn't support TSO. */
5581 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5582 		error = EMSGSIZE;
5583 		KMOD_IPSTAT_INC(ips_cantfrag);
5584 		if (r->rt != PF_DUPTO) {
5585 			icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
5586 			    ifp->if_mtu);
5587 			goto done;
5588 		} else
5589 			goto bad;
5590 	}
5591 
5592 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
5593 	if (error)
5594 		goto bad;
5595 
5596 	for (; m0; m0 = m1) {
5597 		m1 = m0->m_nextpkt;
5598 		m0->m_nextpkt = NULL;
5599 		if (error == 0) {
5600 			m_clrprotoflags(m0);
5601 			error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL);
5602 		} else
5603 			m_freem(m0);
5604 	}
5605 
5606 	if (error == 0)
5607 		KMOD_IPSTAT_INC(ips_fragmented);
5608 
5609 done:
5610 	if (r->rt != PF_DUPTO)
5611 		*m = NULL;
5612 	return;
5613 
5614 bad_locked:
5615 	if (s)
5616 		PF_STATE_UNLOCK(s);
5617 bad:
5618 	m_freem(m0);
5619 	goto done;
5620 }
5621 #endif /* INET */
5622 
5623 #ifdef INET6
5624 static void
5625 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp,
5626     struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp)
5627 {
5628 	struct mbuf		*m0;
5629 	struct sockaddr_in6	dst;
5630 	struct ip6_hdr		*ip6;
5631 	struct ifnet		*ifp = NULL;
5632 	struct pf_addr		 naddr;
5633 	struct pf_src_node	*sn = NULL;
5634 
5635 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
5636 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction",
5637 	    __func__));
5638 
5639 	if ((pd->pf_mtag == NULL &&
5640 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
5641 	    pd->pf_mtag->routed++ > 3) {
5642 		m0 = *m;
5643 		*m = NULL;
5644 		goto bad_locked;
5645 	}
5646 
5647 	if (r->rt == PF_DUPTO) {
5648 		if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) {
5649 			if (s)
5650 				PF_STATE_UNLOCK(s);
5651 			return;
5652 		}
5653 	} else {
5654 		if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
5655 			if (s)
5656 				PF_STATE_UNLOCK(s);
5657 			return;
5658 		}
5659 		m0 = *m;
5660 	}
5661 
5662 	ip6 = mtod(m0, struct ip6_hdr *);
5663 
5664 	bzero(&dst, sizeof(dst));
5665 	dst.sin6_family = AF_INET6;
5666 	dst.sin6_len = sizeof(dst);
5667 	dst.sin6_addr = ip6->ip6_dst;
5668 
5669 	if (TAILQ_EMPTY(&r->rpool.list)) {
5670 		DPFPRINTF(PF_DEBUG_URGENT,
5671 		    ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
5672 		goto bad_locked;
5673 	}
5674 	if (s == NULL) {
5675 		pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
5676 		    &naddr, NULL, &sn);
5677 		if (!PF_AZERO(&naddr, AF_INET6))
5678 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
5679 			    &naddr, AF_INET6);
5680 		ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL;
5681 	} else {
5682 		if (!PF_AZERO(&s->rt_addr, AF_INET6))
5683 			PF_ACPY((struct pf_addr *)&dst.sin6_addr,
5684 			    &s->rt_addr, AF_INET6);
5685 		ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
5686 	}
5687 
5688 	if (s)
5689 		PF_STATE_UNLOCK(s);
5690 
5691 	if (ifp == NULL)
5692 		goto bad;
5693 
5694 	if (oifp != ifp) {
5695 		if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS)
5696 			goto bad;
5697 		else if (m0 == NULL)
5698 			goto done;
5699 		if (m0->m_len < sizeof(struct ip6_hdr)) {
5700 			DPFPRINTF(PF_DEBUG_URGENT,
5701 			    ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
5702 			    __func__));
5703 			goto bad;
5704 		}
5705 		ip6 = mtod(m0, struct ip6_hdr *);
5706 	}
5707 
5708 	if (ifp->if_flags & IFF_LOOPBACK)
5709 		m0->m_flags |= M_SKIP_FIREWALL;
5710 
5711 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
5712 	    ~ifp->if_hwassist) {
5713 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
5714 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
5715 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
5716 	}
5717 
5718 	/*
5719 	 * If the packet is too large for the outgoing interface,
5720 	 * send back an icmp6 error.
5721 	 */
5722 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
5723 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
5724 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu)
5725 		nd6_output_ifp(ifp, ifp, m0, &dst, NULL);
5726 	else {
5727 		in6_ifstat_inc(ifp, ifs6_in_toobig);
5728 		if (r->rt != PF_DUPTO)
5729 			icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
5730 		else
5731 			goto bad;
5732 	}
5733 
5734 done:
5735 	if (r->rt != PF_DUPTO)
5736 		*m = NULL;
5737 	return;
5738 
5739 bad_locked:
5740 	if (s)
5741 		PF_STATE_UNLOCK(s);
5742 bad:
5743 	m_freem(m0);
5744 	goto done;
5745 }
5746 #endif /* INET6 */
5747 
5748 /*
5749  * FreeBSD supports cksum offloads for the following drivers.
5750  *  em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4)
5751  *
5752  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
5753  *  network driver performed cksum including pseudo header, need to verify
5754  *   csum_data
5755  * CSUM_DATA_VALID :
5756  *  network driver performed cksum, needs to additional pseudo header
5757  *  cksum computation with partial csum_data(i.e. lack of H/W support for
5758  *  pseudo header, for instance hme(4), sk(4) and possibly gem(4))
5759  *
5760  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
5761  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
5762  * TCP/UDP layer.
5763  * Also, set csum_data to 0xffff to force cksum validation.
5764  */
5765 static int
5766 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
5767 {
5768 	u_int16_t sum = 0;
5769 	int hw_assist = 0;
5770 	struct ip *ip;
5771 
5772 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
5773 		return (1);
5774 	if (m->m_pkthdr.len < off + len)
5775 		return (1);
5776 
5777 	switch (p) {
5778 	case IPPROTO_TCP:
5779 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
5780 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
5781 				sum = m->m_pkthdr.csum_data;
5782 			} else {
5783 				ip = mtod(m, struct ip *);
5784 				sum = in_pseudo(ip->ip_src.s_addr,
5785 				ip->ip_dst.s_addr, htonl((u_short)len +
5786 				m->m_pkthdr.csum_data + IPPROTO_TCP));
5787 			}
5788 			sum ^= 0xffff;
5789 			++hw_assist;
5790 		}
5791 		break;
5792 	case IPPROTO_UDP:
5793 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
5794 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
5795 				sum = m->m_pkthdr.csum_data;
5796 			} else {
5797 				ip = mtod(m, struct ip *);
5798 				sum = in_pseudo(ip->ip_src.s_addr,
5799 				ip->ip_dst.s_addr, htonl((u_short)len +
5800 				m->m_pkthdr.csum_data + IPPROTO_UDP));
5801 			}
5802 			sum ^= 0xffff;
5803 			++hw_assist;
5804 		}
5805 		break;
5806 	case IPPROTO_ICMP:
5807 #ifdef INET6
5808 	case IPPROTO_ICMPV6:
5809 #endif /* INET6 */
5810 		break;
5811 	default:
5812 		return (1);
5813 	}
5814 
5815 	if (!hw_assist) {
5816 		switch (af) {
5817 		case AF_INET:
5818 			if (p == IPPROTO_ICMP) {
5819 				if (m->m_len < off)
5820 					return (1);
5821 				m->m_data += off;
5822 				m->m_len -= off;
5823 				sum = in_cksum(m, len);
5824 				m->m_data -= off;
5825 				m->m_len += off;
5826 			} else {
5827 				if (m->m_len < sizeof(struct ip))
5828 					return (1);
5829 				sum = in4_cksum(m, p, off, len);
5830 			}
5831 			break;
5832 #ifdef INET6
5833 		case AF_INET6:
5834 			if (m->m_len < sizeof(struct ip6_hdr))
5835 				return (1);
5836 			sum = in6_cksum(m, p, off, len);
5837 			break;
5838 #endif /* INET6 */
5839 		default:
5840 			return (1);
5841 		}
5842 	}
5843 	if (sum) {
5844 		switch (p) {
5845 		case IPPROTO_TCP:
5846 		    {
5847 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
5848 			break;
5849 		    }
5850 		case IPPROTO_UDP:
5851 		    {
5852 			KMOD_UDPSTAT_INC(udps_badsum);
5853 			break;
5854 		    }
5855 #ifdef INET
5856 		case IPPROTO_ICMP:
5857 		    {
5858 			KMOD_ICMPSTAT_INC(icps_checksum);
5859 			break;
5860 		    }
5861 #endif
5862 #ifdef INET6
5863 		case IPPROTO_ICMPV6:
5864 		    {
5865 			KMOD_ICMP6STAT_INC(icp6s_checksum);
5866 			break;
5867 		    }
5868 #endif /* INET6 */
5869 		}
5870 		return (1);
5871 	} else {
5872 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
5873 			m->m_pkthdr.csum_flags |=
5874 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
5875 			m->m_pkthdr.csum_data = 0xffff;
5876 		}
5877 	}
5878 	return (0);
5879 }
5880 
5881 
5882 #ifdef INET
5883 int
5884 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
5885 {
5886 	struct pfi_kif		*kif;
5887 	u_short			 action, reason = 0, log = 0;
5888 	struct mbuf		*m = *m0;
5889 	struct ip		*h = NULL;
5890 	struct m_tag		*ipfwtag;
5891 	struct pf_rule		*a = NULL, *r = &V_pf_default_rule, *tr, *nr;
5892 	struct pf_state		*s = NULL;
5893 	struct pf_ruleset	*ruleset = NULL;
5894 	struct pf_pdesc		 pd;
5895 	int			 off, dirndx, pqid = 0;
5896 
5897 	PF_RULES_RLOCK_TRACKER;
5898 
5899 	M_ASSERTPKTHDR(m);
5900 
5901 	if (!V_pf_status.running)
5902 		return (PF_PASS);
5903 
5904 	memset(&pd, 0, sizeof(pd));
5905 
5906 	kif = (struct pfi_kif *)ifp->if_pf_kif;
5907 
5908 	if (kif == NULL) {
5909 		DPFPRINTF(PF_DEBUG_URGENT,
5910 		    ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
5911 		return (PF_DROP);
5912 	}
5913 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
5914 		return (PF_PASS);
5915 
5916 	if (m->m_flags & M_SKIP_FIREWALL)
5917 		return (PF_PASS);
5918 
5919 	pd.pf_mtag = pf_find_mtag(m);
5920 
5921 	PF_RULES_RLOCK();
5922 
5923 	if (ip_divert_ptr != NULL &&
5924 	    ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) {
5925 		struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1);
5926 		if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) {
5927 			if (pd.pf_mtag == NULL &&
5928 			    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
5929 				action = PF_DROP;
5930 				goto done;
5931 			}
5932 			pd.pf_mtag->flags |= PF_PACKET_LOOPED;
5933 			m_tag_delete(m, ipfwtag);
5934 		}
5935 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) {
5936 			m->m_flags |= M_FASTFWD_OURS;
5937 			pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT;
5938 		}
5939 	} else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) {
5940 		/* We do IP header normalization and packet reassembly here */
5941 		action = PF_DROP;
5942 		goto done;
5943 	}
5944 	m = *m0;	/* pf_normalize messes with m0 */
5945 	h = mtod(m, struct ip *);
5946 
5947 	off = h->ip_hl << 2;
5948 	if (off < (int)sizeof(struct ip)) {
5949 		action = PF_DROP;
5950 		REASON_SET(&reason, PFRES_SHORT);
5951 		log = 1;
5952 		goto done;
5953 	}
5954 
5955 	pd.src = (struct pf_addr *)&h->ip_src;
5956 	pd.dst = (struct pf_addr *)&h->ip_dst;
5957 	pd.sport = pd.dport = NULL;
5958 	pd.ip_sum = &h->ip_sum;
5959 	pd.proto_sum = NULL;
5960 	pd.proto = h->ip_p;
5961 	pd.dir = dir;
5962 	pd.sidx = (dir == PF_IN) ? 0 : 1;
5963 	pd.didx = (dir == PF_IN) ? 1 : 0;
5964 	pd.af = AF_INET;
5965 	pd.tos = h->ip_tos & ~IPTOS_ECN_MASK;
5966 	pd.tot_len = ntohs(h->ip_len);
5967 
5968 	/* handle fragments that didn't get reassembled by normalization */
5969 	if (h->ip_off & htons(IP_MF | IP_OFFMASK)) {
5970 		action = pf_test_fragment(&r, dir, kif, m, h,
5971 		    &pd, &a, &ruleset);
5972 		goto done;
5973 	}
5974 
5975 	switch (h->ip_p) {
5976 
5977 	case IPPROTO_TCP: {
5978 		struct tcphdr	th;
5979 
5980 		pd.hdr.tcp = &th;
5981 		if (!pf_pull_hdr(m, off, &th, sizeof(th),
5982 		    &action, &reason, AF_INET)) {
5983 			log = action != PF_PASS;
5984 			goto done;
5985 		}
5986 		pd.p_len = pd.tot_len - off - (th.th_off << 2);
5987 		if ((th.th_flags & TH_ACK) && pd.p_len == 0)
5988 			pqid = 1;
5989 		action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
5990 		if (action == PF_DROP)
5991 			goto done;
5992 		action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
5993 		    &reason);
5994 		if (action == PF_PASS) {
5995 			if (pfsync_update_state_ptr != NULL)
5996 				pfsync_update_state_ptr(s);
5997 			r = s->rule.ptr;
5998 			a = s->anchor.ptr;
5999 			log = s->log;
6000 		} else if (s == NULL)
6001 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6002 			    &a, &ruleset, inp);
6003 		break;
6004 	}
6005 
6006 	case IPPROTO_UDP: {
6007 		struct udphdr	uh;
6008 
6009 		pd.hdr.udp = &uh;
6010 		if (!pf_pull_hdr(m, off, &uh, sizeof(uh),
6011 		    &action, &reason, AF_INET)) {
6012 			log = action != PF_PASS;
6013 			goto done;
6014 		}
6015 		if (uh.uh_dport == 0 ||
6016 		    ntohs(uh.uh_ulen) > m->m_pkthdr.len - off ||
6017 		    ntohs(uh.uh_ulen) < sizeof(struct udphdr)) {
6018 			action = PF_DROP;
6019 			REASON_SET(&reason, PFRES_SHORT);
6020 			goto done;
6021 		}
6022 		action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
6023 		if (action == PF_PASS) {
6024 			if (pfsync_update_state_ptr != NULL)
6025 				pfsync_update_state_ptr(s);
6026 			r = s->rule.ptr;
6027 			a = s->anchor.ptr;
6028 			log = s->log;
6029 		} else if (s == NULL)
6030 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6031 			    &a, &ruleset, inp);
6032 		break;
6033 	}
6034 
6035 	case IPPROTO_ICMP: {
6036 		struct icmp	ih;
6037 
6038 		pd.hdr.icmp = &ih;
6039 		if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN,
6040 		    &action, &reason, AF_INET)) {
6041 			log = action != PF_PASS;
6042 			goto done;
6043 		}
6044 		action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd,
6045 		    &reason);
6046 		if (action == PF_PASS) {
6047 			if (pfsync_update_state_ptr != NULL)
6048 				pfsync_update_state_ptr(s);
6049 			r = s->rule.ptr;
6050 			a = s->anchor.ptr;
6051 			log = s->log;
6052 		} else if (s == NULL)
6053 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6054 			    &a, &ruleset, inp);
6055 		break;
6056 	}
6057 
6058 #ifdef INET6
6059 	case IPPROTO_ICMPV6: {
6060 		action = PF_DROP;
6061 		DPFPRINTF(PF_DEBUG_MISC,
6062 		    ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
6063 		goto done;
6064 	}
6065 #endif
6066 
6067 	default:
6068 		action = pf_test_state_other(&s, dir, kif, m, &pd);
6069 		if (action == PF_PASS) {
6070 			if (pfsync_update_state_ptr != NULL)
6071 				pfsync_update_state_ptr(s);
6072 			r = s->rule.ptr;
6073 			a = s->anchor.ptr;
6074 			log = s->log;
6075 		} else if (s == NULL)
6076 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6077 			    &a, &ruleset, inp);
6078 		break;
6079 	}
6080 
6081 done:
6082 	PF_RULES_RUNLOCK();
6083 	if (action == PF_PASS && h->ip_hl > 5 &&
6084 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
6085 		action = PF_DROP;
6086 		REASON_SET(&reason, PFRES_IPOPTIONS);
6087 		log = r->log;
6088 		DPFPRINTF(PF_DEBUG_MISC,
6089 		    ("pf: dropping packet with ip options\n"));
6090 	}
6091 
6092 	if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
6093 		action = PF_DROP;
6094 		REASON_SET(&reason, PFRES_MEMORY);
6095 	}
6096 	if (r->rtableid >= 0)
6097 		M_SETFIB(m, r->rtableid);
6098 
6099 	if (r->scrub_flags & PFSTATE_SETPRIO) {
6100 		if (pd.tos & IPTOS_LOWDELAY)
6101 			pqid = 1;
6102 		if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) {
6103 			action = PF_DROP;
6104 			REASON_SET(&reason, PFRES_MEMORY);
6105 			log = 1;
6106 			DPFPRINTF(PF_DEBUG_MISC,
6107 			    ("pf: failed to allocate 802.1q mtag\n"));
6108 		}
6109 	}
6110 
6111 #ifdef ALTQ
6112 	if (action == PF_PASS && r->qid) {
6113 		if (pd.pf_mtag == NULL &&
6114 		    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6115 			action = PF_DROP;
6116 			REASON_SET(&reason, PFRES_MEMORY);
6117 		} else {
6118 			if (s != NULL)
6119 				pd.pf_mtag->qid_hash = pf_state_hash(s);
6120 			if (pqid || (pd.tos & IPTOS_LOWDELAY))
6121 				pd.pf_mtag->qid = r->pqid;
6122 			else
6123 				pd.pf_mtag->qid = r->qid;
6124 			/* Add hints for ecn. */
6125 			pd.pf_mtag->hdr = h;
6126 		}
6127 
6128 	}
6129 #endif /* ALTQ */
6130 
6131 	/*
6132 	 * connections redirected to loopback should not match sockets
6133 	 * bound specifically to loopback due to security implications,
6134 	 * see tcp_input() and in_pcblookup_listen().
6135 	 */
6136 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
6137 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
6138 	    (s->nat_rule.ptr->action == PF_RDR ||
6139 	    s->nat_rule.ptr->action == PF_BINAT) &&
6140 	    (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
6141 		m->m_flags |= M_SKIP_FIREWALL;
6142 
6143 	if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL &&
6144 	    !PACKET_LOOPED(&pd)) {
6145 
6146 		ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0,
6147 		    sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO);
6148 		if (ipfwtag != NULL) {
6149 			((struct ipfw_rule_ref *)(ipfwtag+1))->info =
6150 			    ntohs(r->divert.port);
6151 			((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir;
6152 
6153 			if (s)
6154 				PF_STATE_UNLOCK(s);
6155 
6156 			m_tag_prepend(m, ipfwtag);
6157 			if (m->m_flags & M_FASTFWD_OURS) {
6158 				if (pd.pf_mtag == NULL &&
6159 				    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6160 					action = PF_DROP;
6161 					REASON_SET(&reason, PFRES_MEMORY);
6162 					log = 1;
6163 					DPFPRINTF(PF_DEBUG_MISC,
6164 					    ("pf: failed to allocate tag\n"));
6165 				} else {
6166 					pd.pf_mtag->flags |=
6167 					    PF_FASTFWD_OURS_PRESENT;
6168 					m->m_flags &= ~M_FASTFWD_OURS;
6169 				}
6170 			}
6171 			ip_divert_ptr(*m0, dir ==  PF_IN ? DIR_IN : DIR_OUT);
6172 			*m0 = NULL;
6173 
6174 			return (action);
6175 		} else {
6176 			/* XXX: ipfw has the same behaviour! */
6177 			action = PF_DROP;
6178 			REASON_SET(&reason, PFRES_MEMORY);
6179 			log = 1;
6180 			DPFPRINTF(PF_DEBUG_MISC,
6181 			    ("pf: failed to allocate divert tag\n"));
6182 		}
6183 	}
6184 
6185 	if (log) {
6186 		struct pf_rule *lr;
6187 
6188 		if (s != NULL && s->nat_rule.ptr != NULL &&
6189 		    s->nat_rule.ptr->log & PF_LOG_ALL)
6190 			lr = s->nat_rule.ptr;
6191 		else
6192 			lr = r;
6193 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd,
6194 		    (s == NULL));
6195 	}
6196 
6197 	kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len;
6198 	kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++;
6199 
6200 	if (action == PF_PASS || r->action == PF_DROP) {
6201 		dirndx = (dir == PF_OUT);
6202 		r->packets[dirndx]++;
6203 		r->bytes[dirndx] += pd.tot_len;
6204 		if (a != NULL) {
6205 			a->packets[dirndx]++;
6206 			a->bytes[dirndx] += pd.tot_len;
6207 		}
6208 		if (s != NULL) {
6209 			if (s->nat_rule.ptr != NULL) {
6210 				s->nat_rule.ptr->packets[dirndx]++;
6211 				s->nat_rule.ptr->bytes[dirndx] += pd.tot_len;
6212 			}
6213 			if (s->src_node != NULL) {
6214 				s->src_node->packets[dirndx]++;
6215 				s->src_node->bytes[dirndx] += pd.tot_len;
6216 			}
6217 			if (s->nat_src_node != NULL) {
6218 				s->nat_src_node->packets[dirndx]++;
6219 				s->nat_src_node->bytes[dirndx] += pd.tot_len;
6220 			}
6221 			dirndx = (dir == s->direction) ? 0 : 1;
6222 			s->packets[dirndx]++;
6223 			s->bytes[dirndx] += pd.tot_len;
6224 		}
6225 		tr = r;
6226 		nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
6227 		if (nr != NULL && r == &V_pf_default_rule)
6228 			tr = nr;
6229 		if (tr->src.addr.type == PF_ADDR_TABLE)
6230 			pfr_update_stats(tr->src.addr.p.tbl,
6231 			    (s == NULL) ? pd.src :
6232 			    &s->key[(s->direction == PF_IN)]->
6233 				addr[(s->direction == PF_OUT)],
6234 			    pd.af, pd.tot_len, dir == PF_OUT,
6235 			    r->action == PF_PASS, tr->src.neg);
6236 		if (tr->dst.addr.type == PF_ADDR_TABLE)
6237 			pfr_update_stats(tr->dst.addr.p.tbl,
6238 			    (s == NULL) ? pd.dst :
6239 			    &s->key[(s->direction == PF_IN)]->
6240 				addr[(s->direction == PF_IN)],
6241 			    pd.af, pd.tot_len, dir == PF_OUT,
6242 			    r->action == PF_PASS, tr->dst.neg);
6243 	}
6244 
6245 	switch (action) {
6246 	case PF_SYNPROXY_DROP:
6247 		m_freem(*m0);
6248 	case PF_DEFER:
6249 		*m0 = NULL;
6250 		action = PF_PASS;
6251 		break;
6252 	case PF_DROP:
6253 		m_freem(*m0);
6254 		*m0 = NULL;
6255 		break;
6256 	default:
6257 		/* pf_route() returns unlocked. */
6258 		if (r->rt) {
6259 			pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
6260 			return (action);
6261 		}
6262 		break;
6263 	}
6264 	if (s)
6265 		PF_STATE_UNLOCK(s);
6266 
6267 	return (action);
6268 }
6269 #endif /* INET */
6270 
6271 #ifdef INET6
6272 int
6273 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp)
6274 {
6275 	struct pfi_kif		*kif;
6276 	u_short			 action, reason = 0, log = 0;
6277 	struct mbuf		*m = *m0, *n = NULL;
6278 	struct m_tag		*mtag;
6279 	struct ip6_hdr		*h = NULL;
6280 	struct pf_rule		*a = NULL, *r = &V_pf_default_rule, *tr, *nr;
6281 	struct pf_state		*s = NULL;
6282 	struct pf_ruleset	*ruleset = NULL;
6283 	struct pf_pdesc		 pd;
6284 	int			 off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0;
6285 
6286 	PF_RULES_RLOCK_TRACKER;
6287 	M_ASSERTPKTHDR(m);
6288 
6289 	if (!V_pf_status.running)
6290 		return (PF_PASS);
6291 
6292 	memset(&pd, 0, sizeof(pd));
6293 	pd.pf_mtag = pf_find_mtag(m);
6294 
6295 	if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED)
6296 		return (PF_PASS);
6297 
6298 	kif = (struct pfi_kif *)ifp->if_pf_kif;
6299 	if (kif == NULL) {
6300 		DPFPRINTF(PF_DEBUG_URGENT,
6301 		    ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname));
6302 		return (PF_DROP);
6303 	}
6304 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
6305 		return (PF_PASS);
6306 
6307 	if (m->m_flags & M_SKIP_FIREWALL)
6308 		return (PF_PASS);
6309 
6310 	PF_RULES_RLOCK();
6311 
6312 	/* We do IP header normalization and packet reassembly here */
6313 	if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) {
6314 		action = PF_DROP;
6315 		goto done;
6316 	}
6317 	m = *m0;	/* pf_normalize messes with m0 */
6318 	h = mtod(m, struct ip6_hdr *);
6319 
6320 #if 1
6321 	/*
6322 	 * we do not support jumbogram yet.  if we keep going, zero ip6_plen
6323 	 * will do something bad, so drop the packet for now.
6324 	 */
6325 	if (htons(h->ip6_plen) == 0) {
6326 		action = PF_DROP;
6327 		REASON_SET(&reason, PFRES_NORM);	/*XXX*/
6328 		goto done;
6329 	}
6330 #endif
6331 
6332 	pd.src = (struct pf_addr *)&h->ip6_src;
6333 	pd.dst = (struct pf_addr *)&h->ip6_dst;
6334 	pd.sport = pd.dport = NULL;
6335 	pd.ip_sum = NULL;
6336 	pd.proto_sum = NULL;
6337 	pd.dir = dir;
6338 	pd.sidx = (dir == PF_IN) ? 0 : 1;
6339 	pd.didx = (dir == PF_IN) ? 1 : 0;
6340 	pd.af = AF_INET6;
6341 	pd.tos = 0;
6342 	pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
6343 
6344 	off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr);
6345 	pd.proto = h->ip6_nxt;
6346 	do {
6347 		switch (pd.proto) {
6348 		case IPPROTO_FRAGMENT:
6349 			action = pf_test_fragment(&r, dir, kif, m, h,
6350 			    &pd, &a, &ruleset);
6351 			if (action == PF_DROP)
6352 				REASON_SET(&reason, PFRES_FRAG);
6353 			goto done;
6354 		case IPPROTO_ROUTING: {
6355 			struct ip6_rthdr rthdr;
6356 
6357 			if (rh_cnt++) {
6358 				DPFPRINTF(PF_DEBUG_MISC,
6359 				    ("pf: IPv6 more than one rthdr\n"));
6360 				action = PF_DROP;
6361 				REASON_SET(&reason, PFRES_IPOPTIONS);
6362 				log = 1;
6363 				goto done;
6364 			}
6365 			if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL,
6366 			    &reason, pd.af)) {
6367 				DPFPRINTF(PF_DEBUG_MISC,
6368 				    ("pf: IPv6 short rthdr\n"));
6369 				action = PF_DROP;
6370 				REASON_SET(&reason, PFRES_SHORT);
6371 				log = 1;
6372 				goto done;
6373 			}
6374 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
6375 				DPFPRINTF(PF_DEBUG_MISC,
6376 				    ("pf: IPv6 rthdr0\n"));
6377 				action = PF_DROP;
6378 				REASON_SET(&reason, PFRES_IPOPTIONS);
6379 				log = 1;
6380 				goto done;
6381 			}
6382 			/* FALLTHROUGH */
6383 		}
6384 		case IPPROTO_AH:
6385 		case IPPROTO_HOPOPTS:
6386 		case IPPROTO_DSTOPTS: {
6387 			/* get next header and header length */
6388 			struct ip6_ext	opt6;
6389 
6390 			if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6),
6391 			    NULL, &reason, pd.af)) {
6392 				DPFPRINTF(PF_DEBUG_MISC,
6393 				    ("pf: IPv6 short opt\n"));
6394 				action = PF_DROP;
6395 				log = 1;
6396 				goto done;
6397 			}
6398 			if (pd.proto == IPPROTO_AH)
6399 				off += (opt6.ip6e_len + 2) * 4;
6400 			else
6401 				off += (opt6.ip6e_len + 1) * 8;
6402 			pd.proto = opt6.ip6e_nxt;
6403 			/* goto the next header */
6404 			break;
6405 		}
6406 		default:
6407 			terminal++;
6408 			break;
6409 		}
6410 	} while (!terminal);
6411 
6412 	/* if there's no routing header, use unmodified mbuf for checksumming */
6413 	if (!n)
6414 		n = m;
6415 
6416 	switch (pd.proto) {
6417 
6418 	case IPPROTO_TCP: {
6419 		struct tcphdr	th;
6420 
6421 		pd.hdr.tcp = &th;
6422 		if (!pf_pull_hdr(m, off, &th, sizeof(th),
6423 		    &action, &reason, AF_INET6)) {
6424 			log = action != PF_PASS;
6425 			goto done;
6426 		}
6427 		pd.p_len = pd.tot_len - off - (th.th_off << 2);
6428 		action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd);
6429 		if (action == PF_DROP)
6430 			goto done;
6431 		action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd,
6432 		    &reason);
6433 		if (action == PF_PASS) {
6434 			if (pfsync_update_state_ptr != NULL)
6435 				pfsync_update_state_ptr(s);
6436 			r = s->rule.ptr;
6437 			a = s->anchor.ptr;
6438 			log = s->log;
6439 		} else if (s == NULL)
6440 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6441 			    &a, &ruleset, inp);
6442 		break;
6443 	}
6444 
6445 	case IPPROTO_UDP: {
6446 		struct udphdr	uh;
6447 
6448 		pd.hdr.udp = &uh;
6449 		if (!pf_pull_hdr(m, off, &uh, sizeof(uh),
6450 		    &action, &reason, AF_INET6)) {
6451 			log = action != PF_PASS;
6452 			goto done;
6453 		}
6454 		if (uh.uh_dport == 0 ||
6455 		    ntohs(uh.uh_ulen) > m->m_pkthdr.len - off ||
6456 		    ntohs(uh.uh_ulen) < sizeof(struct udphdr)) {
6457 			action = PF_DROP;
6458 			REASON_SET(&reason, PFRES_SHORT);
6459 			goto done;
6460 		}
6461 		action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd);
6462 		if (action == PF_PASS) {
6463 			if (pfsync_update_state_ptr != NULL)
6464 				pfsync_update_state_ptr(s);
6465 			r = s->rule.ptr;
6466 			a = s->anchor.ptr;
6467 			log = s->log;
6468 		} else if (s == NULL)
6469 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6470 			    &a, &ruleset, inp);
6471 		break;
6472 	}
6473 
6474 	case IPPROTO_ICMP: {
6475 		action = PF_DROP;
6476 		DPFPRINTF(PF_DEBUG_MISC,
6477 		    ("pf: dropping IPv6 packet with ICMPv4 payload\n"));
6478 		goto done;
6479 	}
6480 
6481 	case IPPROTO_ICMPV6: {
6482 		struct icmp6_hdr	ih;
6483 
6484 		pd.hdr.icmp6 = &ih;
6485 		if (!pf_pull_hdr(m, off, &ih, sizeof(ih),
6486 		    &action, &reason, AF_INET6)) {
6487 			log = action != PF_PASS;
6488 			goto done;
6489 		}
6490 		action = pf_test_state_icmp(&s, dir, kif,
6491 		    m, off, h, &pd, &reason);
6492 		if (action == PF_PASS) {
6493 			if (pfsync_update_state_ptr != NULL)
6494 				pfsync_update_state_ptr(s);
6495 			r = s->rule.ptr;
6496 			a = s->anchor.ptr;
6497 			log = s->log;
6498 		} else if (s == NULL)
6499 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6500 			    &a, &ruleset, inp);
6501 		break;
6502 	}
6503 
6504 	default:
6505 		action = pf_test_state_other(&s, dir, kif, m, &pd);
6506 		if (action == PF_PASS) {
6507 			if (pfsync_update_state_ptr != NULL)
6508 				pfsync_update_state_ptr(s);
6509 			r = s->rule.ptr;
6510 			a = s->anchor.ptr;
6511 			log = s->log;
6512 		} else if (s == NULL)
6513 			action = pf_test_rule(&r, &s, dir, kif, m, off, &pd,
6514 			    &a, &ruleset, inp);
6515 		break;
6516 	}
6517 
6518 done:
6519 	PF_RULES_RUNLOCK();
6520 	if (n != m) {
6521 		m_freem(n);
6522 		n = NULL;
6523 	}
6524 
6525 	/* handle dangerous IPv6 extension headers. */
6526 	if (action == PF_PASS && rh_cnt &&
6527 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
6528 		action = PF_DROP;
6529 		REASON_SET(&reason, PFRES_IPOPTIONS);
6530 		log = r->log;
6531 		DPFPRINTF(PF_DEBUG_MISC,
6532 		    ("pf: dropping packet with dangerous v6 headers\n"));
6533 	}
6534 
6535 	if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) {
6536 		action = PF_DROP;
6537 		REASON_SET(&reason, PFRES_MEMORY);
6538 	}
6539 	if (r->rtableid >= 0)
6540 		M_SETFIB(m, r->rtableid);
6541 
6542 	if (r->scrub_flags & PFSTATE_SETPRIO) {
6543 		if (pd.tos & IPTOS_LOWDELAY)
6544 			pqid = 1;
6545 		if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) {
6546 			action = PF_DROP;
6547 			REASON_SET(&reason, PFRES_MEMORY);
6548 			log = 1;
6549 			DPFPRINTF(PF_DEBUG_MISC,
6550 			    ("pf: failed to allocate 802.1q mtag\n"));
6551 		}
6552 	}
6553 
6554 #ifdef ALTQ
6555 	if (action == PF_PASS && r->qid) {
6556 		if (pd.pf_mtag == NULL &&
6557 		    ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) {
6558 			action = PF_DROP;
6559 			REASON_SET(&reason, PFRES_MEMORY);
6560 		} else {
6561 			if (s != NULL)
6562 				pd.pf_mtag->qid_hash = pf_state_hash(s);
6563 			if (pd.tos & IPTOS_LOWDELAY)
6564 				pd.pf_mtag->qid = r->pqid;
6565 			else
6566 				pd.pf_mtag->qid = r->qid;
6567 			/* Add hints for ecn. */
6568 			pd.pf_mtag->hdr = h;
6569 		}
6570 	}
6571 #endif /* ALTQ */
6572 
6573 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
6574 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL &&
6575 	    (s->nat_rule.ptr->action == PF_RDR ||
6576 	    s->nat_rule.ptr->action == PF_BINAT) &&
6577 	    IN6_IS_ADDR_LOOPBACK(&pd.dst->v6))
6578 		m->m_flags |= M_SKIP_FIREWALL;
6579 
6580 	/* XXX: Anybody working on it?! */
6581 	if (r->divert.port)
6582 		printf("pf: divert(9) is not supported for IPv6\n");
6583 
6584 	if (log) {
6585 		struct pf_rule *lr;
6586 
6587 		if (s != NULL && s->nat_rule.ptr != NULL &&
6588 		    s->nat_rule.ptr->log & PF_LOG_ALL)
6589 			lr = s->nat_rule.ptr;
6590 		else
6591 			lr = r;
6592 		PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset,
6593 		    &pd, (s == NULL));
6594 	}
6595 
6596 	kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len;
6597 	kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++;
6598 
6599 	if (action == PF_PASS || r->action == PF_DROP) {
6600 		dirndx = (dir == PF_OUT);
6601 		r->packets[dirndx]++;
6602 		r->bytes[dirndx] += pd.tot_len;
6603 		if (a != NULL) {
6604 			a->packets[dirndx]++;
6605 			a->bytes[dirndx] += pd.tot_len;
6606 		}
6607 		if (s != NULL) {
6608 			if (s->nat_rule.ptr != NULL) {
6609 				s->nat_rule.ptr->packets[dirndx]++;
6610 				s->nat_rule.ptr->bytes[dirndx] += pd.tot_len;
6611 			}
6612 			if (s->src_node != NULL) {
6613 				s->src_node->packets[dirndx]++;
6614 				s->src_node->bytes[dirndx] += pd.tot_len;
6615 			}
6616 			if (s->nat_src_node != NULL) {
6617 				s->nat_src_node->packets[dirndx]++;
6618 				s->nat_src_node->bytes[dirndx] += pd.tot_len;
6619 			}
6620 			dirndx = (dir == s->direction) ? 0 : 1;
6621 			s->packets[dirndx]++;
6622 			s->bytes[dirndx] += pd.tot_len;
6623 		}
6624 		tr = r;
6625 		nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
6626 		if (nr != NULL && r == &V_pf_default_rule)
6627 			tr = nr;
6628 		if (tr->src.addr.type == PF_ADDR_TABLE)
6629 			pfr_update_stats(tr->src.addr.p.tbl,
6630 			    (s == NULL) ? pd.src :
6631 			    &s->key[(s->direction == PF_IN)]->addr[0],
6632 			    pd.af, pd.tot_len, dir == PF_OUT,
6633 			    r->action == PF_PASS, tr->src.neg);
6634 		if (tr->dst.addr.type == PF_ADDR_TABLE)
6635 			pfr_update_stats(tr->dst.addr.p.tbl,
6636 			    (s == NULL) ? pd.dst :
6637 			    &s->key[(s->direction == PF_IN)]->addr[1],
6638 			    pd.af, pd.tot_len, dir == PF_OUT,
6639 			    r->action == PF_PASS, tr->dst.neg);
6640 	}
6641 
6642 	switch (action) {
6643 	case PF_SYNPROXY_DROP:
6644 		m_freem(*m0);
6645 	case PF_DEFER:
6646 		*m0 = NULL;
6647 		action = PF_PASS;
6648 		break;
6649 	case PF_DROP:
6650 		m_freem(*m0);
6651 		*m0 = NULL;
6652 		break;
6653 	default:
6654 		/* pf_route6() returns unlocked. */
6655 		if (r->rt) {
6656 			pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp);
6657 			return (action);
6658 		}
6659 		break;
6660 	}
6661 
6662 	if (s)
6663 		PF_STATE_UNLOCK(s);
6664 
6665 	/* If reassembled packet passed, create new fragments. */
6666 	if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) &&
6667 	    (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL)
6668 		action = pf_refragment6(ifp, m0, mtag);
6669 
6670 	return (action);
6671 }
6672 #endif /* INET6 */
6673