xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/bitstring.h>
38 #include <sys/queue.h>
39 #include <sys/cpuset.h>
40 #include <sys/endian.h>
41 #include <sys/kerneldump.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/syslog.h>
45 #include <sys/msgbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmem.h>
55 #include <sys/vmmeter.h>
56 #include <sys/smp.h>
57 
58 #include <sys/kdb.h>
59 
60 #include <dev/ofw/openfirm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_reserv.h>
73 #include <vm/vm_dumpset.h>
74 #include <vm/uma.h>
75 
76 #include <machine/_inttypes.h>
77 #include <machine/cpu.h>
78 #include <machine/platform.h>
79 #include <machine/frame.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/bat.h>
83 #include <machine/hid.h>
84 #include <machine/pte.h>
85 #include <machine/sr.h>
86 #include <machine/trap.h>
87 #include <machine/mmuvar.h>
88 
89 /* For pseries bit. */
90 #include <powerpc/pseries/phyp-hvcall.h>
91 
92 #ifdef INVARIANTS
93 #include <vm/uma_dbg.h>
94 #endif
95 
96 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
97 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
98 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
99 
100 #include "opt_ddb.h"
101 
102 #ifdef DDB
103 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
104 #endif
105 
106 #define PG_W	RPTE_WIRED
107 #define PG_V	RPTE_VALID
108 #define PG_MANAGED	RPTE_MANAGED
109 #define PG_PROMOTED	RPTE_PROMOTED
110 #define PG_M	RPTE_C
111 #define PG_A	RPTE_R
112 #define PG_X	RPTE_EAA_X
113 #define PG_RW	RPTE_EAA_W
114 #define PG_PTE_CACHE RPTE_ATTR_MASK
115 
116 #define RPTE_SHIFT 9
117 #define NLS_MASK ((1UL<<5)-1)
118 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
119 #define RPTE_MASK (RPTE_ENTRIES-1)
120 
121 #define NLB_SHIFT 0
122 #define NLB_MASK (((1UL<<52)-1) << 8)
123 
124 extern int nkpt;
125 extern caddr_t crashdumpmap;
126 
127 #define RIC_FLUSH_TLB 0
128 #define RIC_FLUSH_PWC 1
129 #define RIC_FLUSH_ALL 2
130 
131 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
132 
133 #define PPC_INST_TLBIE			0x7c000264
134 #define PPC_INST_TLBIEL			0x7c000224
135 #define PPC_INST_SLBIA			0x7c0003e4
136 
137 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
138 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
139 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
140 #define ___PPC_RT(t)	___PPC_RS(t)
141 #define ___PPC_R(r)	(((r) & 0x1) << 16)
142 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
143 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
144 
145 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
146 				       ((IH & 0x7) << 21))
147 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
148 	__XSTRING(.long PPC_INST_TLBIE |			\
149 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
150 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
151 			  ___PPC_R(r))
152 
153 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
154 	 __XSTRING(.long PPC_INST_TLBIEL | \
155 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
156 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
157 			   ___PPC_R(r))
158 
159 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
160 
161 static __inline void
162 ttusync(void)
163 {
164 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
165 }
166 
167 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
168 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
169 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
170 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
171 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
172 
173 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
174 #define  TLBIE_ACTUAL_PAGE_4K		0x00
175 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
176 #define  TLBIE_ACTUAL_PAGE_2M		0x20
177 #define  TLBIE_ACTUAL_PAGE_1G		0x40
178 
179 #define TLBIE_PRS_PARTITION_SCOPE	0x0
180 #define TLBIE_PRS_PROCESS_SCOPE	0x1
181 
182 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
183 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
184 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
185 						 * cached {proc, part}tab entries
186 						 */
187 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
188 						 * Invalidate a range of translations
189 						 */
190 
191 static __always_inline void
192 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
193 			vm_offset_t va, uint16_t ap)
194 {
195 	uint64_t rb, rs;
196 
197 	MPASS((va & PAGE_MASK) == 0);
198 
199 	rs = ((uint64_t)pid << 32) | lpid;
200 	rb = va | is | ap;
201 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
202 		"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
203 }
204 
205 static __inline void
206 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
207 {
208 
209 	__asm __volatile("ptesync" ::: "memory");
210 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
211 	    TLBIEL_INVAL_PAGE, 0, 0, va, ap);
212 	__asm __volatile("ptesync" ::: "memory");
213 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
214 	    TLBIEL_INVAL_PAGE, pid, 0, va, ap);
215 }
216 
217 static __inline void
218 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
219 {
220 
221 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
222 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
223 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
224 }
225 
226 static __inline void
227 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
228 {
229 
230 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
231 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
232 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
233 }
234 
235 static __inline void
236 radix_tlbie_invlpwc_user(uint32_t pid)
237 {
238 
239 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
240 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
241 }
242 
243 static __inline void
244 radix_tlbie_flush_user(uint32_t pid)
245 {
246 
247 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
248 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
249 }
250 
251 static __inline void
252 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
253 {
254 
255 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
256 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
257 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
258 }
259 
260 static __inline void
261 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
262 {
263 
264 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
265 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
266 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
267 }
268 
269 /* 1GB pages aren't currently supported. */
270 static __inline __unused void
271 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
272 {
273 
274 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
275 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
276 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
277 }
278 
279 static __inline void
280 radix_tlbie_invlpwc_kernel(void)
281 {
282 
283 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
284 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
285 }
286 
287 static __inline void
288 radix_tlbie_flush_kernel(void)
289 {
290 
291 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
292 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
293 }
294 
295 static __inline vm_pindex_t
296 pmap_l3e_pindex(vm_offset_t va)
297 {
298 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
299 }
300 
301 static __inline vm_pindex_t
302 pmap_pml3e_index(vm_offset_t va)
303 {
304 
305 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
306 }
307 
308 static __inline vm_pindex_t
309 pmap_pml2e_index(vm_offset_t va)
310 {
311 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
312 }
313 
314 static __inline vm_pindex_t
315 pmap_pml1e_index(vm_offset_t va)
316 {
317 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
318 }
319 
320 /* Return various clipped indexes for a given VA */
321 static __inline vm_pindex_t
322 pmap_pte_index(vm_offset_t va)
323 {
324 
325 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
326 }
327 
328 /* Return a pointer to the PT slot that corresponds to a VA */
329 static __inline pt_entry_t *
330 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
331 {
332 	pt_entry_t *pte;
333 	vm_paddr_t ptepa;
334 
335 	ptepa = (be64toh(*l3e) & NLB_MASK);
336 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
337 	return (&pte[pmap_pte_index(va)]);
338 }
339 
340 /* Return a pointer to the PD slot that corresponds to a VA */
341 static __inline pt_entry_t *
342 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
343 {
344 	pt_entry_t *l3e;
345 	vm_paddr_t l3pa;
346 
347 	l3pa = (be64toh(*l2e) & NLB_MASK);
348 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
349 	return (&l3e[pmap_pml3e_index(va)]);
350 }
351 
352 /* Return a pointer to the PD slot that corresponds to a VA */
353 static __inline pt_entry_t *
354 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
355 {
356 	pt_entry_t *l2e;
357 	vm_paddr_t l2pa;
358 
359 	l2pa = (be64toh(*l1e) & NLB_MASK);
360 
361 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
362 	return (&l2e[pmap_pml2e_index(va)]);
363 }
364 
365 static __inline pml1_entry_t *
366 pmap_pml1e(pmap_t pmap, vm_offset_t va)
367 {
368 
369 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
370 }
371 
372 static pt_entry_t *
373 pmap_pml2e(pmap_t pmap, vm_offset_t va)
374 {
375 	pt_entry_t *l1e;
376 
377 	l1e = pmap_pml1e(pmap, va);
378 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
379 		return (NULL);
380 	return (pmap_l1e_to_l2e(l1e, va));
381 }
382 
383 static __inline pt_entry_t *
384 pmap_pml3e(pmap_t pmap, vm_offset_t va)
385 {
386 	pt_entry_t *l2e;
387 
388 	l2e = pmap_pml2e(pmap, va);
389 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
390 		return (NULL);
391 	return (pmap_l2e_to_l3e(l2e, va));
392 }
393 
394 static __inline pt_entry_t *
395 pmap_pte(pmap_t pmap, vm_offset_t va)
396 {
397 	pt_entry_t *l3e;
398 
399 	l3e = pmap_pml3e(pmap, va);
400 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
401 		return (NULL);
402 	return (pmap_l3e_to_pte(l3e, va));
403 }
404 
405 int nkpt = 64;
406 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
407     "Number of kernel page table pages allocated on bootup");
408 
409 vm_paddr_t dmaplimit;
410 
411 SYSCTL_DECL(_vm_pmap);
412 
413 #ifdef INVARIANTS
414 #define VERBOSE_PMAP 0
415 #define VERBOSE_PROTECT 0
416 static int pmap_logging;
417 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
418     &pmap_logging, 0, "verbose debug logging");
419 #endif
420 
421 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
422 
423 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
424 
425 static vm_offset_t qframe = 0;
426 static struct mtx qframe_mtx;
427 
428 void mmu_radix_activate(struct thread *);
429 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
430 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
431     vm_size_t);
432 void mmu_radix_clear_modify(vm_page_t);
433 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
434 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
435 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
436 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
437 	vm_prot_t);
438 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
439 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
440 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
441 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
442 vm_paddr_t mmu_radix_kextract(vm_offset_t);
443 void mmu_radix_kremove(vm_offset_t);
444 boolean_t mmu_radix_is_modified(vm_page_t);
445 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
446 boolean_t mmu_radix_is_referenced(vm_page_t);
447 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
448 	vm_pindex_t, vm_size_t);
449 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
450 void mmu_radix_page_init(vm_page_t);
451 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
452 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
453 int mmu_radix_page_wired_mappings(vm_page_t);
454 int mmu_radix_pinit(pmap_t);
455 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
456 bool mmu_radix_ps_enabled(pmap_t);
457 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
458 void mmu_radix_qremove(vm_offset_t, int);
459 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
460 void mmu_radix_quick_remove_page(vm_offset_t);
461 boolean_t mmu_radix_ts_referenced(vm_page_t);
462 void mmu_radix_release(pmap_t);
463 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
464 void mmu_radix_remove_all(vm_page_t);
465 void mmu_radix_remove_pages(pmap_t);
466 void mmu_radix_remove_write(vm_page_t);
467 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
468 void mmu_radix_zero_page(vm_page_t);
469 void mmu_radix_zero_page_area(vm_page_t, int, int);
470 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
471 void mmu_radix_page_array_startup(long pages);
472 
473 #include "mmu_oea64.h"
474 
475 /*
476  * Kernel MMU interface
477  */
478 
479 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
480 
481 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
482 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
483     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
484 static void mmu_radix_growkernel(vm_offset_t);
485 static void mmu_radix_init(void);
486 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
487 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
488 static void mmu_radix_pinit0(pmap_t);
489 
490 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
491 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
492 static void mmu_radix_unmapdev(void *, vm_size_t);
493 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
494 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
495 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
496 static void mmu_radix_scan_init(void);
497 static void	mmu_radix_cpu_bootstrap(int ap);
498 static void	mmu_radix_tlbie_all(void);
499 
500 static struct pmap_funcs mmu_radix_methods = {
501 	.bootstrap = mmu_radix_bootstrap,
502 	.copy_page = mmu_radix_copy_page,
503 	.copy_pages = mmu_radix_copy_pages,
504 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
505 	.growkernel = mmu_radix_growkernel,
506 	.init = mmu_radix_init,
507 	.map =      		mmu_radix_map,
508 	.mincore =      	mmu_radix_mincore,
509 	.pinit = mmu_radix_pinit,
510 	.pinit0 = mmu_radix_pinit0,
511 
512 	.mapdev = mmu_radix_mapdev,
513 	.mapdev_attr = mmu_radix_mapdev_attr,
514 	.unmapdev = mmu_radix_unmapdev,
515 	.kenter_attr = mmu_radix_kenter_attr,
516 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
517 	.dumpsys_pa_init = mmu_radix_scan_init,
518 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
519 	.page_is_mapped = mmu_radix_page_is_mapped,
520 	.ps_enabled = mmu_radix_ps_enabled,
521 	.align_superpage = mmu_radix_align_superpage,
522 	.object_init_pt = mmu_radix_object_init_pt,
523 	.protect = mmu_radix_protect,
524 	/* pmap dispatcher interface */
525 	.clear_modify = mmu_radix_clear_modify,
526 	.copy = mmu_radix_copy,
527 	.enter = mmu_radix_enter,
528 	.enter_object = mmu_radix_enter_object,
529 	.enter_quick = mmu_radix_enter_quick,
530 	.extract = mmu_radix_extract,
531 	.extract_and_hold = mmu_radix_extract_and_hold,
532 	.is_modified = mmu_radix_is_modified,
533 	.is_prefaultable = mmu_radix_is_prefaultable,
534 	.is_referenced = mmu_radix_is_referenced,
535 	.ts_referenced = mmu_radix_ts_referenced,
536 	.page_exists_quick = mmu_radix_page_exists_quick,
537 	.page_init = mmu_radix_page_init,
538 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
539 	.qenter = mmu_radix_qenter,
540 	.qremove = mmu_radix_qremove,
541 	.release = mmu_radix_release,
542 	.remove = mmu_radix_remove,
543 	.remove_all = mmu_radix_remove_all,
544 	.remove_write = mmu_radix_remove_write,
545 	.unwire = mmu_radix_unwire,
546 	.zero_page = mmu_radix_zero_page,
547 	.zero_page_area = mmu_radix_zero_page_area,
548 	.activate = mmu_radix_activate,
549 	.quick_enter_page =  mmu_radix_quick_enter_page,
550 	.quick_remove_page =  mmu_radix_quick_remove_page,
551 	.page_set_memattr = mmu_radix_page_set_memattr,
552 	.page_array_startup =  mmu_radix_page_array_startup,
553 
554 	/* Internal interfaces */
555 	.kenter = mmu_radix_kenter,
556 	.kextract = mmu_radix_kextract,
557 	.kremove = mmu_radix_kremove,
558 	.change_attr = mmu_radix_change_attr,
559 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
560 
561 	.tlbie_all = mmu_radix_tlbie_all,
562 };
563 
564 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565 
566 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567 	struct rwlock **lockp);
568 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571     struct spglist *free, struct rwlock **lockp);
572 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576     struct spglist *free);
577 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579 
580 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581 		    u_int flags, struct rwlock **lockp);
582 #if VM_NRESERVLEVEL > 0
583 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584 	struct rwlock **lockp);
585 #endif
586 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590 
591 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592 	vm_prot_t prot, struct rwlock **lockp);
593 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594 	u_int flags, vm_page_t m, struct rwlock **lockp);
595 
596 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597 static void free_pv_chunk(struct pv_chunk *pc);
598 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600 	struct rwlock **lockp);
601 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602 	struct rwlock **lockp);
603 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604     struct spglist *free);
605 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606 
607 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608 static void pmap_invalidate_all(pmap_t pmap);
609 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610 
611 /*
612  * Internal flags for pmap_enter()'s helper functions.
613  */
614 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
615 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
616 
617 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
618 #define UNTESTED() panic("%s not yet tested", __func__)
619 
620 /* Number of supported PID bits */
621 static unsigned int isa3_pid_bits;
622 
623 /* PID to start allocating from */
624 static unsigned int isa3_base_pid;
625 
626 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
627 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
628 
629 /*
630  * Map of physical memory regions.
631  */
632 static struct	mem_region *regions, *pregions;
633 static struct	numa_mem_region *numa_pregions;
634 static u_int	phys_avail_count;
635 static int	regions_sz, pregions_sz, numa_pregions_sz;
636 static struct pate *isa3_parttab;
637 static struct prte *isa3_proctab;
638 static vmem_t *asid_arena;
639 
640 extern void bs_remap_earlyboot(void);
641 
642 #define	RADIX_PGD_SIZE_SHIFT	16
643 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
644 
645 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
646 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
647 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
648 
649 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
650 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
651 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
652 
653 /* POWER9 only permits a 64k partition table size. */
654 #define	PARTTAB_SIZE_SHIFT	16
655 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
656 
657 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
658 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
659 
660 /* TLB flush actions. Used as argument to tlbiel_flush() */
661 enum {
662 	TLB_INVAL_SCOPE_LPID = 2,	/* invalidate TLBs for current LPID */
663 	TLB_INVAL_SCOPE_GLOBAL = 3,	/* invalidate all TLBs */
664 };
665 
666 #define	NPV_LIST_LOCKS	MAXCPU
667 static int pmap_initialized;
668 static vm_paddr_t proctab0pa;
669 static vm_paddr_t parttab_phys;
670 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
671 
672 /*
673  * Data for the pv entry allocation mechanism.
674  * Updates to pv_invl_gen are protected by the pv_list_locks[]
675  * elements, but reads are not.
676  */
677 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
678 static struct mtx __exclusive_cache_line pv_chunks_mutex;
679 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
680 static struct md_page *pv_table;
681 static struct md_page pv_dummy;
682 
683 #ifdef PV_STATS
684 #define PV_STAT(x)	do { x ; } while (0)
685 #else
686 #define PV_STAT(x)	do { } while (0)
687 #endif
688 
689 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
690 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
691 
692 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
693 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
694 
695 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
696 	struct rwlock **_lockp = (lockp);		\
697 	struct rwlock *_new_lock;			\
698 							\
699 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
700 	if (_new_lock != *_lockp) {			\
701 		if (*_lockp != NULL)			\
702 			rw_wunlock(*_lockp);		\
703 		*_lockp = _new_lock;			\
704 		rw_wlock(*_lockp);			\
705 	}						\
706 } while (0)
707 
708 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
709 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
710 
711 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
712 	struct rwlock **_lockp = (lockp);		\
713 							\
714 	if (*_lockp != NULL) {				\
715 		rw_wunlock(*_lockp);			\
716 		*_lockp = NULL;				\
717 	}						\
718 } while (0)
719 
720 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
721 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
722 
723 /*
724  * We support 52 bits, hence:
725  * bits 52 - 31 = 21, 0b10101
726  * RTS encoding details
727  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
728  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
729  */
730 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
731 
732 static int powernv_enabled = 1;
733 
734 static __always_inline void
735 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
736 	uint32_t pid, uint32_t ric, uint32_t prs)
737 {
738 	uint64_t rb;
739 	uint64_t rs;
740 
741 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
742 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
743 
744 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
745 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
746 		     : "memory");
747 }
748 
749 static void
750 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
751 {
752 	uint32_t set;
753 
754 	__asm __volatile("ptesync": : :"memory");
755 
756 	/*
757 	 * Flush the first set of the TLB, and the entire Page Walk Cache
758 	 * and partition table entries. Then flush the remaining sets of the
759 	 * TLB.
760 	 */
761 	if (is == TLB_INVAL_SCOPE_GLOBAL) {
762 		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
763 		for (set = 1; set < num_sets; set++)
764 			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
765 	}
766 
767 	/* Do the same for process scoped entries. */
768 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
769 	for (set = 1; set < num_sets; set++)
770 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
771 
772 	__asm __volatile("ptesync": : :"memory");
773 }
774 
775 static void
776 mmu_radix_tlbiel_flush(int scope)
777 {
778 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
779 		  scope == TLB_INVAL_SCOPE_GLOBAL);
780 
781 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
782 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
783 }
784 
785 static void
786 mmu_radix_tlbie_all(void)
787 {
788 	if (powernv_enabled)
789 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
790 	else
791 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
792 }
793 
794 static void
795 mmu_radix_init_amor(void)
796 {
797 	/*
798 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
799 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
800 	* Register), enable key 0 and set it to 1.
801 	*
802 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
803 	*/
804 	mtspr(SPR_AMOR, (3ul << 62));
805 }
806 
807 static void
808 mmu_radix_init_iamr(void)
809 {
810 	/*
811 	 * Radix always uses key0 of the IAMR to determine if an access is
812 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
813 	 * fetch.
814 	 */
815 	mtspr(SPR_IAMR, (1ul << 62));
816 }
817 
818 static void
819 mmu_radix_pid_set(pmap_t pmap)
820 {
821 
822 	mtspr(SPR_PID, pmap->pm_pid);
823 	isync();
824 }
825 
826 /* Quick sort callout for comparing physical addresses. */
827 static int
828 pa_cmp(const void *a, const void *b)
829 {
830 	const vm_paddr_t *pa = a, *pb = b;
831 
832 	if (*pa < *pb)
833 		return (-1);
834 	else if (*pa > *pb)
835 		return (1);
836 	else
837 		return (0);
838 }
839 
840 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
841 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
842 #define	pte_store(ptep, pte) do {	   \
843 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
844 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
845 } while (0)
846 /*
847  * NB: should only be used for adding directories - not for direct mappings
848  */
849 #define	pde_store(ptep, pa) do {				\
850 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
851 } while (0)
852 
853 #define	pte_clear(ptep) do {					\
854 		*(u_long *)(ptep) = (u_long)(0);		\
855 } while (0)
856 
857 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
858 
859 /*
860  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
861  * (PTE) page mappings have identical settings for the following fields:
862  */
863 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
864 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
865 
866 static __inline void
867 pmap_resident_count_inc(pmap_t pmap, int count)
868 {
869 
870 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
871 	pmap->pm_stats.resident_count += count;
872 }
873 
874 static __inline void
875 pmap_resident_count_dec(pmap_t pmap, int count)
876 {
877 
878 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
879 	KASSERT(pmap->pm_stats.resident_count >= count,
880 	    ("pmap %p resident count underflow %ld %d", pmap,
881 	    pmap->pm_stats.resident_count, count));
882 	pmap->pm_stats.resident_count -= count;
883 }
884 
885 static void
886 pagezero(vm_offset_t va)
887 {
888 	va = trunc_page(va);
889 
890 	bzero((void *)va, PAGE_SIZE);
891 }
892 
893 static uint64_t
894 allocpages(int n)
895 {
896 	u_int64_t ret;
897 
898 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
899 	for (int i = 0; i < n; i++)
900 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
901 	return (ret);
902 }
903 
904 static pt_entry_t *
905 kvtopte(vm_offset_t va)
906 {
907 	pt_entry_t *l3e;
908 
909 	l3e = pmap_pml3e(kernel_pmap, va);
910 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
911 		return (NULL);
912 	return (pmap_l3e_to_pte(l3e, va));
913 }
914 
915 void
916 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
917 {
918 	pt_entry_t *pte;
919 
920 	pte = kvtopte(va);
921 	MPASS(pte != NULL);
922 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
923 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
924 }
925 
926 bool
927 mmu_radix_ps_enabled(pmap_t pmap)
928 {
929 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
930 }
931 
932 static pt_entry_t *
933 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
934 {
935 	pml3_entry_t *l3e;
936 	pt_entry_t *pte;
937 
938 	va &= PG_PS_FRAME;
939 	l3e = pmap_pml3e(pmap, va);
940 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
941 		return (NULL);
942 
943 	if (be64toh(*l3e) & RPTE_LEAF) {
944 		*is_l3e = 1;
945 		return (l3e);
946 	}
947 	*is_l3e = 0;
948 	va &= PG_FRAME;
949 	pte = pmap_l3e_to_pte(l3e, va);
950 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
951 		return (NULL);
952 	return (pte);
953 }
954 
955 int
956 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
957 {
958 	pt_entry_t *pte;
959 	pt_entry_t startpte, origpte, newpte;
960 	vm_page_t m;
961 	int is_l3e;
962 
963 	startpte = 0;
964  retry:
965 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
966 		return (KERN_INVALID_ADDRESS);
967 	origpte = newpte = be64toh(*pte);
968 	if (startpte == 0) {
969 		startpte = origpte;
970 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
971 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
972 			pmap_invalidate_all(pmap);
973 #ifdef INVARIANTS
974 			if (VERBOSE_PMAP || pmap_logging)
975 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
976 				    __func__, pmap, va, flags, origpte);
977 #endif
978 			return (KERN_FAILURE);
979 		}
980 	}
981 #ifdef INVARIANTS
982 	if (VERBOSE_PMAP || pmap_logging)
983 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
984 		    flags, origpte);
985 #endif
986 	PMAP_LOCK(pmap);
987 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
988 	    be64toh(*pte) != origpte) {
989 		PMAP_UNLOCK(pmap);
990 		return (KERN_FAILURE);
991 	}
992 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
993 	MPASS(m != NULL);
994 	switch (flags) {
995 	case VM_PROT_READ:
996 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
997 			goto protfail;
998 		newpte |= PG_A;
999 		vm_page_aflag_set(m, PGA_REFERENCED);
1000 		break;
1001 	case VM_PROT_WRITE:
1002 		if ((newpte & RPTE_EAA_W) == 0)
1003 			goto protfail;
1004 		if (is_l3e)
1005 			goto protfail;
1006 		newpte |= PG_M;
1007 		vm_page_dirty(m);
1008 		break;
1009 	case VM_PROT_EXECUTE:
1010 		if ((newpte & RPTE_EAA_X) == 0)
1011 			goto protfail;
1012 		newpte |= PG_A;
1013 		vm_page_aflag_set(m, PGA_REFERENCED);
1014 		break;
1015 	}
1016 
1017 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1018 		goto retry;
1019 	ptesync();
1020 	PMAP_UNLOCK(pmap);
1021 	if (startpte == newpte)
1022 		return (KERN_FAILURE);
1023 	return (0);
1024  protfail:
1025 	PMAP_UNLOCK(pmap);
1026 	return (KERN_PROTECTION_FAILURE);
1027 }
1028 
1029 /*
1030  * Returns TRUE if the given page is mapped individually or as part of
1031  * a 2mpage.  Otherwise, returns FALSE.
1032  */
1033 boolean_t
1034 mmu_radix_page_is_mapped(vm_page_t m)
1035 {
1036 	struct rwlock *lock;
1037 	boolean_t rv;
1038 
1039 	if ((m->oflags & VPO_UNMANAGED) != 0)
1040 		return (FALSE);
1041 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1042 	rw_rlock(lock);
1043 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1044 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1045 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1046 	rw_runlock(lock);
1047 	return (rv);
1048 }
1049 
1050 /*
1051  * Determine the appropriate bits to set in a PTE or PDE for a specified
1052  * caching mode.
1053  */
1054 static int
1055 pmap_cache_bits(vm_memattr_t ma)
1056 {
1057 	if (ma != VM_MEMATTR_DEFAULT) {
1058 		switch (ma) {
1059 		case VM_MEMATTR_UNCACHEABLE:
1060 			return (RPTE_ATTR_GUARDEDIO);
1061 		case VM_MEMATTR_CACHEABLE:
1062 			return (RPTE_ATTR_MEM);
1063 		case VM_MEMATTR_WRITE_BACK:
1064 		case VM_MEMATTR_PREFETCHABLE:
1065 		case VM_MEMATTR_WRITE_COMBINING:
1066 			return (RPTE_ATTR_UNGUARDEDIO);
1067 		}
1068 	}
1069 	return (0);
1070 }
1071 
1072 static void
1073 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1074 {
1075 	ptesync();
1076 	if (pmap == kernel_pmap)
1077 		radix_tlbie_invlpg_kernel_4k(start);
1078 	else
1079 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1080 	ttusync();
1081 }
1082 
1083 static void
1084 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1085 {
1086 	ptesync();
1087 	if (pmap == kernel_pmap)
1088 		radix_tlbie_invlpg_kernel_2m(start);
1089 	else
1090 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1091 	ttusync();
1092 }
1093 
1094 static void
1095 pmap_invalidate_pwc(pmap_t pmap)
1096 {
1097 	ptesync();
1098 	if (pmap == kernel_pmap)
1099 		radix_tlbie_invlpwc_kernel();
1100 	else
1101 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1102 	ttusync();
1103 }
1104 
1105 static void
1106 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1107 {
1108 	if (((start - end) >> PAGE_SHIFT) > 8) {
1109 		pmap_invalidate_all(pmap);
1110 		return;
1111 	}
1112 	ptesync();
1113 	if (pmap == kernel_pmap) {
1114 		while (start < end) {
1115 			radix_tlbie_invlpg_kernel_4k(start);
1116 			start += PAGE_SIZE;
1117 		}
1118 	} else {
1119 		while (start < end) {
1120 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1121 			start += PAGE_SIZE;
1122 		}
1123 	}
1124 	ttusync();
1125 }
1126 
1127 static void
1128 pmap_invalidate_all(pmap_t pmap)
1129 {
1130 	ptesync();
1131 	if (pmap == kernel_pmap)
1132 		radix_tlbie_flush_kernel();
1133 	else
1134 		radix_tlbie_flush_user(pmap->pm_pid);
1135 	ttusync();
1136 }
1137 
1138 static void
1139 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1140 {
1141 
1142 	/*
1143 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1144 	 * by a promotion that did not invalidate the 512 4KB page mappings
1145 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1146 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1147 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1148 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1149 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1150 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1151 	 * TLB.
1152 	 */
1153 	ptesync();
1154 	if ((l3e & PG_PROMOTED) != 0)
1155 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1156 	else
1157 		pmap_invalidate_page_2m(pmap, va);
1158 
1159 	pmap_invalidate_pwc(pmap);
1160 }
1161 
1162 static __inline struct pv_chunk *
1163 pv_to_chunk(pv_entry_t pv)
1164 {
1165 
1166 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1167 }
1168 
1169 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1170 
1171 #define	PC_FREE0	0xfffffffffffffffful
1172 #define	PC_FREE1	((1ul << (_NPCPV % 64)) - 1)
1173 
1174 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1175 
1176 /*
1177  * Ensure that the number of spare PV entries in the specified pmap meets or
1178  * exceeds the given count, "needed".
1179  *
1180  * The given PV list lock may be released.
1181  */
1182 static void
1183 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1184 {
1185 	struct pch new_tail;
1186 	struct pv_chunk *pc;
1187 	vm_page_t m;
1188 	int avail, free;
1189 	bool reclaimed;
1190 
1191 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1192 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1193 
1194 	/*
1195 	 * Newly allocated PV chunks must be stored in a private list until
1196 	 * the required number of PV chunks have been allocated.  Otherwise,
1197 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1198 	 * contrast, these chunks must be added to the pmap upon allocation.
1199 	 */
1200 	TAILQ_INIT(&new_tail);
1201 retry:
1202 	avail = 0;
1203 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1204 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1205 		bit_count((bitstr_t *)pc->pc_map, 0,
1206 				  sizeof(pc->pc_map) * NBBY, &free);
1207 #if 0
1208 		free = popcnt_pc_map_pq(pc->pc_map);
1209 #endif
1210 		if (free == 0)
1211 			break;
1212 		avail += free;
1213 		if (avail >= needed)
1214 			break;
1215 	}
1216 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1217 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1218 		if (m == NULL) {
1219 			m = reclaim_pv_chunk(pmap, lockp);
1220 			if (m == NULL)
1221 				goto retry;
1222 			reclaimed = true;
1223 		}
1224 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1225 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1226 		dump_add_page(m->phys_addr);
1227 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1228 		pc->pc_pmap = pmap;
1229 		pc->pc_map[0] = PC_FREE0;
1230 		pc->pc_map[1] = PC_FREE1;
1231 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1232 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1233 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1234 
1235 		/*
1236 		 * The reclaim might have freed a chunk from the current pmap.
1237 		 * If that chunk contained available entries, we need to
1238 		 * re-count the number of available entries.
1239 		 */
1240 		if (reclaimed)
1241 			goto retry;
1242 	}
1243 	if (!TAILQ_EMPTY(&new_tail)) {
1244 		mtx_lock(&pv_chunks_mutex);
1245 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1246 		mtx_unlock(&pv_chunks_mutex);
1247 	}
1248 }
1249 
1250 /*
1251  * First find and then remove the pv entry for the specified pmap and virtual
1252  * address from the specified pv list.  Returns the pv entry if found and NULL
1253  * otherwise.  This operation can be performed on pv lists for either 4KB or
1254  * 2MB page mappings.
1255  */
1256 static __inline pv_entry_t
1257 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1258 {
1259 	pv_entry_t pv;
1260 
1261 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1262 #ifdef INVARIANTS
1263 		if (PV_PMAP(pv) == NULL) {
1264 			printf("corrupted pv_chunk/pv %p\n", pv);
1265 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1266 		}
1267 		MPASS(PV_PMAP(pv) != NULL);
1268 		MPASS(pv->pv_va != 0);
1269 #endif
1270 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1271 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1272 			pvh->pv_gen++;
1273 			break;
1274 		}
1275 	}
1276 	return (pv);
1277 }
1278 
1279 /*
1280  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1281  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1282  * entries for each of the 4KB page mappings.
1283  */
1284 static void
1285 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1286     struct rwlock **lockp)
1287 {
1288 	struct md_page *pvh;
1289 	struct pv_chunk *pc;
1290 	pv_entry_t pv;
1291 	vm_offset_t va_last;
1292 	vm_page_t m;
1293 	int bit, field;
1294 
1295 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1296 	KASSERT((pa & L3_PAGE_MASK) == 0,
1297 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1298 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1299 
1300 	/*
1301 	 * Transfer the 2mpage's pv entry for this mapping to the first
1302 	 * page's pv list.  Once this transfer begins, the pv list lock
1303 	 * must not be released until the last pv entry is reinstantiated.
1304 	 */
1305 	pvh = pa_to_pvh(pa);
1306 	va = trunc_2mpage(va);
1307 	pv = pmap_pvh_remove(pvh, pmap, va);
1308 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1309 	m = PHYS_TO_VM_PAGE(pa);
1310 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1311 
1312 	m->md.pv_gen++;
1313 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1314 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1315 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1316 	for (;;) {
1317 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1318 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1319 		    , ("pmap_pv_demote_pde: missing spare"));
1320 		for (field = 0; field < _NPCM; field++) {
1321 			while (pc->pc_map[field]) {
1322 				bit = cnttzd(pc->pc_map[field]);
1323 				pc->pc_map[field] &= ~(1ul << bit);
1324 				pv = &pc->pc_pventry[field * 64 + bit];
1325 				va += PAGE_SIZE;
1326 				pv->pv_va = va;
1327 				m++;
1328 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1329 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1330 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1331 
1332 				m->md.pv_gen++;
1333 				if (va == va_last)
1334 					goto out;
1335 			}
1336 		}
1337 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1338 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1339 	}
1340 out:
1341 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1342 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1343 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1344 	}
1345 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1346 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1347 }
1348 
1349 static void
1350 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1351 {
1352 
1353 	if (pmap == NULL)
1354 		return;
1355 	pmap_invalidate_all(pmap);
1356 	if (pmap != locked_pmap)
1357 		PMAP_UNLOCK(pmap);
1358 }
1359 
1360 /*
1361  * We are in a serious low memory condition.  Resort to
1362  * drastic measures to free some pages so we can allocate
1363  * another pv entry chunk.
1364  *
1365  * Returns NULL if PV entries were reclaimed from the specified pmap.
1366  *
1367  * We do not, however, unmap 2mpages because subsequent accesses will
1368  * allocate per-page pv entries until repromotion occurs, thereby
1369  * exacerbating the shortage of free pv entries.
1370  */
1371 static int active_reclaims = 0;
1372 static vm_page_t
1373 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1374 {
1375 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1376 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1377 	struct md_page *pvh;
1378 	pml3_entry_t *l3e;
1379 	pmap_t next_pmap, pmap;
1380 	pt_entry_t *pte, tpte;
1381 	pv_entry_t pv;
1382 	vm_offset_t va;
1383 	vm_page_t m, m_pc;
1384 	struct spglist free;
1385 	uint64_t inuse;
1386 	int bit, field, freed;
1387 
1388 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1389 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1390 	pmap = NULL;
1391 	m_pc = NULL;
1392 	SLIST_INIT(&free);
1393 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1394 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1395 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1396 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1397 
1398 	mtx_lock(&pv_chunks_mutex);
1399 	active_reclaims++;
1400 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1401 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1402 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1403 	    SLIST_EMPTY(&free)) {
1404 		next_pmap = pc->pc_pmap;
1405 		if (next_pmap == NULL) {
1406 			/*
1407 			 * The next chunk is a marker.  However, it is
1408 			 * not our marker, so active_reclaims must be
1409 			 * > 1.  Consequently, the next_chunk code
1410 			 * will not rotate the pv_chunks list.
1411 			 */
1412 			goto next_chunk;
1413 		}
1414 		mtx_unlock(&pv_chunks_mutex);
1415 
1416 		/*
1417 		 * A pv_chunk can only be removed from the pc_lru list
1418 		 * when both pc_chunks_mutex is owned and the
1419 		 * corresponding pmap is locked.
1420 		 */
1421 		if (pmap != next_pmap) {
1422 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1423 			pmap = next_pmap;
1424 			/* Avoid deadlock and lock recursion. */
1425 			if (pmap > locked_pmap) {
1426 				RELEASE_PV_LIST_LOCK(lockp);
1427 				PMAP_LOCK(pmap);
1428 				mtx_lock(&pv_chunks_mutex);
1429 				continue;
1430 			} else if (pmap != locked_pmap) {
1431 				if (PMAP_TRYLOCK(pmap)) {
1432 					mtx_lock(&pv_chunks_mutex);
1433 					continue;
1434 				} else {
1435 					pmap = NULL; /* pmap is not locked */
1436 					mtx_lock(&pv_chunks_mutex);
1437 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1438 					if (pc == NULL ||
1439 					    pc->pc_pmap != next_pmap)
1440 						continue;
1441 					goto next_chunk;
1442 				}
1443 			}
1444 		}
1445 
1446 		/*
1447 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1448 		 */
1449 		freed = 0;
1450 		for (field = 0; field < _NPCM; field++) {
1451 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1452 			    inuse != 0; inuse &= ~(1UL << bit)) {
1453 				bit = cnttzd(inuse);
1454 				pv = &pc->pc_pventry[field * 64 + bit];
1455 				va = pv->pv_va;
1456 				l3e = pmap_pml3e(pmap, va);
1457 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1458 					continue;
1459 				pte = pmap_l3e_to_pte(l3e, va);
1460 				if ((be64toh(*pte) & PG_W) != 0)
1461 					continue;
1462 				tpte = be64toh(pte_load_clear(pte));
1463 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1464 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1465 					vm_page_dirty(m);
1466 				if ((tpte & PG_A) != 0)
1467 					vm_page_aflag_set(m, PGA_REFERENCED);
1468 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1469 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1470 
1471 				m->md.pv_gen++;
1472 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1473 				    (m->flags & PG_FICTITIOUS) == 0) {
1474 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1475 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1476 						vm_page_aflag_clear(m,
1477 						    PGA_WRITEABLE);
1478 					}
1479 				}
1480 				pc->pc_map[field] |= 1UL << bit;
1481 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1482 				freed++;
1483 			}
1484 		}
1485 		if (freed == 0) {
1486 			mtx_lock(&pv_chunks_mutex);
1487 			goto next_chunk;
1488 		}
1489 		/* Every freed mapping is for a 4 KB page. */
1490 		pmap_resident_count_dec(pmap, freed);
1491 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1492 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1493 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1494 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1495 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1496 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1497 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1498 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1499 			/* Entire chunk is free; return it. */
1500 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1501 			dump_drop_page(m_pc->phys_addr);
1502 			mtx_lock(&pv_chunks_mutex);
1503 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1504 			break;
1505 		}
1506 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1507 		mtx_lock(&pv_chunks_mutex);
1508 		/* One freed pv entry in locked_pmap is sufficient. */
1509 		if (pmap == locked_pmap)
1510 			break;
1511 next_chunk:
1512 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1513 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1514 		if (active_reclaims == 1 && pmap != NULL) {
1515 			/*
1516 			 * Rotate the pv chunks list so that we do not
1517 			 * scan the same pv chunks that could not be
1518 			 * freed (because they contained a wired
1519 			 * and/or superpage mapping) on every
1520 			 * invocation of reclaim_pv_chunk().
1521 			 */
1522 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1523 				MPASS(pc->pc_pmap != NULL);
1524 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1525 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1526 			}
1527 		}
1528 	}
1529 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1530 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1531 	active_reclaims--;
1532 	mtx_unlock(&pv_chunks_mutex);
1533 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1534 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1535 		m_pc = SLIST_FIRST(&free);
1536 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1537 		/* Recycle a freed page table page. */
1538 		m_pc->ref_count = 1;
1539 	}
1540 	vm_page_free_pages_toq(&free, true);
1541 	return (m_pc);
1542 }
1543 
1544 /*
1545  * free the pv_entry back to the free list
1546  */
1547 static void
1548 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1549 {
1550 	struct pv_chunk *pc;
1551 	int idx, field, bit;
1552 
1553 #ifdef VERBOSE_PV
1554 	if (pmap != kernel_pmap)
1555 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1556 #endif
1557 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1558 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1559 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1560 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1561 	pc = pv_to_chunk(pv);
1562 	idx = pv - &pc->pc_pventry[0];
1563 	field = idx / 64;
1564 	bit = idx % 64;
1565 	pc->pc_map[field] |= 1ul << bit;
1566 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1567 		/* 98% of the time, pc is already at the head of the list. */
1568 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1569 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1570 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1571 		}
1572 		return;
1573 	}
1574 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1575 	free_pv_chunk(pc);
1576 }
1577 
1578 static void
1579 free_pv_chunk(struct pv_chunk *pc)
1580 {
1581 	vm_page_t m;
1582 
1583 	mtx_lock(&pv_chunks_mutex);
1584  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1585 	mtx_unlock(&pv_chunks_mutex);
1586 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1587 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1588 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1589 	/* entire chunk is free, return it */
1590 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1591 	dump_drop_page(m->phys_addr);
1592 	vm_page_unwire_noq(m);
1593 	vm_page_free(m);
1594 }
1595 
1596 /*
1597  * Returns a new PV entry, allocating a new PV chunk from the system when
1598  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1599  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1600  * returned.
1601  *
1602  * The given PV list lock may be released.
1603  */
1604 static pv_entry_t
1605 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1606 {
1607 	int bit, field;
1608 	pv_entry_t pv;
1609 	struct pv_chunk *pc;
1610 	vm_page_t m;
1611 
1612 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1613 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1614 retry:
1615 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1616 	if (pc != NULL) {
1617 		for (field = 0; field < _NPCM; field++) {
1618 			if (pc->pc_map[field]) {
1619 				bit = cnttzd(pc->pc_map[field]);
1620 				break;
1621 			}
1622 		}
1623 		if (field < _NPCM) {
1624 			pv = &pc->pc_pventry[field * 64 + bit];
1625 			pc->pc_map[field] &= ~(1ul << bit);
1626 			/* If this was the last item, move it to tail */
1627 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1628 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1629 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1630 				    pc_list);
1631 			}
1632 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1633 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1634 			MPASS(PV_PMAP(pv) != NULL);
1635 			return (pv);
1636 		}
1637 	}
1638 	/* No free items, allocate another chunk */
1639 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1640 	if (m == NULL) {
1641 		if (lockp == NULL) {
1642 			PV_STAT(pc_chunk_tryfail++);
1643 			return (NULL);
1644 		}
1645 		m = reclaim_pv_chunk(pmap, lockp);
1646 		if (m == NULL)
1647 			goto retry;
1648 	}
1649 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1650 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1651 	dump_add_page(m->phys_addr);
1652 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1653 	pc->pc_pmap = pmap;
1654 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1655 	pc->pc_map[1] = PC_FREE1;
1656 	mtx_lock(&pv_chunks_mutex);
1657 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1658 	mtx_unlock(&pv_chunks_mutex);
1659 	pv = &pc->pc_pventry[0];
1660 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1661 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1662 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1663 	MPASS(PV_PMAP(pv) != NULL);
1664 	return (pv);
1665 }
1666 
1667 #if VM_NRESERVLEVEL > 0
1668 /*
1669  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1670  * replace the many pv entries for the 4KB page mappings by a single pv entry
1671  * for the 2MB page mapping.
1672  */
1673 static void
1674 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1675     struct rwlock **lockp)
1676 {
1677 	struct md_page *pvh;
1678 	pv_entry_t pv;
1679 	vm_offset_t va_last;
1680 	vm_page_t m;
1681 
1682 	KASSERT((pa & L3_PAGE_MASK) == 0,
1683 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1684 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1685 
1686 	/*
1687 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1688 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1689 	 * a transfer avoids the possibility that get_pv_entry() calls
1690 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1691 	 * mappings that is being promoted.
1692 	 */
1693 	m = PHYS_TO_VM_PAGE(pa);
1694 	va = trunc_2mpage(va);
1695 	pv = pmap_pvh_remove(&m->md, pmap, va);
1696 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1697 	pvh = pa_to_pvh(pa);
1698 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1699 	pvh->pv_gen++;
1700 	/* Free the remaining NPTEPG - 1 pv entries. */
1701 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1702 	do {
1703 		m++;
1704 		va += PAGE_SIZE;
1705 		pmap_pvh_free(&m->md, pmap, va);
1706 	} while (va < va_last);
1707 }
1708 #endif /* VM_NRESERVLEVEL > 0 */
1709 
1710 /*
1711  * First find and then destroy the pv entry for the specified pmap and virtual
1712  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1713  * page mappings.
1714  */
1715 static void
1716 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1717 {
1718 	pv_entry_t pv;
1719 
1720 	pv = pmap_pvh_remove(pvh, pmap, va);
1721 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1722 	free_pv_entry(pmap, pv);
1723 }
1724 
1725 /*
1726  * Conditionally create the PV entry for a 4KB page mapping if the required
1727  * memory can be allocated without resorting to reclamation.
1728  */
1729 static boolean_t
1730 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1731     struct rwlock **lockp)
1732 {
1733 	pv_entry_t pv;
1734 
1735 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1736 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1737 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1738 		pv->pv_va = va;
1739 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1740 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1741 		m->md.pv_gen++;
1742 		return (TRUE);
1743 	} else
1744 		return (FALSE);
1745 }
1746 
1747 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1748 #ifdef INVARIANTS
1749 static void
1750 validate_addr(vm_paddr_t addr, vm_size_t size)
1751 {
1752 	vm_paddr_t end = addr + size;
1753 	bool found = false;
1754 
1755 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1756 		if (addr >= phys_avail_debug[i] &&
1757 			end <= phys_avail_debug[i + 1]) {
1758 			found = true;
1759 			break;
1760 		}
1761 	}
1762 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1763 					addr, end));
1764 }
1765 #else
1766 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1767 #endif
1768 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1769 
1770 static vm_paddr_t
1771 alloc_pt_page(void)
1772 {
1773 	vm_paddr_t page;
1774 
1775 	page = allocpages(1);
1776 	pagezero(PHYS_TO_DMAP(page));
1777 	return (page);
1778 }
1779 
1780 static void
1781 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1782 {
1783 	pt_entry_t *pte, pteval;
1784 	vm_paddr_t page;
1785 
1786 	if (bootverbose)
1787 		printf("%s %lx -> %lx\n", __func__, start, end);
1788 	while (start < end) {
1789 		pteval = start | DMAP_PAGE_BITS;
1790 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1791 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1792 			page = alloc_pt_page();
1793 			pde_store(pte, page);
1794 		}
1795 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1796 		if ((start & L2_PAGE_MASK) == 0 &&
1797 			end - start >= L2_PAGE_SIZE) {
1798 			start += L2_PAGE_SIZE;
1799 			goto done;
1800 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1801 			page = alloc_pt_page();
1802 			pde_store(pte, page);
1803 		}
1804 
1805 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1806 		if ((start & L3_PAGE_MASK) == 0 &&
1807 			end - start >= L3_PAGE_SIZE) {
1808 			start += L3_PAGE_SIZE;
1809 			goto done;
1810 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1811 			page = alloc_pt_page();
1812 			pde_store(pte, page);
1813 		}
1814 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1815 		start += PAGE_SIZE;
1816 	done:
1817 		pte_store(pte, pteval);
1818 	}
1819 }
1820 
1821 static void
1822 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1823 {
1824 	vm_paddr_t start, end;
1825 
1826 	for (int i = 0; i < pregions_sz; i++) {
1827 		start = pregions[i].mr_start;
1828 		end = start + pregions[i].mr_size;
1829 		if (hwphyssz && start >= hwphyssz)
1830 			break;
1831 		if (hwphyssz && hwphyssz < end)
1832 			end = hwphyssz;
1833 		mmu_radix_dmap_range(start, end);
1834 	}
1835 }
1836 
1837 static void
1838 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1839 {
1840 	vm_paddr_t ptpages, pages;
1841 	pt_entry_t *pte;
1842 	vm_paddr_t l1phys;
1843 
1844 	bzero(kernel_pmap, sizeof(struct pmap));
1845 	PMAP_LOCK_INIT(kernel_pmap);
1846 
1847 	ptpages = allocpages(3);
1848 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1849 	validate_addr(l1phys, RADIX_PGD_SIZE);
1850 	if (bootverbose)
1851 		printf("l1phys=%lx\n", l1phys);
1852 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1853 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1854 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1855 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1856 
1857 	mmu_radix_dmap_populate(hwphyssz);
1858 
1859 	/*
1860 	 * Create page tables for first 128MB of KVA
1861 	 */
1862 	pages = ptpages;
1863 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1864 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1865 	pages += PAGE_SIZE;
1866 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1867 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1868 	pages += PAGE_SIZE;
1869 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1870 	/*
1871 	 * the kernel page table pages need to be preserved in
1872 	 * phys_avail and not overlap with previous  allocations
1873 	 */
1874 	pages = allocpages(nkpt);
1875 	if (bootverbose) {
1876 		printf("phys_avail after dmap populate and nkpt allocation\n");
1877 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1878 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1879 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1880 	}
1881 	KPTphys = pages;
1882 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1883 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1884 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1885 	if (bootverbose)
1886 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1887 	/*
1888 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1889 	 * preallocated kernel page table pages so that vm_page structures
1890 	 * representing these pages will be created.  The vm_page structures
1891 	 * are required for promotion of the corresponding kernel virtual
1892 	 * addresses to superpage mappings.
1893 	 */
1894 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1895 }
1896 
1897 static void
1898 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1899 {
1900 	vm_paddr_t	kpstart, kpend;
1901 	vm_size_t	physsz, hwphyssz;
1902 	//uint64_t	l2virt;
1903 	int		rm_pavail, proctab_size;
1904 	int		i, j;
1905 
1906 	kpstart = start & ~DMAP_BASE_ADDRESS;
1907 	kpend = end & ~DMAP_BASE_ADDRESS;
1908 
1909 	/* Get physical memory regions from firmware */
1910 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1911 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1912 
1913 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1914 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1915 
1916 	if (bootverbose)
1917 		for (int i = 0; i < regions_sz; i++)
1918 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1919 			    i, regions[i].mr_start, i, regions[i].mr_size);
1920 	/*
1921 	 * XXX workaround a simulator bug
1922 	 */
1923 	for (int i = 0; i < regions_sz; i++)
1924 		if (regions[i].mr_start & PAGE_MASK) {
1925 			regions[i].mr_start += PAGE_MASK;
1926 			regions[i].mr_start &= ~PAGE_MASK;
1927 			regions[i].mr_size &= ~PAGE_MASK;
1928 		}
1929 	if (bootverbose)
1930 		for (int i = 0; i < pregions_sz; i++)
1931 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1932 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1933 
1934 	phys_avail_count = 0;
1935 	physsz = 0;
1936 	hwphyssz = 0;
1937 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1938 	for (i = 0, j = 0; i < regions_sz; i++) {
1939 		if (bootverbose)
1940 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1941 			    i, regions[i].mr_start, i, regions[i].mr_size);
1942 
1943 		if (regions[i].mr_size < PAGE_SIZE)
1944 			continue;
1945 
1946 		if (hwphyssz != 0 &&
1947 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1948 			if (physsz < hwphyssz) {
1949 				phys_avail[j] = regions[i].mr_start;
1950 				phys_avail[j + 1] = regions[i].mr_start +
1951 				    (hwphyssz - physsz);
1952 				physsz = hwphyssz;
1953 				phys_avail_count++;
1954 				dump_avail[j] = phys_avail[j];
1955 				dump_avail[j + 1] = phys_avail[j + 1];
1956 			}
1957 			break;
1958 		}
1959 		phys_avail[j] = regions[i].mr_start;
1960 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1961 		dump_avail[j] = phys_avail[j];
1962 		dump_avail[j + 1] = phys_avail[j + 1];
1963 
1964 		phys_avail_count++;
1965 		physsz += regions[i].mr_size;
1966 		j += 2;
1967 	}
1968 
1969 	/* Check for overlap with the kernel and exception vectors */
1970 	rm_pavail = 0;
1971 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1972 		if (phys_avail[j] < EXC_LAST)
1973 			phys_avail[j] += EXC_LAST;
1974 
1975 		if (phys_avail[j] >= kpstart &&
1976 		    phys_avail[j + 1] <= kpend) {
1977 			phys_avail[j] = phys_avail[j + 1] = ~0;
1978 			rm_pavail++;
1979 			continue;
1980 		}
1981 
1982 		if (kpstart >= phys_avail[j] &&
1983 		    kpstart < phys_avail[j + 1]) {
1984 			if (kpend < phys_avail[j + 1]) {
1985 				phys_avail[2 * phys_avail_count] =
1986 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1987 				phys_avail[2 * phys_avail_count + 1] =
1988 				    phys_avail[j + 1];
1989 				phys_avail_count++;
1990 			}
1991 
1992 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1993 		}
1994 
1995 		if (kpend >= phys_avail[j] &&
1996 		    kpend < phys_avail[j + 1]) {
1997 			if (kpstart > phys_avail[j]) {
1998 				phys_avail[2 * phys_avail_count] = phys_avail[j];
1999 				phys_avail[2 * phys_avail_count + 1] =
2000 				    kpstart & ~PAGE_MASK;
2001 				phys_avail_count++;
2002 			}
2003 
2004 			phys_avail[j] = (kpend & ~PAGE_MASK) +
2005 			    PAGE_SIZE;
2006 		}
2007 	}
2008 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2009 	for (i = 0; i < 2 * phys_avail_count; i++)
2010 		phys_avail_debug[i] = phys_avail[i];
2011 
2012 	/* Remove physical available regions marked for removal (~0) */
2013 	if (rm_pavail) {
2014 		phys_avail_count -= rm_pavail;
2015 		for (i = 2 * phys_avail_count;
2016 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
2017 			phys_avail[i] = phys_avail[i + 1] = 0;
2018 	}
2019 	if (bootverbose) {
2020 		printf("phys_avail ranges after filtering:\n");
2021 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2022 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2023 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2024 	}
2025 	physmem = btoc(physsz);
2026 
2027 	/* XXX assume we're running non-virtualized and
2028 	 * we don't support BHYVE
2029 	 */
2030 	if (isa3_pid_bits == 0)
2031 		isa3_pid_bits = 20;
2032 	if (powernv_enabled) {
2033 		parttab_phys =
2034 		    moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2035 		validate_addr(parttab_phys, PARTTAB_SIZE);
2036 		for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2037 			pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2038 
2039 	}
2040 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2041 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2042 	validate_addr(proctab0pa, proctab_size);
2043 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2044 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2045 
2046 	mmu_radix_setup_pagetables(hwphyssz);
2047 }
2048 
2049 static void
2050 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2051 {
2052 	int		i;
2053 	vm_paddr_t	pa;
2054 	void		*dpcpu;
2055 	vm_offset_t va;
2056 
2057 	/*
2058 	 * Set up the Open Firmware pmap and add its mappings if not in real
2059 	 * mode.
2060 	 */
2061 	if (bootverbose)
2062 		printf("%s enter\n", __func__);
2063 
2064 	/*
2065 	 * Calculate the last available physical address, and reserve the
2066 	 * vm_page_array (upper bound).
2067 	 */
2068 	Maxmem = 0;
2069 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
2070 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2071 
2072 	/*
2073 	 * Remap any early IO mappings (console framebuffer, etc.)
2074 	 */
2075 	bs_remap_earlyboot();
2076 
2077 	/*
2078 	 * Allocate a kernel stack with a guard page for thread0 and map it
2079 	 * into the kernel page map.
2080 	 */
2081 	pa = allocpages(kstack_pages);
2082 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2083 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2084 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2085 	thread0.td_kstack = va;
2086 	for (i = 0; i < kstack_pages; i++) {
2087 		mmu_radix_kenter(va, pa);
2088 		pa += PAGE_SIZE;
2089 		va += PAGE_SIZE;
2090 	}
2091 	thread0.td_kstack_pages = kstack_pages;
2092 
2093 	/*
2094 	 * Allocate virtual address space for the message buffer.
2095 	 */
2096 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2097 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2098 
2099 	/*
2100 	 * Allocate virtual address space for the dynamic percpu area.
2101 	 */
2102 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2103 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2104 	dpcpu_init(dpcpu, curcpu);
2105 
2106 	crashdumpmap = (caddr_t)virtual_avail;
2107 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2108 
2109 	/*
2110 	 * Reserve some special page table entries/VA space for temporary
2111 	 * mapping of pages.
2112 	 */
2113 }
2114 
2115 static void
2116 mmu_parttab_init(void)
2117 {
2118 	uint64_t ptcr;
2119 
2120 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2121 
2122 	if (bootverbose)
2123 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2124 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2125 	if (bootverbose)
2126 		printf("setting ptcr %lx\n", ptcr);
2127 	mtspr(SPR_PTCR, ptcr);
2128 }
2129 
2130 static void
2131 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2132 {
2133 	uint64_t prev;
2134 
2135 	if (bootverbose)
2136 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2137 			   lpid, pagetab, proctab);
2138 	prev = be64toh(isa3_parttab[lpid].pagetab);
2139 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2140 	isa3_parttab[lpid].proctab = htobe64(proctab);
2141 
2142 	if (prev & PARTTAB_HR) {
2143 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2144 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2145 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2146 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2147 	} else {
2148 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2149 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2150 	}
2151 	ttusync();
2152 }
2153 
2154 static void
2155 mmu_radix_parttab_init(void)
2156 {
2157 	uint64_t pagetab;
2158 
2159 	mmu_parttab_init();
2160 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2161 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2162 	mmu_parttab_update(0, pagetab, 0);
2163 }
2164 
2165 static void
2166 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2167 {
2168 	uint64_t pagetab, proctab;
2169 
2170 	pagetab = be64toh(isa3_parttab[0].pagetab);
2171 	proctab = proctabpa | table_size | PARTTAB_GR;
2172 	mmu_parttab_update(0, pagetab, proctab);
2173 }
2174 
2175 static void
2176 mmu_radix_proctab_init(void)
2177 {
2178 
2179 	isa3_base_pid = 1;
2180 
2181 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2182 	isa3_proctab->proctab0 =
2183 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2184 		RADIX_PGD_INDEX_SHIFT);
2185 
2186 	if (powernv_enabled) {
2187 		mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2188 		__asm __volatile("ptesync" : : : "memory");
2189 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2190 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2191 		__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2192 #ifdef PSERIES
2193 	} else {
2194 		int64_t rc;
2195 
2196 		rc = phyp_hcall(H_REGISTER_PROC_TBL,
2197 		    PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2198 		    proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2199 		if (rc != H_SUCCESS)
2200 			panic("mmu_radix_proctab_init: "
2201 				"failed to register process table: rc=%jd",
2202 				(intmax_t)rc);
2203 #endif
2204 	}
2205 
2206 	if (bootverbose)
2207 		printf("process table %p and kernel radix PDE: %p\n",
2208 			   isa3_proctab, kernel_pmap->pm_pml1);
2209 	mtmsr(mfmsr() | PSL_DR );
2210 	mtmsr(mfmsr() &  ~PSL_DR);
2211 	kernel_pmap->pm_pid = isa3_base_pid;
2212 	isa3_base_pid++;
2213 }
2214 
2215 void
2216 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2217     int advice)
2218 {
2219 	struct rwlock *lock;
2220 	pml1_entry_t *l1e;
2221 	pml2_entry_t *l2e;
2222 	pml3_entry_t oldl3e, *l3e;
2223 	pt_entry_t *pte;
2224 	vm_offset_t va, va_next;
2225 	vm_page_t m;
2226 	bool anychanged;
2227 
2228 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2229 		return;
2230 	anychanged = false;
2231 	PMAP_LOCK(pmap);
2232 	for (; sva < eva; sva = va_next) {
2233 		l1e = pmap_pml1e(pmap, sva);
2234 		if ((be64toh(*l1e) & PG_V) == 0) {
2235 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2236 			if (va_next < sva)
2237 				va_next = eva;
2238 			continue;
2239 		}
2240 		l2e = pmap_l1e_to_l2e(l1e, sva);
2241 		if ((be64toh(*l2e) & PG_V) == 0) {
2242 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2243 			if (va_next < sva)
2244 				va_next = eva;
2245 			continue;
2246 		}
2247 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2248 		if (va_next < sva)
2249 			va_next = eva;
2250 		l3e = pmap_l2e_to_l3e(l2e, sva);
2251 		oldl3e = be64toh(*l3e);
2252 		if ((oldl3e & PG_V) == 0)
2253 			continue;
2254 		else if ((oldl3e & RPTE_LEAF) != 0) {
2255 			if ((oldl3e & PG_MANAGED) == 0)
2256 				continue;
2257 			lock = NULL;
2258 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2259 				if (lock != NULL)
2260 					rw_wunlock(lock);
2261 
2262 				/*
2263 				 * The large page mapping was destroyed.
2264 				 */
2265 				continue;
2266 			}
2267 
2268 			/*
2269 			 * Unless the page mappings are wired, remove the
2270 			 * mapping to a single page so that a subsequent
2271 			 * access may repromote.  Choosing the last page
2272 			 * within the address range [sva, min(va_next, eva))
2273 			 * generally results in more repromotions.  Since the
2274 			 * underlying page table page is fully populated, this
2275 			 * removal never frees a page table page.
2276 			 */
2277 			if ((oldl3e & PG_W) == 0) {
2278 				va = eva;
2279 				if (va > va_next)
2280 					va = va_next;
2281 				va -= PAGE_SIZE;
2282 				KASSERT(va >= sva,
2283 				    ("mmu_radix_advise: no address gap"));
2284 				pte = pmap_l3e_to_pte(l3e, va);
2285 				KASSERT((be64toh(*pte) & PG_V) != 0,
2286 				    ("pmap_advise: invalid PTE"));
2287 				pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2288 				    &lock);
2289 				anychanged = true;
2290 			}
2291 			if (lock != NULL)
2292 				rw_wunlock(lock);
2293 		}
2294 		if (va_next > eva)
2295 			va_next = eva;
2296 		va = va_next;
2297 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2298 			 pte++, sva += PAGE_SIZE) {
2299 			MPASS(pte == pmap_pte(pmap, sva));
2300 
2301 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2302 				goto maybe_invlrng;
2303 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2304 				if (advice == MADV_DONTNEED) {
2305 					/*
2306 					 * Future calls to pmap_is_modified()
2307 					 * can be avoided by making the page
2308 					 * dirty now.
2309 					 */
2310 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2311 					vm_page_dirty(m);
2312 				}
2313 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2314 			} else if ((be64toh(*pte) & PG_A) != 0)
2315 				atomic_clear_long(pte, htobe64(PG_A));
2316 			else
2317 				goto maybe_invlrng;
2318 			anychanged = true;
2319 			continue;
2320 maybe_invlrng:
2321 			if (va != va_next) {
2322 				anychanged = true;
2323 				va = va_next;
2324 			}
2325 		}
2326 		if (va != va_next)
2327 			anychanged = true;
2328 	}
2329 	if (anychanged)
2330 		pmap_invalidate_all(pmap);
2331 	PMAP_UNLOCK(pmap);
2332 }
2333 
2334 /*
2335  * Routines used in machine-dependent code
2336  */
2337 static void
2338 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2339 {
2340 	uint64_t lpcr;
2341 
2342 	if (bootverbose)
2343 		printf("%s\n", __func__);
2344 	hw_direct_map = 1;
2345 	powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2346 	mmu_radix_early_bootstrap(start, end);
2347 	if (bootverbose)
2348 		printf("early bootstrap complete\n");
2349 	if (powernv_enabled) {
2350 		lpcr = mfspr(SPR_LPCR);
2351 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2352 		mmu_radix_parttab_init();
2353 		mmu_radix_init_amor();
2354 		if (bootverbose)
2355 			printf("powernv init complete\n");
2356 	}
2357 	mmu_radix_init_iamr();
2358 	mmu_radix_proctab_init();
2359 	mmu_radix_pid_set(kernel_pmap);
2360 	if (powernv_enabled)
2361 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2362 	else
2363 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2364 
2365 	mmu_radix_late_bootstrap(start, end);
2366 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2367 	if (bootverbose)
2368 		printf("%s done\n", __func__);
2369 	pmap_bootstrapped = 1;
2370 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2371 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2372 }
2373 
2374 static void
2375 mmu_radix_cpu_bootstrap(int ap)
2376 {
2377 	uint64_t lpcr;
2378 	uint64_t ptcr;
2379 
2380 	if (powernv_enabled) {
2381 		lpcr = mfspr(SPR_LPCR);
2382 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2383 
2384 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2385 		mtspr(SPR_PTCR, ptcr);
2386 		mmu_radix_init_amor();
2387 	}
2388 	mmu_radix_init_iamr();
2389 	mmu_radix_pid_set(kernel_pmap);
2390 	if (powernv_enabled)
2391 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2392 	else
2393 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2394 }
2395 
2396 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2397     "2MB page mapping counters");
2398 
2399 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2400 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2401     &pmap_l3e_demotions, "2MB page demotions");
2402 
2403 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2404 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2405     &pmap_l3e_mappings, "2MB page mappings");
2406 
2407 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2408 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2409     &pmap_l3e_p_failures, "2MB page promotion failures");
2410 
2411 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2412 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2413     &pmap_l3e_promotions, "2MB page promotions");
2414 
2415 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2416     "1GB page mapping counters");
2417 
2418 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2419 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2420     &pmap_l2e_demotions, "1GB page demotions");
2421 
2422 void
2423 mmu_radix_clear_modify(vm_page_t m)
2424 {
2425 	struct md_page *pvh;
2426 	pmap_t pmap;
2427 	pv_entry_t next_pv, pv;
2428 	pml3_entry_t oldl3e, *l3e;
2429 	pt_entry_t oldpte, *pte;
2430 	struct rwlock *lock;
2431 	vm_offset_t va;
2432 	int md_gen, pvh_gen;
2433 
2434 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2435 	    ("pmap_clear_modify: page %p is not managed", m));
2436 	vm_page_assert_busied(m);
2437 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2438 
2439 	/*
2440 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2441 	 * If the object containing the page is locked and the page is not
2442 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2443 	 */
2444 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2445 		return;
2446 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2447 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2448 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2449 	rw_wlock(lock);
2450 restart:
2451 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2452 		pmap = PV_PMAP(pv);
2453 		if (!PMAP_TRYLOCK(pmap)) {
2454 			pvh_gen = pvh->pv_gen;
2455 			rw_wunlock(lock);
2456 			PMAP_LOCK(pmap);
2457 			rw_wlock(lock);
2458 			if (pvh_gen != pvh->pv_gen) {
2459 				PMAP_UNLOCK(pmap);
2460 				goto restart;
2461 			}
2462 		}
2463 		va = pv->pv_va;
2464 		l3e = pmap_pml3e(pmap, va);
2465 		oldl3e = be64toh(*l3e);
2466 		if ((oldl3e & PG_RW) != 0 &&
2467 		    pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2468 		    (oldl3e & PG_W) == 0) {
2469 			/*
2470 			 * Write protect the mapping to a
2471 			 * single page so that a subsequent
2472 			 * write access may repromote.
2473 			 */
2474 			va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2475 			    PG_PS_FRAME);
2476 			pte = pmap_l3e_to_pte(l3e, va);
2477 			oldpte = be64toh(*pte);
2478 			while (!atomic_cmpset_long(pte,
2479 			    htobe64(oldpte),
2480 				htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2481 				   oldpte = be64toh(*pte);
2482 			vm_page_dirty(m);
2483 			pmap_invalidate_page(pmap, va);
2484 		}
2485 		PMAP_UNLOCK(pmap);
2486 	}
2487 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2488 		pmap = PV_PMAP(pv);
2489 		if (!PMAP_TRYLOCK(pmap)) {
2490 			md_gen = m->md.pv_gen;
2491 			pvh_gen = pvh->pv_gen;
2492 			rw_wunlock(lock);
2493 			PMAP_LOCK(pmap);
2494 			rw_wlock(lock);
2495 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2496 				PMAP_UNLOCK(pmap);
2497 				goto restart;
2498 			}
2499 		}
2500 		l3e = pmap_pml3e(pmap, pv->pv_va);
2501 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2502 		    " a 2mpage in page %p's pv list", m));
2503 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2504 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2505 			atomic_clear_long(pte, htobe64(PG_M));
2506 			pmap_invalidate_page(pmap, pv->pv_va);
2507 		}
2508 		PMAP_UNLOCK(pmap);
2509 	}
2510 	rw_wunlock(lock);
2511 }
2512 
2513 void
2514 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2515     vm_size_t len, vm_offset_t src_addr)
2516 {
2517 	struct rwlock *lock;
2518 	struct spglist free;
2519 	vm_offset_t addr;
2520 	vm_offset_t end_addr = src_addr + len;
2521 	vm_offset_t va_next;
2522 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2523 	bool invalidate_all;
2524 
2525 	CTR6(KTR_PMAP,
2526 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2527 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2528 
2529 	if (dst_addr != src_addr)
2530 		return;
2531 	lock = NULL;
2532 	invalidate_all = false;
2533 	if (dst_pmap < src_pmap) {
2534 		PMAP_LOCK(dst_pmap);
2535 		PMAP_LOCK(src_pmap);
2536 	} else {
2537 		PMAP_LOCK(src_pmap);
2538 		PMAP_LOCK(dst_pmap);
2539 	}
2540 
2541 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2542 		pml1_entry_t *l1e;
2543 		pml2_entry_t *l2e;
2544 		pml3_entry_t srcptepaddr, *l3e;
2545 		pt_entry_t *src_pte, *dst_pte;
2546 
2547 		l1e = pmap_pml1e(src_pmap, addr);
2548 		if ((be64toh(*l1e) & PG_V) == 0) {
2549 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2550 			if (va_next < addr)
2551 				va_next = end_addr;
2552 			continue;
2553 		}
2554 
2555 		l2e = pmap_l1e_to_l2e(l1e, addr);
2556 		if ((be64toh(*l2e) & PG_V) == 0) {
2557 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2558 			if (va_next < addr)
2559 				va_next = end_addr;
2560 			continue;
2561 		}
2562 
2563 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2564 		if (va_next < addr)
2565 			va_next = end_addr;
2566 
2567 		l3e = pmap_l2e_to_l3e(l2e, addr);
2568 		srcptepaddr = be64toh(*l3e);
2569 		if (srcptepaddr == 0)
2570 			continue;
2571 
2572 		if (srcptepaddr & RPTE_LEAF) {
2573 			if ((addr & L3_PAGE_MASK) != 0 ||
2574 			    addr + L3_PAGE_SIZE > end_addr)
2575 				continue;
2576 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2577 			if (dst_pdpg == NULL)
2578 				break;
2579 			l3e = (pml3_entry_t *)
2580 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2581 			l3e = &l3e[pmap_pml3e_index(addr)];
2582 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2583 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2584 			    PMAP_ENTER_NORECLAIM, &lock))) {
2585 				*l3e = htobe64(srcptepaddr & ~PG_W);
2586 				pmap_resident_count_inc(dst_pmap,
2587 				    L3_PAGE_SIZE / PAGE_SIZE);
2588 				counter_u64_add(pmap_l3e_mappings, 1);
2589 			} else
2590 				dst_pdpg->ref_count--;
2591 			continue;
2592 		}
2593 
2594 		srcptepaddr &= PG_FRAME;
2595 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2596 		KASSERT(srcmpte->ref_count > 0,
2597 		    ("pmap_copy: source page table page is unused"));
2598 
2599 		if (va_next > end_addr)
2600 			va_next = end_addr;
2601 
2602 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2603 		src_pte = &src_pte[pmap_pte_index(addr)];
2604 		dstmpte = NULL;
2605 		while (addr < va_next) {
2606 			pt_entry_t ptetemp;
2607 			ptetemp = be64toh(*src_pte);
2608 			/*
2609 			 * we only virtual copy managed pages
2610 			 */
2611 			if ((ptetemp & PG_MANAGED) != 0) {
2612 				if (dstmpte != NULL &&
2613 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2614 					dstmpte->ref_count++;
2615 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2616 				    addr, NULL)) == NULL)
2617 					goto out;
2618 				dst_pte = (pt_entry_t *)
2619 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2620 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2621 				if (be64toh(*dst_pte) == 0 &&
2622 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2623 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2624 				    &lock)) {
2625 					/*
2626 					 * Clear the wired, modified, and
2627 					 * accessed (referenced) bits
2628 					 * during the copy.
2629 					 */
2630 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2631 					    PG_A));
2632 					pmap_resident_count_inc(dst_pmap, 1);
2633 				} else {
2634 					SLIST_INIT(&free);
2635 					if (pmap_unwire_ptp(dst_pmap, addr,
2636 					    dstmpte, &free)) {
2637 						/*
2638 						 * Although "addr" is not
2639 						 * mapped, paging-structure
2640 						 * caches could nonetheless
2641 						 * have entries that refer to
2642 						 * the freed page table pages.
2643 						 * Invalidate those entries.
2644 						 */
2645 						invalidate_all = true;
2646 						vm_page_free_pages_toq(&free,
2647 						    true);
2648 					}
2649 					goto out;
2650 				}
2651 				if (dstmpte->ref_count >= srcmpte->ref_count)
2652 					break;
2653 			}
2654 			addr += PAGE_SIZE;
2655 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2656 				src_pte = pmap_pte(src_pmap, addr);
2657 			else
2658 				src_pte++;
2659 		}
2660 	}
2661 out:
2662 	if (invalidate_all)
2663 		pmap_invalidate_all(dst_pmap);
2664 	if (lock != NULL)
2665 		rw_wunlock(lock);
2666 	PMAP_UNLOCK(src_pmap);
2667 	PMAP_UNLOCK(dst_pmap);
2668 }
2669 
2670 static void
2671 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2672 {
2673 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2674 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2675 
2676 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2677 	/*
2678 	 * XXX slow
2679 	 */
2680 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2681 }
2682 
2683 static void
2684 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2685     vm_offset_t b_offset, int xfersize)
2686 {
2687         void *a_cp, *b_cp;
2688         vm_offset_t a_pg_offset, b_pg_offset;
2689         int cnt;
2690 
2691 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2692 	    a_offset, mb, b_offset, xfersize);
2693 
2694         while (xfersize > 0) {
2695                 a_pg_offset = a_offset & PAGE_MASK;
2696                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2697                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2698                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2699                     a_pg_offset;
2700                 b_pg_offset = b_offset & PAGE_MASK;
2701                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2702                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2703                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2704                     b_pg_offset;
2705                 bcopy(a_cp, b_cp, cnt);
2706                 a_offset += cnt;
2707                 b_offset += cnt;
2708                 xfersize -= cnt;
2709         }
2710 }
2711 
2712 #if VM_NRESERVLEVEL > 0
2713 /*
2714  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2715  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2716  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2717  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2718  * identical characteristics.
2719  */
2720 static int
2721 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2722     struct rwlock **lockp)
2723 {
2724 	pml3_entry_t newpde;
2725 	pt_entry_t *firstpte, oldpte, pa, *pte;
2726 	vm_page_t mpte;
2727 
2728 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2729 
2730 	/*
2731 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2732 	 * either invalid, unused, or does not map the first 4KB physical page
2733 	 * within a 2MB page.
2734 	 */
2735 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2736 setpde:
2737 	newpde = be64toh(*firstpte);
2738 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2739 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2740 		    " in pmap %p", va, pmap);
2741 		goto fail;
2742 	}
2743 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2744 		/*
2745 		 * When PG_M is already clear, PG_RW can be cleared without
2746 		 * a TLB invalidation.
2747 		 */
2748 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2749 			goto setpde;
2750 		newpde &= ~RPTE_EAA_W;
2751 	}
2752 
2753 	/*
2754 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2755 	 * PTE maps an unexpected 4KB physical page or does not have identical
2756 	 * characteristics to the first PTE.
2757 	 */
2758 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2759 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2760 setpte:
2761 		oldpte = be64toh(*pte);
2762 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2763 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2764 			    " in pmap %p", va, pmap);
2765 			goto fail;
2766 		}
2767 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2768 			/*
2769 			 * When PG_M is already clear, PG_RW can be cleared
2770 			 * without a TLB invalidation.
2771 			 */
2772 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2773 				goto setpte;
2774 			oldpte &= ~RPTE_EAA_W;
2775 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2776 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2777 			    (va & ~L3_PAGE_MASK), pmap);
2778 		}
2779 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2780 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2781 			    " in pmap %p", va, pmap);
2782 			goto fail;
2783 		}
2784 		pa -= PAGE_SIZE;
2785 	}
2786 
2787 	/*
2788 	 * Save the page table page in its current state until the PDE
2789 	 * mapping the superpage is demoted by pmap_demote_pde() or
2790 	 * destroyed by pmap_remove_pde().
2791 	 */
2792 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2793 	KASSERT(mpte >= vm_page_array &&
2794 	    mpte < &vm_page_array[vm_page_array_size],
2795 	    ("pmap_promote_l3e: page table page is out of range"));
2796 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2797 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2798 	if (pmap_insert_pt_page(pmap, mpte)) {
2799 		CTR2(KTR_PMAP,
2800 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2801 		    pmap);
2802 		goto fail;
2803 	}
2804 
2805 	/*
2806 	 * Promote the pv entries.
2807 	 */
2808 	if ((newpde & PG_MANAGED) != 0)
2809 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2810 
2811 	pte_store(pde, PG_PROMOTED | newpde);
2812 	ptesync();
2813 	counter_u64_add(pmap_l3e_promotions, 1);
2814 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2815 	    " in pmap %p", va, pmap);
2816 	return (0);
2817  fail:
2818 	counter_u64_add(pmap_l3e_p_failures, 1);
2819 	return (KERN_FAILURE);
2820 }
2821 #endif /* VM_NRESERVLEVEL > 0 */
2822 
2823 int
2824 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2825     vm_prot_t prot, u_int flags, int8_t psind)
2826 {
2827 	struct rwlock *lock;
2828 	pml3_entry_t *l3e;
2829 	pt_entry_t *pte;
2830 	pt_entry_t newpte, origpte;
2831 	pv_entry_t pv;
2832 	vm_paddr_t opa, pa;
2833 	vm_page_t mpte, om;
2834 	int rv, retrycount;
2835 	boolean_t nosleep, invalidate_all, invalidate_page;
2836 
2837 	va = trunc_page(va);
2838 	retrycount = 0;
2839 	invalidate_page = invalidate_all = false;
2840 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2841 	    m, prot, flags, psind);
2842 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2843 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2844 	    ("pmap_enter: managed mapping within the clean submap"));
2845 	if ((m->oflags & VPO_UNMANAGED) == 0)
2846 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2847 
2848 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2849 	    ("pmap_enter: flags %u has reserved bits set", flags));
2850 	pa = VM_PAGE_TO_PHYS(m);
2851 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2852 	if ((flags & VM_PROT_WRITE) != 0)
2853 		newpte |= PG_M;
2854 	if ((flags & VM_PROT_READ) != 0)
2855 		newpte |= PG_A;
2856 	if (prot & VM_PROT_READ)
2857 		newpte |= RPTE_EAA_R;
2858 	if ((prot & VM_PROT_WRITE) != 0)
2859 		newpte |= RPTE_EAA_W;
2860 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2861 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2862 
2863 	if (prot & VM_PROT_EXECUTE)
2864 		newpte |= PG_X;
2865 	if ((flags & PMAP_ENTER_WIRED) != 0)
2866 		newpte |= PG_W;
2867 	if (va >= DMAP_MIN_ADDRESS)
2868 		newpte |= RPTE_EAA_P;
2869 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2870 	/*
2871 	 * Set modified bit gratuitously for writeable mappings if
2872 	 * the page is unmanaged. We do not want to take a fault
2873 	 * to do the dirty bit accounting for these mappings.
2874 	 */
2875 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2876 		if ((newpte & PG_RW) != 0)
2877 			newpte |= PG_M;
2878 	} else
2879 		newpte |= PG_MANAGED;
2880 
2881 	lock = NULL;
2882 	PMAP_LOCK(pmap);
2883 	if (psind == 1) {
2884 		/* Assert the required virtual and physical alignment. */
2885 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2886 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2887 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2888 		goto out;
2889 	}
2890 	mpte = NULL;
2891 
2892 	/*
2893 	 * In the case that a page table page is not
2894 	 * resident, we are creating it here.
2895 	 */
2896 retry:
2897 	l3e = pmap_pml3e(pmap, va);
2898 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2899 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2900 		pte = pmap_l3e_to_pte(l3e, va);
2901 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2902 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2903 			mpte->ref_count++;
2904 		}
2905 	} else if (va < VM_MAXUSER_ADDRESS) {
2906 		/*
2907 		 * Here if the pte page isn't mapped, or if it has been
2908 		 * deallocated.
2909 		 */
2910 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2911 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2912 		    nosleep ? NULL : &lock);
2913 		if (mpte == NULL && nosleep) {
2914 			rv = KERN_RESOURCE_SHORTAGE;
2915 			goto out;
2916 		}
2917 		if (__predict_false(retrycount++ == 6))
2918 			panic("too many retries");
2919 		invalidate_all = true;
2920 		goto retry;
2921 	} else
2922 		panic("pmap_enter: invalid page directory va=%#lx", va);
2923 
2924 	origpte = be64toh(*pte);
2925 	pv = NULL;
2926 
2927 	/*
2928 	 * Is the specified virtual address already mapped?
2929 	 */
2930 	if ((origpte & PG_V) != 0) {
2931 #ifdef INVARIANTS
2932 		if (VERBOSE_PMAP || pmap_logging) {
2933 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2934 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2935 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2936 			    curproc->p_pid, curproc->p_comm, origpte);
2937 #ifdef DDB
2938 			pmap_pte_walk(pmap->pm_pml1, va);
2939 #endif
2940 		}
2941 #endif
2942 		/*
2943 		 * Wiring change, just update stats. We don't worry about
2944 		 * wiring PT pages as they remain resident as long as there
2945 		 * are valid mappings in them. Hence, if a user page is wired,
2946 		 * the PT page will be also.
2947 		 */
2948 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2949 			pmap->pm_stats.wired_count++;
2950 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2951 			pmap->pm_stats.wired_count--;
2952 
2953 		/*
2954 		 * Remove the extra PT page reference.
2955 		 */
2956 		if (mpte != NULL) {
2957 			mpte->ref_count--;
2958 			KASSERT(mpte->ref_count > 0,
2959 			    ("pmap_enter: missing reference to page table page,"
2960 			     " va: 0x%lx", va));
2961 		}
2962 
2963 		/*
2964 		 * Has the physical page changed?
2965 		 */
2966 		opa = origpte & PG_FRAME;
2967 		if (opa == pa) {
2968 			/*
2969 			 * No, might be a protection or wiring change.
2970 			 */
2971 			if ((origpte & PG_MANAGED) != 0 &&
2972 			    (newpte & PG_RW) != 0)
2973 				vm_page_aflag_set(m, PGA_WRITEABLE);
2974 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2975 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2976 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2977 						goto retry;
2978 					if ((newpte & PG_M) != (origpte & PG_M))
2979 						vm_page_dirty(m);
2980 					if ((newpte & PG_A) != (origpte & PG_A))
2981 						vm_page_aflag_set(m, PGA_REFERENCED);
2982 					ptesync();
2983 				} else
2984 					invalidate_all = true;
2985 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2986 					goto unchanged;
2987 			}
2988 			goto validate;
2989 		}
2990 
2991 		/*
2992 		 * The physical page has changed.  Temporarily invalidate
2993 		 * the mapping.  This ensures that all threads sharing the
2994 		 * pmap keep a consistent view of the mapping, which is
2995 		 * necessary for the correct handling of COW faults.  It
2996 		 * also permits reuse of the old mapping's PV entry,
2997 		 * avoiding an allocation.
2998 		 *
2999 		 * For consistency, handle unmanaged mappings the same way.
3000 		 */
3001 		origpte = be64toh(pte_load_clear(pte));
3002 		KASSERT((origpte & PG_FRAME) == opa,
3003 		    ("pmap_enter: unexpected pa update for %#lx", va));
3004 		if ((origpte & PG_MANAGED) != 0) {
3005 			om = PHYS_TO_VM_PAGE(opa);
3006 
3007 			/*
3008 			 * The pmap lock is sufficient to synchronize with
3009 			 * concurrent calls to pmap_page_test_mappings() and
3010 			 * pmap_ts_referenced().
3011 			 */
3012 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3013 				vm_page_dirty(om);
3014 			if ((origpte & PG_A) != 0)
3015 				vm_page_aflag_set(om, PGA_REFERENCED);
3016 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3017 			pv = pmap_pvh_remove(&om->md, pmap, va);
3018 			if ((newpte & PG_MANAGED) == 0)
3019 				free_pv_entry(pmap, pv);
3020 #ifdef INVARIANTS
3021 			else if (origpte & PG_MANAGED) {
3022 				if (pv == NULL) {
3023 #ifdef DDB
3024 					pmap_page_print_mappings(om);
3025 #endif
3026 					MPASS(pv != NULL);
3027 				}
3028 			}
3029 #endif
3030 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3031 			    TAILQ_EMPTY(&om->md.pv_list) &&
3032 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3033 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3034 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3035 		}
3036 		if ((origpte & PG_A) != 0)
3037 			invalidate_page = true;
3038 		origpte = 0;
3039 	} else {
3040 		if (pmap != kernel_pmap) {
3041 #ifdef INVARIANTS
3042 			if (VERBOSE_PMAP || pmap_logging)
3043 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3044 				    pmap, va, m, prot, flags, psind,
3045 				    pmap->pm_pid, curproc->p_pid,
3046 				    curproc->p_comm);
3047 #endif
3048 		}
3049 
3050 		/*
3051 		 * Increment the counters.
3052 		 */
3053 		if ((newpte & PG_W) != 0)
3054 			pmap->pm_stats.wired_count++;
3055 		pmap_resident_count_inc(pmap, 1);
3056 	}
3057 
3058 	/*
3059 	 * Enter on the PV list if part of our managed memory.
3060 	 */
3061 	if ((newpte & PG_MANAGED) != 0) {
3062 		if (pv == NULL) {
3063 			pv = get_pv_entry(pmap, &lock);
3064 			pv->pv_va = va;
3065 		}
3066 #ifdef VERBOSE_PV
3067 		else
3068 			printf("reassigning pv: %p to pmap: %p\n",
3069 				   pv, pmap);
3070 #endif
3071 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3072 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3073 		m->md.pv_gen++;
3074 		if ((newpte & PG_RW) != 0)
3075 			vm_page_aflag_set(m, PGA_WRITEABLE);
3076 	}
3077 
3078 	/*
3079 	 * Update the PTE.
3080 	 */
3081 	if ((origpte & PG_V) != 0) {
3082 validate:
3083 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3084 		KASSERT((origpte & PG_FRAME) == pa,
3085 		    ("pmap_enter: unexpected pa update for %#lx", va));
3086 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3087 		    (PG_M | PG_RW)) {
3088 			if ((origpte & PG_MANAGED) != 0)
3089 				vm_page_dirty(m);
3090 			invalidate_page = true;
3091 
3092 			/*
3093 			 * Although the PTE may still have PG_RW set, TLB
3094 			 * invalidation may nonetheless be required because
3095 			 * the PTE no longer has PG_M set.
3096 			 */
3097 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3098 			/*
3099 			 * Removing capabilities requires invalidation on POWER
3100 			 */
3101 			invalidate_page = true;
3102 			goto unchanged;
3103 		}
3104 		if ((origpte & PG_A) != 0)
3105 			invalidate_page = true;
3106 	} else {
3107 		pte_store(pte, newpte);
3108 		ptesync();
3109 	}
3110 unchanged:
3111 
3112 #if VM_NRESERVLEVEL > 0
3113 	/*
3114 	 * If both the page table page and the reservation are fully
3115 	 * populated, then attempt promotion.
3116 	 */
3117 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3118 	    mmu_radix_ps_enabled(pmap) &&
3119 	    (m->flags & PG_FICTITIOUS) == 0 &&
3120 	    vm_reserv_level_iffullpop(m) == 0 &&
3121 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3122 		invalidate_all = true;
3123 #endif
3124 	if (invalidate_all)
3125 		pmap_invalidate_all(pmap);
3126 	else if (invalidate_page)
3127 		pmap_invalidate_page(pmap, va);
3128 
3129 	rv = KERN_SUCCESS;
3130 out:
3131 	if (lock != NULL)
3132 		rw_wunlock(lock);
3133 	PMAP_UNLOCK(pmap);
3134 
3135 	return (rv);
3136 }
3137 
3138 /*
3139  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3140  * if successful.  Returns false if (1) a page table page cannot be allocated
3141  * without sleeping, (2) a mapping already exists at the specified virtual
3142  * address, or (3) a PV entry cannot be allocated without reclaiming another
3143  * PV entry.
3144  */
3145 static bool
3146 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3147     struct rwlock **lockp)
3148 {
3149 	pml3_entry_t newpde;
3150 
3151 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3152 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3153 	    RPTE_LEAF | PG_V;
3154 	if ((m->oflags & VPO_UNMANAGED) == 0)
3155 		newpde |= PG_MANAGED;
3156 	if (prot & VM_PROT_EXECUTE)
3157 		newpde |= PG_X;
3158 	if (prot & VM_PROT_READ)
3159 		newpde |= RPTE_EAA_R;
3160 	if (va >= DMAP_MIN_ADDRESS)
3161 		newpde |= RPTE_EAA_P;
3162 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3163 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3164 	    KERN_SUCCESS);
3165 }
3166 
3167 /*
3168  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3169  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3170  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3171  * a mapping already exists at the specified virtual address.  Returns
3172  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3173  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3174  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3175  *
3176  * The parameter "m" is only used when creating a managed, writeable mapping.
3177  */
3178 static int
3179 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3180     vm_page_t m, struct rwlock **lockp)
3181 {
3182 	struct spglist free;
3183 	pml3_entry_t oldl3e, *l3e;
3184 	vm_page_t mt, pdpg;
3185 
3186 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3187 	    ("pmap_enter_pde: newpde is missing PG_M"));
3188 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3189 
3190 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3191 	    NULL : lockp)) == NULL) {
3192 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3193 		    " in pmap %p", va, pmap);
3194 		return (KERN_RESOURCE_SHORTAGE);
3195 	}
3196 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3197 	l3e = &l3e[pmap_pml3e_index(va)];
3198 	oldl3e = be64toh(*l3e);
3199 	if ((oldl3e & PG_V) != 0) {
3200 		KASSERT(pdpg->ref_count > 1,
3201 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3202 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3203 			pdpg->ref_count--;
3204 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3205 			    " in pmap %p", va, pmap);
3206 			return (KERN_FAILURE);
3207 		}
3208 		/* Break the existing mapping(s). */
3209 		SLIST_INIT(&free);
3210 		if ((oldl3e & RPTE_LEAF) != 0) {
3211 			/*
3212 			 * The reference to the PD page that was acquired by
3213 			 * pmap_allocl3e() ensures that it won't be freed.
3214 			 * However, if the PDE resulted from a promotion, then
3215 			 * a reserved PT page could be freed.
3216 			 */
3217 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3218 			pmap_invalidate_l3e_page(pmap, va, oldl3e);
3219 		} else {
3220 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3221 			    &free, lockp))
3222 		               pmap_invalidate_all(pmap);
3223 		}
3224 		vm_page_free_pages_toq(&free, true);
3225 		if (va >= VM_MAXUSER_ADDRESS) {
3226 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3227 			if (pmap_insert_pt_page(pmap, mt)) {
3228 				/*
3229 				 * XXX Currently, this can't happen because
3230 				 * we do not perform pmap_enter(psind == 1)
3231 				 * on the kernel pmap.
3232 				 */
3233 				panic("pmap_enter_pde: trie insert failed");
3234 			}
3235 		} else
3236 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3237 			    l3e));
3238 	}
3239 	if ((newpde & PG_MANAGED) != 0) {
3240 		/*
3241 		 * Abort this mapping if its PV entry could not be created.
3242 		 */
3243 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3244 			SLIST_INIT(&free);
3245 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3246 				/*
3247 				 * Although "va" is not mapped, paging-
3248 				 * structure caches could nonetheless have
3249 				 * entries that refer to the freed page table
3250 				 * pages.  Invalidate those entries.
3251 				 */
3252 				pmap_invalidate_page(pmap, va);
3253 				vm_page_free_pages_toq(&free, true);
3254 			}
3255 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3256 			    " in pmap %p", va, pmap);
3257 			return (KERN_RESOURCE_SHORTAGE);
3258 		}
3259 		if ((newpde & PG_RW) != 0) {
3260 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3261 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * Increment counters.
3267 	 */
3268 	if ((newpde & PG_W) != 0)
3269 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3270 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3271 
3272 	/*
3273 	 * Map the superpage.  (This is not a promoted mapping; there will not
3274 	 * be any lingering 4KB page mappings in the TLB.)
3275 	 */
3276 	pte_store(l3e, newpde);
3277 	ptesync();
3278 
3279 	counter_u64_add(pmap_l3e_mappings, 1);
3280 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3281 	    " in pmap %p", va, pmap);
3282 	return (KERN_SUCCESS);
3283 }
3284 
3285 void
3286 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3287     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3288 {
3289 
3290 	struct rwlock *lock;
3291 	vm_offset_t va;
3292 	vm_page_t m, mpte;
3293 	vm_pindex_t diff, psize;
3294 	bool invalidate;
3295 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3296 
3297 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3298 	    end, m_start, prot);
3299 
3300 	invalidate = false;
3301 	psize = atop(end - start);
3302 	mpte = NULL;
3303 	m = m_start;
3304 	lock = NULL;
3305 	PMAP_LOCK(pmap);
3306 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3307 		va = start + ptoa(diff);
3308 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3309 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3310 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3311 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3312 		else
3313 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3314 			    mpte, &lock, &invalidate);
3315 		m = TAILQ_NEXT(m, listq);
3316 	}
3317 	ptesync();
3318 	if (lock != NULL)
3319 		rw_wunlock(lock);
3320 	if (invalidate)
3321 		pmap_invalidate_all(pmap);
3322 	PMAP_UNLOCK(pmap);
3323 }
3324 
3325 static vm_page_t
3326 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3327     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3328 {
3329 	struct spglist free;
3330 	pt_entry_t *pte;
3331 	vm_paddr_t pa;
3332 
3333 	KASSERT(!VA_IS_CLEANMAP(va) ||
3334 	    (m->oflags & VPO_UNMANAGED) != 0,
3335 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3336 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3337 
3338 	/*
3339 	 * In the case that a page table page is not
3340 	 * resident, we are creating it here.
3341 	 */
3342 	if (va < VM_MAXUSER_ADDRESS) {
3343 		vm_pindex_t ptepindex;
3344 		pml3_entry_t *ptepa;
3345 
3346 		/*
3347 		 * Calculate pagetable page index
3348 		 */
3349 		ptepindex = pmap_l3e_pindex(va);
3350 		if (mpte && (mpte->pindex == ptepindex)) {
3351 			mpte->ref_count++;
3352 		} else {
3353 			/*
3354 			 * Get the page directory entry
3355 			 */
3356 			ptepa = pmap_pml3e(pmap, va);
3357 
3358 			/*
3359 			 * If the page table page is mapped, we just increment
3360 			 * the hold count, and activate it.  Otherwise, we
3361 			 * attempt to allocate a page table page.  If this
3362 			 * attempt fails, we don't retry.  Instead, we give up.
3363 			 */
3364 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3365 				if (be64toh(*ptepa) & RPTE_LEAF)
3366 					return (NULL);
3367 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3368 				mpte->ref_count++;
3369 			} else {
3370 				/*
3371 				 * Pass NULL instead of the PV list lock
3372 				 * pointer, because we don't intend to sleep.
3373 				 */
3374 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3375 				if (mpte == NULL)
3376 					return (mpte);
3377 			}
3378 		}
3379 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3380 		pte = &pte[pmap_pte_index(va)];
3381 	} else {
3382 		mpte = NULL;
3383 		pte = pmap_pte(pmap, va);
3384 	}
3385 	if (be64toh(*pte)) {
3386 		if (mpte != NULL) {
3387 			mpte->ref_count--;
3388 			mpte = NULL;
3389 		}
3390 		return (mpte);
3391 	}
3392 
3393 	/*
3394 	 * Enter on the PV list if part of our managed memory.
3395 	 */
3396 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3397 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3398 		if (mpte != NULL) {
3399 			SLIST_INIT(&free);
3400 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3401 				/*
3402 				 * Although "va" is not mapped, paging-
3403 				 * structure caches could nonetheless have
3404 				 * entries that refer to the freed page table
3405 				 * pages.  Invalidate those entries.
3406 				 */
3407 				*invalidate = true;
3408 				vm_page_free_pages_toq(&free, true);
3409 			}
3410 			mpte = NULL;
3411 		}
3412 		return (mpte);
3413 	}
3414 
3415 	/*
3416 	 * Increment counters
3417 	 */
3418 	pmap_resident_count_inc(pmap, 1);
3419 
3420 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3421 	if (prot & VM_PROT_EXECUTE)
3422 		pa |= PG_X;
3423 	else
3424 		pa |= RPTE_EAA_R;
3425 	if ((m->oflags & VPO_UNMANAGED) == 0)
3426 		pa |= PG_MANAGED;
3427 
3428 	pte_store(pte, pa);
3429 	return (mpte);
3430 }
3431 
3432 void
3433 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3434     vm_prot_t prot)
3435 {
3436 	struct rwlock *lock;
3437 	bool invalidate;
3438 
3439 	lock = NULL;
3440 	invalidate = false;
3441 	PMAP_LOCK(pmap);
3442 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3443 	    &invalidate);
3444 	ptesync();
3445 	if (lock != NULL)
3446 		rw_wunlock(lock);
3447 	if (invalidate)
3448 		pmap_invalidate_all(pmap);
3449 	PMAP_UNLOCK(pmap);
3450 }
3451 
3452 vm_paddr_t
3453 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3454 {
3455 	pml3_entry_t *l3e;
3456 	pt_entry_t *pte;
3457 	vm_paddr_t pa;
3458 
3459 	l3e = pmap_pml3e(pmap, va);
3460 	if (__predict_false(l3e == NULL))
3461 		return (0);
3462 	if (be64toh(*l3e) & RPTE_LEAF) {
3463 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3464 		pa |= (va & L3_PAGE_MASK);
3465 	} else {
3466 		/*
3467 		 * Beware of a concurrent promotion that changes the
3468 		 * PDE at this point!  For example, vtopte() must not
3469 		 * be used to access the PTE because it would use the
3470 		 * new PDE.  It is, however, safe to use the old PDE
3471 		 * because the page table page is preserved by the
3472 		 * promotion.
3473 		 */
3474 		pte = pmap_l3e_to_pte(l3e, va);
3475 		if (__predict_false(pte == NULL))
3476 			return (0);
3477 		pa = be64toh(*pte);
3478 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3479 		pa |= (va & PAGE_MASK);
3480 	}
3481 	return (pa);
3482 }
3483 
3484 vm_page_t
3485 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3486 {
3487 	pml3_entry_t l3e, *l3ep;
3488 	pt_entry_t pte;
3489 	vm_page_t m;
3490 
3491 	m = NULL;
3492 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3493 	PMAP_LOCK(pmap);
3494 	l3ep = pmap_pml3e(pmap, va);
3495 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3496 		if (l3e & RPTE_LEAF) {
3497 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3498 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3499 				    (va & L3_PAGE_MASK));
3500 		} else {
3501 			/* Native endian PTE, do not pass to pmap functions */
3502 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3503 			if ((pte & PG_V) &&
3504 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3505 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3506 		}
3507 		if (m != NULL && !vm_page_wire_mapped(m))
3508 			m = NULL;
3509 	}
3510 	PMAP_UNLOCK(pmap);
3511 	return (m);
3512 }
3513 
3514 static void
3515 mmu_radix_growkernel(vm_offset_t addr)
3516 {
3517 	vm_paddr_t paddr;
3518 	vm_page_t nkpg;
3519 	pml3_entry_t *l3e;
3520 	pml2_entry_t *l2e;
3521 
3522 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3523 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3524 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3525 		return;
3526 
3527 	addr = roundup2(addr, L3_PAGE_SIZE);
3528 	if (addr - 1 >= vm_map_max(kernel_map))
3529 		addr = vm_map_max(kernel_map);
3530 	while (kernel_vm_end < addr) {
3531 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3532 		if ((be64toh(*l2e) & PG_V) == 0) {
3533 			/* We need a new PDP entry */
3534 			nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3535 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3536 			if (nkpg == NULL)
3537 				panic("pmap_growkernel: no memory to grow kernel");
3538 			nkpg->pindex = kernel_vm_end >> L2_PAGE_SIZE_SHIFT;
3539 			paddr = VM_PAGE_TO_PHYS(nkpg);
3540 			pde_store(l2e, paddr);
3541 			continue; /* try again */
3542 		}
3543 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3544 		if ((be64toh(*l3e) & PG_V) != 0) {
3545 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3546 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3547 				kernel_vm_end = vm_map_max(kernel_map);
3548 				break;
3549 			}
3550 			continue;
3551 		}
3552 
3553 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
3554 		    VM_ALLOC_ZERO);
3555 		if (nkpg == NULL)
3556 			panic("pmap_growkernel: no memory to grow kernel");
3557 		nkpg->pindex = pmap_l3e_pindex(kernel_vm_end);
3558 		paddr = VM_PAGE_TO_PHYS(nkpg);
3559 		pde_store(l3e, paddr);
3560 
3561 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3562 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3563 			kernel_vm_end = vm_map_max(kernel_map);
3564 			break;
3565 		}
3566 	}
3567 	ptesync();
3568 }
3569 
3570 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3571 static uma_zone_t zone_radix_pgd;
3572 
3573 static int
3574 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3575     int flags)
3576 {
3577 	int req;
3578 
3579 	req = VM_ALLOC_WIRED | malloc2vm_flags(flags);
3580 	for (int i = 0; i < count; i++) {
3581 		vm_page_t m = vm_page_alloc_noobj_contig(req,
3582 		    RADIX_PGD_SIZE / PAGE_SIZE,
3583 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3584 		    VM_MEMATTR_DEFAULT);
3585 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3586 	}
3587 	return (count);
3588 }
3589 
3590 static void
3591 radix_pgd_release(void *arg __unused, void **store, int count)
3592 {
3593 	vm_page_t m;
3594 	struct spglist free;
3595 	int page_count;
3596 
3597 	SLIST_INIT(&free);
3598 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3599 
3600 	for (int i = 0; i < count; i++) {
3601 		/*
3602 		 * XXX selectively remove dmap and KVA entries so we don't
3603 		 * need to bzero
3604 		 */
3605 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3606 		for (int j = page_count-1; j >= 0; j--) {
3607 			vm_page_unwire_noq(&m[j]);
3608 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3609 		}
3610 		vm_page_free_pages_toq(&free, false);
3611 	}
3612 }
3613 
3614 static void
3615 mmu_radix_init(void)
3616 {
3617 	vm_page_t mpte;
3618 	vm_size_t s;
3619 	int error, i, pv_npg;
3620 
3621 	/* XXX is this really needed for POWER? */
3622 	/* L1TF, reserve page @0 unconditionally */
3623 	vm_page_blacklist_add(0, bootverbose);
3624 
3625 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3626 		RADIX_PGD_SIZE, NULL, NULL,
3627 #ifdef INVARIANTS
3628 	    trash_init, trash_fini,
3629 #else
3630 	    NULL, NULL,
3631 #endif
3632 		radix_pgd_import, radix_pgd_release,
3633 		NULL, UMA_ZONE_NOBUCKET);
3634 
3635 	/*
3636 	 * Initialize the vm page array entries for the kernel pmap's
3637 	 * page table pages.
3638 	 */
3639 	PMAP_LOCK(kernel_pmap);
3640 	for (i = 0; i < nkpt; i++) {
3641 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3642 		KASSERT(mpte >= vm_page_array &&
3643 		    mpte < &vm_page_array[vm_page_array_size],
3644 		    ("pmap_init: page table page is out of range size: %lu",
3645 		     vm_page_array_size));
3646 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3647 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3648 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3649 		//pmap_insert_pt_page(kernel_pmap, mpte);
3650 		mpte->ref_count = 1;
3651 	}
3652 	PMAP_UNLOCK(kernel_pmap);
3653 	vm_wire_add(nkpt);
3654 
3655 	CTR1(KTR_PMAP, "%s()", __func__);
3656 	TAILQ_INIT(&pv_dummy.pv_list);
3657 
3658 	/*
3659 	 * Are large page mappings enabled?
3660 	 */
3661 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3662 	if (superpages_enabled) {
3663 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3664 		    ("pmap_init: can't assign to pagesizes[1]"));
3665 		pagesizes[1] = L3_PAGE_SIZE;
3666 	}
3667 
3668 	/*
3669 	 * Initialize the pv chunk list mutex.
3670 	 */
3671 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3672 
3673 	/*
3674 	 * Initialize the pool of pv list locks.
3675 	 */
3676 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3677 		rw_init(&pv_list_locks[i], "pmap pv list");
3678 
3679 	/*
3680 	 * Calculate the size of the pv head table for superpages.
3681 	 */
3682 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3683 
3684 	/*
3685 	 * Allocate memory for the pv head table for superpages.
3686 	 */
3687 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3688 	s = round_page(s);
3689 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
3690 	for (i = 0; i < pv_npg; i++)
3691 		TAILQ_INIT(&pv_table[i].pv_list);
3692 	TAILQ_INIT(&pv_dummy.pv_list);
3693 
3694 	pmap_initialized = 1;
3695 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3696 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3697 	    (vmem_addr_t *)&qframe);
3698 
3699 	if (error != 0)
3700 		panic("qframe allocation failed");
3701 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3702 	    1, 1, M_WAITOK);
3703 }
3704 
3705 static boolean_t
3706 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3707 {
3708 	struct rwlock *lock;
3709 	pv_entry_t pv;
3710 	struct md_page *pvh;
3711 	pt_entry_t *pte, mask;
3712 	pmap_t pmap;
3713 	int md_gen, pvh_gen;
3714 	boolean_t rv;
3715 
3716 	rv = FALSE;
3717 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3718 	rw_rlock(lock);
3719 restart:
3720 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3721 		pmap = PV_PMAP(pv);
3722 		if (!PMAP_TRYLOCK(pmap)) {
3723 			md_gen = m->md.pv_gen;
3724 			rw_runlock(lock);
3725 			PMAP_LOCK(pmap);
3726 			rw_rlock(lock);
3727 			if (md_gen != m->md.pv_gen) {
3728 				PMAP_UNLOCK(pmap);
3729 				goto restart;
3730 			}
3731 		}
3732 		pte = pmap_pte(pmap, pv->pv_va);
3733 		mask = 0;
3734 		if (modified)
3735 			mask |= PG_RW | PG_M;
3736 		if (accessed)
3737 			mask |= PG_V | PG_A;
3738 		rv = (be64toh(*pte) & mask) == mask;
3739 		PMAP_UNLOCK(pmap);
3740 		if (rv)
3741 			goto out;
3742 	}
3743 	if ((m->flags & PG_FICTITIOUS) == 0) {
3744 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3745 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3746 			pmap = PV_PMAP(pv);
3747 			if (!PMAP_TRYLOCK(pmap)) {
3748 				md_gen = m->md.pv_gen;
3749 				pvh_gen = pvh->pv_gen;
3750 				rw_runlock(lock);
3751 				PMAP_LOCK(pmap);
3752 				rw_rlock(lock);
3753 				if (md_gen != m->md.pv_gen ||
3754 				    pvh_gen != pvh->pv_gen) {
3755 					PMAP_UNLOCK(pmap);
3756 					goto restart;
3757 				}
3758 			}
3759 			pte = pmap_pml3e(pmap, pv->pv_va);
3760 			mask = 0;
3761 			if (modified)
3762 				mask |= PG_RW | PG_M;
3763 			if (accessed)
3764 				mask |= PG_V | PG_A;
3765 			rv = (be64toh(*pte) & mask) == mask;
3766 			PMAP_UNLOCK(pmap);
3767 			if (rv)
3768 				goto out;
3769 		}
3770 	}
3771 out:
3772 	rw_runlock(lock);
3773 	return (rv);
3774 }
3775 
3776 /*
3777  *	pmap_is_modified:
3778  *
3779  *	Return whether or not the specified physical page was modified
3780  *	in any physical maps.
3781  */
3782 boolean_t
3783 mmu_radix_is_modified(vm_page_t m)
3784 {
3785 
3786 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3787 	    ("pmap_is_modified: page %p is not managed", m));
3788 
3789 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3790 	/*
3791 	 * If the page is not busied then this check is racy.
3792 	 */
3793 	if (!pmap_page_is_write_mapped(m))
3794 		return (FALSE);
3795 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3796 }
3797 
3798 boolean_t
3799 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3800 {
3801 	pml3_entry_t *l3e;
3802 	pt_entry_t *pte;
3803 	boolean_t rv;
3804 
3805 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3806 	rv = FALSE;
3807 	PMAP_LOCK(pmap);
3808 	l3e = pmap_pml3e(pmap, addr);
3809 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3810 		pte = pmap_l3e_to_pte(l3e, addr);
3811 		rv = (be64toh(*pte) & PG_V) == 0;
3812 	}
3813 	PMAP_UNLOCK(pmap);
3814 	return (rv);
3815 }
3816 
3817 boolean_t
3818 mmu_radix_is_referenced(vm_page_t m)
3819 {
3820 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3821 	    ("pmap_is_referenced: page %p is not managed", m));
3822 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3823 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3824 }
3825 
3826 /*
3827  *	pmap_ts_referenced:
3828  *
3829  *	Return a count of reference bits for a page, clearing those bits.
3830  *	It is not necessary for every reference bit to be cleared, but it
3831  *	is necessary that 0 only be returned when there are truly no
3832  *	reference bits set.
3833  *
3834  *	As an optimization, update the page's dirty field if a modified bit is
3835  *	found while counting reference bits.  This opportunistic update can be
3836  *	performed at low cost and can eliminate the need for some future calls
3837  *	to pmap_is_modified().  However, since this function stops after
3838  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3839  *	dirty pages.  Those dirty pages will only be detected by a future call
3840  *	to pmap_is_modified().
3841  *
3842  *	A DI block is not needed within this function, because
3843  *	invalidations are performed before the PV list lock is
3844  *	released.
3845  */
3846 boolean_t
3847 mmu_radix_ts_referenced(vm_page_t m)
3848 {
3849 	struct md_page *pvh;
3850 	pv_entry_t pv, pvf;
3851 	pmap_t pmap;
3852 	struct rwlock *lock;
3853 	pml3_entry_t oldl3e, *l3e;
3854 	pt_entry_t *pte;
3855 	vm_paddr_t pa;
3856 	int cleared, md_gen, not_cleared, pvh_gen;
3857 	struct spglist free;
3858 
3859 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3860 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3861 	    ("pmap_ts_referenced: page %p is not managed", m));
3862 	SLIST_INIT(&free);
3863 	cleared = 0;
3864 	pa = VM_PAGE_TO_PHYS(m);
3865 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3866 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3867 	rw_wlock(lock);
3868 retry:
3869 	not_cleared = 0;
3870 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3871 		goto small_mappings;
3872 	pv = pvf;
3873 	do {
3874 		if (pvf == NULL)
3875 			pvf = pv;
3876 		pmap = PV_PMAP(pv);
3877 		if (!PMAP_TRYLOCK(pmap)) {
3878 			pvh_gen = pvh->pv_gen;
3879 			rw_wunlock(lock);
3880 			PMAP_LOCK(pmap);
3881 			rw_wlock(lock);
3882 			if (pvh_gen != pvh->pv_gen) {
3883 				PMAP_UNLOCK(pmap);
3884 				goto retry;
3885 			}
3886 		}
3887 		l3e = pmap_pml3e(pmap, pv->pv_va);
3888 		oldl3e = be64toh(*l3e);
3889 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3890 			/*
3891 			 * Although "oldpde" is mapping a 2MB page, because
3892 			 * this function is called at a 4KB page granularity,
3893 			 * we only update the 4KB page under test.
3894 			 */
3895 			vm_page_dirty(m);
3896 		}
3897 		if ((oldl3e & PG_A) != 0) {
3898 			/*
3899 			 * Since this reference bit is shared by 512 4KB
3900 			 * pages, it should not be cleared every time it is
3901 			 * tested.  Apply a simple "hash" function on the
3902 			 * physical page number, the virtual superpage number,
3903 			 * and the pmap address to select one 4KB page out of
3904 			 * the 512 on which testing the reference bit will
3905 			 * result in clearing that reference bit.  This
3906 			 * function is designed to avoid the selection of the
3907 			 * same 4KB page for every 2MB page mapping.
3908 			 *
3909 			 * On demotion, a mapping that hasn't been referenced
3910 			 * is simply destroyed.  To avoid the possibility of a
3911 			 * subsequent page fault on a demoted wired mapping,
3912 			 * always leave its reference bit set.  Moreover,
3913 			 * since the superpage is wired, the current state of
3914 			 * its reference bit won't affect page replacement.
3915 			 */
3916 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3917 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3918 			    (oldl3e & PG_W) == 0) {
3919 				atomic_clear_long(l3e, htobe64(PG_A));
3920 				pmap_invalidate_page(pmap, pv->pv_va);
3921 				cleared++;
3922 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3923 				    ("inconsistent pv lock %p %p for page %p",
3924 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3925 			} else
3926 				not_cleared++;
3927 		}
3928 		PMAP_UNLOCK(pmap);
3929 		/* Rotate the PV list if it has more than one entry. */
3930 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3931 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3932 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3933 			pvh->pv_gen++;
3934 		}
3935 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3936 			goto out;
3937 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3938 small_mappings:
3939 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3940 		goto out;
3941 	pv = pvf;
3942 	do {
3943 		if (pvf == NULL)
3944 			pvf = pv;
3945 		pmap = PV_PMAP(pv);
3946 		if (!PMAP_TRYLOCK(pmap)) {
3947 			pvh_gen = pvh->pv_gen;
3948 			md_gen = m->md.pv_gen;
3949 			rw_wunlock(lock);
3950 			PMAP_LOCK(pmap);
3951 			rw_wlock(lock);
3952 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3953 				PMAP_UNLOCK(pmap);
3954 				goto retry;
3955 			}
3956 		}
3957 		l3e = pmap_pml3e(pmap, pv->pv_va);
3958 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3959 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3960 		    m));
3961 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3962 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3963 			vm_page_dirty(m);
3964 		if ((be64toh(*pte) & PG_A) != 0) {
3965 			atomic_clear_long(pte, htobe64(PG_A));
3966 			pmap_invalidate_page(pmap, pv->pv_va);
3967 			cleared++;
3968 		}
3969 		PMAP_UNLOCK(pmap);
3970 		/* Rotate the PV list if it has more than one entry. */
3971 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3972 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3973 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3974 			m->md.pv_gen++;
3975 		}
3976 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3977 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3978 out:
3979 	rw_wunlock(lock);
3980 	vm_page_free_pages_toq(&free, true);
3981 	return (cleared + not_cleared);
3982 }
3983 
3984 static vm_offset_t
3985 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3986     vm_paddr_t end, int prot __unused)
3987 {
3988 
3989 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3990 		 prot);
3991 	return (PHYS_TO_DMAP(start));
3992 }
3993 
3994 void
3995 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3996     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3997 {
3998 	pml3_entry_t *l3e;
3999 	vm_paddr_t pa, ptepa;
4000 	vm_page_t p, pdpg;
4001 	vm_memattr_t ma;
4002 
4003 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4004 	    object, pindex, size);
4005 	VM_OBJECT_ASSERT_WLOCKED(object);
4006 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4007 			("pmap_object_init_pt: non-device object"));
4008 	/* NB: size can be logically ored with addr here */
4009 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4010 		if (!mmu_radix_ps_enabled(pmap))
4011 			return;
4012 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4013 			return;
4014 		p = vm_page_lookup(object, pindex);
4015 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4016 		    ("pmap_object_init_pt: invalid page %p", p));
4017 		ma = p->md.mdpg_cache_attrs;
4018 
4019 		/*
4020 		 * Abort the mapping if the first page is not physically
4021 		 * aligned to a 2MB page boundary.
4022 		 */
4023 		ptepa = VM_PAGE_TO_PHYS(p);
4024 		if (ptepa & L3_PAGE_MASK)
4025 			return;
4026 
4027 		/*
4028 		 * Skip the first page.  Abort the mapping if the rest of
4029 		 * the pages are not physically contiguous or have differing
4030 		 * memory attributes.
4031 		 */
4032 		p = TAILQ_NEXT(p, listq);
4033 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4034 		    pa += PAGE_SIZE) {
4035 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4036 			    ("pmap_object_init_pt: invalid page %p", p));
4037 			if (pa != VM_PAGE_TO_PHYS(p) ||
4038 			    ma != p->md.mdpg_cache_attrs)
4039 				return;
4040 			p = TAILQ_NEXT(p, listq);
4041 		}
4042 
4043 		PMAP_LOCK(pmap);
4044 		for (pa = ptepa | pmap_cache_bits(ma);
4045 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
4046 			pdpg = pmap_allocl3e(pmap, addr, NULL);
4047 			if (pdpg == NULL) {
4048 				/*
4049 				 * The creation of mappings below is only an
4050 				 * optimization.  If a page directory page
4051 				 * cannot be allocated without blocking,
4052 				 * continue on to the next mapping rather than
4053 				 * blocking.
4054 				 */
4055 				addr += L3_PAGE_SIZE;
4056 				continue;
4057 			}
4058 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4059 			l3e = &l3e[pmap_pml3e_index(addr)];
4060 			if ((be64toh(*l3e) & PG_V) == 0) {
4061 				pa |= PG_M | PG_A | PG_RW;
4062 				pte_store(l3e, pa);
4063 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4064 				counter_u64_add(pmap_l3e_mappings, 1);
4065 			} else {
4066 				/* Continue on if the PDE is already valid. */
4067 				pdpg->ref_count--;
4068 				KASSERT(pdpg->ref_count > 0,
4069 				    ("pmap_object_init_pt: missing reference "
4070 				    "to page directory page, va: 0x%lx", addr));
4071 			}
4072 			addr += L3_PAGE_SIZE;
4073 		}
4074 		ptesync();
4075 		PMAP_UNLOCK(pmap);
4076 	}
4077 }
4078 
4079 boolean_t
4080 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4081 {
4082 	struct md_page *pvh;
4083 	struct rwlock *lock;
4084 	pv_entry_t pv;
4085 	int loops = 0;
4086 	boolean_t rv;
4087 
4088 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4089 	    ("pmap_page_exists_quick: page %p is not managed", m));
4090 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4091 	rv = FALSE;
4092 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4093 	rw_rlock(lock);
4094 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4095 		if (PV_PMAP(pv) == pmap) {
4096 			rv = TRUE;
4097 			break;
4098 		}
4099 		loops++;
4100 		if (loops >= 16)
4101 			break;
4102 	}
4103 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4104 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4105 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4106 			if (PV_PMAP(pv) == pmap) {
4107 				rv = TRUE;
4108 				break;
4109 			}
4110 			loops++;
4111 			if (loops >= 16)
4112 				break;
4113 		}
4114 	}
4115 	rw_runlock(lock);
4116 	return (rv);
4117 }
4118 
4119 void
4120 mmu_radix_page_init(vm_page_t m)
4121 {
4122 
4123 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4124 	TAILQ_INIT(&m->md.pv_list);
4125 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4126 }
4127 
4128 int
4129 mmu_radix_page_wired_mappings(vm_page_t m)
4130 {
4131 	struct rwlock *lock;
4132 	struct md_page *pvh;
4133 	pmap_t pmap;
4134 	pt_entry_t *pte;
4135 	pv_entry_t pv;
4136 	int count, md_gen, pvh_gen;
4137 
4138 	if ((m->oflags & VPO_UNMANAGED) != 0)
4139 		return (0);
4140 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4141 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4142 	rw_rlock(lock);
4143 restart:
4144 	count = 0;
4145 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4146 		pmap = PV_PMAP(pv);
4147 		if (!PMAP_TRYLOCK(pmap)) {
4148 			md_gen = m->md.pv_gen;
4149 			rw_runlock(lock);
4150 			PMAP_LOCK(pmap);
4151 			rw_rlock(lock);
4152 			if (md_gen != m->md.pv_gen) {
4153 				PMAP_UNLOCK(pmap);
4154 				goto restart;
4155 			}
4156 		}
4157 		pte = pmap_pte(pmap, pv->pv_va);
4158 		if ((be64toh(*pte) & PG_W) != 0)
4159 			count++;
4160 		PMAP_UNLOCK(pmap);
4161 	}
4162 	if ((m->flags & PG_FICTITIOUS) == 0) {
4163 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4164 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4165 			pmap = PV_PMAP(pv);
4166 			if (!PMAP_TRYLOCK(pmap)) {
4167 				md_gen = m->md.pv_gen;
4168 				pvh_gen = pvh->pv_gen;
4169 				rw_runlock(lock);
4170 				PMAP_LOCK(pmap);
4171 				rw_rlock(lock);
4172 				if (md_gen != m->md.pv_gen ||
4173 				    pvh_gen != pvh->pv_gen) {
4174 					PMAP_UNLOCK(pmap);
4175 					goto restart;
4176 				}
4177 			}
4178 			pte = pmap_pml3e(pmap, pv->pv_va);
4179 			if ((be64toh(*pte) & PG_W) != 0)
4180 				count++;
4181 			PMAP_UNLOCK(pmap);
4182 		}
4183 	}
4184 	rw_runlock(lock);
4185 	return (count);
4186 }
4187 
4188 static void
4189 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4190 {
4191 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4192 }
4193 
4194 int
4195 mmu_radix_pinit(pmap_t pmap)
4196 {
4197 	vmem_addr_t pid;
4198 	vm_paddr_t l1pa;
4199 
4200 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4201 
4202 	/*
4203 	 * allocate the page directory page
4204 	 */
4205 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4206 
4207 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4208 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4209 	vm_radix_init(&pmap->pm_radix);
4210 	TAILQ_INIT(&pmap->pm_pvchunk);
4211 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4212 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4213 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4214 
4215 	pmap->pm_pid = pid;
4216 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4217 	mmu_radix_update_proctab(pid, l1pa);
4218 	__asm __volatile("ptesync;isync" : : : "memory");
4219 
4220 	return (1);
4221 }
4222 
4223 /*
4224  * This routine is called if the desired page table page does not exist.
4225  *
4226  * If page table page allocation fails, this routine may sleep before
4227  * returning NULL.  It sleeps only if a lock pointer was given.
4228  *
4229  * Note: If a page allocation fails at page table level two or three,
4230  * one or two pages may be held during the wait, only to be released
4231  * afterwards.  This conservative approach is easily argued to avoid
4232  * race conditions.
4233  */
4234 static vm_page_t
4235 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4236 {
4237 	vm_page_t m, pdppg, pdpg;
4238 
4239 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4240 
4241 	/*
4242 	 * Allocate a page table page.
4243 	 */
4244 	if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4245 		if (lockp != NULL) {
4246 			RELEASE_PV_LIST_LOCK(lockp);
4247 			PMAP_UNLOCK(pmap);
4248 			vm_wait(NULL);
4249 			PMAP_LOCK(pmap);
4250 		}
4251 		/*
4252 		 * Indicate the need to retry.  While waiting, the page table
4253 		 * page may have been allocated.
4254 		 */
4255 		return (NULL);
4256 	}
4257 	m->pindex = ptepindex;
4258 
4259 	/*
4260 	 * Map the pagetable page into the process address space, if
4261 	 * it isn't already there.
4262 	 */
4263 
4264 	if (ptepindex >= (NUPDE + NUPDPE)) {
4265 		pml1_entry_t *l1e;
4266 		vm_pindex_t pml1index;
4267 
4268 		/* Wire up a new PDPE page */
4269 		pml1index = ptepindex - (NUPDE + NUPDPE);
4270 		l1e = &pmap->pm_pml1[pml1index];
4271 		KASSERT((be64toh(*l1e) & PG_V) == 0,
4272 		    ("%s: L1 entry %#lx is valid", __func__, *l1e));
4273 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4274 	} else if (ptepindex >= NUPDE) {
4275 		vm_pindex_t pml1index;
4276 		vm_pindex_t pdpindex;
4277 		pml1_entry_t *l1e;
4278 		pml2_entry_t *l2e;
4279 
4280 		/* Wire up a new l2e page */
4281 		pdpindex = ptepindex - NUPDE;
4282 		pml1index = pdpindex >> RPTE_SHIFT;
4283 
4284 		l1e = &pmap->pm_pml1[pml1index];
4285 		if ((be64toh(*l1e) & PG_V) == 0) {
4286 			/* Have to allocate a new pdp, recurse */
4287 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4288 				lockp) == NULL) {
4289 				vm_page_unwire_noq(m);
4290 				vm_page_free_zero(m);
4291 				return (NULL);
4292 			}
4293 		} else {
4294 			/* Add reference to l2e page */
4295 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4296 			pdppg->ref_count++;
4297 		}
4298 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4299 
4300 		/* Now find the pdp page */
4301 		l2e = &l2e[pdpindex & RPTE_MASK];
4302 		KASSERT((be64toh(*l2e) & PG_V) == 0,
4303 		    ("%s: L2 entry %#lx is valid", __func__, *l2e));
4304 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4305 	} else {
4306 		vm_pindex_t pml1index;
4307 		vm_pindex_t pdpindex;
4308 		pml1_entry_t *l1e;
4309 		pml2_entry_t *l2e;
4310 		pml3_entry_t *l3e;
4311 
4312 		/* Wire up a new PTE page */
4313 		pdpindex = ptepindex >> RPTE_SHIFT;
4314 		pml1index = pdpindex >> RPTE_SHIFT;
4315 
4316 		/* First, find the pdp and check that its valid. */
4317 		l1e = &pmap->pm_pml1[pml1index];
4318 		if ((be64toh(*l1e) & PG_V) == 0) {
4319 			/* Have to allocate a new pd, recurse */
4320 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4321 			    lockp) == NULL) {
4322 				vm_page_unwire_noq(m);
4323 				vm_page_free_zero(m);
4324 				return (NULL);
4325 			}
4326 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4327 			l2e = &l2e[pdpindex & RPTE_MASK];
4328 		} else {
4329 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4330 			l2e = &l2e[pdpindex & RPTE_MASK];
4331 			if ((be64toh(*l2e) & PG_V) == 0) {
4332 				/* Have to allocate a new pd, recurse */
4333 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4334 				    lockp) == NULL) {
4335 					vm_page_unwire_noq(m);
4336 					vm_page_free_zero(m);
4337 					return (NULL);
4338 				}
4339 			} else {
4340 				/* Add reference to the pd page */
4341 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4342 				pdpg->ref_count++;
4343 			}
4344 		}
4345 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4346 
4347 		/* Now we know where the page directory page is */
4348 		l3e = &l3e[ptepindex & RPTE_MASK];
4349 		KASSERT((be64toh(*l3e) & PG_V) == 0,
4350 		    ("%s: L3 entry %#lx is valid", __func__, *l3e));
4351 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4352 	}
4353 
4354 	pmap_resident_count_inc(pmap, 1);
4355 	return (m);
4356 }
4357 static vm_page_t
4358 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4359 {
4360 	vm_pindex_t pdpindex, ptepindex;
4361 	pml2_entry_t *pdpe;
4362 	vm_page_t pdpg;
4363 
4364 retry:
4365 	pdpe = pmap_pml2e(pmap, va);
4366 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4367 		/* Add a reference to the pd page. */
4368 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4369 		pdpg->ref_count++;
4370 	} else {
4371 		/* Allocate a pd page. */
4372 		ptepindex = pmap_l3e_pindex(va);
4373 		pdpindex = ptepindex >> RPTE_SHIFT;
4374 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4375 		if (pdpg == NULL && lockp != NULL)
4376 			goto retry;
4377 	}
4378 	return (pdpg);
4379 }
4380 
4381 static vm_page_t
4382 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4383 {
4384 	vm_pindex_t ptepindex;
4385 	pml3_entry_t *pd;
4386 	vm_page_t m;
4387 
4388 	/*
4389 	 * Calculate pagetable page index
4390 	 */
4391 	ptepindex = pmap_l3e_pindex(va);
4392 retry:
4393 	/*
4394 	 * Get the page directory entry
4395 	 */
4396 	pd = pmap_pml3e(pmap, va);
4397 
4398 	/*
4399 	 * This supports switching from a 2MB page to a
4400 	 * normal 4K page.
4401 	 */
4402 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4403 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4404 			/*
4405 			 * Invalidation of the 2MB page mapping may have caused
4406 			 * the deallocation of the underlying PD page.
4407 			 */
4408 			pd = NULL;
4409 		}
4410 	}
4411 
4412 	/*
4413 	 * If the page table page is mapped, we just increment the
4414 	 * hold count, and activate it.
4415 	 */
4416 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4417 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4418 		m->ref_count++;
4419 	} else {
4420 		/*
4421 		 * Here if the pte page isn't mapped, or if it has been
4422 		 * deallocated.
4423 		 */
4424 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4425 		if (m == NULL && lockp != NULL)
4426 			goto retry;
4427 	}
4428 	return (m);
4429 }
4430 
4431 static void
4432 mmu_radix_pinit0(pmap_t pmap)
4433 {
4434 
4435 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4436 	PMAP_LOCK_INIT(pmap);
4437 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4438 	pmap->pm_pid = kernel_pmap->pm_pid;
4439 
4440 	vm_radix_init(&pmap->pm_radix);
4441 	TAILQ_INIT(&pmap->pm_pvchunk);
4442 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4443 	kernel_pmap->pm_flags =
4444 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4445 }
4446 /*
4447  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4448  */
4449 static boolean_t
4450 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4451 {
4452 	pt_entry_t newpde, oldpde;
4453 	vm_offset_t eva, va;
4454 	vm_page_t m;
4455 	boolean_t anychanged;
4456 
4457 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4458 	KASSERT((sva & L3_PAGE_MASK) == 0,
4459 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4460 	anychanged = FALSE;
4461 retry:
4462 	oldpde = newpde = be64toh(*l3e);
4463 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4464 	    (PG_MANAGED | PG_M | PG_RW)) {
4465 		eva = sva + L3_PAGE_SIZE;
4466 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4467 		    va < eva; va += PAGE_SIZE, m++)
4468 			vm_page_dirty(m);
4469 	}
4470 	if ((prot & VM_PROT_WRITE) == 0) {
4471 		newpde &= ~(PG_RW | PG_M);
4472 		newpde |= RPTE_EAA_R;
4473 	}
4474 	if (prot & VM_PROT_EXECUTE)
4475 		newpde |= PG_X;
4476 	if (newpde != oldpde) {
4477 		/*
4478 		 * As an optimization to future operations on this PDE, clear
4479 		 * PG_PROMOTED.  The impending invalidation will remove any
4480 		 * lingering 4KB page mappings from the TLB.
4481 		 */
4482 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4483 			goto retry;
4484 		anychanged = TRUE;
4485 	}
4486 	return (anychanged);
4487 }
4488 
4489 void
4490 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4491     vm_prot_t prot)
4492 {
4493 	vm_offset_t va_next;
4494 	pml1_entry_t *l1e;
4495 	pml2_entry_t *l2e;
4496 	pml3_entry_t ptpaddr, *l3e;
4497 	pt_entry_t *pte;
4498 	boolean_t anychanged;
4499 
4500 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4501 	    prot);
4502 
4503 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4504 	if (prot == VM_PROT_NONE) {
4505 		mmu_radix_remove(pmap, sva, eva);
4506 		return;
4507 	}
4508 
4509 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4510 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4511 		return;
4512 
4513 #ifdef INVARIANTS
4514 	if (VERBOSE_PROTECT || pmap_logging)
4515 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4516 			   pmap, sva, eva, prot, pmap->pm_pid);
4517 #endif
4518 	anychanged = FALSE;
4519 
4520 	PMAP_LOCK(pmap);
4521 	for (; sva < eva; sva = va_next) {
4522 		l1e = pmap_pml1e(pmap, sva);
4523 		if ((be64toh(*l1e) & PG_V) == 0) {
4524 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4525 			if (va_next < sva)
4526 				va_next = eva;
4527 			continue;
4528 		}
4529 
4530 		l2e = pmap_l1e_to_l2e(l1e, sva);
4531 		if ((be64toh(*l2e) & PG_V) == 0) {
4532 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4533 			if (va_next < sva)
4534 				va_next = eva;
4535 			continue;
4536 		}
4537 
4538 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4539 		if (va_next < sva)
4540 			va_next = eva;
4541 
4542 		l3e = pmap_l2e_to_l3e(l2e, sva);
4543 		ptpaddr = be64toh(*l3e);
4544 
4545 		/*
4546 		 * Weed out invalid mappings.
4547 		 */
4548 		if (ptpaddr == 0)
4549 			continue;
4550 
4551 		/*
4552 		 * Check for large page.
4553 		 */
4554 		if ((ptpaddr & RPTE_LEAF) != 0) {
4555 			/*
4556 			 * Are we protecting the entire large page?  If not,
4557 			 * demote the mapping and fall through.
4558 			 */
4559 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4560 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4561 					anychanged = TRUE;
4562 				continue;
4563 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4564 				/*
4565 				 * The large page mapping was destroyed.
4566 				 */
4567 				continue;
4568 			}
4569 		}
4570 
4571 		if (va_next > eva)
4572 			va_next = eva;
4573 
4574 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4575 		    sva += PAGE_SIZE) {
4576 			pt_entry_t obits, pbits;
4577 			vm_page_t m;
4578 
4579 retry:
4580 			MPASS(pte == pmap_pte(pmap, sva));
4581 			obits = pbits = be64toh(*pte);
4582 			if ((pbits & PG_V) == 0)
4583 				continue;
4584 
4585 			if ((prot & VM_PROT_WRITE) == 0) {
4586 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4587 				    (PG_MANAGED | PG_M | PG_RW)) {
4588 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4589 					vm_page_dirty(m);
4590 				}
4591 				pbits &= ~(PG_RW | PG_M);
4592 				pbits |= RPTE_EAA_R;
4593 			}
4594 			if (prot & VM_PROT_EXECUTE)
4595 				pbits |= PG_X;
4596 
4597 			if (pbits != obits) {
4598 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4599 					goto retry;
4600 				if (obits & (PG_A|PG_M)) {
4601 					anychanged = TRUE;
4602 #ifdef INVARIANTS
4603 					if (VERBOSE_PROTECT || pmap_logging)
4604 						printf("%#lx %#lx -> %#lx\n",
4605 						    sva, obits, pbits);
4606 #endif
4607 				}
4608 			}
4609 		}
4610 	}
4611 	if (anychanged)
4612 		pmap_invalidate_all(pmap);
4613 	PMAP_UNLOCK(pmap);
4614 }
4615 
4616 void
4617 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4618 {
4619 
4620 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4621 	pt_entry_t oldpte, pa, *pte;
4622 	vm_page_t m;
4623 	uint64_t cache_bits, attr_bits;
4624 	vm_offset_t va;
4625 
4626 	oldpte = 0;
4627 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4628 	va = sva;
4629 	pte = kvtopte(va);
4630 	while (va < sva + PAGE_SIZE * count) {
4631 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4632 			pte = kvtopte(va);
4633 		MPASS(pte == pmap_pte(kernel_pmap, va));
4634 
4635 		/*
4636 		 * XXX there has to be a more efficient way than traversing
4637 		 * the page table every time - but go for correctness for
4638 		 * today
4639 		 */
4640 
4641 		m = *ma++;
4642 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4643 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4644 		if (be64toh(*pte) != pa) {
4645 			oldpte |= be64toh(*pte);
4646 			pte_store(pte, pa);
4647 		}
4648 		va += PAGE_SIZE;
4649 		pte++;
4650 	}
4651 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4652 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4653 		    PAGE_SIZE);
4654 	else
4655 		ptesync();
4656 }
4657 
4658 void
4659 mmu_radix_qremove(vm_offset_t sva, int count)
4660 {
4661 	vm_offset_t va;
4662 	pt_entry_t *pte;
4663 
4664 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4665 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4666 
4667 	va = sva;
4668 	pte = kvtopte(va);
4669 	while (va < sva + PAGE_SIZE * count) {
4670 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4671 			pte = kvtopte(va);
4672 		pte_clear(pte);
4673 		pte++;
4674 		va += PAGE_SIZE;
4675 	}
4676 	pmap_invalidate_range(kernel_pmap, sva, va);
4677 }
4678 
4679 /***************************************************
4680  * Page table page management routines.....
4681  ***************************************************/
4682 /*
4683  * Schedule the specified unused page table page to be freed.  Specifically,
4684  * add the page to the specified list of pages that will be released to the
4685  * physical memory manager after the TLB has been updated.
4686  */
4687 static __inline void
4688 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4689     boolean_t set_PG_ZERO)
4690 {
4691 
4692 	if (set_PG_ZERO)
4693 		m->flags |= PG_ZERO;
4694 	else
4695 		m->flags &= ~PG_ZERO;
4696 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4697 }
4698 
4699 /*
4700  * Inserts the specified page table page into the specified pmap's collection
4701  * of idle page table pages.  Each of a pmap's page table pages is responsible
4702  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4703  * ordered by this virtual address range.
4704  */
4705 static __inline int
4706 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4707 {
4708 
4709 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4710 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4711 }
4712 
4713 /*
4714  * Removes the page table page mapping the specified virtual address from the
4715  * specified pmap's collection of idle page table pages, and returns it.
4716  * Otherwise, returns NULL if there is no page table page corresponding to the
4717  * specified virtual address.
4718  */
4719 static __inline vm_page_t
4720 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4721 {
4722 
4723 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4724 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4725 }
4726 
4727 /*
4728  * Decrements a page table page's wire count, which is used to record the
4729  * number of valid page table entries within the page.  If the wire count
4730  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4731  * page table page was unmapped and FALSE otherwise.
4732  */
4733 static inline boolean_t
4734 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4735 {
4736 
4737 	--m->ref_count;
4738 	if (m->ref_count == 0) {
4739 		_pmap_unwire_ptp(pmap, va, m, free);
4740 		return (TRUE);
4741 	} else
4742 		return (FALSE);
4743 }
4744 
4745 static void
4746 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4747 {
4748 
4749 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4750 	/*
4751 	 * unmap the page table page
4752 	 */
4753 	if (m->pindex >= NUPDE + NUPDPE) {
4754 		/* PDP page */
4755 		pml1_entry_t *pml1;
4756 		pml1 = pmap_pml1e(pmap, va);
4757 		*pml1 = 0;
4758 	} else if (m->pindex >= NUPDE) {
4759 		/* PD page */
4760 		pml2_entry_t *l2e;
4761 		l2e = pmap_pml2e(pmap, va);
4762 		*l2e = 0;
4763 	} else {
4764 		/* PTE page */
4765 		pml3_entry_t *l3e;
4766 		l3e = pmap_pml3e(pmap, va);
4767 		*l3e = 0;
4768 	}
4769 	pmap_resident_count_dec(pmap, 1);
4770 	if (m->pindex < NUPDE) {
4771 		/* We just released a PT, unhold the matching PD */
4772 		vm_page_t pdpg;
4773 
4774 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4775 		pmap_unwire_ptp(pmap, va, pdpg, free);
4776 	}
4777 	else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4778 		/* We just released a PD, unhold the matching PDP */
4779 		vm_page_t pdppg;
4780 
4781 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4782 		pmap_unwire_ptp(pmap, va, pdppg, free);
4783 	}
4784 
4785 	/*
4786 	 * Put page on a list so that it is released after
4787 	 * *ALL* TLB shootdown is done
4788 	 */
4789 	pmap_add_delayed_free_list(m, free, TRUE);
4790 }
4791 
4792 /*
4793  * After removing a page table entry, this routine is used to
4794  * conditionally free the page, and manage the hold/wire counts.
4795  */
4796 static int
4797 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4798     struct spglist *free)
4799 {
4800 	vm_page_t mpte;
4801 
4802 	if (va >= VM_MAXUSER_ADDRESS)
4803 		return (0);
4804 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4805 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4806 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4807 }
4808 
4809 void
4810 mmu_radix_release(pmap_t pmap)
4811 {
4812 
4813 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4814 	KASSERT(pmap->pm_stats.resident_count == 0,
4815 	    ("pmap_release: pmap resident count %ld != 0",
4816 	    pmap->pm_stats.resident_count));
4817 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4818 	    ("pmap_release: pmap has reserved page table page(s)"));
4819 
4820 	pmap_invalidate_all(pmap);
4821 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4822 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4823 	vmem_free(asid_arena, pmap->pm_pid, 1);
4824 }
4825 
4826 /*
4827  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4828  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4829  * false if the PV entry cannot be allocated without resorting to reclamation.
4830  */
4831 static bool
4832 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4833     struct rwlock **lockp)
4834 {
4835 	struct md_page *pvh;
4836 	pv_entry_t pv;
4837 	vm_paddr_t pa;
4838 
4839 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4840 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4841 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4842 	    NULL : lockp)) == NULL)
4843 		return (false);
4844 	pv->pv_va = va;
4845 	pa = pde & PG_PS_FRAME;
4846 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4847 	pvh = pa_to_pvh(pa);
4848 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4849 	pvh->pv_gen++;
4850 	return (true);
4851 }
4852 
4853 /*
4854  * Fills a page table page with mappings to consecutive physical pages.
4855  */
4856 static void
4857 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4858 {
4859 	pt_entry_t *pte;
4860 
4861 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4862 		*pte = htobe64(newpte);
4863 		newpte += PAGE_SIZE;
4864 	}
4865 }
4866 
4867 static boolean_t
4868 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4869 {
4870 	struct rwlock *lock;
4871 	boolean_t rv;
4872 
4873 	lock = NULL;
4874 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4875 	if (lock != NULL)
4876 		rw_wunlock(lock);
4877 	return (rv);
4878 }
4879 
4880 static boolean_t
4881 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4882     struct rwlock **lockp)
4883 {
4884 	pml3_entry_t oldpde;
4885 	pt_entry_t *firstpte;
4886 	vm_paddr_t mptepa;
4887 	vm_page_t mpte;
4888 	struct spglist free;
4889 	vm_offset_t sva;
4890 
4891 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4892 	oldpde = be64toh(*l3e);
4893 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4894 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4895 	    oldpde));
4896 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4897 	    NULL) {
4898 		KASSERT((oldpde & PG_W) == 0,
4899 		    ("pmap_demote_l3e: page table page for a wired mapping"
4900 		    " is missing"));
4901 
4902 		/*
4903 		 * Invalidate the 2MB page mapping and return "failure" if the
4904 		 * mapping was never accessed or the allocation of the new
4905 		 * page table page fails.  If the 2MB page mapping belongs to
4906 		 * the direct map region of the kernel's address space, then
4907 		 * the page allocation request specifies the highest possible
4908 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4909 		 * normal.  Page table pages are preallocated for every other
4910 		 * part of the kernel address space, so the direct map region
4911 		 * is the only part of the kernel address space that must be
4912 		 * handled here.
4913 		 */
4914 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc_noobj(
4915 		    (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ?
4916 		    VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED)) == NULL) {
4917 			SLIST_INIT(&free);
4918 			sva = trunc_2mpage(va);
4919 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4920 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4921 			vm_page_free_pages_toq(&free, true);
4922 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4923 			    " in pmap %p", va, pmap);
4924 			return (FALSE);
4925 		}
4926 		mpte->pindex = pmap_l3e_pindex(va);
4927 		if (va < VM_MAXUSER_ADDRESS)
4928 			pmap_resident_count_inc(pmap, 1);
4929 	}
4930 	mptepa = VM_PAGE_TO_PHYS(mpte);
4931 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4932 	KASSERT((oldpde & PG_A) != 0,
4933 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4934 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4935 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4936 
4937 	/*
4938 	 * If the page table page is new, initialize it.
4939 	 */
4940 	if (mpte->ref_count == 1) {
4941 		mpte->ref_count = NPTEPG;
4942 		pmap_fill_ptp(firstpte, oldpde);
4943 	}
4944 
4945 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4946 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4947 	    " addresses"));
4948 
4949 	/*
4950 	 * If the mapping has changed attributes, update the page table
4951 	 * entries.
4952 	 */
4953 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4954 		pmap_fill_ptp(firstpte, oldpde);
4955 
4956 	/*
4957 	 * The spare PV entries must be reserved prior to demoting the
4958 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4959 	 * of the PDE and the PV lists will be inconsistent, which can result
4960 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4961 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4962 	 * PV entry for the 2MB page mapping that is being demoted.
4963 	 */
4964 	if ((oldpde & PG_MANAGED) != 0)
4965 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4966 
4967 	/*
4968 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4969 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4970 	 * set.  Thus, there is no danger of a race with another
4971 	 * processor changing the setting of PG_A and/or PG_M between
4972 	 * the read above and the store below.
4973 	 */
4974 	pde_store(l3e, mptepa);
4975 	pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
4976 	/*
4977 	 * Demote the PV entry.
4978 	 */
4979 	if ((oldpde & PG_MANAGED) != 0)
4980 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4981 
4982 	counter_u64_add(pmap_l3e_demotions, 1);
4983 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4984 	    " in pmap %p", va, pmap);
4985 	return (TRUE);
4986 }
4987 
4988 /*
4989  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4990  */
4991 static void
4992 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4993 {
4994 	vm_paddr_t mptepa;
4995 	vm_page_t mpte;
4996 
4997 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
4998 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4999 	mpte = pmap_remove_pt_page(pmap, va);
5000 	if (mpte == NULL)
5001 		panic("pmap_remove_kernel_pde: Missing pt page.");
5002 
5003 	mptepa = VM_PAGE_TO_PHYS(mpte);
5004 
5005 	/*
5006 	 * Initialize the page table page.
5007 	 */
5008 	pagezero(PHYS_TO_DMAP(mptepa));
5009 
5010 	/*
5011 	 * Demote the mapping.
5012 	 */
5013 	pde_store(l3e, mptepa);
5014 	ptesync();
5015 }
5016 
5017 /*
5018  * pmap_remove_l3e: do the things to unmap a superpage in a process
5019  */
5020 static int
5021 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5022     struct spglist *free, struct rwlock **lockp)
5023 {
5024 	struct md_page *pvh;
5025 	pml3_entry_t oldpde;
5026 	vm_offset_t eva, va;
5027 	vm_page_t m, mpte;
5028 
5029 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5030 	KASSERT((sva & L3_PAGE_MASK) == 0,
5031 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
5032 	oldpde = be64toh(pte_load_clear(pdq));
5033 	if (oldpde & PG_W)
5034 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5035 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5036 	if (oldpde & PG_MANAGED) {
5037 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5038 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5039 		pmap_pvh_free(pvh, pmap, sva);
5040 		eva = sva + L3_PAGE_SIZE;
5041 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5042 		    va < eva; va += PAGE_SIZE, m++) {
5043 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5044 				vm_page_dirty(m);
5045 			if (oldpde & PG_A)
5046 				vm_page_aflag_set(m, PGA_REFERENCED);
5047 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5048 			    TAILQ_EMPTY(&pvh->pv_list))
5049 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5050 		}
5051 	}
5052 	if (pmap == kernel_pmap) {
5053 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5054 	} else {
5055 		mpte = pmap_remove_pt_page(pmap, sva);
5056 		if (mpte != NULL) {
5057 			pmap_resident_count_dec(pmap, 1);
5058 			KASSERT(mpte->ref_count == NPTEPG,
5059 			    ("pmap_remove_l3e: pte page wire count error"));
5060 			mpte->ref_count = 0;
5061 			pmap_add_delayed_free_list(mpte, free, FALSE);
5062 		}
5063 	}
5064 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5065 }
5066 
5067 /*
5068  * pmap_remove_pte: do the things to unmap a page in a process
5069  */
5070 static int
5071 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5072     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5073 {
5074 	struct md_page *pvh;
5075 	pt_entry_t oldpte;
5076 	vm_page_t m;
5077 
5078 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5079 	oldpte = be64toh(pte_load_clear(ptq));
5080 	if (oldpte & RPTE_WIRED)
5081 		pmap->pm_stats.wired_count -= 1;
5082 	pmap_resident_count_dec(pmap, 1);
5083 	if (oldpte & RPTE_MANAGED) {
5084 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5085 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5086 			vm_page_dirty(m);
5087 		if (oldpte & PG_A)
5088 			vm_page_aflag_set(m, PGA_REFERENCED);
5089 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5090 		pmap_pvh_free(&m->md, pmap, va);
5091 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5092 		    (m->flags & PG_FICTITIOUS) == 0) {
5093 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5094 			if (TAILQ_EMPTY(&pvh->pv_list))
5095 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5096 		}
5097 	}
5098 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5099 }
5100 
5101 /*
5102  * Remove a single page from a process address space
5103  */
5104 static bool
5105 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5106     struct spglist *free)
5107 {
5108 	struct rwlock *lock;
5109 	pt_entry_t *pte;
5110 	bool invalidate_all;
5111 
5112 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5113 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5114 		return (false);
5115 	}
5116 	pte = pmap_l3e_to_pte(l3e, va);
5117 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5118 		return (false);
5119 	}
5120 	lock = NULL;
5121 
5122 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5123 	if (lock != NULL)
5124 		rw_wunlock(lock);
5125 	if (!invalidate_all)
5126 		pmap_invalidate_page(pmap, va);
5127 	return (invalidate_all);
5128 }
5129 
5130 /*
5131  * Removes the specified range of addresses from the page table page.
5132  */
5133 static bool
5134 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5135     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5136 {
5137 	pt_entry_t *pte;
5138 	vm_offset_t va;
5139 	bool anyvalid;
5140 
5141 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5142 	anyvalid = false;
5143 	va = eva;
5144 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5145 	    sva += PAGE_SIZE) {
5146 		MPASS(pte == pmap_pte(pmap, sva));
5147 		if (*pte == 0) {
5148 			if (va != eva) {
5149 				anyvalid = true;
5150 				va = eva;
5151 			}
5152 			continue;
5153 		}
5154 		if (va == eva)
5155 			va = sva;
5156 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5157 			anyvalid = true;
5158 			sva += PAGE_SIZE;
5159 			break;
5160 		}
5161 	}
5162 	if (anyvalid)
5163 		pmap_invalidate_all(pmap);
5164 	else if (va != eva)
5165 		pmap_invalidate_range(pmap, va, sva);
5166 	return (anyvalid);
5167 }
5168 
5169 void
5170 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5171 {
5172 	struct rwlock *lock;
5173 	vm_offset_t va_next;
5174 	pml1_entry_t *l1e;
5175 	pml2_entry_t *l2e;
5176 	pml3_entry_t ptpaddr, *l3e;
5177 	struct spglist free;
5178 	bool anyvalid;
5179 
5180 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5181 
5182 	/*
5183 	 * Perform an unsynchronized read.  This is, however, safe.
5184 	 */
5185 	if (pmap->pm_stats.resident_count == 0)
5186 		return;
5187 
5188 	anyvalid = false;
5189 	SLIST_INIT(&free);
5190 
5191 	/* XXX something fishy here */
5192 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5193 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5194 
5195 	PMAP_LOCK(pmap);
5196 
5197 	/*
5198 	 * special handling of removing one page.  a very
5199 	 * common operation and easy to short circuit some
5200 	 * code.
5201 	 */
5202 	if (sva + PAGE_SIZE == eva) {
5203 		l3e = pmap_pml3e(pmap, sva);
5204 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5205 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5206 			goto out;
5207 		}
5208 	}
5209 
5210 	lock = NULL;
5211 	for (; sva < eva; sva = va_next) {
5212 		if (pmap->pm_stats.resident_count == 0)
5213 			break;
5214 		l1e = pmap_pml1e(pmap, sva);
5215 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5216 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5217 			if (va_next < sva)
5218 				va_next = eva;
5219 			continue;
5220 		}
5221 
5222 		l2e = pmap_l1e_to_l2e(l1e, sva);
5223 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5224 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5225 			if (va_next < sva)
5226 				va_next = eva;
5227 			continue;
5228 		}
5229 
5230 		/*
5231 		 * Calculate index for next page table.
5232 		 */
5233 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5234 		if (va_next < sva)
5235 			va_next = eva;
5236 
5237 		l3e = pmap_l2e_to_l3e(l2e, sva);
5238 		ptpaddr = be64toh(*l3e);
5239 
5240 		/*
5241 		 * Weed out invalid mappings.
5242 		 */
5243 		if (ptpaddr == 0)
5244 			continue;
5245 
5246 		/*
5247 		 * Check for large page.
5248 		 */
5249 		if ((ptpaddr & RPTE_LEAF) != 0) {
5250 			/*
5251 			 * Are we removing the entire large page?  If not,
5252 			 * demote the mapping and fall through.
5253 			 */
5254 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5255 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5256 				anyvalid = true;
5257 				continue;
5258 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5259 			    &lock)) {
5260 				/* The large page mapping was destroyed. */
5261 				continue;
5262 			} else
5263 				ptpaddr = be64toh(*l3e);
5264 		}
5265 
5266 		/*
5267 		 * Limit our scan to either the end of the va represented
5268 		 * by the current page table page, or to the end of the
5269 		 * range being removed.
5270 		 */
5271 		if (va_next > eva)
5272 			va_next = eva;
5273 
5274 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5275 			anyvalid = true;
5276 	}
5277 	if (lock != NULL)
5278 		rw_wunlock(lock);
5279 out:
5280 	if (anyvalid)
5281 		pmap_invalidate_all(pmap);
5282 	PMAP_UNLOCK(pmap);
5283 	vm_page_free_pages_toq(&free, true);
5284 }
5285 
5286 void
5287 mmu_radix_remove_all(vm_page_t m)
5288 {
5289 	struct md_page *pvh;
5290 	pv_entry_t pv;
5291 	pmap_t pmap;
5292 	struct rwlock *lock;
5293 	pt_entry_t *pte, tpte;
5294 	pml3_entry_t *l3e;
5295 	vm_offset_t va;
5296 	struct spglist free;
5297 	int pvh_gen, md_gen;
5298 
5299 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5300 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5301 	    ("pmap_remove_all: page %p is not managed", m));
5302 	SLIST_INIT(&free);
5303 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5304 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5305 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5306 retry:
5307 	rw_wlock(lock);
5308 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5309 		pmap = PV_PMAP(pv);
5310 		if (!PMAP_TRYLOCK(pmap)) {
5311 			pvh_gen = pvh->pv_gen;
5312 			rw_wunlock(lock);
5313 			PMAP_LOCK(pmap);
5314 			rw_wlock(lock);
5315 			if (pvh_gen != pvh->pv_gen) {
5316 				rw_wunlock(lock);
5317 				PMAP_UNLOCK(pmap);
5318 				goto retry;
5319 			}
5320 		}
5321 		va = pv->pv_va;
5322 		l3e = pmap_pml3e(pmap, va);
5323 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5324 		PMAP_UNLOCK(pmap);
5325 	}
5326 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5327 		pmap = PV_PMAP(pv);
5328 		if (!PMAP_TRYLOCK(pmap)) {
5329 			pvh_gen = pvh->pv_gen;
5330 			md_gen = m->md.pv_gen;
5331 			rw_wunlock(lock);
5332 			PMAP_LOCK(pmap);
5333 			rw_wlock(lock);
5334 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5335 				rw_wunlock(lock);
5336 				PMAP_UNLOCK(pmap);
5337 				goto retry;
5338 			}
5339 		}
5340 		pmap_resident_count_dec(pmap, 1);
5341 		l3e = pmap_pml3e(pmap, pv->pv_va);
5342 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5343 		    " a 2mpage in page %p's pv list", m));
5344 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5345 		tpte = be64toh(pte_load_clear(pte));
5346 		if (tpte & PG_W)
5347 			pmap->pm_stats.wired_count--;
5348 		if (tpte & PG_A)
5349 			vm_page_aflag_set(m, PGA_REFERENCED);
5350 
5351 		/*
5352 		 * Update the vm_page_t clean and reference bits.
5353 		 */
5354 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5355 			vm_page_dirty(m);
5356 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5357 		pmap_invalidate_page(pmap, pv->pv_va);
5358 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5359 		m->md.pv_gen++;
5360 		free_pv_entry(pmap, pv);
5361 		PMAP_UNLOCK(pmap);
5362 	}
5363 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5364 	rw_wunlock(lock);
5365 	vm_page_free_pages_toq(&free, true);
5366 }
5367 
5368 /*
5369  * Destroy all managed, non-wired mappings in the given user-space
5370  * pmap.  This pmap cannot be active on any processor besides the
5371  * caller.
5372  *
5373  * This function cannot be applied to the kernel pmap.  Moreover, it
5374  * is not intended for general use.  It is only to be used during
5375  * process termination.  Consequently, it can be implemented in ways
5376  * that make it faster than pmap_remove().  First, it can more quickly
5377  * destroy mappings by iterating over the pmap's collection of PV
5378  * entries, rather than searching the page table.  Second, it doesn't
5379  * have to test and clear the page table entries atomically, because
5380  * no processor is currently accessing the user address space.  In
5381  * particular, a page table entry's dirty bit won't change state once
5382  * this function starts.
5383  *
5384  * Although this function destroys all of the pmap's managed,
5385  * non-wired mappings, it can delay and batch the invalidation of TLB
5386  * entries without calling pmap_delayed_invl_started() and
5387  * pmap_delayed_invl_finished().  Because the pmap is not active on
5388  * any other processor, none of these TLB entries will ever be used
5389  * before their eventual invalidation.  Consequently, there is no need
5390  * for either pmap_remove_all() or pmap_remove_write() to wait for
5391  * that eventual TLB invalidation.
5392  */
5393 
5394 void
5395 mmu_radix_remove_pages(pmap_t pmap)
5396 {
5397 
5398 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5399 	pml3_entry_t ptel3e;
5400 	pt_entry_t *pte, tpte;
5401 	struct spglist free;
5402 	vm_page_t m, mpte, mt;
5403 	pv_entry_t pv;
5404 	struct md_page *pvh;
5405 	struct pv_chunk *pc, *npc;
5406 	struct rwlock *lock;
5407 	int64_t bit;
5408 	uint64_t inuse, bitmask;
5409 	int allfree, field, idx;
5410 #ifdef PV_STATS
5411 	int freed;
5412 #endif
5413 	boolean_t superpage;
5414 	vm_paddr_t pa;
5415 
5416 	/*
5417 	 * Assert that the given pmap is only active on the current
5418 	 * CPU.  Unfortunately, we cannot block another CPU from
5419 	 * activating the pmap while this function is executing.
5420 	 */
5421 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5422 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5423 	    mfspr(SPR_PID)));
5424 
5425 	lock = NULL;
5426 
5427 	SLIST_INIT(&free);
5428 	PMAP_LOCK(pmap);
5429 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5430 		allfree = 1;
5431 #ifdef PV_STATS
5432 		freed = 0;
5433 #endif
5434 		for (field = 0; field < _NPCM; field++) {
5435 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5436 			while (inuse != 0) {
5437 				bit = cnttzd(inuse);
5438 				bitmask = 1UL << bit;
5439 				idx = field * 64 + bit;
5440 				pv = &pc->pc_pventry[idx];
5441 				inuse &= ~bitmask;
5442 
5443 				pte = pmap_pml2e(pmap, pv->pv_va);
5444 				ptel3e = be64toh(*pte);
5445 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5446 				tpte = be64toh(*pte);
5447 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5448 					superpage = FALSE;
5449 					ptel3e = tpte;
5450 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5451 					    PG_FRAME);
5452 					pte = &pte[pmap_pte_index(pv->pv_va)];
5453 					tpte = be64toh(*pte);
5454 				} else {
5455 					/*
5456 					 * Keep track whether 'tpte' is a
5457 					 * superpage explicitly instead of
5458 					 * relying on RPTE_LEAF being set.
5459 					 *
5460 					 * This is because RPTE_LEAF is numerically
5461 					 * identical to PG_PTE_PAT and thus a
5462 					 * regular page could be mistaken for
5463 					 * a superpage.
5464 					 */
5465 					superpage = TRUE;
5466 				}
5467 
5468 				if ((tpte & PG_V) == 0) {
5469 					panic("bad pte va %lx pte %lx",
5470 					    pv->pv_va, tpte);
5471 				}
5472 
5473 /*
5474  * We cannot remove wired pages from a process' mapping at this time
5475  */
5476 				if (tpte & PG_W) {
5477 					allfree = 0;
5478 					continue;
5479 				}
5480 
5481 				if (superpage)
5482 					pa = tpte & PG_PS_FRAME;
5483 				else
5484 					pa = tpte & PG_FRAME;
5485 
5486 				m = PHYS_TO_VM_PAGE(pa);
5487 				KASSERT(m->phys_addr == pa,
5488 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5489 				    m, (uintmax_t)m->phys_addr,
5490 				    (uintmax_t)tpte));
5491 
5492 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5493 				    m < &vm_page_array[vm_page_array_size],
5494 				    ("pmap_remove_pages: bad tpte %#jx",
5495 				    (uintmax_t)tpte));
5496 
5497 				pte_clear(pte);
5498 
5499 				/*
5500 				 * Update the vm_page_t clean/reference bits.
5501 				 */
5502 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5503 					if (superpage) {
5504 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5505 							vm_page_dirty(mt);
5506 					} else
5507 						vm_page_dirty(m);
5508 				}
5509 
5510 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5511 
5512 				/* Mark free */
5513 				pc->pc_map[field] |= bitmask;
5514 				if (superpage) {
5515 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5516 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5517 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5518 					pvh->pv_gen++;
5519 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5520 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5521 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5522 							    TAILQ_EMPTY(&mt->md.pv_list))
5523 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5524 					}
5525 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5526 					if (mpte != NULL) {
5527 						pmap_resident_count_dec(pmap, 1);
5528 						KASSERT(mpte->ref_count == NPTEPG,
5529 						    ("pmap_remove_pages: pte page wire count error"));
5530 						mpte->ref_count = 0;
5531 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5532 					}
5533 				} else {
5534 					pmap_resident_count_dec(pmap, 1);
5535 #ifdef VERBOSE_PV
5536 					printf("freeing pv (%p, %p)\n",
5537 						   pmap, pv);
5538 #endif
5539 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5540 					m->md.pv_gen++;
5541 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5542 					    TAILQ_EMPTY(&m->md.pv_list) &&
5543 					    (m->flags & PG_FICTITIOUS) == 0) {
5544 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5545 						if (TAILQ_EMPTY(&pvh->pv_list))
5546 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5547 					}
5548 				}
5549 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5550 #ifdef PV_STATS
5551 				freed++;
5552 #endif
5553 			}
5554 		}
5555 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5556 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5557 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5558 		if (allfree) {
5559 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5560 			free_pv_chunk(pc);
5561 		}
5562 	}
5563 	if (lock != NULL)
5564 		rw_wunlock(lock);
5565 	pmap_invalidate_all(pmap);
5566 	PMAP_UNLOCK(pmap);
5567 	vm_page_free_pages_toq(&free, true);
5568 }
5569 
5570 void
5571 mmu_radix_remove_write(vm_page_t m)
5572 {
5573 	struct md_page *pvh;
5574 	pmap_t pmap;
5575 	struct rwlock *lock;
5576 	pv_entry_t next_pv, pv;
5577 	pml3_entry_t *l3e;
5578 	pt_entry_t oldpte, *pte;
5579 	int pvh_gen, md_gen;
5580 
5581 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5582 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5583 	    ("pmap_remove_write: page %p is not managed", m));
5584 	vm_page_assert_busied(m);
5585 
5586 	if (!pmap_page_is_write_mapped(m))
5587 		return;
5588 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5589 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5590 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5591 retry_pv_loop:
5592 	rw_wlock(lock);
5593 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5594 		pmap = PV_PMAP(pv);
5595 		if (!PMAP_TRYLOCK(pmap)) {
5596 			pvh_gen = pvh->pv_gen;
5597 			rw_wunlock(lock);
5598 			PMAP_LOCK(pmap);
5599 			rw_wlock(lock);
5600 			if (pvh_gen != pvh->pv_gen) {
5601 				PMAP_UNLOCK(pmap);
5602 				rw_wunlock(lock);
5603 				goto retry_pv_loop;
5604 			}
5605 		}
5606 		l3e = pmap_pml3e(pmap, pv->pv_va);
5607 		if ((be64toh(*l3e) & PG_RW) != 0)
5608 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5609 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5610 		    ("inconsistent pv lock %p %p for page %p",
5611 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5612 		PMAP_UNLOCK(pmap);
5613 	}
5614 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5615 		pmap = PV_PMAP(pv);
5616 		if (!PMAP_TRYLOCK(pmap)) {
5617 			pvh_gen = pvh->pv_gen;
5618 			md_gen = m->md.pv_gen;
5619 			rw_wunlock(lock);
5620 			PMAP_LOCK(pmap);
5621 			rw_wlock(lock);
5622 			if (pvh_gen != pvh->pv_gen ||
5623 			    md_gen != m->md.pv_gen) {
5624 				PMAP_UNLOCK(pmap);
5625 				rw_wunlock(lock);
5626 				goto retry_pv_loop;
5627 			}
5628 		}
5629 		l3e = pmap_pml3e(pmap, pv->pv_va);
5630 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5631 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5632 		    m));
5633 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5634 retry:
5635 		oldpte = be64toh(*pte);
5636 		if (oldpte & PG_RW) {
5637 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5638 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5639 				goto retry;
5640 			if ((oldpte & PG_M) != 0)
5641 				vm_page_dirty(m);
5642 			pmap_invalidate_page(pmap, pv->pv_va);
5643 		}
5644 		PMAP_UNLOCK(pmap);
5645 	}
5646 	rw_wunlock(lock);
5647 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5648 }
5649 
5650 /*
5651  *	Clear the wired attribute from the mappings for the specified range of
5652  *	addresses in the given pmap.  Every valid mapping within that range
5653  *	must have the wired attribute set.  In contrast, invalid mappings
5654  *	cannot have the wired attribute set, so they are ignored.
5655  *
5656  *	The wired attribute of the page table entry is not a hardware
5657  *	feature, so there is no need to invalidate any TLB entries.
5658  *	Since pmap_demote_l3e() for the wired entry must never fail,
5659  *	pmap_delayed_invl_started()/finished() calls around the
5660  *	function are not needed.
5661  */
5662 void
5663 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5664 {
5665 	vm_offset_t va_next;
5666 	pml1_entry_t *l1e;
5667 	pml2_entry_t *l2e;
5668 	pml3_entry_t *l3e;
5669 	pt_entry_t *pte;
5670 
5671 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5672 	PMAP_LOCK(pmap);
5673 	for (; sva < eva; sva = va_next) {
5674 		l1e = pmap_pml1e(pmap, sva);
5675 		if ((be64toh(*l1e) & PG_V) == 0) {
5676 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5677 			if (va_next < sva)
5678 				va_next = eva;
5679 			continue;
5680 		}
5681 		l2e = pmap_l1e_to_l2e(l1e, sva);
5682 		if ((be64toh(*l2e) & PG_V) == 0) {
5683 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5684 			if (va_next < sva)
5685 				va_next = eva;
5686 			continue;
5687 		}
5688 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5689 		if (va_next < sva)
5690 			va_next = eva;
5691 		l3e = pmap_l2e_to_l3e(l2e, sva);
5692 		if ((be64toh(*l3e) & PG_V) == 0)
5693 			continue;
5694 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5695 			if ((be64toh(*l3e) & PG_W) == 0)
5696 				panic("pmap_unwire: pde %#jx is missing PG_W",
5697 				    (uintmax_t)(be64toh(*l3e)));
5698 
5699 			/*
5700 			 * Are we unwiring the entire large page?  If not,
5701 			 * demote the mapping and fall through.
5702 			 */
5703 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5704 				atomic_clear_long(l3e, htobe64(PG_W));
5705 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5706 				    PAGE_SIZE;
5707 				continue;
5708 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5709 				panic("pmap_unwire: demotion failed");
5710 		}
5711 		if (va_next > eva)
5712 			va_next = eva;
5713 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5714 		    sva += PAGE_SIZE) {
5715 			MPASS(pte == pmap_pte(pmap, sva));
5716 			if ((be64toh(*pte) & PG_V) == 0)
5717 				continue;
5718 			if ((be64toh(*pte) & PG_W) == 0)
5719 				panic("pmap_unwire: pte %#jx is missing PG_W",
5720 				    (uintmax_t)(be64toh(*pte)));
5721 
5722 			/*
5723 			 * PG_W must be cleared atomically.  Although the pmap
5724 			 * lock synchronizes access to PG_W, another processor
5725 			 * could be setting PG_M and/or PG_A concurrently.
5726 			 */
5727 			atomic_clear_long(pte, htobe64(PG_W));
5728 			pmap->pm_stats.wired_count--;
5729 		}
5730 	}
5731 	PMAP_UNLOCK(pmap);
5732 }
5733 
5734 void
5735 mmu_radix_zero_page(vm_page_t m)
5736 {
5737 	vm_offset_t addr;
5738 
5739 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5740 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5741 	pagezero(addr);
5742 }
5743 
5744 void
5745 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5746 {
5747 	caddr_t addr;
5748 
5749 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5750 	MPASS(off + size <= PAGE_SIZE);
5751 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5752 	memset(addr + off, 0, size);
5753 }
5754 
5755 static int
5756 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5757 {
5758 	pml3_entry_t *l3ep;
5759 	pt_entry_t pte;
5760 	vm_paddr_t pa;
5761 	int val;
5762 
5763 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5764 	PMAP_LOCK(pmap);
5765 
5766 	l3ep = pmap_pml3e(pmap, addr);
5767 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5768 		if (be64toh(*l3ep) & RPTE_LEAF) {
5769 			pte = be64toh(*l3ep);
5770 			/* Compute the physical address of the 4KB page. */
5771 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5772 			    PG_FRAME;
5773 			val = MINCORE_PSIND(1);
5774 		} else {
5775 			/* Native endian PTE, do not pass to functions */
5776 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5777 			pa = pte & PG_FRAME;
5778 			val = 0;
5779 		}
5780 	} else {
5781 		pte = 0;
5782 		pa = 0;
5783 		val = 0;
5784 	}
5785 	if ((pte & PG_V) != 0) {
5786 		val |= MINCORE_INCORE;
5787 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5788 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5789 		if ((pte & PG_A) != 0)
5790 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5791 	}
5792 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5793 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5794 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5795 		*locked_pa = pa;
5796 	}
5797 	PMAP_UNLOCK(pmap);
5798 	return (val);
5799 }
5800 
5801 void
5802 mmu_radix_activate(struct thread *td)
5803 {
5804 	pmap_t pmap;
5805 	uint32_t curpid;
5806 
5807 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5808 	critical_enter();
5809 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5810 	curpid = mfspr(SPR_PID);
5811 	if (pmap->pm_pid > isa3_base_pid &&
5812 		curpid != pmap->pm_pid) {
5813 		mmu_radix_pid_set(pmap);
5814 	}
5815 	critical_exit();
5816 }
5817 
5818 /*
5819  *	Increase the starting virtual address of the given mapping if a
5820  *	different alignment might result in more superpage mappings.
5821  */
5822 void
5823 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5824     vm_offset_t *addr, vm_size_t size)
5825 {
5826 
5827 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5828 	    size);
5829 	vm_offset_t superpage_offset;
5830 
5831 	if (size < L3_PAGE_SIZE)
5832 		return;
5833 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5834 		offset += ptoa(object->pg_color);
5835 	superpage_offset = offset & L3_PAGE_MASK;
5836 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5837 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5838 		return;
5839 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5840 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5841 	else
5842 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5843 }
5844 
5845 static void *
5846 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5847 {
5848 	vm_offset_t va, tmpva, ppa, offset;
5849 
5850 	ppa = trunc_page(pa);
5851 	offset = pa & PAGE_MASK;
5852 	size = roundup2(offset + size, PAGE_SIZE);
5853 	if (pa < powerpc_ptob(Maxmem))
5854 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5855 			  pa, powerpc_ptob(Maxmem));
5856 	va = kva_alloc(size);
5857 	if (bootverbose)
5858 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5859 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5860 
5861 	if (!va)
5862 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5863 
5864 	for (tmpva = va; size > 0;) {
5865 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5866 		size -= PAGE_SIZE;
5867 		tmpva += PAGE_SIZE;
5868 		ppa += PAGE_SIZE;
5869 	}
5870 	ptesync();
5871 
5872 	return ((void *)(va + offset));
5873 }
5874 
5875 static void *
5876 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5877 {
5878 
5879 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5880 
5881 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5882 }
5883 
5884 void
5885 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5886 {
5887 
5888 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5889 	m->md.mdpg_cache_attrs = ma;
5890 
5891 	/*
5892 	 * If "m" is a normal page, update its direct mapping.  This update
5893 	 * can be relied upon to perform any cache operations that are
5894 	 * required for data coherence.
5895 	 */
5896 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5897 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5898 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5899 		panic("memory attribute change on the direct map failed");
5900 }
5901 
5902 static void
5903 mmu_radix_unmapdev(void *p, vm_size_t size)
5904 {
5905 	vm_offset_t offset, va;
5906 
5907 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, p, size);
5908 
5909 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5910 	va = (vm_offset_t)p;
5911 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5912 		return;
5913 
5914 	offset = va & PAGE_MASK;
5915 	size = round_page(offset + size);
5916 	va = trunc_page(va);
5917 
5918 	if (pmap_initialized) {
5919 		mmu_radix_qremove(va, atop(size));
5920 		kva_free(va, size);
5921 	}
5922 }
5923 
5924 static __inline void
5925 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5926 {
5927 	uint64_t opte, npte;
5928 
5929 	/*
5930 	 * The cache mode bits are all in the low 32-bits of the
5931 	 * PTE, so we can just spin on updating the low 32-bits.
5932 	 */
5933 	do {
5934 		opte = be64toh(*pte);
5935 		npte = opte & ~mask;
5936 		npte |= cache_bits;
5937 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5938 }
5939 
5940 /*
5941  * Tries to demote a 1GB page mapping.
5942  */
5943 static boolean_t
5944 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5945 {
5946 	pml2_entry_t oldpdpe;
5947 	pml3_entry_t *firstpde, newpde, *pde;
5948 	vm_paddr_t pdpgpa;
5949 	vm_page_t pdpg;
5950 
5951 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5952 	oldpdpe = be64toh(*l2e);
5953 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5954 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5955 	pdpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
5956 	if (pdpg == NULL) {
5957 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5958 		    " in pmap %p", va, pmap);
5959 		return (FALSE);
5960 	}
5961 	pdpg->pindex = va >> L2_PAGE_SIZE_SHIFT;
5962 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5963 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5964 	KASSERT((oldpdpe & PG_A) != 0,
5965 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5966 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5967 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5968 	newpde = oldpdpe;
5969 
5970 	/*
5971 	 * Initialize the page directory page.
5972 	 */
5973 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5974 		*pde = htobe64(newpde);
5975 		newpde += L3_PAGE_SIZE;
5976 	}
5977 
5978 	/*
5979 	 * Demote the mapping.
5980 	 */
5981 	pde_store(l2e, pdpgpa);
5982 
5983 	/*
5984 	 * Flush PWC --- XXX revisit
5985 	 */
5986 	pmap_invalidate_all(pmap);
5987 
5988 	counter_u64_add(pmap_l2e_demotions, 1);
5989 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5990 	    " in pmap %p", va, pmap);
5991 	return (TRUE);
5992 }
5993 
5994 vm_paddr_t
5995 mmu_radix_kextract(vm_offset_t va)
5996 {
5997 	pml3_entry_t l3e;
5998 	vm_paddr_t pa;
5999 
6000 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6001 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6002 		pa = DMAP_TO_PHYS(va);
6003 	} else {
6004 		/* Big-endian PTE on stack */
6005 		l3e = *pmap_pml3e(kernel_pmap, va);
6006 		if (be64toh(l3e) & RPTE_LEAF) {
6007 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6008 			pa |= (va & L3_PAGE_MASK);
6009 		} else {
6010 			/*
6011 			 * Beware of a concurrent promotion that changes the
6012 			 * PDE at this point!  For example, vtopte() must not
6013 			 * be used to access the PTE because it would use the
6014 			 * new PDE.  It is, however, safe to use the old PDE
6015 			 * because the page table page is preserved by the
6016 			 * promotion.
6017 			 */
6018 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6019 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6020 			pa |= (va & PAGE_MASK);
6021 		}
6022 	}
6023 	return (pa);
6024 }
6025 
6026 static pt_entry_t
6027 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6028 {
6029 
6030 	if (ma != VM_MEMATTR_DEFAULT) {
6031 		return pmap_cache_bits(ma);
6032 	}
6033 
6034 	/*
6035 	 * Assume the page is cache inhibited and access is guarded unless
6036 	 * it's in our available memory array.
6037 	 */
6038 	for (int i = 0; i < pregions_sz; i++) {
6039 		if ((pa >= pregions[i].mr_start) &&
6040 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6041 			return (RPTE_ATTR_MEM);
6042 	}
6043 	return (RPTE_ATTR_GUARDEDIO);
6044 }
6045 
6046 static void
6047 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6048 {
6049 	pt_entry_t *pte, pteval;
6050 	uint64_t cache_bits;
6051 
6052 	pte = kvtopte(va);
6053 	MPASS(pte != NULL);
6054 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6055 	cache_bits = mmu_radix_calc_wimg(pa, ma);
6056 	pte_store(pte, pteval | cache_bits);
6057 }
6058 
6059 void
6060 mmu_radix_kremove(vm_offset_t va)
6061 {
6062 	pt_entry_t *pte;
6063 
6064 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6065 
6066 	pte = kvtopte(va);
6067 	pte_clear(pte);
6068 }
6069 
6070 int
6071 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6072     int *is_user, vm_offset_t *decoded)
6073 {
6074 
6075 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6076 	*decoded = addr;
6077 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6078 	return (0);
6079 }
6080 
6081 static boolean_t
6082 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6083 {
6084 
6085 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6086 	return (mem_valid(pa, size));
6087 }
6088 
6089 static void
6090 mmu_radix_scan_init(void)
6091 {
6092 
6093 	CTR1(KTR_PMAP, "%s()", __func__);
6094 	UNIMPLEMENTED();
6095 }
6096 
6097 static void
6098 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6099 	void **va)
6100 {
6101 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6102 	UNIMPLEMENTED();
6103 }
6104 
6105 vm_offset_t
6106 mmu_radix_quick_enter_page(vm_page_t m)
6107 {
6108 	vm_paddr_t paddr;
6109 
6110 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6111 	paddr = VM_PAGE_TO_PHYS(m);
6112 	return (PHYS_TO_DMAP(paddr));
6113 }
6114 
6115 void
6116 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6117 {
6118 	/* no work to do here */
6119 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6120 }
6121 
6122 static void
6123 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6124 {
6125 	cpu_flush_dcache((void *)sva, eva - sva);
6126 }
6127 
6128 int
6129 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6130     vm_memattr_t mode)
6131 {
6132 	int error;
6133 
6134 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6135 	PMAP_LOCK(kernel_pmap);
6136 	error = pmap_change_attr_locked(va, size, mode, true);
6137 	PMAP_UNLOCK(kernel_pmap);
6138 	return (error);
6139 }
6140 
6141 static int
6142 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6143 {
6144 	vm_offset_t base, offset, tmpva;
6145 	vm_paddr_t pa_start, pa_end, pa_end1;
6146 	pml2_entry_t *l2e;
6147 	pml3_entry_t *l3e;
6148 	pt_entry_t *pte;
6149 	int cache_bits, error;
6150 	boolean_t changed;
6151 
6152 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6153 	base = trunc_page(va);
6154 	offset = va & PAGE_MASK;
6155 	size = round_page(offset + size);
6156 
6157 	/*
6158 	 * Only supported on kernel virtual addresses, including the direct
6159 	 * map but excluding the recursive map.
6160 	 */
6161 	if (base < DMAP_MIN_ADDRESS)
6162 		return (EINVAL);
6163 
6164 	cache_bits = pmap_cache_bits(mode);
6165 	changed = FALSE;
6166 
6167 	/*
6168 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6169 	 * into 4KB pages if required.
6170 	 */
6171 	for (tmpva = base; tmpva < base + size; ) {
6172 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6173 		if (l2e == NULL || *l2e == 0)
6174 			return (EINVAL);
6175 		if (be64toh(*l2e) & RPTE_LEAF) {
6176 			/*
6177 			 * If the current 1GB page already has the required
6178 			 * memory type, then we need not demote this page. Just
6179 			 * increment tmpva to the next 1GB page frame.
6180 			 */
6181 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6182 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6183 				continue;
6184 			}
6185 
6186 			/*
6187 			 * If the current offset aligns with a 1GB page frame
6188 			 * and there is at least 1GB left within the range, then
6189 			 * we need not break down this page into 2MB pages.
6190 			 */
6191 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6192 			    tmpva + L2_PAGE_MASK < base + size) {
6193 				tmpva += L2_PAGE_MASK;
6194 				continue;
6195 			}
6196 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6197 				return (ENOMEM);
6198 		}
6199 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6200 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6201 		    tmpva, l2e));
6202 		if (*l3e == 0)
6203 			return (EINVAL);
6204 		if (be64toh(*l3e) & RPTE_LEAF) {
6205 			/*
6206 			 * If the current 2MB page already has the required
6207 			 * memory type, then we need not demote this page. Just
6208 			 * increment tmpva to the next 2MB page frame.
6209 			 */
6210 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6211 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6212 				continue;
6213 			}
6214 
6215 			/*
6216 			 * If the current offset aligns with a 2MB page frame
6217 			 * and there is at least 2MB left within the range, then
6218 			 * we need not break down this page into 4KB pages.
6219 			 */
6220 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6221 			    tmpva + L3_PAGE_MASK < base + size) {
6222 				tmpva += L3_PAGE_SIZE;
6223 				continue;
6224 			}
6225 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6226 				return (ENOMEM);
6227 		}
6228 		pte = pmap_l3e_to_pte(l3e, tmpva);
6229 		if (*pte == 0)
6230 			return (EINVAL);
6231 		tmpva += PAGE_SIZE;
6232 	}
6233 	error = 0;
6234 
6235 	/*
6236 	 * Ok, all the pages exist, so run through them updating their
6237 	 * cache mode if required.
6238 	 */
6239 	pa_start = pa_end = 0;
6240 	for (tmpva = base; tmpva < base + size; ) {
6241 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6242 		if (be64toh(*l2e) & RPTE_LEAF) {
6243 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6244 				pmap_pte_attr(l2e, cache_bits,
6245 				    RPTE_ATTR_MASK);
6246 				changed = TRUE;
6247 			}
6248 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6249 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6250 				if (pa_start == pa_end) {
6251 					/* Start physical address run. */
6252 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6253 					pa_end = pa_start + L2_PAGE_SIZE;
6254 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6255 					pa_end += L2_PAGE_SIZE;
6256 				else {
6257 					/* Run ended, update direct map. */
6258 					error = pmap_change_attr_locked(
6259 					    PHYS_TO_DMAP(pa_start),
6260 					    pa_end - pa_start, mode, flush);
6261 					if (error != 0)
6262 						break;
6263 					/* Start physical address run. */
6264 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6265 					pa_end = pa_start + L2_PAGE_SIZE;
6266 				}
6267 			}
6268 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6269 			continue;
6270 		}
6271 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6272 		if (be64toh(*l3e) & RPTE_LEAF) {
6273 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6274 				pmap_pte_attr(l3e, cache_bits,
6275 				    RPTE_ATTR_MASK);
6276 				changed = TRUE;
6277 			}
6278 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6279 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6280 				if (pa_start == pa_end) {
6281 					/* Start physical address run. */
6282 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6283 					pa_end = pa_start + L3_PAGE_SIZE;
6284 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6285 					pa_end += L3_PAGE_SIZE;
6286 				else {
6287 					/* Run ended, update direct map. */
6288 					error = pmap_change_attr_locked(
6289 					    PHYS_TO_DMAP(pa_start),
6290 					    pa_end - pa_start, mode, flush);
6291 					if (error != 0)
6292 						break;
6293 					/* Start physical address run. */
6294 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6295 					pa_end = pa_start + L3_PAGE_SIZE;
6296 				}
6297 			}
6298 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6299 		} else {
6300 			pte = pmap_l3e_to_pte(l3e, tmpva);
6301 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6302 				pmap_pte_attr(pte, cache_bits,
6303 				    RPTE_ATTR_MASK);
6304 				changed = TRUE;
6305 			}
6306 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6307 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6308 				if (pa_start == pa_end) {
6309 					/* Start physical address run. */
6310 					pa_start = be64toh(*pte) & PG_FRAME;
6311 					pa_end = pa_start + PAGE_SIZE;
6312 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6313 					pa_end += PAGE_SIZE;
6314 				else {
6315 					/* Run ended, update direct map. */
6316 					error = pmap_change_attr_locked(
6317 					    PHYS_TO_DMAP(pa_start),
6318 					    pa_end - pa_start, mode, flush);
6319 					if (error != 0)
6320 						break;
6321 					/* Start physical address run. */
6322 					pa_start = be64toh(*pte) & PG_FRAME;
6323 					pa_end = pa_start + PAGE_SIZE;
6324 				}
6325 			}
6326 			tmpva += PAGE_SIZE;
6327 		}
6328 	}
6329 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6330 		pa_end1 = MIN(pa_end, dmaplimit);
6331 		if (pa_start != pa_end1)
6332 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6333 			    pa_end1 - pa_start, mode, flush);
6334 	}
6335 
6336 	/*
6337 	 * Flush CPU caches if required to make sure any data isn't cached that
6338 	 * shouldn't be, etc.
6339 	 */
6340 	if (changed) {
6341 		pmap_invalidate_all(kernel_pmap);
6342 
6343 		if (flush)
6344 			pmap_invalidate_cache_range(base, tmpva);
6345 	}
6346 	return (error);
6347 }
6348 
6349 /*
6350  * Allocate physical memory for the vm_page array and map it into KVA,
6351  * attempting to back the vm_pages with domain-local memory.
6352  */
6353 void
6354 mmu_radix_page_array_startup(long pages)
6355 {
6356 #ifdef notyet
6357 	pml2_entry_t *l2e;
6358 	pml3_entry_t *pde;
6359 	pml3_entry_t newl3;
6360 	vm_offset_t va;
6361 	long pfn;
6362 	int domain, i;
6363 #endif
6364 	vm_paddr_t pa;
6365 	vm_offset_t start, end;
6366 
6367 	vm_page_array_size = pages;
6368 
6369 	start = VM_MIN_KERNEL_ADDRESS;
6370 	end = start + pages * sizeof(struct vm_page);
6371 
6372 	pa = vm_phys_early_alloc(0, end - start);
6373 
6374 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6375 #ifdef notyet
6376 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6377 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6378 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6379 		domain = vm_phys_domain(ptoa(pfn));
6380 		l2e = pmap_pml2e(kernel_pmap, va);
6381 		if ((be64toh(*l2e) & PG_V) == 0) {
6382 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6383 			dump_add_page(pa);
6384 			pagezero(PHYS_TO_DMAP(pa));
6385 			pde_store(l2e, (pml2_entry_t)pa);
6386 		}
6387 		pde = pmap_l2e_to_l3e(l2e, va);
6388 		if ((be64toh(*pde) & PG_V) != 0)
6389 			panic("Unexpected pde %p", pde);
6390 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6391 		for (i = 0; i < NPDEPG; i++)
6392 			dump_add_page(pa + i * PAGE_SIZE);
6393 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6394 		pte_store(pde, newl3);
6395 	}
6396 #endif
6397 	vm_page_array = (vm_page_t)start;
6398 }
6399 
6400 #ifdef DDB
6401 #include <sys/kdb.h>
6402 #include <ddb/ddb.h>
6403 
6404 static void
6405 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6406 {
6407 	pml1_entry_t *l1e;
6408 	pml2_entry_t *l2e;
6409 	pml3_entry_t *l3e;
6410 	pt_entry_t *pte;
6411 
6412 	l1e = &l1[pmap_pml1e_index(va)];
6413 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6414 	if ((be64toh(*l1e) & PG_V) == 0) {
6415 		db_printf("\n");
6416 		return;
6417 	}
6418 	l2e = pmap_l1e_to_l2e(l1e, va);
6419 	db_printf(" l2e %#016lx", be64toh(*l2e));
6420 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6421 		db_printf("\n");
6422 		return;
6423 	}
6424 	l3e = pmap_l2e_to_l3e(l2e, va);
6425 	db_printf(" l3e %#016lx", be64toh(*l3e));
6426 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6427 		db_printf("\n");
6428 		return;
6429 	}
6430 	pte = pmap_l3e_to_pte(l3e, va);
6431 	db_printf(" pte %#016lx\n", be64toh(*pte));
6432 }
6433 
6434 void
6435 pmap_page_print_mappings(vm_page_t m)
6436 {
6437 	pmap_t pmap;
6438 	pv_entry_t pv;
6439 
6440 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6441 	/* need to elide locks if running in ddb */
6442 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6443 		db_printf("pv: %p ", pv);
6444 		db_printf("va: %#016lx ", pv->pv_va);
6445 		pmap = PV_PMAP(pv);
6446 		db_printf("pmap %p  ", pmap);
6447 		if (pmap != NULL) {
6448 			db_printf("asid: %lu\n", pmap->pm_pid);
6449 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6450 		}
6451 	}
6452 }
6453 
6454 DB_SHOW_COMMAND(pte, pmap_print_pte)
6455 {
6456 	vm_offset_t va;
6457 	pmap_t pmap;
6458 
6459 	if (!have_addr) {
6460 		db_printf("show pte addr\n");
6461 		return;
6462 	}
6463 	va = (vm_offset_t)addr;
6464 
6465 	if (va >= DMAP_MIN_ADDRESS)
6466 		pmap = kernel_pmap;
6467 	else if (kdb_thread != NULL)
6468 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6469 	else
6470 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6471 
6472 	pmap_pte_walk(pmap->pm_pml1, va);
6473 }
6474 
6475 #endif
6476