xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision 4d3fc8b0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/bitstring.h>
38 #include <sys/queue.h>
39 #include <sys/cpuset.h>
40 #include <sys/endian.h>
41 #include <sys/kerneldump.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/syslog.h>
45 #include <sys/msgbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmem.h>
55 #include <sys/vmmeter.h>
56 #include <sys/smp.h>
57 
58 #include <sys/kdb.h>
59 
60 #include <dev/ofw/openfirm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_reserv.h>
73 #include <vm/vm_dumpset.h>
74 #include <vm/uma.h>
75 
76 #include <machine/_inttypes.h>
77 #include <machine/cpu.h>
78 #include <machine/platform.h>
79 #include <machine/frame.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/bat.h>
83 #include <machine/hid.h>
84 #include <machine/pte.h>
85 #include <machine/sr.h>
86 #include <machine/trap.h>
87 #include <machine/mmuvar.h>
88 
89 /* For pseries bit. */
90 #include <powerpc/pseries/phyp-hvcall.h>
91 
92 #ifdef INVARIANTS
93 #include <vm/uma_dbg.h>
94 #endif
95 
96 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
97 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
98 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
99 
100 #include "opt_ddb.h"
101 
102 #ifdef DDB
103 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
104 #endif
105 
106 #define PG_W	RPTE_WIRED
107 #define PG_V	RPTE_VALID
108 #define PG_MANAGED	RPTE_MANAGED
109 #define PG_PROMOTED	RPTE_PROMOTED
110 #define PG_M	RPTE_C
111 #define PG_A	RPTE_R
112 #define PG_X	RPTE_EAA_X
113 #define PG_RW	RPTE_EAA_W
114 #define PG_PTE_CACHE RPTE_ATTR_MASK
115 
116 #define RPTE_SHIFT 9
117 #define NLS_MASK ((1UL<<5)-1)
118 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
119 #define RPTE_MASK (RPTE_ENTRIES-1)
120 
121 #define NLB_SHIFT 0
122 #define NLB_MASK (((1UL<<52)-1) << 8)
123 
124 extern int nkpt;
125 extern caddr_t crashdumpmap;
126 
127 #define RIC_FLUSH_TLB 0
128 #define RIC_FLUSH_PWC 1
129 #define RIC_FLUSH_ALL 2
130 
131 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
132 
133 #define PPC_INST_TLBIE			0x7c000264
134 #define PPC_INST_TLBIEL			0x7c000224
135 #define PPC_INST_SLBIA			0x7c0003e4
136 
137 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
138 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
139 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
140 #define ___PPC_RT(t)	___PPC_RS(t)
141 #define ___PPC_R(r)	(((r) & 0x1) << 16)
142 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
143 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
144 
145 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
146 				       ((IH & 0x7) << 21))
147 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
148 	__XSTRING(.long PPC_INST_TLBIE |			\
149 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
150 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
151 			  ___PPC_R(r))
152 
153 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
154 	 __XSTRING(.long PPC_INST_TLBIEL | \
155 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
156 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
157 			   ___PPC_R(r))
158 
159 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
160 
161 static __inline void
162 ttusync(void)
163 {
164 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
165 }
166 
167 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
168 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
169 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
170 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
171 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
172 
173 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
174 #define  TLBIE_ACTUAL_PAGE_4K		0x00
175 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
176 #define  TLBIE_ACTUAL_PAGE_2M		0x20
177 #define  TLBIE_ACTUAL_PAGE_1G		0x40
178 
179 #define TLBIE_PRS_PARTITION_SCOPE	0x0
180 #define TLBIE_PRS_PROCESS_SCOPE	0x1
181 
182 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
183 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
184 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
185 						 * cached {proc, part}tab entries
186 						 */
187 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
188 						 * Invalidate a range of translations
189 						 */
190 
191 static __always_inline void
192 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
193 			vm_offset_t va, uint16_t ap)
194 {
195 	uint64_t rb, rs;
196 
197 	MPASS((va & PAGE_MASK) == 0);
198 
199 	rs = ((uint64_t)pid << 32) | lpid;
200 	rb = va | is | ap;
201 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
202 		"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
203 }
204 
205 static __inline void
206 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
207 {
208 
209 	__asm __volatile("ptesync" ::: "memory");
210 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
211 	    TLBIEL_INVAL_PAGE, 0, 0, va, ap);
212 	__asm __volatile("ptesync" ::: "memory");
213 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
214 	    TLBIEL_INVAL_PAGE, pid, 0, va, ap);
215 }
216 
217 static __inline void
218 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
219 {
220 
221 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
222 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
223 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
224 }
225 
226 static __inline void
227 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
228 {
229 
230 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
231 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
232 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
233 }
234 
235 static __inline void
236 radix_tlbie_invlpwc_user(uint32_t pid)
237 {
238 
239 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
240 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
241 }
242 
243 static __inline void
244 radix_tlbie_flush_user(uint32_t pid)
245 {
246 
247 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
248 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
249 }
250 
251 static __inline void
252 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
253 {
254 
255 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
256 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
257 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
258 }
259 
260 static __inline void
261 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
262 {
263 
264 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
265 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
266 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
267 }
268 
269 /* 1GB pages aren't currently supported. */
270 static __inline __unused void
271 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
272 {
273 
274 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
275 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
276 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
277 }
278 
279 static __inline void
280 radix_tlbie_invlpwc_kernel(void)
281 {
282 
283 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
284 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
285 }
286 
287 static __inline void
288 radix_tlbie_flush_kernel(void)
289 {
290 
291 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
292 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
293 }
294 
295 static __inline vm_pindex_t
296 pmap_l3e_pindex(vm_offset_t va)
297 {
298 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
299 }
300 
301 static __inline vm_pindex_t
302 pmap_pml3e_index(vm_offset_t va)
303 {
304 
305 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
306 }
307 
308 static __inline vm_pindex_t
309 pmap_pml2e_index(vm_offset_t va)
310 {
311 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
312 }
313 
314 static __inline vm_pindex_t
315 pmap_pml1e_index(vm_offset_t va)
316 {
317 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
318 }
319 
320 /* Return various clipped indexes for a given VA */
321 static __inline vm_pindex_t
322 pmap_pte_index(vm_offset_t va)
323 {
324 
325 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
326 }
327 
328 /* Return a pointer to the PT slot that corresponds to a VA */
329 static __inline pt_entry_t *
330 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
331 {
332 	pt_entry_t *pte;
333 	vm_paddr_t ptepa;
334 
335 	ptepa = (be64toh(*l3e) & NLB_MASK);
336 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
337 	return (&pte[pmap_pte_index(va)]);
338 }
339 
340 /* Return a pointer to the PD slot that corresponds to a VA */
341 static __inline pt_entry_t *
342 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
343 {
344 	pt_entry_t *l3e;
345 	vm_paddr_t l3pa;
346 
347 	l3pa = (be64toh(*l2e) & NLB_MASK);
348 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
349 	return (&l3e[pmap_pml3e_index(va)]);
350 }
351 
352 /* Return a pointer to the PD slot that corresponds to a VA */
353 static __inline pt_entry_t *
354 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
355 {
356 	pt_entry_t *l2e;
357 	vm_paddr_t l2pa;
358 
359 	l2pa = (be64toh(*l1e) & NLB_MASK);
360 
361 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
362 	return (&l2e[pmap_pml2e_index(va)]);
363 }
364 
365 static __inline pml1_entry_t *
366 pmap_pml1e(pmap_t pmap, vm_offset_t va)
367 {
368 
369 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
370 }
371 
372 static pt_entry_t *
373 pmap_pml2e(pmap_t pmap, vm_offset_t va)
374 {
375 	pt_entry_t *l1e;
376 
377 	l1e = pmap_pml1e(pmap, va);
378 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
379 		return (NULL);
380 	return (pmap_l1e_to_l2e(l1e, va));
381 }
382 
383 static __inline pt_entry_t *
384 pmap_pml3e(pmap_t pmap, vm_offset_t va)
385 {
386 	pt_entry_t *l2e;
387 
388 	l2e = pmap_pml2e(pmap, va);
389 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
390 		return (NULL);
391 	return (pmap_l2e_to_l3e(l2e, va));
392 }
393 
394 static __inline pt_entry_t *
395 pmap_pte(pmap_t pmap, vm_offset_t va)
396 {
397 	pt_entry_t *l3e;
398 
399 	l3e = pmap_pml3e(pmap, va);
400 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
401 		return (NULL);
402 	return (pmap_l3e_to_pte(l3e, va));
403 }
404 
405 int nkpt = 64;
406 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
407     "Number of kernel page table pages allocated on bootup");
408 
409 vm_paddr_t dmaplimit;
410 
411 SYSCTL_DECL(_vm_pmap);
412 
413 #ifdef INVARIANTS
414 #define VERBOSE_PMAP 0
415 #define VERBOSE_PROTECT 0
416 static int pmap_logging;
417 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
418     &pmap_logging, 0, "verbose debug logging");
419 #endif
420 
421 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
422 
423 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
424 
425 static vm_offset_t qframe = 0;
426 static struct mtx qframe_mtx;
427 
428 void mmu_radix_activate(struct thread *);
429 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
430 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
431     vm_size_t);
432 void mmu_radix_clear_modify(vm_page_t);
433 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
434 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
435 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
436 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
437 	vm_prot_t);
438 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
439 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
440 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
441 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
442 vm_paddr_t mmu_radix_kextract(vm_offset_t);
443 void mmu_radix_kremove(vm_offset_t);
444 boolean_t mmu_radix_is_modified(vm_page_t);
445 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
446 boolean_t mmu_radix_is_referenced(vm_page_t);
447 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
448 	vm_pindex_t, vm_size_t);
449 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
450 void mmu_radix_page_init(vm_page_t);
451 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
452 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
453 int mmu_radix_page_wired_mappings(vm_page_t);
454 int mmu_radix_pinit(pmap_t);
455 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
456 bool mmu_radix_ps_enabled(pmap_t);
457 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
458 void mmu_radix_qremove(vm_offset_t, int);
459 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
460 void mmu_radix_quick_remove_page(vm_offset_t);
461 boolean_t mmu_radix_ts_referenced(vm_page_t);
462 void mmu_radix_release(pmap_t);
463 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
464 void mmu_radix_remove_all(vm_page_t);
465 void mmu_radix_remove_pages(pmap_t);
466 void mmu_radix_remove_write(vm_page_t);
467 void mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz);
468 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
469 void mmu_radix_zero_page(vm_page_t);
470 void mmu_radix_zero_page_area(vm_page_t, int, int);
471 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
472 void mmu_radix_page_array_startup(long pages);
473 
474 #include "mmu_oea64.h"
475 
476 /*
477  * Kernel MMU interface
478  */
479 
480 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
481 
482 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
483 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
484     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
485 static void mmu_radix_growkernel(vm_offset_t);
486 static void mmu_radix_init(void);
487 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
488 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
489 static void mmu_radix_pinit0(pmap_t);
490 
491 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
492 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
493 static void mmu_radix_unmapdev(void *, vm_size_t);
494 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
495 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
496 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
497 static void mmu_radix_scan_init(void);
498 static void	mmu_radix_cpu_bootstrap(int ap);
499 static void	mmu_radix_tlbie_all(void);
500 
501 static struct pmap_funcs mmu_radix_methods = {
502 	.bootstrap = mmu_radix_bootstrap,
503 	.copy_page = mmu_radix_copy_page,
504 	.copy_pages = mmu_radix_copy_pages,
505 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
506 	.growkernel = mmu_radix_growkernel,
507 	.init = mmu_radix_init,
508 	.map =      		mmu_radix_map,
509 	.mincore =      	mmu_radix_mincore,
510 	.pinit = mmu_radix_pinit,
511 	.pinit0 = mmu_radix_pinit0,
512 
513 	.mapdev = mmu_radix_mapdev,
514 	.mapdev_attr = mmu_radix_mapdev_attr,
515 	.unmapdev = mmu_radix_unmapdev,
516 	.kenter_attr = mmu_radix_kenter_attr,
517 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
518 	.dumpsys_pa_init = mmu_radix_scan_init,
519 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
520 	.page_is_mapped = mmu_radix_page_is_mapped,
521 	.ps_enabled = mmu_radix_ps_enabled,
522 	.align_superpage = mmu_radix_align_superpage,
523 	.object_init_pt = mmu_radix_object_init_pt,
524 	.protect = mmu_radix_protect,
525 	/* pmap dispatcher interface */
526 	.clear_modify = mmu_radix_clear_modify,
527 	.copy = mmu_radix_copy,
528 	.enter = mmu_radix_enter,
529 	.enter_object = mmu_radix_enter_object,
530 	.enter_quick = mmu_radix_enter_quick,
531 	.extract = mmu_radix_extract,
532 	.extract_and_hold = mmu_radix_extract_and_hold,
533 	.is_modified = mmu_radix_is_modified,
534 	.is_prefaultable = mmu_radix_is_prefaultable,
535 	.is_referenced = mmu_radix_is_referenced,
536 	.ts_referenced = mmu_radix_ts_referenced,
537 	.page_exists_quick = mmu_radix_page_exists_quick,
538 	.page_init = mmu_radix_page_init,
539 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
540 	.qenter = mmu_radix_qenter,
541 	.qremove = mmu_radix_qremove,
542 	.release = mmu_radix_release,
543 	.remove = mmu_radix_remove,
544 	.remove_all = mmu_radix_remove_all,
545 	.remove_write = mmu_radix_remove_write,
546 	.sync_icache = mmu_radix_sync_icache,
547 	.unwire = mmu_radix_unwire,
548 	.zero_page = mmu_radix_zero_page,
549 	.zero_page_area = mmu_radix_zero_page_area,
550 	.activate = mmu_radix_activate,
551 	.quick_enter_page =  mmu_radix_quick_enter_page,
552 	.quick_remove_page =  mmu_radix_quick_remove_page,
553 	.page_set_memattr = mmu_radix_page_set_memattr,
554 	.page_array_startup =  mmu_radix_page_array_startup,
555 
556 	/* Internal interfaces */
557 	.kenter = mmu_radix_kenter,
558 	.kextract = mmu_radix_kextract,
559 	.kremove = mmu_radix_kremove,
560 	.change_attr = mmu_radix_change_attr,
561 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
562 
563 	.tlbie_all = mmu_radix_tlbie_all,
564 };
565 
566 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
567 
568 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
569 	struct rwlock **lockp);
570 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
571 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
572 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
573     struct spglist *free, struct rwlock **lockp);
574 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
575     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
576 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
577 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
578     struct spglist *free);
579 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
580 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
581 
582 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
583 		    u_int flags, struct rwlock **lockp);
584 #if VM_NRESERVLEVEL > 0
585 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
586 	struct rwlock **lockp);
587 #endif
588 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
589 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
590 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
591 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
592 
593 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
594 	vm_prot_t prot, struct rwlock **lockp);
595 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
596 	u_int flags, vm_page_t m, struct rwlock **lockp);
597 
598 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
599 static void free_pv_chunk(struct pv_chunk *pc);
600 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
601 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
602 	struct rwlock **lockp);
603 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
604 	struct rwlock **lockp);
605 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
606     struct spglist *free);
607 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
608 
609 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
610 static void pmap_invalidate_all(pmap_t pmap);
611 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
612 
613 /*
614  * Internal flags for pmap_enter()'s helper functions.
615  */
616 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
617 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
618 
619 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
620 #define UNTESTED() panic("%s not yet tested", __func__)
621 
622 /* Number of supported PID bits */
623 static unsigned int isa3_pid_bits;
624 
625 /* PID to start allocating from */
626 static unsigned int isa3_base_pid;
627 
628 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
629 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
630 
631 /*
632  * Map of physical memory regions.
633  */
634 static struct	mem_region *regions, *pregions;
635 static struct	numa_mem_region *numa_pregions;
636 static u_int	phys_avail_count;
637 static int	regions_sz, pregions_sz, numa_pregions_sz;
638 static struct pate *isa3_parttab;
639 static struct prte *isa3_proctab;
640 static vmem_t *asid_arena;
641 
642 extern void bs_remap_earlyboot(void);
643 
644 #define	RADIX_PGD_SIZE_SHIFT	16
645 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
646 
647 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
648 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
649 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
650 
651 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
652 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
653 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
654 
655 /* POWER9 only permits a 64k partition table size. */
656 #define	PARTTAB_SIZE_SHIFT	16
657 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
658 
659 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
660 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
661 
662 /* TLB flush actions. Used as argument to tlbiel_flush() */
663 enum {
664 	TLB_INVAL_SCOPE_LPID = 2,	/* invalidate TLBs for current LPID */
665 	TLB_INVAL_SCOPE_GLOBAL = 3,	/* invalidate all TLBs */
666 };
667 
668 #define	NPV_LIST_LOCKS	MAXCPU
669 static int pmap_initialized;
670 static vm_paddr_t proctab0pa;
671 static vm_paddr_t parttab_phys;
672 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
673 
674 /*
675  * Data for the pv entry allocation mechanism.
676  * Updates to pv_invl_gen are protected by the pv_list_locks[]
677  * elements, but reads are not.
678  */
679 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
680 static struct mtx __exclusive_cache_line pv_chunks_mutex;
681 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
682 static struct md_page *pv_table;
683 static struct md_page pv_dummy;
684 
685 #ifdef PV_STATS
686 #define PV_STAT(x)	do { x ; } while (0)
687 #else
688 #define PV_STAT(x)	do { } while (0)
689 #endif
690 
691 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
692 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
693 
694 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
695 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
696 
697 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
698 	struct rwlock **_lockp = (lockp);		\
699 	struct rwlock *_new_lock;			\
700 							\
701 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
702 	if (_new_lock != *_lockp) {			\
703 		if (*_lockp != NULL)			\
704 			rw_wunlock(*_lockp);		\
705 		*_lockp = _new_lock;			\
706 		rw_wlock(*_lockp);			\
707 	}						\
708 } while (0)
709 
710 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
711 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
712 
713 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
714 	struct rwlock **_lockp = (lockp);		\
715 							\
716 	if (*_lockp != NULL) {				\
717 		rw_wunlock(*_lockp);			\
718 		*_lockp = NULL;				\
719 	}						\
720 } while (0)
721 
722 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
723 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
724 
725 /*
726  * We support 52 bits, hence:
727  * bits 52 - 31 = 21, 0b10101
728  * RTS encoding details
729  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
730  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
731  */
732 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
733 
734 static int powernv_enabled = 1;
735 
736 static __always_inline void
737 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
738 	uint32_t pid, uint32_t ric, uint32_t prs)
739 {
740 	uint64_t rb;
741 	uint64_t rs;
742 
743 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
744 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
745 
746 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
747 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
748 		     : "memory");
749 }
750 
751 static void
752 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
753 {
754 	uint32_t set;
755 
756 	__asm __volatile("ptesync": : :"memory");
757 
758 	/*
759 	 * Flush the first set of the TLB, and the entire Page Walk Cache
760 	 * and partition table entries. Then flush the remaining sets of the
761 	 * TLB.
762 	 */
763 	if (is == TLB_INVAL_SCOPE_GLOBAL) {
764 		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
765 		for (set = 1; set < num_sets; set++)
766 			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
767 	}
768 
769 	/* Do the same for process scoped entries. */
770 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
771 	for (set = 1; set < num_sets; set++)
772 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
773 
774 	__asm __volatile("ptesync": : :"memory");
775 }
776 
777 static void
778 mmu_radix_tlbiel_flush(int scope)
779 {
780 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
781 		  scope == TLB_INVAL_SCOPE_GLOBAL);
782 
783 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
784 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
785 }
786 
787 static void
788 mmu_radix_tlbie_all(void)
789 {
790 	if (powernv_enabled)
791 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
792 	else
793 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
794 }
795 
796 static void
797 mmu_radix_init_amor(void)
798 {
799 	/*
800 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
801 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
802 	* Register), enable key 0 and set it to 1.
803 	*
804 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
805 	*/
806 	mtspr(SPR_AMOR, (3ul << 62));
807 }
808 
809 static void
810 mmu_radix_init_iamr(void)
811 {
812 	/*
813 	 * Radix always uses key0 of the IAMR to determine if an access is
814 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
815 	 * fetch.
816 	 */
817 	mtspr(SPR_IAMR, (1ul << 62));
818 }
819 
820 static void
821 mmu_radix_pid_set(pmap_t pmap)
822 {
823 
824 	mtspr(SPR_PID, pmap->pm_pid);
825 	isync();
826 }
827 
828 /* Quick sort callout for comparing physical addresses. */
829 static int
830 pa_cmp(const void *a, const void *b)
831 {
832 	const vm_paddr_t *pa = a, *pb = b;
833 
834 	if (*pa < *pb)
835 		return (-1);
836 	else if (*pa > *pb)
837 		return (1);
838 	else
839 		return (0);
840 }
841 
842 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
843 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
844 #define	pte_store(ptep, pte) do {	   \
845 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
846 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
847 } while (0)
848 /*
849  * NB: should only be used for adding directories - not for direct mappings
850  */
851 #define	pde_store(ptep, pa) do {				\
852 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
853 } while (0)
854 
855 #define	pte_clear(ptep) do {					\
856 		*(u_long *)(ptep) = (u_long)(0);		\
857 } while (0)
858 
859 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
860 
861 /*
862  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
863  * (PTE) page mappings have identical settings for the following fields:
864  */
865 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
866 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
867 
868 static __inline void
869 pmap_resident_count_inc(pmap_t pmap, int count)
870 {
871 
872 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
873 	pmap->pm_stats.resident_count += count;
874 }
875 
876 static __inline void
877 pmap_resident_count_dec(pmap_t pmap, int count)
878 {
879 
880 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
881 	KASSERT(pmap->pm_stats.resident_count >= count,
882 	    ("pmap %p resident count underflow %ld %d", pmap,
883 	    pmap->pm_stats.resident_count, count));
884 	pmap->pm_stats.resident_count -= count;
885 }
886 
887 static void
888 pagezero(vm_offset_t va)
889 {
890 	va = trunc_page(va);
891 
892 	bzero((void *)va, PAGE_SIZE);
893 }
894 
895 static uint64_t
896 allocpages(int n)
897 {
898 	u_int64_t ret;
899 
900 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
901 	for (int i = 0; i < n; i++)
902 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
903 	return (ret);
904 }
905 
906 static pt_entry_t *
907 kvtopte(vm_offset_t va)
908 {
909 	pt_entry_t *l3e;
910 
911 	l3e = pmap_pml3e(kernel_pmap, va);
912 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
913 		return (NULL);
914 	return (pmap_l3e_to_pte(l3e, va));
915 }
916 
917 void
918 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
919 {
920 	pt_entry_t *pte;
921 
922 	pte = kvtopte(va);
923 	MPASS(pte != NULL);
924 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
925 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
926 }
927 
928 bool
929 mmu_radix_ps_enabled(pmap_t pmap)
930 {
931 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
932 }
933 
934 static pt_entry_t *
935 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
936 {
937 	pml3_entry_t *l3e;
938 	pt_entry_t *pte;
939 
940 	va &= PG_PS_FRAME;
941 	l3e = pmap_pml3e(pmap, va);
942 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
943 		return (NULL);
944 
945 	if (be64toh(*l3e) & RPTE_LEAF) {
946 		*is_l3e = 1;
947 		return (l3e);
948 	}
949 	*is_l3e = 0;
950 	va &= PG_FRAME;
951 	pte = pmap_l3e_to_pte(l3e, va);
952 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
953 		return (NULL);
954 	return (pte);
955 }
956 
957 int
958 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
959 {
960 	pt_entry_t *pte;
961 	pt_entry_t startpte, origpte, newpte;
962 	vm_page_t m;
963 	int is_l3e;
964 
965 	startpte = 0;
966  retry:
967 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
968 		return (KERN_INVALID_ADDRESS);
969 	origpte = newpte = be64toh(*pte);
970 	if (startpte == 0) {
971 		startpte = origpte;
972 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
973 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
974 			pmap_invalidate_all(pmap);
975 #ifdef INVARIANTS
976 			if (VERBOSE_PMAP || pmap_logging)
977 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
978 				    __func__, pmap, va, flags, origpte);
979 #endif
980 			return (KERN_FAILURE);
981 		}
982 	}
983 #ifdef INVARIANTS
984 	if (VERBOSE_PMAP || pmap_logging)
985 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
986 		    flags, origpte);
987 #endif
988 	PMAP_LOCK(pmap);
989 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
990 	    be64toh(*pte) != origpte) {
991 		PMAP_UNLOCK(pmap);
992 		return (KERN_FAILURE);
993 	}
994 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
995 	MPASS(m != NULL);
996 	switch (flags) {
997 	case VM_PROT_READ:
998 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
999 			goto protfail;
1000 		newpte |= PG_A;
1001 		vm_page_aflag_set(m, PGA_REFERENCED);
1002 		break;
1003 	case VM_PROT_WRITE:
1004 		if ((newpte & RPTE_EAA_W) == 0)
1005 			goto protfail;
1006 		if (is_l3e)
1007 			goto protfail;
1008 		newpte |= PG_M;
1009 		vm_page_dirty(m);
1010 		break;
1011 	case VM_PROT_EXECUTE:
1012 		if ((newpte & RPTE_EAA_X) == 0)
1013 			goto protfail;
1014 		newpte |= PG_A;
1015 		vm_page_aflag_set(m, PGA_REFERENCED);
1016 		break;
1017 	}
1018 
1019 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1020 		goto retry;
1021 	ptesync();
1022 	PMAP_UNLOCK(pmap);
1023 	if (startpte == newpte)
1024 		return (KERN_FAILURE);
1025 	return (0);
1026  protfail:
1027 	PMAP_UNLOCK(pmap);
1028 	return (KERN_PROTECTION_FAILURE);
1029 }
1030 
1031 /*
1032  * Returns TRUE if the given page is mapped individually or as part of
1033  * a 2mpage.  Otherwise, returns FALSE.
1034  */
1035 boolean_t
1036 mmu_radix_page_is_mapped(vm_page_t m)
1037 {
1038 	struct rwlock *lock;
1039 	boolean_t rv;
1040 
1041 	if ((m->oflags & VPO_UNMANAGED) != 0)
1042 		return (FALSE);
1043 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1044 	rw_rlock(lock);
1045 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1046 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1047 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1048 	rw_runlock(lock);
1049 	return (rv);
1050 }
1051 
1052 /*
1053  * Determine the appropriate bits to set in a PTE or PDE for a specified
1054  * caching mode.
1055  */
1056 static int
1057 pmap_cache_bits(vm_memattr_t ma)
1058 {
1059 	if (ma != VM_MEMATTR_DEFAULT) {
1060 		switch (ma) {
1061 		case VM_MEMATTR_UNCACHEABLE:
1062 			return (RPTE_ATTR_GUARDEDIO);
1063 		case VM_MEMATTR_CACHEABLE:
1064 			return (RPTE_ATTR_MEM);
1065 		case VM_MEMATTR_WRITE_BACK:
1066 		case VM_MEMATTR_PREFETCHABLE:
1067 		case VM_MEMATTR_WRITE_COMBINING:
1068 			return (RPTE_ATTR_UNGUARDEDIO);
1069 		}
1070 	}
1071 	return (0);
1072 }
1073 
1074 static void
1075 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1076 {
1077 	ptesync();
1078 	if (pmap == kernel_pmap)
1079 		radix_tlbie_invlpg_kernel_4k(start);
1080 	else
1081 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1082 	ttusync();
1083 }
1084 
1085 static void
1086 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1087 {
1088 	ptesync();
1089 	if (pmap == kernel_pmap)
1090 		radix_tlbie_invlpg_kernel_2m(start);
1091 	else
1092 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1093 	ttusync();
1094 }
1095 
1096 static void
1097 pmap_invalidate_pwc(pmap_t pmap)
1098 {
1099 	ptesync();
1100 	if (pmap == kernel_pmap)
1101 		radix_tlbie_invlpwc_kernel();
1102 	else
1103 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1104 	ttusync();
1105 }
1106 
1107 static void
1108 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1109 {
1110 	if (((start - end) >> PAGE_SHIFT) > 8) {
1111 		pmap_invalidate_all(pmap);
1112 		return;
1113 	}
1114 	ptesync();
1115 	if (pmap == kernel_pmap) {
1116 		while (start < end) {
1117 			radix_tlbie_invlpg_kernel_4k(start);
1118 			start += PAGE_SIZE;
1119 		}
1120 	} else {
1121 		while (start < end) {
1122 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1123 			start += PAGE_SIZE;
1124 		}
1125 	}
1126 	ttusync();
1127 }
1128 
1129 static void
1130 pmap_invalidate_all(pmap_t pmap)
1131 {
1132 	ptesync();
1133 	if (pmap == kernel_pmap)
1134 		radix_tlbie_flush_kernel();
1135 	else
1136 		radix_tlbie_flush_user(pmap->pm_pid);
1137 	ttusync();
1138 }
1139 
1140 static void
1141 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1142 {
1143 
1144 	/*
1145 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1146 	 * by a promotion that did not invalidate the 512 4KB page mappings
1147 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1148 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1149 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1150 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1151 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1152 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1153 	 * TLB.
1154 	 */
1155 	ptesync();
1156 	if ((l3e & PG_PROMOTED) != 0)
1157 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1158 	else
1159 		pmap_invalidate_page_2m(pmap, va);
1160 
1161 	pmap_invalidate_pwc(pmap);
1162 }
1163 
1164 static __inline struct pv_chunk *
1165 pv_to_chunk(pv_entry_t pv)
1166 {
1167 
1168 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1169 }
1170 
1171 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1172 
1173 #define	PC_FREE0	0xfffffffffffffffful
1174 #define	PC_FREE1	((1ul << (_NPCPV % 64)) - 1)
1175 
1176 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1177 
1178 /*
1179  * Ensure that the number of spare PV entries in the specified pmap meets or
1180  * exceeds the given count, "needed".
1181  *
1182  * The given PV list lock may be released.
1183  */
1184 static void
1185 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1186 {
1187 	struct pch new_tail;
1188 	struct pv_chunk *pc;
1189 	vm_page_t m;
1190 	int avail, free;
1191 	bool reclaimed;
1192 
1193 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1194 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1195 
1196 	/*
1197 	 * Newly allocated PV chunks must be stored in a private list until
1198 	 * the required number of PV chunks have been allocated.  Otherwise,
1199 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1200 	 * contrast, these chunks must be added to the pmap upon allocation.
1201 	 */
1202 	TAILQ_INIT(&new_tail);
1203 retry:
1204 	avail = 0;
1205 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1206 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1207 		bit_count((bitstr_t *)pc->pc_map, 0,
1208 				  sizeof(pc->pc_map) * NBBY, &free);
1209 #if 0
1210 		free = popcnt_pc_map_pq(pc->pc_map);
1211 #endif
1212 		if (free == 0)
1213 			break;
1214 		avail += free;
1215 		if (avail >= needed)
1216 			break;
1217 	}
1218 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1219 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1220 		if (m == NULL) {
1221 			m = reclaim_pv_chunk(pmap, lockp);
1222 			if (m == NULL)
1223 				goto retry;
1224 			reclaimed = true;
1225 		}
1226 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1227 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1228 		dump_add_page(m->phys_addr);
1229 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1230 		pc->pc_pmap = pmap;
1231 		pc->pc_map[0] = PC_FREE0;
1232 		pc->pc_map[1] = PC_FREE1;
1233 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1234 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1235 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1236 
1237 		/*
1238 		 * The reclaim might have freed a chunk from the current pmap.
1239 		 * If that chunk contained available entries, we need to
1240 		 * re-count the number of available entries.
1241 		 */
1242 		if (reclaimed)
1243 			goto retry;
1244 	}
1245 	if (!TAILQ_EMPTY(&new_tail)) {
1246 		mtx_lock(&pv_chunks_mutex);
1247 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1248 		mtx_unlock(&pv_chunks_mutex);
1249 	}
1250 }
1251 
1252 /*
1253  * First find and then remove the pv entry for the specified pmap and virtual
1254  * address from the specified pv list.  Returns the pv entry if found and NULL
1255  * otherwise.  This operation can be performed on pv lists for either 4KB or
1256  * 2MB page mappings.
1257  */
1258 static __inline pv_entry_t
1259 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1260 {
1261 	pv_entry_t pv;
1262 
1263 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1264 #ifdef INVARIANTS
1265 		if (PV_PMAP(pv) == NULL) {
1266 			printf("corrupted pv_chunk/pv %p\n", pv);
1267 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1268 		}
1269 		MPASS(PV_PMAP(pv) != NULL);
1270 		MPASS(pv->pv_va != 0);
1271 #endif
1272 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1273 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1274 			pvh->pv_gen++;
1275 			break;
1276 		}
1277 	}
1278 	return (pv);
1279 }
1280 
1281 /*
1282  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1283  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1284  * entries for each of the 4KB page mappings.
1285  */
1286 static void
1287 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1288     struct rwlock **lockp)
1289 {
1290 	struct md_page *pvh;
1291 	struct pv_chunk *pc;
1292 	pv_entry_t pv;
1293 	vm_offset_t va_last;
1294 	vm_page_t m;
1295 	int bit, field;
1296 
1297 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1298 	KASSERT((pa & L3_PAGE_MASK) == 0,
1299 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1300 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1301 
1302 	/*
1303 	 * Transfer the 2mpage's pv entry for this mapping to the first
1304 	 * page's pv list.  Once this transfer begins, the pv list lock
1305 	 * must not be released until the last pv entry is reinstantiated.
1306 	 */
1307 	pvh = pa_to_pvh(pa);
1308 	va = trunc_2mpage(va);
1309 	pv = pmap_pvh_remove(pvh, pmap, va);
1310 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1311 	m = PHYS_TO_VM_PAGE(pa);
1312 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1313 
1314 	m->md.pv_gen++;
1315 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1316 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1317 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1318 	for (;;) {
1319 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1320 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1321 		    , ("pmap_pv_demote_pde: missing spare"));
1322 		for (field = 0; field < _NPCM; field++) {
1323 			while (pc->pc_map[field]) {
1324 				bit = cnttzd(pc->pc_map[field]);
1325 				pc->pc_map[field] &= ~(1ul << bit);
1326 				pv = &pc->pc_pventry[field * 64 + bit];
1327 				va += PAGE_SIZE;
1328 				pv->pv_va = va;
1329 				m++;
1330 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1331 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1332 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1333 
1334 				m->md.pv_gen++;
1335 				if (va == va_last)
1336 					goto out;
1337 			}
1338 		}
1339 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1340 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1341 	}
1342 out:
1343 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1344 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1345 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1346 	}
1347 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1348 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1349 }
1350 
1351 static void
1352 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1353 {
1354 
1355 	if (pmap == NULL)
1356 		return;
1357 	pmap_invalidate_all(pmap);
1358 	if (pmap != locked_pmap)
1359 		PMAP_UNLOCK(pmap);
1360 }
1361 
1362 /*
1363  * We are in a serious low memory condition.  Resort to
1364  * drastic measures to free some pages so we can allocate
1365  * another pv entry chunk.
1366  *
1367  * Returns NULL if PV entries were reclaimed from the specified pmap.
1368  *
1369  * We do not, however, unmap 2mpages because subsequent accesses will
1370  * allocate per-page pv entries until repromotion occurs, thereby
1371  * exacerbating the shortage of free pv entries.
1372  */
1373 static int active_reclaims = 0;
1374 static vm_page_t
1375 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1376 {
1377 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1378 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1379 	struct md_page *pvh;
1380 	pml3_entry_t *l3e;
1381 	pmap_t next_pmap, pmap;
1382 	pt_entry_t *pte, tpte;
1383 	pv_entry_t pv;
1384 	vm_offset_t va;
1385 	vm_page_t m, m_pc;
1386 	struct spglist free;
1387 	uint64_t inuse;
1388 	int bit, field, freed;
1389 
1390 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1391 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1392 	pmap = NULL;
1393 	m_pc = NULL;
1394 	SLIST_INIT(&free);
1395 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1396 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1397 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1398 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1399 
1400 	mtx_lock(&pv_chunks_mutex);
1401 	active_reclaims++;
1402 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1403 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1404 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1405 	    SLIST_EMPTY(&free)) {
1406 		next_pmap = pc->pc_pmap;
1407 		if (next_pmap == NULL) {
1408 			/*
1409 			 * The next chunk is a marker.  However, it is
1410 			 * not our marker, so active_reclaims must be
1411 			 * > 1.  Consequently, the next_chunk code
1412 			 * will not rotate the pv_chunks list.
1413 			 */
1414 			goto next_chunk;
1415 		}
1416 		mtx_unlock(&pv_chunks_mutex);
1417 
1418 		/*
1419 		 * A pv_chunk can only be removed from the pc_lru list
1420 		 * when both pc_chunks_mutex is owned and the
1421 		 * corresponding pmap is locked.
1422 		 */
1423 		if (pmap != next_pmap) {
1424 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1425 			pmap = next_pmap;
1426 			/* Avoid deadlock and lock recursion. */
1427 			if (pmap > locked_pmap) {
1428 				RELEASE_PV_LIST_LOCK(lockp);
1429 				PMAP_LOCK(pmap);
1430 				mtx_lock(&pv_chunks_mutex);
1431 				continue;
1432 			} else if (pmap != locked_pmap) {
1433 				if (PMAP_TRYLOCK(pmap)) {
1434 					mtx_lock(&pv_chunks_mutex);
1435 					continue;
1436 				} else {
1437 					pmap = NULL; /* pmap is not locked */
1438 					mtx_lock(&pv_chunks_mutex);
1439 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1440 					if (pc == NULL ||
1441 					    pc->pc_pmap != next_pmap)
1442 						continue;
1443 					goto next_chunk;
1444 				}
1445 			}
1446 		}
1447 
1448 		/*
1449 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1450 		 */
1451 		freed = 0;
1452 		for (field = 0; field < _NPCM; field++) {
1453 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1454 			    inuse != 0; inuse &= ~(1UL << bit)) {
1455 				bit = cnttzd(inuse);
1456 				pv = &pc->pc_pventry[field * 64 + bit];
1457 				va = pv->pv_va;
1458 				l3e = pmap_pml3e(pmap, va);
1459 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1460 					continue;
1461 				pte = pmap_l3e_to_pte(l3e, va);
1462 				if ((be64toh(*pte) & PG_W) != 0)
1463 					continue;
1464 				tpte = be64toh(pte_load_clear(pte));
1465 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1466 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1467 					vm_page_dirty(m);
1468 				if ((tpte & PG_A) != 0)
1469 					vm_page_aflag_set(m, PGA_REFERENCED);
1470 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1471 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1472 
1473 				m->md.pv_gen++;
1474 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1475 				    (m->flags & PG_FICTITIOUS) == 0) {
1476 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1477 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1478 						vm_page_aflag_clear(m,
1479 						    PGA_WRITEABLE);
1480 					}
1481 				}
1482 				pc->pc_map[field] |= 1UL << bit;
1483 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1484 				freed++;
1485 			}
1486 		}
1487 		if (freed == 0) {
1488 			mtx_lock(&pv_chunks_mutex);
1489 			goto next_chunk;
1490 		}
1491 		/* Every freed mapping is for a 4 KB page. */
1492 		pmap_resident_count_dec(pmap, freed);
1493 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1494 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1495 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1496 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1497 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1498 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1499 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1500 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1501 			/* Entire chunk is free; return it. */
1502 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1503 			dump_drop_page(m_pc->phys_addr);
1504 			mtx_lock(&pv_chunks_mutex);
1505 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1506 			break;
1507 		}
1508 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1509 		mtx_lock(&pv_chunks_mutex);
1510 		/* One freed pv entry in locked_pmap is sufficient. */
1511 		if (pmap == locked_pmap)
1512 			break;
1513 next_chunk:
1514 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1515 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1516 		if (active_reclaims == 1 && pmap != NULL) {
1517 			/*
1518 			 * Rotate the pv chunks list so that we do not
1519 			 * scan the same pv chunks that could not be
1520 			 * freed (because they contained a wired
1521 			 * and/or superpage mapping) on every
1522 			 * invocation of reclaim_pv_chunk().
1523 			 */
1524 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1525 				MPASS(pc->pc_pmap != NULL);
1526 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1527 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1528 			}
1529 		}
1530 	}
1531 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1532 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1533 	active_reclaims--;
1534 	mtx_unlock(&pv_chunks_mutex);
1535 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1536 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1537 		m_pc = SLIST_FIRST(&free);
1538 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1539 		/* Recycle a freed page table page. */
1540 		m_pc->ref_count = 1;
1541 	}
1542 	vm_page_free_pages_toq(&free, true);
1543 	return (m_pc);
1544 }
1545 
1546 /*
1547  * free the pv_entry back to the free list
1548  */
1549 static void
1550 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1551 {
1552 	struct pv_chunk *pc;
1553 	int idx, field, bit;
1554 
1555 #ifdef VERBOSE_PV
1556 	if (pmap != kernel_pmap)
1557 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1558 #endif
1559 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1560 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1561 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1562 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1563 	pc = pv_to_chunk(pv);
1564 	idx = pv - &pc->pc_pventry[0];
1565 	field = idx / 64;
1566 	bit = idx % 64;
1567 	pc->pc_map[field] |= 1ul << bit;
1568 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1569 		/* 98% of the time, pc is already at the head of the list. */
1570 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1571 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1572 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1573 		}
1574 		return;
1575 	}
1576 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1577 	free_pv_chunk(pc);
1578 }
1579 
1580 static void
1581 free_pv_chunk(struct pv_chunk *pc)
1582 {
1583 	vm_page_t m;
1584 
1585 	mtx_lock(&pv_chunks_mutex);
1586  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1587 	mtx_unlock(&pv_chunks_mutex);
1588 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1589 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1590 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1591 	/* entire chunk is free, return it */
1592 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1593 	dump_drop_page(m->phys_addr);
1594 	vm_page_unwire_noq(m);
1595 	vm_page_free(m);
1596 }
1597 
1598 /*
1599  * Returns a new PV entry, allocating a new PV chunk from the system when
1600  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1601  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1602  * returned.
1603  *
1604  * The given PV list lock may be released.
1605  */
1606 static pv_entry_t
1607 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1608 {
1609 	int bit, field;
1610 	pv_entry_t pv;
1611 	struct pv_chunk *pc;
1612 	vm_page_t m;
1613 
1614 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1615 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1616 retry:
1617 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1618 	if (pc != NULL) {
1619 		for (field = 0; field < _NPCM; field++) {
1620 			if (pc->pc_map[field]) {
1621 				bit = cnttzd(pc->pc_map[field]);
1622 				break;
1623 			}
1624 		}
1625 		if (field < _NPCM) {
1626 			pv = &pc->pc_pventry[field * 64 + bit];
1627 			pc->pc_map[field] &= ~(1ul << bit);
1628 			/* If this was the last item, move it to tail */
1629 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1630 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1631 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1632 				    pc_list);
1633 			}
1634 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1635 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1636 			MPASS(PV_PMAP(pv) != NULL);
1637 			return (pv);
1638 		}
1639 	}
1640 	/* No free items, allocate another chunk */
1641 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1642 	if (m == NULL) {
1643 		if (lockp == NULL) {
1644 			PV_STAT(pc_chunk_tryfail++);
1645 			return (NULL);
1646 		}
1647 		m = reclaim_pv_chunk(pmap, lockp);
1648 		if (m == NULL)
1649 			goto retry;
1650 	}
1651 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1652 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1653 	dump_add_page(m->phys_addr);
1654 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1655 	pc->pc_pmap = pmap;
1656 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1657 	pc->pc_map[1] = PC_FREE1;
1658 	mtx_lock(&pv_chunks_mutex);
1659 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1660 	mtx_unlock(&pv_chunks_mutex);
1661 	pv = &pc->pc_pventry[0];
1662 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1663 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1664 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1665 	MPASS(PV_PMAP(pv) != NULL);
1666 	return (pv);
1667 }
1668 
1669 #if VM_NRESERVLEVEL > 0
1670 /*
1671  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1672  * replace the many pv entries for the 4KB page mappings by a single pv entry
1673  * for the 2MB page mapping.
1674  */
1675 static void
1676 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1677     struct rwlock **lockp)
1678 {
1679 	struct md_page *pvh;
1680 	pv_entry_t pv;
1681 	vm_offset_t va_last;
1682 	vm_page_t m;
1683 
1684 	KASSERT((pa & L3_PAGE_MASK) == 0,
1685 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1686 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1687 
1688 	/*
1689 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1690 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1691 	 * a transfer avoids the possibility that get_pv_entry() calls
1692 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1693 	 * mappings that is being promoted.
1694 	 */
1695 	m = PHYS_TO_VM_PAGE(pa);
1696 	va = trunc_2mpage(va);
1697 	pv = pmap_pvh_remove(&m->md, pmap, va);
1698 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1699 	pvh = pa_to_pvh(pa);
1700 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1701 	pvh->pv_gen++;
1702 	/* Free the remaining NPTEPG - 1 pv entries. */
1703 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1704 	do {
1705 		m++;
1706 		va += PAGE_SIZE;
1707 		pmap_pvh_free(&m->md, pmap, va);
1708 	} while (va < va_last);
1709 }
1710 #endif /* VM_NRESERVLEVEL > 0 */
1711 
1712 /*
1713  * First find and then destroy the pv entry for the specified pmap and virtual
1714  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1715  * page mappings.
1716  */
1717 static void
1718 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1719 {
1720 	pv_entry_t pv;
1721 
1722 	pv = pmap_pvh_remove(pvh, pmap, va);
1723 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1724 	free_pv_entry(pmap, pv);
1725 }
1726 
1727 /*
1728  * Conditionally create the PV entry for a 4KB page mapping if the required
1729  * memory can be allocated without resorting to reclamation.
1730  */
1731 static boolean_t
1732 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1733     struct rwlock **lockp)
1734 {
1735 	pv_entry_t pv;
1736 
1737 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1738 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1739 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1740 		pv->pv_va = va;
1741 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1742 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1743 		m->md.pv_gen++;
1744 		return (TRUE);
1745 	} else
1746 		return (FALSE);
1747 }
1748 
1749 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1750 #ifdef INVARIANTS
1751 static void
1752 validate_addr(vm_paddr_t addr, vm_size_t size)
1753 {
1754 	vm_paddr_t end = addr + size;
1755 	bool found = false;
1756 
1757 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1758 		if (addr >= phys_avail_debug[i] &&
1759 			end <= phys_avail_debug[i + 1]) {
1760 			found = true;
1761 			break;
1762 		}
1763 	}
1764 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1765 					addr, end));
1766 }
1767 #else
1768 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1769 #endif
1770 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1771 
1772 static vm_paddr_t
1773 alloc_pt_page(void)
1774 {
1775 	vm_paddr_t page;
1776 
1777 	page = allocpages(1);
1778 	pagezero(PHYS_TO_DMAP(page));
1779 	return (page);
1780 }
1781 
1782 static void
1783 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1784 {
1785 	pt_entry_t *pte, pteval;
1786 	vm_paddr_t page;
1787 
1788 	if (bootverbose)
1789 		printf("%s %lx -> %lx\n", __func__, start, end);
1790 	while (start < end) {
1791 		pteval = start | DMAP_PAGE_BITS;
1792 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1793 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1794 			page = alloc_pt_page();
1795 			pde_store(pte, page);
1796 		}
1797 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1798 		if ((start & L2_PAGE_MASK) == 0 &&
1799 			end - start >= L2_PAGE_SIZE) {
1800 			start += L2_PAGE_SIZE;
1801 			goto done;
1802 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1803 			page = alloc_pt_page();
1804 			pde_store(pte, page);
1805 		}
1806 
1807 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1808 		if ((start & L3_PAGE_MASK) == 0 &&
1809 			end - start >= L3_PAGE_SIZE) {
1810 			start += L3_PAGE_SIZE;
1811 			goto done;
1812 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1813 			page = alloc_pt_page();
1814 			pde_store(pte, page);
1815 		}
1816 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1817 		start += PAGE_SIZE;
1818 	done:
1819 		pte_store(pte, pteval);
1820 	}
1821 }
1822 
1823 static void
1824 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1825 {
1826 	vm_paddr_t start, end;
1827 
1828 	for (int i = 0; i < pregions_sz; i++) {
1829 		start = pregions[i].mr_start;
1830 		end = start + pregions[i].mr_size;
1831 		if (hwphyssz && start >= hwphyssz)
1832 			break;
1833 		if (hwphyssz && hwphyssz < end)
1834 			end = hwphyssz;
1835 		mmu_radix_dmap_range(start, end);
1836 	}
1837 }
1838 
1839 static void
1840 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1841 {
1842 	vm_paddr_t ptpages, pages;
1843 	pt_entry_t *pte;
1844 	vm_paddr_t l1phys;
1845 
1846 	bzero(kernel_pmap, sizeof(struct pmap));
1847 	PMAP_LOCK_INIT(kernel_pmap);
1848 
1849 	ptpages = allocpages(3);
1850 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1851 	validate_addr(l1phys, RADIX_PGD_SIZE);
1852 	if (bootverbose)
1853 		printf("l1phys=%lx\n", l1phys);
1854 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1855 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1856 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1857 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1858 
1859 	mmu_radix_dmap_populate(hwphyssz);
1860 
1861 	/*
1862 	 * Create page tables for first 128MB of KVA
1863 	 */
1864 	pages = ptpages;
1865 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1866 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1867 	pages += PAGE_SIZE;
1868 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1869 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1870 	pages += PAGE_SIZE;
1871 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1872 	/*
1873 	 * the kernel page table pages need to be preserved in
1874 	 * phys_avail and not overlap with previous  allocations
1875 	 */
1876 	pages = allocpages(nkpt);
1877 	if (bootverbose) {
1878 		printf("phys_avail after dmap populate and nkpt allocation\n");
1879 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1880 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1881 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1882 	}
1883 	KPTphys = pages;
1884 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1885 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1886 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1887 	if (bootverbose)
1888 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1889 	/*
1890 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1891 	 * preallocated kernel page table pages so that vm_page structures
1892 	 * representing these pages will be created.  The vm_page structures
1893 	 * are required for promotion of the corresponding kernel virtual
1894 	 * addresses to superpage mappings.
1895 	 */
1896 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1897 }
1898 
1899 static void
1900 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1901 {
1902 	vm_paddr_t	kpstart, kpend;
1903 	vm_size_t	physsz, hwphyssz;
1904 	//uint64_t	l2virt;
1905 	int		rm_pavail, proctab_size;
1906 	int		i, j;
1907 
1908 	kpstart = start & ~DMAP_BASE_ADDRESS;
1909 	kpend = end & ~DMAP_BASE_ADDRESS;
1910 
1911 	/* Get physical memory regions from firmware */
1912 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1913 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1914 
1915 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1916 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1917 
1918 	if (bootverbose)
1919 		for (int i = 0; i < regions_sz; i++)
1920 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1921 			    i, regions[i].mr_start, i, regions[i].mr_size);
1922 	/*
1923 	 * XXX workaround a simulator bug
1924 	 */
1925 	for (int i = 0; i < regions_sz; i++)
1926 		if (regions[i].mr_start & PAGE_MASK) {
1927 			regions[i].mr_start += PAGE_MASK;
1928 			regions[i].mr_start &= ~PAGE_MASK;
1929 			regions[i].mr_size &= ~PAGE_MASK;
1930 		}
1931 	if (bootverbose)
1932 		for (int i = 0; i < pregions_sz; i++)
1933 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1934 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1935 
1936 	phys_avail_count = 0;
1937 	physsz = 0;
1938 	hwphyssz = 0;
1939 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1940 	for (i = 0, j = 0; i < regions_sz; i++) {
1941 		if (bootverbose)
1942 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1943 			    i, regions[i].mr_start, i, regions[i].mr_size);
1944 
1945 		if (regions[i].mr_size < PAGE_SIZE)
1946 			continue;
1947 
1948 		if (hwphyssz != 0 &&
1949 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1950 			if (physsz < hwphyssz) {
1951 				phys_avail[j] = regions[i].mr_start;
1952 				phys_avail[j + 1] = regions[i].mr_start +
1953 				    (hwphyssz - physsz);
1954 				physsz = hwphyssz;
1955 				phys_avail_count++;
1956 				dump_avail[j] = phys_avail[j];
1957 				dump_avail[j + 1] = phys_avail[j + 1];
1958 			}
1959 			break;
1960 		}
1961 		phys_avail[j] = regions[i].mr_start;
1962 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1963 		dump_avail[j] = phys_avail[j];
1964 		dump_avail[j + 1] = phys_avail[j + 1];
1965 
1966 		phys_avail_count++;
1967 		physsz += regions[i].mr_size;
1968 		j += 2;
1969 	}
1970 
1971 	/* Check for overlap with the kernel and exception vectors */
1972 	rm_pavail = 0;
1973 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1974 		if (phys_avail[j] < EXC_LAST)
1975 			phys_avail[j] += EXC_LAST;
1976 
1977 		if (phys_avail[j] >= kpstart &&
1978 		    phys_avail[j + 1] <= kpend) {
1979 			phys_avail[j] = phys_avail[j + 1] = ~0;
1980 			rm_pavail++;
1981 			continue;
1982 		}
1983 
1984 		if (kpstart >= phys_avail[j] &&
1985 		    kpstart < phys_avail[j + 1]) {
1986 			if (kpend < phys_avail[j + 1]) {
1987 				phys_avail[2 * phys_avail_count] =
1988 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1989 				phys_avail[2 * phys_avail_count + 1] =
1990 				    phys_avail[j + 1];
1991 				phys_avail_count++;
1992 			}
1993 
1994 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1995 		}
1996 
1997 		if (kpend >= phys_avail[j] &&
1998 		    kpend < phys_avail[j + 1]) {
1999 			if (kpstart > phys_avail[j]) {
2000 				phys_avail[2 * phys_avail_count] = phys_avail[j];
2001 				phys_avail[2 * phys_avail_count + 1] =
2002 				    kpstart & ~PAGE_MASK;
2003 				phys_avail_count++;
2004 			}
2005 
2006 			phys_avail[j] = (kpend & ~PAGE_MASK) +
2007 			    PAGE_SIZE;
2008 		}
2009 	}
2010 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2011 	for (i = 0; i < 2 * phys_avail_count; i++)
2012 		phys_avail_debug[i] = phys_avail[i];
2013 
2014 	/* Remove physical available regions marked for removal (~0) */
2015 	if (rm_pavail) {
2016 		phys_avail_count -= rm_pavail;
2017 		for (i = 2 * phys_avail_count;
2018 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
2019 			phys_avail[i] = phys_avail[i + 1] = 0;
2020 	}
2021 	if (bootverbose) {
2022 		printf("phys_avail ranges after filtering:\n");
2023 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2024 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2025 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2026 	}
2027 	physmem = btoc(physsz);
2028 
2029 	/* XXX assume we're running non-virtualized and
2030 	 * we don't support BHYVE
2031 	 */
2032 	if (isa3_pid_bits == 0)
2033 		isa3_pid_bits = 20;
2034 	if (powernv_enabled) {
2035 		parttab_phys =
2036 		    moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2037 		validate_addr(parttab_phys, PARTTAB_SIZE);
2038 		for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2039 			pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2040 
2041 	}
2042 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2043 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2044 	validate_addr(proctab0pa, proctab_size);
2045 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2046 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2047 
2048 	mmu_radix_setup_pagetables(hwphyssz);
2049 }
2050 
2051 static void
2052 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2053 {
2054 	int		i;
2055 	vm_paddr_t	pa;
2056 	void		*dpcpu;
2057 	vm_offset_t va;
2058 
2059 	/*
2060 	 * Set up the Open Firmware pmap and add its mappings if not in real
2061 	 * mode.
2062 	 */
2063 	if (bootverbose)
2064 		printf("%s enter\n", __func__);
2065 
2066 	/*
2067 	 * Calculate the last available physical address, and reserve the
2068 	 * vm_page_array (upper bound).
2069 	 */
2070 	Maxmem = 0;
2071 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
2072 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2073 
2074 	/*
2075 	 * Remap any early IO mappings (console framebuffer, etc.)
2076 	 */
2077 	bs_remap_earlyboot();
2078 
2079 	/*
2080 	 * Allocate a kernel stack with a guard page for thread0 and map it
2081 	 * into the kernel page map.
2082 	 */
2083 	pa = allocpages(kstack_pages);
2084 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2085 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2086 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2087 	thread0.td_kstack = va;
2088 	for (i = 0; i < kstack_pages; i++) {
2089 		mmu_radix_kenter(va, pa);
2090 		pa += PAGE_SIZE;
2091 		va += PAGE_SIZE;
2092 	}
2093 	thread0.td_kstack_pages = kstack_pages;
2094 
2095 	/*
2096 	 * Allocate virtual address space for the message buffer.
2097 	 */
2098 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2099 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2100 
2101 	/*
2102 	 * Allocate virtual address space for the dynamic percpu area.
2103 	 */
2104 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2105 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2106 	dpcpu_init(dpcpu, curcpu);
2107 
2108 	crashdumpmap = (caddr_t)virtual_avail;
2109 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2110 
2111 	/*
2112 	 * Reserve some special page table entries/VA space for temporary
2113 	 * mapping of pages.
2114 	 */
2115 }
2116 
2117 static void
2118 mmu_parttab_init(void)
2119 {
2120 	uint64_t ptcr;
2121 
2122 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2123 
2124 	if (bootverbose)
2125 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2126 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2127 	if (bootverbose)
2128 		printf("setting ptcr %lx\n", ptcr);
2129 	mtspr(SPR_PTCR, ptcr);
2130 }
2131 
2132 static void
2133 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2134 {
2135 	uint64_t prev;
2136 
2137 	if (bootverbose)
2138 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2139 			   lpid, pagetab, proctab);
2140 	prev = be64toh(isa3_parttab[lpid].pagetab);
2141 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2142 	isa3_parttab[lpid].proctab = htobe64(proctab);
2143 
2144 	if (prev & PARTTAB_HR) {
2145 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2146 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2147 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2148 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2149 	} else {
2150 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2151 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2152 	}
2153 	ttusync();
2154 }
2155 
2156 static void
2157 mmu_radix_parttab_init(void)
2158 {
2159 	uint64_t pagetab;
2160 
2161 	mmu_parttab_init();
2162 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2163 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2164 	mmu_parttab_update(0, pagetab, 0);
2165 }
2166 
2167 static void
2168 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2169 {
2170 	uint64_t pagetab, proctab;
2171 
2172 	pagetab = be64toh(isa3_parttab[0].pagetab);
2173 	proctab = proctabpa | table_size | PARTTAB_GR;
2174 	mmu_parttab_update(0, pagetab, proctab);
2175 }
2176 
2177 static void
2178 mmu_radix_proctab_init(void)
2179 {
2180 
2181 	isa3_base_pid = 1;
2182 
2183 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2184 	isa3_proctab->proctab0 =
2185 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2186 		RADIX_PGD_INDEX_SHIFT);
2187 
2188 	if (powernv_enabled) {
2189 		mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2190 		__asm __volatile("ptesync" : : : "memory");
2191 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2192 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2193 		__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2194 #ifdef PSERIES
2195 	} else {
2196 		int64_t rc;
2197 
2198 		rc = phyp_hcall(H_REGISTER_PROC_TBL,
2199 		    PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2200 		    proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2201 		if (rc != H_SUCCESS)
2202 			panic("mmu_radix_proctab_init: "
2203 				"failed to register process table: rc=%jd",
2204 				(intmax_t)rc);
2205 #endif
2206 	}
2207 
2208 	if (bootverbose)
2209 		printf("process table %p and kernel radix PDE: %p\n",
2210 			   isa3_proctab, kernel_pmap->pm_pml1);
2211 	mtmsr(mfmsr() | PSL_DR );
2212 	mtmsr(mfmsr() &  ~PSL_DR);
2213 	kernel_pmap->pm_pid = isa3_base_pid;
2214 	isa3_base_pid++;
2215 }
2216 
2217 void
2218 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2219     int advice)
2220 {
2221 	struct rwlock *lock;
2222 	pml1_entry_t *l1e;
2223 	pml2_entry_t *l2e;
2224 	pml3_entry_t oldl3e, *l3e;
2225 	pt_entry_t *pte;
2226 	vm_offset_t va, va_next;
2227 	vm_page_t m;
2228 	bool anychanged;
2229 
2230 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2231 		return;
2232 	anychanged = false;
2233 	PMAP_LOCK(pmap);
2234 	for (; sva < eva; sva = va_next) {
2235 		l1e = pmap_pml1e(pmap, sva);
2236 		if ((be64toh(*l1e) & PG_V) == 0) {
2237 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2238 			if (va_next < sva)
2239 				va_next = eva;
2240 			continue;
2241 		}
2242 		l2e = pmap_l1e_to_l2e(l1e, sva);
2243 		if ((be64toh(*l2e) & PG_V) == 0) {
2244 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2245 			if (va_next < sva)
2246 				va_next = eva;
2247 			continue;
2248 		}
2249 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2250 		if (va_next < sva)
2251 			va_next = eva;
2252 		l3e = pmap_l2e_to_l3e(l2e, sva);
2253 		oldl3e = be64toh(*l3e);
2254 		if ((oldl3e & PG_V) == 0)
2255 			continue;
2256 		else if ((oldl3e & RPTE_LEAF) != 0) {
2257 			if ((oldl3e & PG_MANAGED) == 0)
2258 				continue;
2259 			lock = NULL;
2260 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2261 				if (lock != NULL)
2262 					rw_wunlock(lock);
2263 
2264 				/*
2265 				 * The large page mapping was destroyed.
2266 				 */
2267 				continue;
2268 			}
2269 
2270 			/*
2271 			 * Unless the page mappings are wired, remove the
2272 			 * mapping to a single page so that a subsequent
2273 			 * access may repromote.  Choosing the last page
2274 			 * within the address range [sva, min(va_next, eva))
2275 			 * generally results in more repromotions.  Since the
2276 			 * underlying page table page is fully populated, this
2277 			 * removal never frees a page table page.
2278 			 */
2279 			if ((oldl3e & PG_W) == 0) {
2280 				va = eva;
2281 				if (va > va_next)
2282 					va = va_next;
2283 				va -= PAGE_SIZE;
2284 				KASSERT(va >= sva,
2285 				    ("mmu_radix_advise: no address gap"));
2286 				pte = pmap_l3e_to_pte(l3e, va);
2287 				KASSERT((be64toh(*pte) & PG_V) != 0,
2288 				    ("pmap_advise: invalid PTE"));
2289 				pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2290 				    &lock);
2291 				anychanged = true;
2292 			}
2293 			if (lock != NULL)
2294 				rw_wunlock(lock);
2295 		}
2296 		if (va_next > eva)
2297 			va_next = eva;
2298 		va = va_next;
2299 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2300 			 pte++, sva += PAGE_SIZE) {
2301 			MPASS(pte == pmap_pte(pmap, sva));
2302 
2303 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2304 				goto maybe_invlrng;
2305 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2306 				if (advice == MADV_DONTNEED) {
2307 					/*
2308 					 * Future calls to pmap_is_modified()
2309 					 * can be avoided by making the page
2310 					 * dirty now.
2311 					 */
2312 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2313 					vm_page_dirty(m);
2314 				}
2315 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2316 			} else if ((be64toh(*pte) & PG_A) != 0)
2317 				atomic_clear_long(pte, htobe64(PG_A));
2318 			else
2319 				goto maybe_invlrng;
2320 			anychanged = true;
2321 			continue;
2322 maybe_invlrng:
2323 			if (va != va_next) {
2324 				anychanged = true;
2325 				va = va_next;
2326 			}
2327 		}
2328 		if (va != va_next)
2329 			anychanged = true;
2330 	}
2331 	if (anychanged)
2332 		pmap_invalidate_all(pmap);
2333 	PMAP_UNLOCK(pmap);
2334 }
2335 
2336 /*
2337  * Routines used in machine-dependent code
2338  */
2339 static void
2340 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2341 {
2342 	uint64_t lpcr;
2343 
2344 	if (bootverbose)
2345 		printf("%s\n", __func__);
2346 	hw_direct_map = 1;
2347 	powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2348 	mmu_radix_early_bootstrap(start, end);
2349 	if (bootverbose)
2350 		printf("early bootstrap complete\n");
2351 	if (powernv_enabled) {
2352 		lpcr = mfspr(SPR_LPCR);
2353 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2354 		mmu_radix_parttab_init();
2355 		mmu_radix_init_amor();
2356 		if (bootverbose)
2357 			printf("powernv init complete\n");
2358 	}
2359 	mmu_radix_init_iamr();
2360 	mmu_radix_proctab_init();
2361 	mmu_radix_pid_set(kernel_pmap);
2362 	if (powernv_enabled)
2363 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2364 	else
2365 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2366 
2367 	mmu_radix_late_bootstrap(start, end);
2368 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2369 	if (bootverbose)
2370 		printf("%s done\n", __func__);
2371 	pmap_bootstrapped = 1;
2372 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2373 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2374 }
2375 
2376 static void
2377 mmu_radix_cpu_bootstrap(int ap)
2378 {
2379 	uint64_t lpcr;
2380 	uint64_t ptcr;
2381 
2382 	if (powernv_enabled) {
2383 		lpcr = mfspr(SPR_LPCR);
2384 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2385 
2386 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2387 		mtspr(SPR_PTCR, ptcr);
2388 		mmu_radix_init_amor();
2389 	}
2390 	mmu_radix_init_iamr();
2391 	mmu_radix_pid_set(kernel_pmap);
2392 	if (powernv_enabled)
2393 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2394 	else
2395 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2396 }
2397 
2398 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2399     "2MB page mapping counters");
2400 
2401 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2402 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2403     &pmap_l3e_demotions, "2MB page demotions");
2404 
2405 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2406 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2407     &pmap_l3e_mappings, "2MB page mappings");
2408 
2409 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2410 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2411     &pmap_l3e_p_failures, "2MB page promotion failures");
2412 
2413 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2414 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2415     &pmap_l3e_promotions, "2MB page promotions");
2416 
2417 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2418     "1GB page mapping counters");
2419 
2420 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2421 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2422     &pmap_l2e_demotions, "1GB page demotions");
2423 
2424 void
2425 mmu_radix_clear_modify(vm_page_t m)
2426 {
2427 	struct md_page *pvh;
2428 	pmap_t pmap;
2429 	pv_entry_t next_pv, pv;
2430 	pml3_entry_t oldl3e, *l3e;
2431 	pt_entry_t oldpte, *pte;
2432 	struct rwlock *lock;
2433 	vm_offset_t va;
2434 	int md_gen, pvh_gen;
2435 
2436 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2437 	    ("pmap_clear_modify: page %p is not managed", m));
2438 	vm_page_assert_busied(m);
2439 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2440 
2441 	/*
2442 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2443 	 * If the object containing the page is locked and the page is not
2444 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2445 	 */
2446 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2447 		return;
2448 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2449 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2450 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2451 	rw_wlock(lock);
2452 restart:
2453 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2454 		pmap = PV_PMAP(pv);
2455 		if (!PMAP_TRYLOCK(pmap)) {
2456 			pvh_gen = pvh->pv_gen;
2457 			rw_wunlock(lock);
2458 			PMAP_LOCK(pmap);
2459 			rw_wlock(lock);
2460 			if (pvh_gen != pvh->pv_gen) {
2461 				PMAP_UNLOCK(pmap);
2462 				goto restart;
2463 			}
2464 		}
2465 		va = pv->pv_va;
2466 		l3e = pmap_pml3e(pmap, va);
2467 		oldl3e = be64toh(*l3e);
2468 		if ((oldl3e & PG_RW) != 0 &&
2469 		    pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2470 		    (oldl3e & PG_W) == 0) {
2471 			/*
2472 			 * Write protect the mapping to a
2473 			 * single page so that a subsequent
2474 			 * write access may repromote.
2475 			 */
2476 			va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2477 			    PG_PS_FRAME);
2478 			pte = pmap_l3e_to_pte(l3e, va);
2479 			oldpte = be64toh(*pte);
2480 			while (!atomic_cmpset_long(pte,
2481 			    htobe64(oldpte),
2482 				htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2483 				   oldpte = be64toh(*pte);
2484 			vm_page_dirty(m);
2485 			pmap_invalidate_page(pmap, va);
2486 		}
2487 		PMAP_UNLOCK(pmap);
2488 	}
2489 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2490 		pmap = PV_PMAP(pv);
2491 		if (!PMAP_TRYLOCK(pmap)) {
2492 			md_gen = m->md.pv_gen;
2493 			pvh_gen = pvh->pv_gen;
2494 			rw_wunlock(lock);
2495 			PMAP_LOCK(pmap);
2496 			rw_wlock(lock);
2497 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2498 				PMAP_UNLOCK(pmap);
2499 				goto restart;
2500 			}
2501 		}
2502 		l3e = pmap_pml3e(pmap, pv->pv_va);
2503 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2504 		    " a 2mpage in page %p's pv list", m));
2505 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2506 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2507 			atomic_clear_long(pte, htobe64(PG_M));
2508 			pmap_invalidate_page(pmap, pv->pv_va);
2509 		}
2510 		PMAP_UNLOCK(pmap);
2511 	}
2512 	rw_wunlock(lock);
2513 }
2514 
2515 void
2516 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2517     vm_size_t len, vm_offset_t src_addr)
2518 {
2519 	struct rwlock *lock;
2520 	struct spglist free;
2521 	vm_offset_t addr;
2522 	vm_offset_t end_addr = src_addr + len;
2523 	vm_offset_t va_next;
2524 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2525 	bool invalidate_all;
2526 
2527 	CTR6(KTR_PMAP,
2528 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2529 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2530 
2531 	if (dst_addr != src_addr)
2532 		return;
2533 	lock = NULL;
2534 	invalidate_all = false;
2535 	if (dst_pmap < src_pmap) {
2536 		PMAP_LOCK(dst_pmap);
2537 		PMAP_LOCK(src_pmap);
2538 	} else {
2539 		PMAP_LOCK(src_pmap);
2540 		PMAP_LOCK(dst_pmap);
2541 	}
2542 
2543 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2544 		pml1_entry_t *l1e;
2545 		pml2_entry_t *l2e;
2546 		pml3_entry_t srcptepaddr, *l3e;
2547 		pt_entry_t *src_pte, *dst_pte;
2548 
2549 		l1e = pmap_pml1e(src_pmap, addr);
2550 		if ((be64toh(*l1e) & PG_V) == 0) {
2551 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2552 			if (va_next < addr)
2553 				va_next = end_addr;
2554 			continue;
2555 		}
2556 
2557 		l2e = pmap_l1e_to_l2e(l1e, addr);
2558 		if ((be64toh(*l2e) & PG_V) == 0) {
2559 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2560 			if (va_next < addr)
2561 				va_next = end_addr;
2562 			continue;
2563 		}
2564 
2565 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2566 		if (va_next < addr)
2567 			va_next = end_addr;
2568 
2569 		l3e = pmap_l2e_to_l3e(l2e, addr);
2570 		srcptepaddr = be64toh(*l3e);
2571 		if (srcptepaddr == 0)
2572 			continue;
2573 
2574 		if (srcptepaddr & RPTE_LEAF) {
2575 			if ((addr & L3_PAGE_MASK) != 0 ||
2576 			    addr + L3_PAGE_SIZE > end_addr)
2577 				continue;
2578 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2579 			if (dst_pdpg == NULL)
2580 				break;
2581 			l3e = (pml3_entry_t *)
2582 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2583 			l3e = &l3e[pmap_pml3e_index(addr)];
2584 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2585 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2586 			    PMAP_ENTER_NORECLAIM, &lock))) {
2587 				*l3e = htobe64(srcptepaddr & ~PG_W);
2588 				pmap_resident_count_inc(dst_pmap,
2589 				    L3_PAGE_SIZE / PAGE_SIZE);
2590 				counter_u64_add(pmap_l3e_mappings, 1);
2591 			} else
2592 				dst_pdpg->ref_count--;
2593 			continue;
2594 		}
2595 
2596 		srcptepaddr &= PG_FRAME;
2597 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2598 		KASSERT(srcmpte->ref_count > 0,
2599 		    ("pmap_copy: source page table page is unused"));
2600 
2601 		if (va_next > end_addr)
2602 			va_next = end_addr;
2603 
2604 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2605 		src_pte = &src_pte[pmap_pte_index(addr)];
2606 		dstmpte = NULL;
2607 		while (addr < va_next) {
2608 			pt_entry_t ptetemp;
2609 			ptetemp = be64toh(*src_pte);
2610 			/*
2611 			 * we only virtual copy managed pages
2612 			 */
2613 			if ((ptetemp & PG_MANAGED) != 0) {
2614 				if (dstmpte != NULL &&
2615 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2616 					dstmpte->ref_count++;
2617 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2618 				    addr, NULL)) == NULL)
2619 					goto out;
2620 				dst_pte = (pt_entry_t *)
2621 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2622 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2623 				if (be64toh(*dst_pte) == 0 &&
2624 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2625 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2626 				    &lock)) {
2627 					/*
2628 					 * Clear the wired, modified, and
2629 					 * accessed (referenced) bits
2630 					 * during the copy.
2631 					 */
2632 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2633 					    PG_A));
2634 					pmap_resident_count_inc(dst_pmap, 1);
2635 				} else {
2636 					SLIST_INIT(&free);
2637 					if (pmap_unwire_ptp(dst_pmap, addr,
2638 					    dstmpte, &free)) {
2639 						/*
2640 						 * Although "addr" is not
2641 						 * mapped, paging-structure
2642 						 * caches could nonetheless
2643 						 * have entries that refer to
2644 						 * the freed page table pages.
2645 						 * Invalidate those entries.
2646 						 */
2647 						invalidate_all = true;
2648 						vm_page_free_pages_toq(&free,
2649 						    true);
2650 					}
2651 					goto out;
2652 				}
2653 				if (dstmpte->ref_count >= srcmpte->ref_count)
2654 					break;
2655 			}
2656 			addr += PAGE_SIZE;
2657 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2658 				src_pte = pmap_pte(src_pmap, addr);
2659 			else
2660 				src_pte++;
2661 		}
2662 	}
2663 out:
2664 	if (invalidate_all)
2665 		pmap_invalidate_all(dst_pmap);
2666 	if (lock != NULL)
2667 		rw_wunlock(lock);
2668 	PMAP_UNLOCK(src_pmap);
2669 	PMAP_UNLOCK(dst_pmap);
2670 }
2671 
2672 static void
2673 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2674 {
2675 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2676 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2677 
2678 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2679 	/*
2680 	 * XXX slow
2681 	 */
2682 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2683 }
2684 
2685 static void
2686 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2687     vm_offset_t b_offset, int xfersize)
2688 {
2689         void *a_cp, *b_cp;
2690         vm_offset_t a_pg_offset, b_pg_offset;
2691         int cnt;
2692 
2693 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2694 	    a_offset, mb, b_offset, xfersize);
2695 
2696         while (xfersize > 0) {
2697                 a_pg_offset = a_offset & PAGE_MASK;
2698                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2699                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2700                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2701                     a_pg_offset;
2702                 b_pg_offset = b_offset & PAGE_MASK;
2703                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2704                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2705                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2706                     b_pg_offset;
2707                 bcopy(a_cp, b_cp, cnt);
2708                 a_offset += cnt;
2709                 b_offset += cnt;
2710                 xfersize -= cnt;
2711         }
2712 }
2713 
2714 #if VM_NRESERVLEVEL > 0
2715 /*
2716  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2717  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2718  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2719  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2720  * identical characteristics.
2721  */
2722 static int
2723 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2724     struct rwlock **lockp)
2725 {
2726 	pml3_entry_t newpde;
2727 	pt_entry_t *firstpte, oldpte, pa, *pte;
2728 	vm_page_t mpte;
2729 
2730 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2731 
2732 	/*
2733 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2734 	 * either invalid, unused, or does not map the first 4KB physical page
2735 	 * within a 2MB page.
2736 	 */
2737 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2738 setpde:
2739 	newpde = be64toh(*firstpte);
2740 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2741 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2742 		    " in pmap %p", va, pmap);
2743 		goto fail;
2744 	}
2745 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2746 		/*
2747 		 * When PG_M is already clear, PG_RW can be cleared without
2748 		 * a TLB invalidation.
2749 		 */
2750 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2751 			goto setpde;
2752 		newpde &= ~RPTE_EAA_W;
2753 	}
2754 
2755 	/*
2756 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2757 	 * PTE maps an unexpected 4KB physical page or does not have identical
2758 	 * characteristics to the first PTE.
2759 	 */
2760 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2761 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2762 setpte:
2763 		oldpte = be64toh(*pte);
2764 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2765 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2766 			    " in pmap %p", va, pmap);
2767 			goto fail;
2768 		}
2769 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2770 			/*
2771 			 * When PG_M is already clear, PG_RW can be cleared
2772 			 * without a TLB invalidation.
2773 			 */
2774 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2775 				goto setpte;
2776 			oldpte &= ~RPTE_EAA_W;
2777 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2778 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2779 			    (va & ~L3_PAGE_MASK), pmap);
2780 		}
2781 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2782 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2783 			    " in pmap %p", va, pmap);
2784 			goto fail;
2785 		}
2786 		pa -= PAGE_SIZE;
2787 	}
2788 
2789 	/*
2790 	 * Save the page table page in its current state until the PDE
2791 	 * mapping the superpage is demoted by pmap_demote_pde() or
2792 	 * destroyed by pmap_remove_pde().
2793 	 */
2794 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2795 	KASSERT(mpte >= vm_page_array &&
2796 	    mpte < &vm_page_array[vm_page_array_size],
2797 	    ("pmap_promote_l3e: page table page is out of range"));
2798 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2799 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2800 	if (pmap_insert_pt_page(pmap, mpte)) {
2801 		CTR2(KTR_PMAP,
2802 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2803 		    pmap);
2804 		goto fail;
2805 	}
2806 
2807 	/*
2808 	 * Promote the pv entries.
2809 	 */
2810 	if ((newpde & PG_MANAGED) != 0)
2811 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2812 
2813 	pte_store(pde, PG_PROMOTED | newpde);
2814 	ptesync();
2815 	counter_u64_add(pmap_l3e_promotions, 1);
2816 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2817 	    " in pmap %p", va, pmap);
2818 	return (0);
2819  fail:
2820 	counter_u64_add(pmap_l3e_p_failures, 1);
2821 	return (KERN_FAILURE);
2822 }
2823 #endif /* VM_NRESERVLEVEL > 0 */
2824 
2825 int
2826 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2827     vm_prot_t prot, u_int flags, int8_t psind)
2828 {
2829 	struct rwlock *lock;
2830 	pml3_entry_t *l3e;
2831 	pt_entry_t *pte;
2832 	pt_entry_t newpte, origpte;
2833 	pv_entry_t pv;
2834 	vm_paddr_t opa, pa;
2835 	vm_page_t mpte, om;
2836 	int rv, retrycount;
2837 	boolean_t nosleep, invalidate_all, invalidate_page;
2838 
2839 	va = trunc_page(va);
2840 	retrycount = 0;
2841 	invalidate_page = invalidate_all = false;
2842 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2843 	    m, prot, flags, psind);
2844 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2845 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2846 	    ("pmap_enter: managed mapping within the clean submap"));
2847 	if ((m->oflags & VPO_UNMANAGED) == 0)
2848 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2849 
2850 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2851 	    ("pmap_enter: flags %u has reserved bits set", flags));
2852 	pa = VM_PAGE_TO_PHYS(m);
2853 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2854 	if ((flags & VM_PROT_WRITE) != 0)
2855 		newpte |= PG_M;
2856 	if ((flags & VM_PROT_READ) != 0)
2857 		newpte |= PG_A;
2858 	if (prot & VM_PROT_READ)
2859 		newpte |= RPTE_EAA_R;
2860 	if ((prot & VM_PROT_WRITE) != 0)
2861 		newpte |= RPTE_EAA_W;
2862 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2863 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2864 
2865 	if (prot & VM_PROT_EXECUTE)
2866 		newpte |= PG_X;
2867 	if ((flags & PMAP_ENTER_WIRED) != 0)
2868 		newpte |= PG_W;
2869 	if (va >= DMAP_MIN_ADDRESS)
2870 		newpte |= RPTE_EAA_P;
2871 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2872 	/*
2873 	 * Set modified bit gratuitously for writeable mappings if
2874 	 * the page is unmanaged. We do not want to take a fault
2875 	 * to do the dirty bit accounting for these mappings.
2876 	 */
2877 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2878 		if ((newpte & PG_RW) != 0)
2879 			newpte |= PG_M;
2880 	} else
2881 		newpte |= PG_MANAGED;
2882 
2883 	lock = NULL;
2884 	PMAP_LOCK(pmap);
2885 	if (psind == 1) {
2886 		/* Assert the required virtual and physical alignment. */
2887 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2888 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2889 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2890 		goto out;
2891 	}
2892 	mpte = NULL;
2893 
2894 	/*
2895 	 * In the case that a page table page is not
2896 	 * resident, we are creating it here.
2897 	 */
2898 retry:
2899 	l3e = pmap_pml3e(pmap, va);
2900 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2901 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2902 		pte = pmap_l3e_to_pte(l3e, va);
2903 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2904 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2905 			mpte->ref_count++;
2906 		}
2907 	} else if (va < VM_MAXUSER_ADDRESS) {
2908 		/*
2909 		 * Here if the pte page isn't mapped, or if it has been
2910 		 * deallocated.
2911 		 */
2912 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2913 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2914 		    nosleep ? NULL : &lock);
2915 		if (mpte == NULL && nosleep) {
2916 			rv = KERN_RESOURCE_SHORTAGE;
2917 			goto out;
2918 		}
2919 		if (__predict_false(retrycount++ == 6))
2920 			panic("too many retries");
2921 		invalidate_all = true;
2922 		goto retry;
2923 	} else
2924 		panic("pmap_enter: invalid page directory va=%#lx", va);
2925 
2926 	origpte = be64toh(*pte);
2927 	pv = NULL;
2928 
2929 	/*
2930 	 * Is the specified virtual address already mapped?
2931 	 */
2932 	if ((origpte & PG_V) != 0) {
2933 #ifdef INVARIANTS
2934 		if (VERBOSE_PMAP || pmap_logging) {
2935 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2936 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2937 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2938 			    curproc->p_pid, curproc->p_comm, origpte);
2939 #ifdef DDB
2940 			pmap_pte_walk(pmap->pm_pml1, va);
2941 #endif
2942 		}
2943 #endif
2944 		/*
2945 		 * Wiring change, just update stats. We don't worry about
2946 		 * wiring PT pages as they remain resident as long as there
2947 		 * are valid mappings in them. Hence, if a user page is wired,
2948 		 * the PT page will be also.
2949 		 */
2950 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2951 			pmap->pm_stats.wired_count++;
2952 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2953 			pmap->pm_stats.wired_count--;
2954 
2955 		/*
2956 		 * Remove the extra PT page reference.
2957 		 */
2958 		if (mpte != NULL) {
2959 			mpte->ref_count--;
2960 			KASSERT(mpte->ref_count > 0,
2961 			    ("pmap_enter: missing reference to page table page,"
2962 			     " va: 0x%lx", va));
2963 		}
2964 
2965 		/*
2966 		 * Has the physical page changed?
2967 		 */
2968 		opa = origpte & PG_FRAME;
2969 		if (opa == pa) {
2970 			/*
2971 			 * No, might be a protection or wiring change.
2972 			 */
2973 			if ((origpte & PG_MANAGED) != 0 &&
2974 			    (newpte & PG_RW) != 0)
2975 				vm_page_aflag_set(m, PGA_WRITEABLE);
2976 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2977 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2978 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2979 						goto retry;
2980 					if ((newpte & PG_M) != (origpte & PG_M))
2981 						vm_page_dirty(m);
2982 					if ((newpte & PG_A) != (origpte & PG_A))
2983 						vm_page_aflag_set(m, PGA_REFERENCED);
2984 					ptesync();
2985 				} else
2986 					invalidate_all = true;
2987 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2988 					goto unchanged;
2989 			}
2990 			goto validate;
2991 		}
2992 
2993 		/*
2994 		 * The physical page has changed.  Temporarily invalidate
2995 		 * the mapping.  This ensures that all threads sharing the
2996 		 * pmap keep a consistent view of the mapping, which is
2997 		 * necessary for the correct handling of COW faults.  It
2998 		 * also permits reuse of the old mapping's PV entry,
2999 		 * avoiding an allocation.
3000 		 *
3001 		 * For consistency, handle unmanaged mappings the same way.
3002 		 */
3003 		origpte = be64toh(pte_load_clear(pte));
3004 		KASSERT((origpte & PG_FRAME) == opa,
3005 		    ("pmap_enter: unexpected pa update for %#lx", va));
3006 		if ((origpte & PG_MANAGED) != 0) {
3007 			om = PHYS_TO_VM_PAGE(opa);
3008 
3009 			/*
3010 			 * The pmap lock is sufficient to synchronize with
3011 			 * concurrent calls to pmap_page_test_mappings() and
3012 			 * pmap_ts_referenced().
3013 			 */
3014 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3015 				vm_page_dirty(om);
3016 			if ((origpte & PG_A) != 0)
3017 				vm_page_aflag_set(om, PGA_REFERENCED);
3018 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3019 			pv = pmap_pvh_remove(&om->md, pmap, va);
3020 			if ((newpte & PG_MANAGED) == 0)
3021 				free_pv_entry(pmap, pv);
3022 #ifdef INVARIANTS
3023 			else if (origpte & PG_MANAGED) {
3024 				if (pv == NULL) {
3025 #ifdef DDB
3026 					pmap_page_print_mappings(om);
3027 #endif
3028 					MPASS(pv != NULL);
3029 				}
3030 			}
3031 #endif
3032 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3033 			    TAILQ_EMPTY(&om->md.pv_list) &&
3034 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3035 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3036 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3037 		}
3038 		if ((origpte & PG_A) != 0)
3039 			invalidate_page = true;
3040 		origpte = 0;
3041 	} else {
3042 		if (pmap != kernel_pmap) {
3043 #ifdef INVARIANTS
3044 			if (VERBOSE_PMAP || pmap_logging)
3045 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3046 				    pmap, va, m, prot, flags, psind,
3047 				    pmap->pm_pid, curproc->p_pid,
3048 				    curproc->p_comm);
3049 #endif
3050 		}
3051 
3052 		/*
3053 		 * Increment the counters.
3054 		 */
3055 		if ((newpte & PG_W) != 0)
3056 			pmap->pm_stats.wired_count++;
3057 		pmap_resident_count_inc(pmap, 1);
3058 	}
3059 
3060 	/*
3061 	 * Enter on the PV list if part of our managed memory.
3062 	 */
3063 	if ((newpte & PG_MANAGED) != 0) {
3064 		if (pv == NULL) {
3065 			pv = get_pv_entry(pmap, &lock);
3066 			pv->pv_va = va;
3067 		}
3068 #ifdef VERBOSE_PV
3069 		else
3070 			printf("reassigning pv: %p to pmap: %p\n",
3071 				   pv, pmap);
3072 #endif
3073 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3074 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3075 		m->md.pv_gen++;
3076 		if ((newpte & PG_RW) != 0)
3077 			vm_page_aflag_set(m, PGA_WRITEABLE);
3078 	}
3079 
3080 	/*
3081 	 * Update the PTE.
3082 	 */
3083 	if ((origpte & PG_V) != 0) {
3084 validate:
3085 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3086 		KASSERT((origpte & PG_FRAME) == pa,
3087 		    ("pmap_enter: unexpected pa update for %#lx", va));
3088 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3089 		    (PG_M | PG_RW)) {
3090 			if ((origpte & PG_MANAGED) != 0)
3091 				vm_page_dirty(m);
3092 			invalidate_page = true;
3093 
3094 			/*
3095 			 * Although the PTE may still have PG_RW set, TLB
3096 			 * invalidation may nonetheless be required because
3097 			 * the PTE no longer has PG_M set.
3098 			 */
3099 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3100 			/*
3101 			 * Removing capabilities requires invalidation on POWER
3102 			 */
3103 			invalidate_page = true;
3104 			goto unchanged;
3105 		}
3106 		if ((origpte & PG_A) != 0)
3107 			invalidate_page = true;
3108 	} else {
3109 		pte_store(pte, newpte);
3110 		ptesync();
3111 	}
3112 unchanged:
3113 
3114 #if VM_NRESERVLEVEL > 0
3115 	/*
3116 	 * If both the page table page and the reservation are fully
3117 	 * populated, then attempt promotion.
3118 	 */
3119 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3120 	    mmu_radix_ps_enabled(pmap) &&
3121 	    (m->flags & PG_FICTITIOUS) == 0 &&
3122 	    vm_reserv_level_iffullpop(m) == 0 &&
3123 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3124 		invalidate_all = true;
3125 #endif
3126 	if (invalidate_all)
3127 		pmap_invalidate_all(pmap);
3128 	else if (invalidate_page)
3129 		pmap_invalidate_page(pmap, va);
3130 
3131 	rv = KERN_SUCCESS;
3132 out:
3133 	if (lock != NULL)
3134 		rw_wunlock(lock);
3135 	PMAP_UNLOCK(pmap);
3136 
3137 	return (rv);
3138 }
3139 
3140 /*
3141  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3142  * if successful.  Returns false if (1) a page table page cannot be allocated
3143  * without sleeping, (2) a mapping already exists at the specified virtual
3144  * address, or (3) a PV entry cannot be allocated without reclaiming another
3145  * PV entry.
3146  */
3147 static bool
3148 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3149     struct rwlock **lockp)
3150 {
3151 	pml3_entry_t newpde;
3152 
3153 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3154 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3155 	    RPTE_LEAF | PG_V;
3156 	if ((m->oflags & VPO_UNMANAGED) == 0)
3157 		newpde |= PG_MANAGED;
3158 	if (prot & VM_PROT_EXECUTE)
3159 		newpde |= PG_X;
3160 	if (prot & VM_PROT_READ)
3161 		newpde |= RPTE_EAA_R;
3162 	if (va >= DMAP_MIN_ADDRESS)
3163 		newpde |= RPTE_EAA_P;
3164 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3165 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3166 	    KERN_SUCCESS);
3167 }
3168 
3169 /*
3170  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3171  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3172  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3173  * a mapping already exists at the specified virtual address.  Returns
3174  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3175  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3176  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3177  *
3178  * The parameter "m" is only used when creating a managed, writeable mapping.
3179  */
3180 static int
3181 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3182     vm_page_t m, struct rwlock **lockp)
3183 {
3184 	struct spglist free;
3185 	pml3_entry_t oldl3e, *l3e;
3186 	vm_page_t mt, pdpg;
3187 
3188 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3189 	    ("pmap_enter_pde: newpde is missing PG_M"));
3190 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3191 
3192 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3193 	    NULL : lockp)) == NULL) {
3194 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3195 		    " in pmap %p", va, pmap);
3196 		return (KERN_RESOURCE_SHORTAGE);
3197 	}
3198 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3199 	l3e = &l3e[pmap_pml3e_index(va)];
3200 	oldl3e = be64toh(*l3e);
3201 	if ((oldl3e & PG_V) != 0) {
3202 		KASSERT(pdpg->ref_count > 1,
3203 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3204 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3205 			pdpg->ref_count--;
3206 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3207 			    " in pmap %p", va, pmap);
3208 			return (KERN_FAILURE);
3209 		}
3210 		/* Break the existing mapping(s). */
3211 		SLIST_INIT(&free);
3212 		if ((oldl3e & RPTE_LEAF) != 0) {
3213 			/*
3214 			 * The reference to the PD page that was acquired by
3215 			 * pmap_allocl3e() ensures that it won't be freed.
3216 			 * However, if the PDE resulted from a promotion, then
3217 			 * a reserved PT page could be freed.
3218 			 */
3219 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3220 			pmap_invalidate_l3e_page(pmap, va, oldl3e);
3221 		} else {
3222 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3223 			    &free, lockp))
3224 		               pmap_invalidate_all(pmap);
3225 		}
3226 		vm_page_free_pages_toq(&free, true);
3227 		if (va >= VM_MAXUSER_ADDRESS) {
3228 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3229 			if (pmap_insert_pt_page(pmap, mt)) {
3230 				/*
3231 				 * XXX Currently, this can't happen because
3232 				 * we do not perform pmap_enter(psind == 1)
3233 				 * on the kernel pmap.
3234 				 */
3235 				panic("pmap_enter_pde: trie insert failed");
3236 			}
3237 		} else
3238 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3239 			    l3e));
3240 	}
3241 	if ((newpde & PG_MANAGED) != 0) {
3242 		/*
3243 		 * Abort this mapping if its PV entry could not be created.
3244 		 */
3245 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3246 			SLIST_INIT(&free);
3247 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3248 				/*
3249 				 * Although "va" is not mapped, paging-
3250 				 * structure caches could nonetheless have
3251 				 * entries that refer to the freed page table
3252 				 * pages.  Invalidate those entries.
3253 				 */
3254 				pmap_invalidate_page(pmap, va);
3255 				vm_page_free_pages_toq(&free, true);
3256 			}
3257 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3258 			    " in pmap %p", va, pmap);
3259 			return (KERN_RESOURCE_SHORTAGE);
3260 		}
3261 		if ((newpde & PG_RW) != 0) {
3262 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3263 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3264 		}
3265 	}
3266 
3267 	/*
3268 	 * Increment counters.
3269 	 */
3270 	if ((newpde & PG_W) != 0)
3271 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3272 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3273 
3274 	/*
3275 	 * Map the superpage.  (This is not a promoted mapping; there will not
3276 	 * be any lingering 4KB page mappings in the TLB.)
3277 	 */
3278 	pte_store(l3e, newpde);
3279 	ptesync();
3280 
3281 	counter_u64_add(pmap_l3e_mappings, 1);
3282 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3283 	    " in pmap %p", va, pmap);
3284 	return (KERN_SUCCESS);
3285 }
3286 
3287 void
3288 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3289     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3290 {
3291 
3292 	struct rwlock *lock;
3293 	vm_offset_t va;
3294 	vm_page_t m, mpte;
3295 	vm_pindex_t diff, psize;
3296 	bool invalidate;
3297 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3298 
3299 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3300 	    end, m_start, prot);
3301 
3302 	invalidate = false;
3303 	psize = atop(end - start);
3304 	mpte = NULL;
3305 	m = m_start;
3306 	lock = NULL;
3307 	PMAP_LOCK(pmap);
3308 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3309 		va = start + ptoa(diff);
3310 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3311 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3312 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3313 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3314 		else
3315 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3316 			    mpte, &lock, &invalidate);
3317 		m = TAILQ_NEXT(m, listq);
3318 	}
3319 	ptesync();
3320 	if (lock != NULL)
3321 		rw_wunlock(lock);
3322 	if (invalidate)
3323 		pmap_invalidate_all(pmap);
3324 	PMAP_UNLOCK(pmap);
3325 }
3326 
3327 static vm_page_t
3328 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3329     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3330 {
3331 	struct spglist free;
3332 	pt_entry_t *pte;
3333 	vm_paddr_t pa;
3334 
3335 	KASSERT(!VA_IS_CLEANMAP(va) ||
3336 	    (m->oflags & VPO_UNMANAGED) != 0,
3337 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3338 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3339 
3340 	/*
3341 	 * In the case that a page table page is not
3342 	 * resident, we are creating it here.
3343 	 */
3344 	if (va < VM_MAXUSER_ADDRESS) {
3345 		vm_pindex_t ptepindex;
3346 		pml3_entry_t *ptepa;
3347 
3348 		/*
3349 		 * Calculate pagetable page index
3350 		 */
3351 		ptepindex = pmap_l3e_pindex(va);
3352 		if (mpte && (mpte->pindex == ptepindex)) {
3353 			mpte->ref_count++;
3354 		} else {
3355 			/*
3356 			 * Get the page directory entry
3357 			 */
3358 			ptepa = pmap_pml3e(pmap, va);
3359 
3360 			/*
3361 			 * If the page table page is mapped, we just increment
3362 			 * the hold count, and activate it.  Otherwise, we
3363 			 * attempt to allocate a page table page.  If this
3364 			 * attempt fails, we don't retry.  Instead, we give up.
3365 			 */
3366 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3367 				if (be64toh(*ptepa) & RPTE_LEAF)
3368 					return (NULL);
3369 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3370 				mpte->ref_count++;
3371 			} else {
3372 				/*
3373 				 * Pass NULL instead of the PV list lock
3374 				 * pointer, because we don't intend to sleep.
3375 				 */
3376 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3377 				if (mpte == NULL)
3378 					return (mpte);
3379 			}
3380 		}
3381 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3382 		pte = &pte[pmap_pte_index(va)];
3383 	} else {
3384 		mpte = NULL;
3385 		pte = pmap_pte(pmap, va);
3386 	}
3387 	if (be64toh(*pte)) {
3388 		if (mpte != NULL) {
3389 			mpte->ref_count--;
3390 			mpte = NULL;
3391 		}
3392 		return (mpte);
3393 	}
3394 
3395 	/*
3396 	 * Enter on the PV list if part of our managed memory.
3397 	 */
3398 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3399 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3400 		if (mpte != NULL) {
3401 			SLIST_INIT(&free);
3402 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3403 				/*
3404 				 * Although "va" is not mapped, paging-
3405 				 * structure caches could nonetheless have
3406 				 * entries that refer to the freed page table
3407 				 * pages.  Invalidate those entries.
3408 				 */
3409 				*invalidate = true;
3410 				vm_page_free_pages_toq(&free, true);
3411 			}
3412 			mpte = NULL;
3413 		}
3414 		return (mpte);
3415 	}
3416 
3417 	/*
3418 	 * Increment counters
3419 	 */
3420 	pmap_resident_count_inc(pmap, 1);
3421 
3422 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3423 	if (prot & VM_PROT_EXECUTE)
3424 		pa |= PG_X;
3425 	else
3426 		pa |= RPTE_EAA_R;
3427 	if ((m->oflags & VPO_UNMANAGED) == 0)
3428 		pa |= PG_MANAGED;
3429 
3430 	pte_store(pte, pa);
3431 	return (mpte);
3432 }
3433 
3434 void
3435 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3436     vm_prot_t prot)
3437 {
3438 	struct rwlock *lock;
3439 	bool invalidate;
3440 
3441 	lock = NULL;
3442 	invalidate = false;
3443 	PMAP_LOCK(pmap);
3444 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3445 	    &invalidate);
3446 	ptesync();
3447 	if (lock != NULL)
3448 		rw_wunlock(lock);
3449 	if (invalidate)
3450 		pmap_invalidate_all(pmap);
3451 	PMAP_UNLOCK(pmap);
3452 }
3453 
3454 vm_paddr_t
3455 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3456 {
3457 	pml3_entry_t *l3e;
3458 	pt_entry_t *pte;
3459 	vm_paddr_t pa;
3460 
3461 	l3e = pmap_pml3e(pmap, va);
3462 	if (__predict_false(l3e == NULL))
3463 		return (0);
3464 	if (be64toh(*l3e) & RPTE_LEAF) {
3465 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3466 		pa |= (va & L3_PAGE_MASK);
3467 	} else {
3468 		/*
3469 		 * Beware of a concurrent promotion that changes the
3470 		 * PDE at this point!  For example, vtopte() must not
3471 		 * be used to access the PTE because it would use the
3472 		 * new PDE.  It is, however, safe to use the old PDE
3473 		 * because the page table page is preserved by the
3474 		 * promotion.
3475 		 */
3476 		pte = pmap_l3e_to_pte(l3e, va);
3477 		if (__predict_false(pte == NULL))
3478 			return (0);
3479 		pa = be64toh(*pte);
3480 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3481 		pa |= (va & PAGE_MASK);
3482 	}
3483 	return (pa);
3484 }
3485 
3486 vm_page_t
3487 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3488 {
3489 	pml3_entry_t l3e, *l3ep;
3490 	pt_entry_t pte;
3491 	vm_page_t m;
3492 
3493 	m = NULL;
3494 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3495 	PMAP_LOCK(pmap);
3496 	l3ep = pmap_pml3e(pmap, va);
3497 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3498 		if (l3e & RPTE_LEAF) {
3499 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3500 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3501 				    (va & L3_PAGE_MASK));
3502 		} else {
3503 			/* Native endian PTE, do not pass to pmap functions */
3504 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3505 			if ((pte & PG_V) &&
3506 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3507 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3508 		}
3509 		if (m != NULL && !vm_page_wire_mapped(m))
3510 			m = NULL;
3511 	}
3512 	PMAP_UNLOCK(pmap);
3513 	return (m);
3514 }
3515 
3516 static void
3517 mmu_radix_growkernel(vm_offset_t addr)
3518 {
3519 	vm_paddr_t paddr;
3520 	vm_page_t nkpg;
3521 	pml3_entry_t *l3e;
3522 	pml2_entry_t *l2e;
3523 
3524 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3525 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3526 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3527 		return;
3528 
3529 	addr = roundup2(addr, L3_PAGE_SIZE);
3530 	if (addr - 1 >= vm_map_max(kernel_map))
3531 		addr = vm_map_max(kernel_map);
3532 	while (kernel_vm_end < addr) {
3533 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3534 		if ((be64toh(*l2e) & PG_V) == 0) {
3535 			/* We need a new PDP entry */
3536 			nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3537 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3538 			if (nkpg == NULL)
3539 				panic("pmap_growkernel: no memory to grow kernel");
3540 			nkpg->pindex = kernel_vm_end >> L2_PAGE_SIZE_SHIFT;
3541 			paddr = VM_PAGE_TO_PHYS(nkpg);
3542 			pde_store(l2e, paddr);
3543 			continue; /* try again */
3544 		}
3545 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3546 		if ((be64toh(*l3e) & PG_V) != 0) {
3547 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3548 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3549 				kernel_vm_end = vm_map_max(kernel_map);
3550 				break;
3551 			}
3552 			continue;
3553 		}
3554 
3555 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
3556 		    VM_ALLOC_ZERO);
3557 		if (nkpg == NULL)
3558 			panic("pmap_growkernel: no memory to grow kernel");
3559 		nkpg->pindex = pmap_l3e_pindex(kernel_vm_end);
3560 		paddr = VM_PAGE_TO_PHYS(nkpg);
3561 		pde_store(l3e, paddr);
3562 
3563 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3564 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3565 			kernel_vm_end = vm_map_max(kernel_map);
3566 			break;
3567 		}
3568 	}
3569 	ptesync();
3570 }
3571 
3572 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3573 static uma_zone_t zone_radix_pgd;
3574 
3575 static int
3576 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3577     int flags)
3578 {
3579 	int req;
3580 
3581 	req = VM_ALLOC_WIRED | malloc2vm_flags(flags);
3582 	for (int i = 0; i < count; i++) {
3583 		vm_page_t m = vm_page_alloc_noobj_contig(req,
3584 		    RADIX_PGD_SIZE / PAGE_SIZE,
3585 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3586 		    VM_MEMATTR_DEFAULT);
3587 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3588 	}
3589 	return (count);
3590 }
3591 
3592 static void
3593 radix_pgd_release(void *arg __unused, void **store, int count)
3594 {
3595 	vm_page_t m;
3596 	struct spglist free;
3597 	int page_count;
3598 
3599 	SLIST_INIT(&free);
3600 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3601 
3602 	for (int i = 0; i < count; i++) {
3603 		/*
3604 		 * XXX selectively remove dmap and KVA entries so we don't
3605 		 * need to bzero
3606 		 */
3607 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3608 		for (int j = page_count-1; j >= 0; j--) {
3609 			vm_page_unwire_noq(&m[j]);
3610 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3611 		}
3612 		vm_page_free_pages_toq(&free, false);
3613 	}
3614 }
3615 
3616 static void
3617 mmu_radix_init(void)
3618 {
3619 	vm_page_t mpte;
3620 	vm_size_t s;
3621 	int error, i, pv_npg;
3622 
3623 	/* XXX is this really needed for POWER? */
3624 	/* L1TF, reserve page @0 unconditionally */
3625 	vm_page_blacklist_add(0, bootverbose);
3626 
3627 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3628 		RADIX_PGD_SIZE, NULL, NULL,
3629 #ifdef INVARIANTS
3630 	    trash_init, trash_fini,
3631 #else
3632 	    NULL, NULL,
3633 #endif
3634 		radix_pgd_import, radix_pgd_release,
3635 		NULL, UMA_ZONE_NOBUCKET);
3636 
3637 	/*
3638 	 * Initialize the vm page array entries for the kernel pmap's
3639 	 * page table pages.
3640 	 */
3641 	PMAP_LOCK(kernel_pmap);
3642 	for (i = 0; i < nkpt; i++) {
3643 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3644 		KASSERT(mpte >= vm_page_array &&
3645 		    mpte < &vm_page_array[vm_page_array_size],
3646 		    ("pmap_init: page table page is out of range size: %lu",
3647 		     vm_page_array_size));
3648 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3649 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3650 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3651 		//pmap_insert_pt_page(kernel_pmap, mpte);
3652 		mpte->ref_count = 1;
3653 	}
3654 	PMAP_UNLOCK(kernel_pmap);
3655 	vm_wire_add(nkpt);
3656 
3657 	CTR1(KTR_PMAP, "%s()", __func__);
3658 	TAILQ_INIT(&pv_dummy.pv_list);
3659 
3660 	/*
3661 	 * Are large page mappings enabled?
3662 	 */
3663 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3664 	if (superpages_enabled) {
3665 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3666 		    ("pmap_init: can't assign to pagesizes[1]"));
3667 		pagesizes[1] = L3_PAGE_SIZE;
3668 	}
3669 
3670 	/*
3671 	 * Initialize the pv chunk list mutex.
3672 	 */
3673 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3674 
3675 	/*
3676 	 * Initialize the pool of pv list locks.
3677 	 */
3678 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3679 		rw_init(&pv_list_locks[i], "pmap pv list");
3680 
3681 	/*
3682 	 * Calculate the size of the pv head table for superpages.
3683 	 */
3684 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3685 
3686 	/*
3687 	 * Allocate memory for the pv head table for superpages.
3688 	 */
3689 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3690 	s = round_page(s);
3691 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
3692 	for (i = 0; i < pv_npg; i++)
3693 		TAILQ_INIT(&pv_table[i].pv_list);
3694 	TAILQ_INIT(&pv_dummy.pv_list);
3695 
3696 	pmap_initialized = 1;
3697 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3698 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3699 	    (vmem_addr_t *)&qframe);
3700 
3701 	if (error != 0)
3702 		panic("qframe allocation failed");
3703 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3704 	    1, 1, M_WAITOK);
3705 }
3706 
3707 static boolean_t
3708 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3709 {
3710 	struct rwlock *lock;
3711 	pv_entry_t pv;
3712 	struct md_page *pvh;
3713 	pt_entry_t *pte, mask;
3714 	pmap_t pmap;
3715 	int md_gen, pvh_gen;
3716 	boolean_t rv;
3717 
3718 	rv = FALSE;
3719 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3720 	rw_rlock(lock);
3721 restart:
3722 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3723 		pmap = PV_PMAP(pv);
3724 		if (!PMAP_TRYLOCK(pmap)) {
3725 			md_gen = m->md.pv_gen;
3726 			rw_runlock(lock);
3727 			PMAP_LOCK(pmap);
3728 			rw_rlock(lock);
3729 			if (md_gen != m->md.pv_gen) {
3730 				PMAP_UNLOCK(pmap);
3731 				goto restart;
3732 			}
3733 		}
3734 		pte = pmap_pte(pmap, pv->pv_va);
3735 		mask = 0;
3736 		if (modified)
3737 			mask |= PG_RW | PG_M;
3738 		if (accessed)
3739 			mask |= PG_V | PG_A;
3740 		rv = (be64toh(*pte) & mask) == mask;
3741 		PMAP_UNLOCK(pmap);
3742 		if (rv)
3743 			goto out;
3744 	}
3745 	if ((m->flags & PG_FICTITIOUS) == 0) {
3746 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3747 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3748 			pmap = PV_PMAP(pv);
3749 			if (!PMAP_TRYLOCK(pmap)) {
3750 				md_gen = m->md.pv_gen;
3751 				pvh_gen = pvh->pv_gen;
3752 				rw_runlock(lock);
3753 				PMAP_LOCK(pmap);
3754 				rw_rlock(lock);
3755 				if (md_gen != m->md.pv_gen ||
3756 				    pvh_gen != pvh->pv_gen) {
3757 					PMAP_UNLOCK(pmap);
3758 					goto restart;
3759 				}
3760 			}
3761 			pte = pmap_pml3e(pmap, pv->pv_va);
3762 			mask = 0;
3763 			if (modified)
3764 				mask |= PG_RW | PG_M;
3765 			if (accessed)
3766 				mask |= PG_V | PG_A;
3767 			rv = (be64toh(*pte) & mask) == mask;
3768 			PMAP_UNLOCK(pmap);
3769 			if (rv)
3770 				goto out;
3771 		}
3772 	}
3773 out:
3774 	rw_runlock(lock);
3775 	return (rv);
3776 }
3777 
3778 /*
3779  *	pmap_is_modified:
3780  *
3781  *	Return whether or not the specified physical page was modified
3782  *	in any physical maps.
3783  */
3784 boolean_t
3785 mmu_radix_is_modified(vm_page_t m)
3786 {
3787 
3788 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3789 	    ("pmap_is_modified: page %p is not managed", m));
3790 
3791 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3792 	/*
3793 	 * If the page is not busied then this check is racy.
3794 	 */
3795 	if (!pmap_page_is_write_mapped(m))
3796 		return (FALSE);
3797 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3798 }
3799 
3800 boolean_t
3801 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3802 {
3803 	pml3_entry_t *l3e;
3804 	pt_entry_t *pte;
3805 	boolean_t rv;
3806 
3807 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3808 	rv = FALSE;
3809 	PMAP_LOCK(pmap);
3810 	l3e = pmap_pml3e(pmap, addr);
3811 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3812 		pte = pmap_l3e_to_pte(l3e, addr);
3813 		rv = (be64toh(*pte) & PG_V) == 0;
3814 	}
3815 	PMAP_UNLOCK(pmap);
3816 	return (rv);
3817 }
3818 
3819 boolean_t
3820 mmu_radix_is_referenced(vm_page_t m)
3821 {
3822 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3823 	    ("pmap_is_referenced: page %p is not managed", m));
3824 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3825 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3826 }
3827 
3828 /*
3829  *	pmap_ts_referenced:
3830  *
3831  *	Return a count of reference bits for a page, clearing those bits.
3832  *	It is not necessary for every reference bit to be cleared, but it
3833  *	is necessary that 0 only be returned when there are truly no
3834  *	reference bits set.
3835  *
3836  *	As an optimization, update the page's dirty field if a modified bit is
3837  *	found while counting reference bits.  This opportunistic update can be
3838  *	performed at low cost and can eliminate the need for some future calls
3839  *	to pmap_is_modified().  However, since this function stops after
3840  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3841  *	dirty pages.  Those dirty pages will only be detected by a future call
3842  *	to pmap_is_modified().
3843  *
3844  *	A DI block is not needed within this function, because
3845  *	invalidations are performed before the PV list lock is
3846  *	released.
3847  */
3848 boolean_t
3849 mmu_radix_ts_referenced(vm_page_t m)
3850 {
3851 	struct md_page *pvh;
3852 	pv_entry_t pv, pvf;
3853 	pmap_t pmap;
3854 	struct rwlock *lock;
3855 	pml3_entry_t oldl3e, *l3e;
3856 	pt_entry_t *pte;
3857 	vm_paddr_t pa;
3858 	int cleared, md_gen, not_cleared, pvh_gen;
3859 	struct spglist free;
3860 
3861 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3862 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3863 	    ("pmap_ts_referenced: page %p is not managed", m));
3864 	SLIST_INIT(&free);
3865 	cleared = 0;
3866 	pa = VM_PAGE_TO_PHYS(m);
3867 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3868 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3869 	rw_wlock(lock);
3870 retry:
3871 	not_cleared = 0;
3872 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3873 		goto small_mappings;
3874 	pv = pvf;
3875 	do {
3876 		if (pvf == NULL)
3877 			pvf = pv;
3878 		pmap = PV_PMAP(pv);
3879 		if (!PMAP_TRYLOCK(pmap)) {
3880 			pvh_gen = pvh->pv_gen;
3881 			rw_wunlock(lock);
3882 			PMAP_LOCK(pmap);
3883 			rw_wlock(lock);
3884 			if (pvh_gen != pvh->pv_gen) {
3885 				PMAP_UNLOCK(pmap);
3886 				goto retry;
3887 			}
3888 		}
3889 		l3e = pmap_pml3e(pmap, pv->pv_va);
3890 		oldl3e = be64toh(*l3e);
3891 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3892 			/*
3893 			 * Although "oldpde" is mapping a 2MB page, because
3894 			 * this function is called at a 4KB page granularity,
3895 			 * we only update the 4KB page under test.
3896 			 */
3897 			vm_page_dirty(m);
3898 		}
3899 		if ((oldl3e & PG_A) != 0) {
3900 			/*
3901 			 * Since this reference bit is shared by 512 4KB
3902 			 * pages, it should not be cleared every time it is
3903 			 * tested.  Apply a simple "hash" function on the
3904 			 * physical page number, the virtual superpage number,
3905 			 * and the pmap address to select one 4KB page out of
3906 			 * the 512 on which testing the reference bit will
3907 			 * result in clearing that reference bit.  This
3908 			 * function is designed to avoid the selection of the
3909 			 * same 4KB page for every 2MB page mapping.
3910 			 *
3911 			 * On demotion, a mapping that hasn't been referenced
3912 			 * is simply destroyed.  To avoid the possibility of a
3913 			 * subsequent page fault on a demoted wired mapping,
3914 			 * always leave its reference bit set.  Moreover,
3915 			 * since the superpage is wired, the current state of
3916 			 * its reference bit won't affect page replacement.
3917 			 */
3918 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3919 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3920 			    (oldl3e & PG_W) == 0) {
3921 				atomic_clear_long(l3e, htobe64(PG_A));
3922 				pmap_invalidate_page(pmap, pv->pv_va);
3923 				cleared++;
3924 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3925 				    ("inconsistent pv lock %p %p for page %p",
3926 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3927 			} else
3928 				not_cleared++;
3929 		}
3930 		PMAP_UNLOCK(pmap);
3931 		/* Rotate the PV list if it has more than one entry. */
3932 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3933 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3934 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3935 			pvh->pv_gen++;
3936 		}
3937 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3938 			goto out;
3939 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3940 small_mappings:
3941 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3942 		goto out;
3943 	pv = pvf;
3944 	do {
3945 		if (pvf == NULL)
3946 			pvf = pv;
3947 		pmap = PV_PMAP(pv);
3948 		if (!PMAP_TRYLOCK(pmap)) {
3949 			pvh_gen = pvh->pv_gen;
3950 			md_gen = m->md.pv_gen;
3951 			rw_wunlock(lock);
3952 			PMAP_LOCK(pmap);
3953 			rw_wlock(lock);
3954 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3955 				PMAP_UNLOCK(pmap);
3956 				goto retry;
3957 			}
3958 		}
3959 		l3e = pmap_pml3e(pmap, pv->pv_va);
3960 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3961 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3962 		    m));
3963 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3964 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3965 			vm_page_dirty(m);
3966 		if ((be64toh(*pte) & PG_A) != 0) {
3967 			atomic_clear_long(pte, htobe64(PG_A));
3968 			pmap_invalidate_page(pmap, pv->pv_va);
3969 			cleared++;
3970 		}
3971 		PMAP_UNLOCK(pmap);
3972 		/* Rotate the PV list if it has more than one entry. */
3973 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3974 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3975 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3976 			m->md.pv_gen++;
3977 		}
3978 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3979 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3980 out:
3981 	rw_wunlock(lock);
3982 	vm_page_free_pages_toq(&free, true);
3983 	return (cleared + not_cleared);
3984 }
3985 
3986 static vm_offset_t
3987 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3988     vm_paddr_t end, int prot __unused)
3989 {
3990 
3991 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3992 		 prot);
3993 	return (PHYS_TO_DMAP(start));
3994 }
3995 
3996 void
3997 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3998     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3999 {
4000 	pml3_entry_t *l3e;
4001 	vm_paddr_t pa, ptepa;
4002 	vm_page_t p, pdpg;
4003 	vm_memattr_t ma;
4004 
4005 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4006 	    object, pindex, size);
4007 	VM_OBJECT_ASSERT_WLOCKED(object);
4008 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4009 			("pmap_object_init_pt: non-device object"));
4010 	/* NB: size can be logically ored with addr here */
4011 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4012 		if (!mmu_radix_ps_enabled(pmap))
4013 			return;
4014 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4015 			return;
4016 		p = vm_page_lookup(object, pindex);
4017 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4018 		    ("pmap_object_init_pt: invalid page %p", p));
4019 		ma = p->md.mdpg_cache_attrs;
4020 
4021 		/*
4022 		 * Abort the mapping if the first page is not physically
4023 		 * aligned to a 2MB page boundary.
4024 		 */
4025 		ptepa = VM_PAGE_TO_PHYS(p);
4026 		if (ptepa & L3_PAGE_MASK)
4027 			return;
4028 
4029 		/*
4030 		 * Skip the first page.  Abort the mapping if the rest of
4031 		 * the pages are not physically contiguous or have differing
4032 		 * memory attributes.
4033 		 */
4034 		p = TAILQ_NEXT(p, listq);
4035 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4036 		    pa += PAGE_SIZE) {
4037 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4038 			    ("pmap_object_init_pt: invalid page %p", p));
4039 			if (pa != VM_PAGE_TO_PHYS(p) ||
4040 			    ma != p->md.mdpg_cache_attrs)
4041 				return;
4042 			p = TAILQ_NEXT(p, listq);
4043 		}
4044 
4045 		PMAP_LOCK(pmap);
4046 		for (pa = ptepa | pmap_cache_bits(ma);
4047 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
4048 			pdpg = pmap_allocl3e(pmap, addr, NULL);
4049 			if (pdpg == NULL) {
4050 				/*
4051 				 * The creation of mappings below is only an
4052 				 * optimization.  If a page directory page
4053 				 * cannot be allocated without blocking,
4054 				 * continue on to the next mapping rather than
4055 				 * blocking.
4056 				 */
4057 				addr += L3_PAGE_SIZE;
4058 				continue;
4059 			}
4060 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4061 			l3e = &l3e[pmap_pml3e_index(addr)];
4062 			if ((be64toh(*l3e) & PG_V) == 0) {
4063 				pa |= PG_M | PG_A | PG_RW;
4064 				pte_store(l3e, pa);
4065 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4066 				counter_u64_add(pmap_l3e_mappings, 1);
4067 			} else {
4068 				/* Continue on if the PDE is already valid. */
4069 				pdpg->ref_count--;
4070 				KASSERT(pdpg->ref_count > 0,
4071 				    ("pmap_object_init_pt: missing reference "
4072 				    "to page directory page, va: 0x%lx", addr));
4073 			}
4074 			addr += L3_PAGE_SIZE;
4075 		}
4076 		ptesync();
4077 		PMAP_UNLOCK(pmap);
4078 	}
4079 }
4080 
4081 boolean_t
4082 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4083 {
4084 	struct md_page *pvh;
4085 	struct rwlock *lock;
4086 	pv_entry_t pv;
4087 	int loops = 0;
4088 	boolean_t rv;
4089 
4090 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4091 	    ("pmap_page_exists_quick: page %p is not managed", m));
4092 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4093 	rv = FALSE;
4094 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4095 	rw_rlock(lock);
4096 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4097 		if (PV_PMAP(pv) == pmap) {
4098 			rv = TRUE;
4099 			break;
4100 		}
4101 		loops++;
4102 		if (loops >= 16)
4103 			break;
4104 	}
4105 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4106 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4107 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4108 			if (PV_PMAP(pv) == pmap) {
4109 				rv = TRUE;
4110 				break;
4111 			}
4112 			loops++;
4113 			if (loops >= 16)
4114 				break;
4115 		}
4116 	}
4117 	rw_runlock(lock);
4118 	return (rv);
4119 }
4120 
4121 void
4122 mmu_radix_page_init(vm_page_t m)
4123 {
4124 
4125 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4126 	TAILQ_INIT(&m->md.pv_list);
4127 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4128 }
4129 
4130 int
4131 mmu_radix_page_wired_mappings(vm_page_t m)
4132 {
4133 	struct rwlock *lock;
4134 	struct md_page *pvh;
4135 	pmap_t pmap;
4136 	pt_entry_t *pte;
4137 	pv_entry_t pv;
4138 	int count, md_gen, pvh_gen;
4139 
4140 	if ((m->oflags & VPO_UNMANAGED) != 0)
4141 		return (0);
4142 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4143 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4144 	rw_rlock(lock);
4145 restart:
4146 	count = 0;
4147 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4148 		pmap = PV_PMAP(pv);
4149 		if (!PMAP_TRYLOCK(pmap)) {
4150 			md_gen = m->md.pv_gen;
4151 			rw_runlock(lock);
4152 			PMAP_LOCK(pmap);
4153 			rw_rlock(lock);
4154 			if (md_gen != m->md.pv_gen) {
4155 				PMAP_UNLOCK(pmap);
4156 				goto restart;
4157 			}
4158 		}
4159 		pte = pmap_pte(pmap, pv->pv_va);
4160 		if ((be64toh(*pte) & PG_W) != 0)
4161 			count++;
4162 		PMAP_UNLOCK(pmap);
4163 	}
4164 	if ((m->flags & PG_FICTITIOUS) == 0) {
4165 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4166 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4167 			pmap = PV_PMAP(pv);
4168 			if (!PMAP_TRYLOCK(pmap)) {
4169 				md_gen = m->md.pv_gen;
4170 				pvh_gen = pvh->pv_gen;
4171 				rw_runlock(lock);
4172 				PMAP_LOCK(pmap);
4173 				rw_rlock(lock);
4174 				if (md_gen != m->md.pv_gen ||
4175 				    pvh_gen != pvh->pv_gen) {
4176 					PMAP_UNLOCK(pmap);
4177 					goto restart;
4178 				}
4179 			}
4180 			pte = pmap_pml3e(pmap, pv->pv_va);
4181 			if ((be64toh(*pte) & PG_W) != 0)
4182 				count++;
4183 			PMAP_UNLOCK(pmap);
4184 		}
4185 	}
4186 	rw_runlock(lock);
4187 	return (count);
4188 }
4189 
4190 static void
4191 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4192 {
4193 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4194 }
4195 
4196 int
4197 mmu_radix_pinit(pmap_t pmap)
4198 {
4199 	vmem_addr_t pid;
4200 	vm_paddr_t l1pa;
4201 
4202 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4203 
4204 	/*
4205 	 * allocate the page directory page
4206 	 */
4207 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4208 
4209 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4210 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4211 	vm_radix_init(&pmap->pm_radix);
4212 	TAILQ_INIT(&pmap->pm_pvchunk);
4213 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4214 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4215 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4216 
4217 	pmap->pm_pid = pid;
4218 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4219 	mmu_radix_update_proctab(pid, l1pa);
4220 	__asm __volatile("ptesync;isync" : : : "memory");
4221 
4222 	return (1);
4223 }
4224 
4225 /*
4226  * This routine is called if the desired page table page does not exist.
4227  *
4228  * If page table page allocation fails, this routine may sleep before
4229  * returning NULL.  It sleeps only if a lock pointer was given.
4230  *
4231  * Note: If a page allocation fails at page table level two or three,
4232  * one or two pages may be held during the wait, only to be released
4233  * afterwards.  This conservative approach is easily argued to avoid
4234  * race conditions.
4235  */
4236 static vm_page_t
4237 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4238 {
4239 	vm_page_t m, pdppg, pdpg;
4240 
4241 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4242 
4243 	/*
4244 	 * Allocate a page table page.
4245 	 */
4246 	if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4247 		if (lockp != NULL) {
4248 			RELEASE_PV_LIST_LOCK(lockp);
4249 			PMAP_UNLOCK(pmap);
4250 			vm_wait(NULL);
4251 			PMAP_LOCK(pmap);
4252 		}
4253 		/*
4254 		 * Indicate the need to retry.  While waiting, the page table
4255 		 * page may have been allocated.
4256 		 */
4257 		return (NULL);
4258 	}
4259 	m->pindex = ptepindex;
4260 
4261 	/*
4262 	 * Map the pagetable page into the process address space, if
4263 	 * it isn't already there.
4264 	 */
4265 
4266 	if (ptepindex >= (NUPDE + NUPDPE)) {
4267 		pml1_entry_t *l1e;
4268 		vm_pindex_t pml1index;
4269 
4270 		/* Wire up a new PDPE page */
4271 		pml1index = ptepindex - (NUPDE + NUPDPE);
4272 		l1e = &pmap->pm_pml1[pml1index];
4273 		KASSERT((be64toh(*l1e) & PG_V) == 0,
4274 		    ("%s: L1 entry %#lx is valid", __func__, *l1e));
4275 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4276 	} else if (ptepindex >= NUPDE) {
4277 		vm_pindex_t pml1index;
4278 		vm_pindex_t pdpindex;
4279 		pml1_entry_t *l1e;
4280 		pml2_entry_t *l2e;
4281 
4282 		/* Wire up a new l2e page */
4283 		pdpindex = ptepindex - NUPDE;
4284 		pml1index = pdpindex >> RPTE_SHIFT;
4285 
4286 		l1e = &pmap->pm_pml1[pml1index];
4287 		if ((be64toh(*l1e) & PG_V) == 0) {
4288 			/* Have to allocate a new pdp, recurse */
4289 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4290 				lockp) == NULL) {
4291 				vm_page_unwire_noq(m);
4292 				vm_page_free_zero(m);
4293 				return (NULL);
4294 			}
4295 		} else {
4296 			/* Add reference to l2e page */
4297 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4298 			pdppg->ref_count++;
4299 		}
4300 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4301 
4302 		/* Now find the pdp page */
4303 		l2e = &l2e[pdpindex & RPTE_MASK];
4304 		KASSERT((be64toh(*l2e) & PG_V) == 0,
4305 		    ("%s: L2 entry %#lx is valid", __func__, *l2e));
4306 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4307 	} else {
4308 		vm_pindex_t pml1index;
4309 		vm_pindex_t pdpindex;
4310 		pml1_entry_t *l1e;
4311 		pml2_entry_t *l2e;
4312 		pml3_entry_t *l3e;
4313 
4314 		/* Wire up a new PTE page */
4315 		pdpindex = ptepindex >> RPTE_SHIFT;
4316 		pml1index = pdpindex >> RPTE_SHIFT;
4317 
4318 		/* First, find the pdp and check that its valid. */
4319 		l1e = &pmap->pm_pml1[pml1index];
4320 		if ((be64toh(*l1e) & PG_V) == 0) {
4321 			/* Have to allocate a new pd, recurse */
4322 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4323 			    lockp) == NULL) {
4324 				vm_page_unwire_noq(m);
4325 				vm_page_free_zero(m);
4326 				return (NULL);
4327 			}
4328 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4329 			l2e = &l2e[pdpindex & RPTE_MASK];
4330 		} else {
4331 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4332 			l2e = &l2e[pdpindex & RPTE_MASK];
4333 			if ((be64toh(*l2e) & PG_V) == 0) {
4334 				/* Have to allocate a new pd, recurse */
4335 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4336 				    lockp) == NULL) {
4337 					vm_page_unwire_noq(m);
4338 					vm_page_free_zero(m);
4339 					return (NULL);
4340 				}
4341 			} else {
4342 				/* Add reference to the pd page */
4343 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4344 				pdpg->ref_count++;
4345 			}
4346 		}
4347 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4348 
4349 		/* Now we know where the page directory page is */
4350 		l3e = &l3e[ptepindex & RPTE_MASK];
4351 		KASSERT((be64toh(*l3e) & PG_V) == 0,
4352 		    ("%s: L3 entry %#lx is valid", __func__, *l3e));
4353 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4354 	}
4355 
4356 	pmap_resident_count_inc(pmap, 1);
4357 	return (m);
4358 }
4359 static vm_page_t
4360 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4361 {
4362 	vm_pindex_t pdpindex, ptepindex;
4363 	pml2_entry_t *pdpe;
4364 	vm_page_t pdpg;
4365 
4366 retry:
4367 	pdpe = pmap_pml2e(pmap, va);
4368 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4369 		/* Add a reference to the pd page. */
4370 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4371 		pdpg->ref_count++;
4372 	} else {
4373 		/* Allocate a pd page. */
4374 		ptepindex = pmap_l3e_pindex(va);
4375 		pdpindex = ptepindex >> RPTE_SHIFT;
4376 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4377 		if (pdpg == NULL && lockp != NULL)
4378 			goto retry;
4379 	}
4380 	return (pdpg);
4381 }
4382 
4383 static vm_page_t
4384 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4385 {
4386 	vm_pindex_t ptepindex;
4387 	pml3_entry_t *pd;
4388 	vm_page_t m;
4389 
4390 	/*
4391 	 * Calculate pagetable page index
4392 	 */
4393 	ptepindex = pmap_l3e_pindex(va);
4394 retry:
4395 	/*
4396 	 * Get the page directory entry
4397 	 */
4398 	pd = pmap_pml3e(pmap, va);
4399 
4400 	/*
4401 	 * This supports switching from a 2MB page to a
4402 	 * normal 4K page.
4403 	 */
4404 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4405 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4406 			/*
4407 			 * Invalidation of the 2MB page mapping may have caused
4408 			 * the deallocation of the underlying PD page.
4409 			 */
4410 			pd = NULL;
4411 		}
4412 	}
4413 
4414 	/*
4415 	 * If the page table page is mapped, we just increment the
4416 	 * hold count, and activate it.
4417 	 */
4418 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4419 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4420 		m->ref_count++;
4421 	} else {
4422 		/*
4423 		 * Here if the pte page isn't mapped, or if it has been
4424 		 * deallocated.
4425 		 */
4426 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4427 		if (m == NULL && lockp != NULL)
4428 			goto retry;
4429 	}
4430 	return (m);
4431 }
4432 
4433 static void
4434 mmu_radix_pinit0(pmap_t pmap)
4435 {
4436 
4437 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4438 	PMAP_LOCK_INIT(pmap);
4439 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4440 	pmap->pm_pid = kernel_pmap->pm_pid;
4441 
4442 	vm_radix_init(&pmap->pm_radix);
4443 	TAILQ_INIT(&pmap->pm_pvchunk);
4444 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4445 	kernel_pmap->pm_flags =
4446 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4447 }
4448 /*
4449  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4450  */
4451 static boolean_t
4452 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4453 {
4454 	pt_entry_t newpde, oldpde;
4455 	vm_offset_t eva, va;
4456 	vm_page_t m;
4457 	boolean_t anychanged;
4458 
4459 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4460 	KASSERT((sva & L3_PAGE_MASK) == 0,
4461 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4462 	anychanged = FALSE;
4463 retry:
4464 	oldpde = newpde = be64toh(*l3e);
4465 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4466 	    (PG_MANAGED | PG_M | PG_RW)) {
4467 		eva = sva + L3_PAGE_SIZE;
4468 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4469 		    va < eva; va += PAGE_SIZE, m++)
4470 			vm_page_dirty(m);
4471 	}
4472 	if ((prot & VM_PROT_WRITE) == 0) {
4473 		newpde &= ~(PG_RW | PG_M);
4474 		newpde |= RPTE_EAA_R;
4475 	}
4476 	if (prot & VM_PROT_EXECUTE)
4477 		newpde |= PG_X;
4478 	if (newpde != oldpde) {
4479 		/*
4480 		 * As an optimization to future operations on this PDE, clear
4481 		 * PG_PROMOTED.  The impending invalidation will remove any
4482 		 * lingering 4KB page mappings from the TLB.
4483 		 */
4484 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4485 			goto retry;
4486 		anychanged = TRUE;
4487 	}
4488 	return (anychanged);
4489 }
4490 
4491 void
4492 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4493     vm_prot_t prot)
4494 {
4495 	vm_offset_t va_next;
4496 	pml1_entry_t *l1e;
4497 	pml2_entry_t *l2e;
4498 	pml3_entry_t ptpaddr, *l3e;
4499 	pt_entry_t *pte;
4500 	boolean_t anychanged;
4501 
4502 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4503 	    prot);
4504 
4505 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4506 	if (prot == VM_PROT_NONE) {
4507 		mmu_radix_remove(pmap, sva, eva);
4508 		return;
4509 	}
4510 
4511 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4512 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4513 		return;
4514 
4515 #ifdef INVARIANTS
4516 	if (VERBOSE_PROTECT || pmap_logging)
4517 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4518 			   pmap, sva, eva, prot, pmap->pm_pid);
4519 #endif
4520 	anychanged = FALSE;
4521 
4522 	PMAP_LOCK(pmap);
4523 	for (; sva < eva; sva = va_next) {
4524 		l1e = pmap_pml1e(pmap, sva);
4525 		if ((be64toh(*l1e) & PG_V) == 0) {
4526 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4527 			if (va_next < sva)
4528 				va_next = eva;
4529 			continue;
4530 		}
4531 
4532 		l2e = pmap_l1e_to_l2e(l1e, sva);
4533 		if ((be64toh(*l2e) & PG_V) == 0) {
4534 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4535 			if (va_next < sva)
4536 				va_next = eva;
4537 			continue;
4538 		}
4539 
4540 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4541 		if (va_next < sva)
4542 			va_next = eva;
4543 
4544 		l3e = pmap_l2e_to_l3e(l2e, sva);
4545 		ptpaddr = be64toh(*l3e);
4546 
4547 		/*
4548 		 * Weed out invalid mappings.
4549 		 */
4550 		if (ptpaddr == 0)
4551 			continue;
4552 
4553 		/*
4554 		 * Check for large page.
4555 		 */
4556 		if ((ptpaddr & RPTE_LEAF) != 0) {
4557 			/*
4558 			 * Are we protecting the entire large page?  If not,
4559 			 * demote the mapping and fall through.
4560 			 */
4561 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4562 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4563 					anychanged = TRUE;
4564 				continue;
4565 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4566 				/*
4567 				 * The large page mapping was destroyed.
4568 				 */
4569 				continue;
4570 			}
4571 		}
4572 
4573 		if (va_next > eva)
4574 			va_next = eva;
4575 
4576 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4577 		    sva += PAGE_SIZE) {
4578 			pt_entry_t obits, pbits;
4579 			vm_page_t m;
4580 
4581 retry:
4582 			MPASS(pte == pmap_pte(pmap, sva));
4583 			obits = pbits = be64toh(*pte);
4584 			if ((pbits & PG_V) == 0)
4585 				continue;
4586 
4587 			if ((prot & VM_PROT_WRITE) == 0) {
4588 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4589 				    (PG_MANAGED | PG_M | PG_RW)) {
4590 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4591 					vm_page_dirty(m);
4592 				}
4593 				pbits &= ~(PG_RW | PG_M);
4594 				pbits |= RPTE_EAA_R;
4595 			}
4596 			if (prot & VM_PROT_EXECUTE)
4597 				pbits |= PG_X;
4598 
4599 			if (pbits != obits) {
4600 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4601 					goto retry;
4602 				if (obits & (PG_A|PG_M)) {
4603 					anychanged = TRUE;
4604 #ifdef INVARIANTS
4605 					if (VERBOSE_PROTECT || pmap_logging)
4606 						printf("%#lx %#lx -> %#lx\n",
4607 						    sva, obits, pbits);
4608 #endif
4609 				}
4610 			}
4611 		}
4612 	}
4613 	if (anychanged)
4614 		pmap_invalidate_all(pmap);
4615 	PMAP_UNLOCK(pmap);
4616 }
4617 
4618 void
4619 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4620 {
4621 
4622 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4623 	pt_entry_t oldpte, pa, *pte;
4624 	vm_page_t m;
4625 	uint64_t cache_bits, attr_bits;
4626 	vm_offset_t va;
4627 
4628 	oldpte = 0;
4629 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4630 	va = sva;
4631 	pte = kvtopte(va);
4632 	while (va < sva + PAGE_SIZE * count) {
4633 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4634 			pte = kvtopte(va);
4635 		MPASS(pte == pmap_pte(kernel_pmap, va));
4636 
4637 		/*
4638 		 * XXX there has to be a more efficient way than traversing
4639 		 * the page table every time - but go for correctness for
4640 		 * today
4641 		 */
4642 
4643 		m = *ma++;
4644 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4645 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4646 		if (be64toh(*pte) != pa) {
4647 			oldpte |= be64toh(*pte);
4648 			pte_store(pte, pa);
4649 		}
4650 		va += PAGE_SIZE;
4651 		pte++;
4652 	}
4653 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4654 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4655 		    PAGE_SIZE);
4656 	else
4657 		ptesync();
4658 }
4659 
4660 void
4661 mmu_radix_qremove(vm_offset_t sva, int count)
4662 {
4663 	vm_offset_t va;
4664 	pt_entry_t *pte;
4665 
4666 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4667 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4668 
4669 	va = sva;
4670 	pte = kvtopte(va);
4671 	while (va < sva + PAGE_SIZE * count) {
4672 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4673 			pte = kvtopte(va);
4674 		pte_clear(pte);
4675 		pte++;
4676 		va += PAGE_SIZE;
4677 	}
4678 	pmap_invalidate_range(kernel_pmap, sva, va);
4679 }
4680 
4681 /***************************************************
4682  * Page table page management routines.....
4683  ***************************************************/
4684 /*
4685  * Schedule the specified unused page table page to be freed.  Specifically,
4686  * add the page to the specified list of pages that will be released to the
4687  * physical memory manager after the TLB has been updated.
4688  */
4689 static __inline void
4690 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4691     boolean_t set_PG_ZERO)
4692 {
4693 
4694 	if (set_PG_ZERO)
4695 		m->flags |= PG_ZERO;
4696 	else
4697 		m->flags &= ~PG_ZERO;
4698 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4699 }
4700 
4701 /*
4702  * Inserts the specified page table page into the specified pmap's collection
4703  * of idle page table pages.  Each of a pmap's page table pages is responsible
4704  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4705  * ordered by this virtual address range.
4706  */
4707 static __inline int
4708 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4709 {
4710 
4711 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4712 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4713 }
4714 
4715 /*
4716  * Removes the page table page mapping the specified virtual address from the
4717  * specified pmap's collection of idle page table pages, and returns it.
4718  * Otherwise, returns NULL if there is no page table page corresponding to the
4719  * specified virtual address.
4720  */
4721 static __inline vm_page_t
4722 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4723 {
4724 
4725 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4726 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4727 }
4728 
4729 /*
4730  * Decrements a page table page's wire count, which is used to record the
4731  * number of valid page table entries within the page.  If the wire count
4732  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4733  * page table page was unmapped and FALSE otherwise.
4734  */
4735 static inline boolean_t
4736 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4737 {
4738 
4739 	--m->ref_count;
4740 	if (m->ref_count == 0) {
4741 		_pmap_unwire_ptp(pmap, va, m, free);
4742 		return (TRUE);
4743 	} else
4744 		return (FALSE);
4745 }
4746 
4747 static void
4748 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4749 {
4750 
4751 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4752 	/*
4753 	 * unmap the page table page
4754 	 */
4755 	if (m->pindex >= NUPDE + NUPDPE) {
4756 		/* PDP page */
4757 		pml1_entry_t *pml1;
4758 		pml1 = pmap_pml1e(pmap, va);
4759 		*pml1 = 0;
4760 	} else if (m->pindex >= NUPDE) {
4761 		/* PD page */
4762 		pml2_entry_t *l2e;
4763 		l2e = pmap_pml2e(pmap, va);
4764 		*l2e = 0;
4765 	} else {
4766 		/* PTE page */
4767 		pml3_entry_t *l3e;
4768 		l3e = pmap_pml3e(pmap, va);
4769 		*l3e = 0;
4770 	}
4771 	pmap_resident_count_dec(pmap, 1);
4772 	if (m->pindex < NUPDE) {
4773 		/* We just released a PT, unhold the matching PD */
4774 		vm_page_t pdpg;
4775 
4776 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4777 		pmap_unwire_ptp(pmap, va, pdpg, free);
4778 	}
4779 	else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4780 		/* We just released a PD, unhold the matching PDP */
4781 		vm_page_t pdppg;
4782 
4783 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4784 		pmap_unwire_ptp(pmap, va, pdppg, free);
4785 	}
4786 
4787 	/*
4788 	 * Put page on a list so that it is released after
4789 	 * *ALL* TLB shootdown is done
4790 	 */
4791 	pmap_add_delayed_free_list(m, free, TRUE);
4792 }
4793 
4794 /*
4795  * After removing a page table entry, this routine is used to
4796  * conditionally free the page, and manage the hold/wire counts.
4797  */
4798 static int
4799 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4800     struct spglist *free)
4801 {
4802 	vm_page_t mpte;
4803 
4804 	if (va >= VM_MAXUSER_ADDRESS)
4805 		return (0);
4806 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4807 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4808 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4809 }
4810 
4811 void
4812 mmu_radix_release(pmap_t pmap)
4813 {
4814 
4815 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4816 	KASSERT(pmap->pm_stats.resident_count == 0,
4817 	    ("pmap_release: pmap resident count %ld != 0",
4818 	    pmap->pm_stats.resident_count));
4819 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4820 	    ("pmap_release: pmap has reserved page table page(s)"));
4821 
4822 	pmap_invalidate_all(pmap);
4823 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4824 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4825 	vmem_free(asid_arena, pmap->pm_pid, 1);
4826 }
4827 
4828 /*
4829  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4830  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4831  * false if the PV entry cannot be allocated without resorting to reclamation.
4832  */
4833 static bool
4834 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4835     struct rwlock **lockp)
4836 {
4837 	struct md_page *pvh;
4838 	pv_entry_t pv;
4839 	vm_paddr_t pa;
4840 
4841 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4842 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4843 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4844 	    NULL : lockp)) == NULL)
4845 		return (false);
4846 	pv->pv_va = va;
4847 	pa = pde & PG_PS_FRAME;
4848 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4849 	pvh = pa_to_pvh(pa);
4850 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4851 	pvh->pv_gen++;
4852 	return (true);
4853 }
4854 
4855 /*
4856  * Fills a page table page with mappings to consecutive physical pages.
4857  */
4858 static void
4859 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4860 {
4861 	pt_entry_t *pte;
4862 
4863 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4864 		*pte = htobe64(newpte);
4865 		newpte += PAGE_SIZE;
4866 	}
4867 }
4868 
4869 static boolean_t
4870 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4871 {
4872 	struct rwlock *lock;
4873 	boolean_t rv;
4874 
4875 	lock = NULL;
4876 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4877 	if (lock != NULL)
4878 		rw_wunlock(lock);
4879 	return (rv);
4880 }
4881 
4882 static boolean_t
4883 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4884     struct rwlock **lockp)
4885 {
4886 	pml3_entry_t oldpde;
4887 	pt_entry_t *firstpte;
4888 	vm_paddr_t mptepa;
4889 	vm_page_t mpte;
4890 	struct spglist free;
4891 	vm_offset_t sva;
4892 
4893 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4894 	oldpde = be64toh(*l3e);
4895 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4896 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4897 	    oldpde));
4898 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4899 	    NULL) {
4900 		KASSERT((oldpde & PG_W) == 0,
4901 		    ("pmap_demote_l3e: page table page for a wired mapping"
4902 		    " is missing"));
4903 
4904 		/*
4905 		 * Invalidate the 2MB page mapping and return "failure" if the
4906 		 * mapping was never accessed or the allocation of the new
4907 		 * page table page fails.  If the 2MB page mapping belongs to
4908 		 * the direct map region of the kernel's address space, then
4909 		 * the page allocation request specifies the highest possible
4910 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4911 		 * normal.  Page table pages are preallocated for every other
4912 		 * part of the kernel address space, so the direct map region
4913 		 * is the only part of the kernel address space that must be
4914 		 * handled here.
4915 		 */
4916 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc_noobj(
4917 		    (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ?
4918 		    VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED)) == NULL) {
4919 			SLIST_INIT(&free);
4920 			sva = trunc_2mpage(va);
4921 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4922 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4923 			vm_page_free_pages_toq(&free, true);
4924 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4925 			    " in pmap %p", va, pmap);
4926 			return (FALSE);
4927 		}
4928 		mpte->pindex = pmap_l3e_pindex(va);
4929 		if (va < VM_MAXUSER_ADDRESS)
4930 			pmap_resident_count_inc(pmap, 1);
4931 	}
4932 	mptepa = VM_PAGE_TO_PHYS(mpte);
4933 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4934 	KASSERT((oldpde & PG_A) != 0,
4935 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4936 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4937 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4938 
4939 	/*
4940 	 * If the page table page is new, initialize it.
4941 	 */
4942 	if (mpte->ref_count == 1) {
4943 		mpte->ref_count = NPTEPG;
4944 		pmap_fill_ptp(firstpte, oldpde);
4945 	}
4946 
4947 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4948 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4949 	    " addresses"));
4950 
4951 	/*
4952 	 * If the mapping has changed attributes, update the page table
4953 	 * entries.
4954 	 */
4955 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4956 		pmap_fill_ptp(firstpte, oldpde);
4957 
4958 	/*
4959 	 * The spare PV entries must be reserved prior to demoting the
4960 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4961 	 * of the PDE and the PV lists will be inconsistent, which can result
4962 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4963 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4964 	 * PV entry for the 2MB page mapping that is being demoted.
4965 	 */
4966 	if ((oldpde & PG_MANAGED) != 0)
4967 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4968 
4969 	/*
4970 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4971 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4972 	 * set.  Thus, there is no danger of a race with another
4973 	 * processor changing the setting of PG_A and/or PG_M between
4974 	 * the read above and the store below.
4975 	 */
4976 	pde_store(l3e, mptepa);
4977 	pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
4978 	/*
4979 	 * Demote the PV entry.
4980 	 */
4981 	if ((oldpde & PG_MANAGED) != 0)
4982 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4983 
4984 	counter_u64_add(pmap_l3e_demotions, 1);
4985 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4986 	    " in pmap %p", va, pmap);
4987 	return (TRUE);
4988 }
4989 
4990 /*
4991  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4992  */
4993 static void
4994 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4995 {
4996 	vm_paddr_t mptepa;
4997 	vm_page_t mpte;
4998 
4999 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5000 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5001 	mpte = pmap_remove_pt_page(pmap, va);
5002 	if (mpte == NULL)
5003 		panic("pmap_remove_kernel_pde: Missing pt page.");
5004 
5005 	mptepa = VM_PAGE_TO_PHYS(mpte);
5006 
5007 	/*
5008 	 * Initialize the page table page.
5009 	 */
5010 	pagezero(PHYS_TO_DMAP(mptepa));
5011 
5012 	/*
5013 	 * Demote the mapping.
5014 	 */
5015 	pde_store(l3e, mptepa);
5016 	ptesync();
5017 }
5018 
5019 /*
5020  * pmap_remove_l3e: do the things to unmap a superpage in a process
5021  */
5022 static int
5023 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5024     struct spglist *free, struct rwlock **lockp)
5025 {
5026 	struct md_page *pvh;
5027 	pml3_entry_t oldpde;
5028 	vm_offset_t eva, va;
5029 	vm_page_t m, mpte;
5030 
5031 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5032 	KASSERT((sva & L3_PAGE_MASK) == 0,
5033 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
5034 	oldpde = be64toh(pte_load_clear(pdq));
5035 	if (oldpde & PG_W)
5036 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5037 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5038 	if (oldpde & PG_MANAGED) {
5039 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5040 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5041 		pmap_pvh_free(pvh, pmap, sva);
5042 		eva = sva + L3_PAGE_SIZE;
5043 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5044 		    va < eva; va += PAGE_SIZE, m++) {
5045 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5046 				vm_page_dirty(m);
5047 			if (oldpde & PG_A)
5048 				vm_page_aflag_set(m, PGA_REFERENCED);
5049 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5050 			    TAILQ_EMPTY(&pvh->pv_list))
5051 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5052 		}
5053 	}
5054 	if (pmap == kernel_pmap) {
5055 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5056 	} else {
5057 		mpte = pmap_remove_pt_page(pmap, sva);
5058 		if (mpte != NULL) {
5059 			pmap_resident_count_dec(pmap, 1);
5060 			KASSERT(mpte->ref_count == NPTEPG,
5061 			    ("pmap_remove_l3e: pte page wire count error"));
5062 			mpte->ref_count = 0;
5063 			pmap_add_delayed_free_list(mpte, free, FALSE);
5064 		}
5065 	}
5066 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5067 }
5068 
5069 /*
5070  * pmap_remove_pte: do the things to unmap a page in a process
5071  */
5072 static int
5073 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5074     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5075 {
5076 	struct md_page *pvh;
5077 	pt_entry_t oldpte;
5078 	vm_page_t m;
5079 
5080 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5081 	oldpte = be64toh(pte_load_clear(ptq));
5082 	if (oldpte & RPTE_WIRED)
5083 		pmap->pm_stats.wired_count -= 1;
5084 	pmap_resident_count_dec(pmap, 1);
5085 	if (oldpte & RPTE_MANAGED) {
5086 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5087 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5088 			vm_page_dirty(m);
5089 		if (oldpte & PG_A)
5090 			vm_page_aflag_set(m, PGA_REFERENCED);
5091 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5092 		pmap_pvh_free(&m->md, pmap, va);
5093 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5094 		    (m->flags & PG_FICTITIOUS) == 0) {
5095 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5096 			if (TAILQ_EMPTY(&pvh->pv_list))
5097 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5098 		}
5099 	}
5100 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5101 }
5102 
5103 /*
5104  * Remove a single page from a process address space
5105  */
5106 static bool
5107 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5108     struct spglist *free)
5109 {
5110 	struct rwlock *lock;
5111 	pt_entry_t *pte;
5112 	bool invalidate_all;
5113 
5114 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5115 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5116 		return (false);
5117 	}
5118 	pte = pmap_l3e_to_pte(l3e, va);
5119 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5120 		return (false);
5121 	}
5122 	lock = NULL;
5123 
5124 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5125 	if (lock != NULL)
5126 		rw_wunlock(lock);
5127 	if (!invalidate_all)
5128 		pmap_invalidate_page(pmap, va);
5129 	return (invalidate_all);
5130 }
5131 
5132 /*
5133  * Removes the specified range of addresses from the page table page.
5134  */
5135 static bool
5136 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5137     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5138 {
5139 	pt_entry_t *pte;
5140 	vm_offset_t va;
5141 	bool anyvalid;
5142 
5143 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5144 	anyvalid = false;
5145 	va = eva;
5146 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5147 	    sva += PAGE_SIZE) {
5148 		MPASS(pte == pmap_pte(pmap, sva));
5149 		if (*pte == 0) {
5150 			if (va != eva) {
5151 				anyvalid = true;
5152 				va = eva;
5153 			}
5154 			continue;
5155 		}
5156 		if (va == eva)
5157 			va = sva;
5158 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5159 			anyvalid = true;
5160 			sva += PAGE_SIZE;
5161 			break;
5162 		}
5163 	}
5164 	if (anyvalid)
5165 		pmap_invalidate_all(pmap);
5166 	else if (va != eva)
5167 		pmap_invalidate_range(pmap, va, sva);
5168 	return (anyvalid);
5169 }
5170 
5171 void
5172 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5173 {
5174 	struct rwlock *lock;
5175 	vm_offset_t va_next;
5176 	pml1_entry_t *l1e;
5177 	pml2_entry_t *l2e;
5178 	pml3_entry_t ptpaddr, *l3e;
5179 	struct spglist free;
5180 	bool anyvalid;
5181 
5182 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5183 
5184 	/*
5185 	 * Perform an unsynchronized read.  This is, however, safe.
5186 	 */
5187 	if (pmap->pm_stats.resident_count == 0)
5188 		return;
5189 
5190 	anyvalid = false;
5191 	SLIST_INIT(&free);
5192 
5193 	/* XXX something fishy here */
5194 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5195 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5196 
5197 	PMAP_LOCK(pmap);
5198 
5199 	/*
5200 	 * special handling of removing one page.  a very
5201 	 * common operation and easy to short circuit some
5202 	 * code.
5203 	 */
5204 	if (sva + PAGE_SIZE == eva) {
5205 		l3e = pmap_pml3e(pmap, sva);
5206 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5207 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5208 			goto out;
5209 		}
5210 	}
5211 
5212 	lock = NULL;
5213 	for (; sva < eva; sva = va_next) {
5214 		if (pmap->pm_stats.resident_count == 0)
5215 			break;
5216 		l1e = pmap_pml1e(pmap, sva);
5217 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5218 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5219 			if (va_next < sva)
5220 				va_next = eva;
5221 			continue;
5222 		}
5223 
5224 		l2e = pmap_l1e_to_l2e(l1e, sva);
5225 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5226 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5227 			if (va_next < sva)
5228 				va_next = eva;
5229 			continue;
5230 		}
5231 
5232 		/*
5233 		 * Calculate index for next page table.
5234 		 */
5235 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5236 		if (va_next < sva)
5237 			va_next = eva;
5238 
5239 		l3e = pmap_l2e_to_l3e(l2e, sva);
5240 		ptpaddr = be64toh(*l3e);
5241 
5242 		/*
5243 		 * Weed out invalid mappings.
5244 		 */
5245 		if (ptpaddr == 0)
5246 			continue;
5247 
5248 		/*
5249 		 * Check for large page.
5250 		 */
5251 		if ((ptpaddr & RPTE_LEAF) != 0) {
5252 			/*
5253 			 * Are we removing the entire large page?  If not,
5254 			 * demote the mapping and fall through.
5255 			 */
5256 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5257 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5258 				anyvalid = true;
5259 				continue;
5260 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5261 			    &lock)) {
5262 				/* The large page mapping was destroyed. */
5263 				continue;
5264 			} else
5265 				ptpaddr = be64toh(*l3e);
5266 		}
5267 
5268 		/*
5269 		 * Limit our scan to either the end of the va represented
5270 		 * by the current page table page, or to the end of the
5271 		 * range being removed.
5272 		 */
5273 		if (va_next > eva)
5274 			va_next = eva;
5275 
5276 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5277 			anyvalid = true;
5278 	}
5279 	if (lock != NULL)
5280 		rw_wunlock(lock);
5281 out:
5282 	if (anyvalid)
5283 		pmap_invalidate_all(pmap);
5284 	PMAP_UNLOCK(pmap);
5285 	vm_page_free_pages_toq(&free, true);
5286 }
5287 
5288 void
5289 mmu_radix_remove_all(vm_page_t m)
5290 {
5291 	struct md_page *pvh;
5292 	pv_entry_t pv;
5293 	pmap_t pmap;
5294 	struct rwlock *lock;
5295 	pt_entry_t *pte, tpte;
5296 	pml3_entry_t *l3e;
5297 	vm_offset_t va;
5298 	struct spglist free;
5299 	int pvh_gen, md_gen;
5300 
5301 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5302 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5303 	    ("pmap_remove_all: page %p is not managed", m));
5304 	SLIST_INIT(&free);
5305 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5306 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5307 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5308 retry:
5309 	rw_wlock(lock);
5310 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5311 		pmap = PV_PMAP(pv);
5312 		if (!PMAP_TRYLOCK(pmap)) {
5313 			pvh_gen = pvh->pv_gen;
5314 			rw_wunlock(lock);
5315 			PMAP_LOCK(pmap);
5316 			rw_wlock(lock);
5317 			if (pvh_gen != pvh->pv_gen) {
5318 				rw_wunlock(lock);
5319 				PMAP_UNLOCK(pmap);
5320 				goto retry;
5321 			}
5322 		}
5323 		va = pv->pv_va;
5324 		l3e = pmap_pml3e(pmap, va);
5325 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5326 		PMAP_UNLOCK(pmap);
5327 	}
5328 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5329 		pmap = PV_PMAP(pv);
5330 		if (!PMAP_TRYLOCK(pmap)) {
5331 			pvh_gen = pvh->pv_gen;
5332 			md_gen = m->md.pv_gen;
5333 			rw_wunlock(lock);
5334 			PMAP_LOCK(pmap);
5335 			rw_wlock(lock);
5336 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5337 				rw_wunlock(lock);
5338 				PMAP_UNLOCK(pmap);
5339 				goto retry;
5340 			}
5341 		}
5342 		pmap_resident_count_dec(pmap, 1);
5343 		l3e = pmap_pml3e(pmap, pv->pv_va);
5344 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5345 		    " a 2mpage in page %p's pv list", m));
5346 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5347 		tpte = be64toh(pte_load_clear(pte));
5348 		if (tpte & PG_W)
5349 			pmap->pm_stats.wired_count--;
5350 		if (tpte & PG_A)
5351 			vm_page_aflag_set(m, PGA_REFERENCED);
5352 
5353 		/*
5354 		 * Update the vm_page_t clean and reference bits.
5355 		 */
5356 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5357 			vm_page_dirty(m);
5358 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5359 		pmap_invalidate_page(pmap, pv->pv_va);
5360 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5361 		m->md.pv_gen++;
5362 		free_pv_entry(pmap, pv);
5363 		PMAP_UNLOCK(pmap);
5364 	}
5365 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5366 	rw_wunlock(lock);
5367 	vm_page_free_pages_toq(&free, true);
5368 }
5369 
5370 /*
5371  * Destroy all managed, non-wired mappings in the given user-space
5372  * pmap.  This pmap cannot be active on any processor besides the
5373  * caller.
5374  *
5375  * This function cannot be applied to the kernel pmap.  Moreover, it
5376  * is not intended for general use.  It is only to be used during
5377  * process termination.  Consequently, it can be implemented in ways
5378  * that make it faster than pmap_remove().  First, it can more quickly
5379  * destroy mappings by iterating over the pmap's collection of PV
5380  * entries, rather than searching the page table.  Second, it doesn't
5381  * have to test and clear the page table entries atomically, because
5382  * no processor is currently accessing the user address space.  In
5383  * particular, a page table entry's dirty bit won't change state once
5384  * this function starts.
5385  *
5386  * Although this function destroys all of the pmap's managed,
5387  * non-wired mappings, it can delay and batch the invalidation of TLB
5388  * entries without calling pmap_delayed_invl_started() and
5389  * pmap_delayed_invl_finished().  Because the pmap is not active on
5390  * any other processor, none of these TLB entries will ever be used
5391  * before their eventual invalidation.  Consequently, there is no need
5392  * for either pmap_remove_all() or pmap_remove_write() to wait for
5393  * that eventual TLB invalidation.
5394  */
5395 
5396 void
5397 mmu_radix_remove_pages(pmap_t pmap)
5398 {
5399 
5400 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5401 	pml3_entry_t ptel3e;
5402 	pt_entry_t *pte, tpte;
5403 	struct spglist free;
5404 	vm_page_t m, mpte, mt;
5405 	pv_entry_t pv;
5406 	struct md_page *pvh;
5407 	struct pv_chunk *pc, *npc;
5408 	struct rwlock *lock;
5409 	int64_t bit;
5410 	uint64_t inuse, bitmask;
5411 	int allfree, field, idx;
5412 #ifdef PV_STATS
5413 	int freed;
5414 #endif
5415 	boolean_t superpage;
5416 	vm_paddr_t pa;
5417 
5418 	/*
5419 	 * Assert that the given pmap is only active on the current
5420 	 * CPU.  Unfortunately, we cannot block another CPU from
5421 	 * activating the pmap while this function is executing.
5422 	 */
5423 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5424 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5425 	    mfspr(SPR_PID)));
5426 
5427 	lock = NULL;
5428 
5429 	SLIST_INIT(&free);
5430 	PMAP_LOCK(pmap);
5431 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5432 		allfree = 1;
5433 #ifdef PV_STATS
5434 		freed = 0;
5435 #endif
5436 		for (field = 0; field < _NPCM; field++) {
5437 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5438 			while (inuse != 0) {
5439 				bit = cnttzd(inuse);
5440 				bitmask = 1UL << bit;
5441 				idx = field * 64 + bit;
5442 				pv = &pc->pc_pventry[idx];
5443 				inuse &= ~bitmask;
5444 
5445 				pte = pmap_pml2e(pmap, pv->pv_va);
5446 				ptel3e = be64toh(*pte);
5447 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5448 				tpte = be64toh(*pte);
5449 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5450 					superpage = FALSE;
5451 					ptel3e = tpte;
5452 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5453 					    PG_FRAME);
5454 					pte = &pte[pmap_pte_index(pv->pv_va)];
5455 					tpte = be64toh(*pte);
5456 				} else {
5457 					/*
5458 					 * Keep track whether 'tpte' is a
5459 					 * superpage explicitly instead of
5460 					 * relying on RPTE_LEAF being set.
5461 					 *
5462 					 * This is because RPTE_LEAF is numerically
5463 					 * identical to PG_PTE_PAT and thus a
5464 					 * regular page could be mistaken for
5465 					 * a superpage.
5466 					 */
5467 					superpage = TRUE;
5468 				}
5469 
5470 				if ((tpte & PG_V) == 0) {
5471 					panic("bad pte va %lx pte %lx",
5472 					    pv->pv_va, tpte);
5473 				}
5474 
5475 /*
5476  * We cannot remove wired pages from a process' mapping at this time
5477  */
5478 				if (tpte & PG_W) {
5479 					allfree = 0;
5480 					continue;
5481 				}
5482 
5483 				if (superpage)
5484 					pa = tpte & PG_PS_FRAME;
5485 				else
5486 					pa = tpte & PG_FRAME;
5487 
5488 				m = PHYS_TO_VM_PAGE(pa);
5489 				KASSERT(m->phys_addr == pa,
5490 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5491 				    m, (uintmax_t)m->phys_addr,
5492 				    (uintmax_t)tpte));
5493 
5494 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5495 				    m < &vm_page_array[vm_page_array_size],
5496 				    ("pmap_remove_pages: bad tpte %#jx",
5497 				    (uintmax_t)tpte));
5498 
5499 				pte_clear(pte);
5500 
5501 				/*
5502 				 * Update the vm_page_t clean/reference bits.
5503 				 */
5504 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5505 					if (superpage) {
5506 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5507 							vm_page_dirty(mt);
5508 					} else
5509 						vm_page_dirty(m);
5510 				}
5511 
5512 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5513 
5514 				/* Mark free */
5515 				pc->pc_map[field] |= bitmask;
5516 				if (superpage) {
5517 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5518 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5519 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5520 					pvh->pv_gen++;
5521 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5522 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5523 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5524 							    TAILQ_EMPTY(&mt->md.pv_list))
5525 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5526 					}
5527 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5528 					if (mpte != NULL) {
5529 						pmap_resident_count_dec(pmap, 1);
5530 						KASSERT(mpte->ref_count == NPTEPG,
5531 						    ("pmap_remove_pages: pte page wire count error"));
5532 						mpte->ref_count = 0;
5533 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5534 					}
5535 				} else {
5536 					pmap_resident_count_dec(pmap, 1);
5537 #ifdef VERBOSE_PV
5538 					printf("freeing pv (%p, %p)\n",
5539 						   pmap, pv);
5540 #endif
5541 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5542 					m->md.pv_gen++;
5543 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5544 					    TAILQ_EMPTY(&m->md.pv_list) &&
5545 					    (m->flags & PG_FICTITIOUS) == 0) {
5546 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5547 						if (TAILQ_EMPTY(&pvh->pv_list))
5548 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5549 					}
5550 				}
5551 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5552 #ifdef PV_STATS
5553 				freed++;
5554 #endif
5555 			}
5556 		}
5557 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5558 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5559 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5560 		if (allfree) {
5561 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5562 			free_pv_chunk(pc);
5563 		}
5564 	}
5565 	if (lock != NULL)
5566 		rw_wunlock(lock);
5567 	pmap_invalidate_all(pmap);
5568 	PMAP_UNLOCK(pmap);
5569 	vm_page_free_pages_toq(&free, true);
5570 }
5571 
5572 void
5573 mmu_radix_remove_write(vm_page_t m)
5574 {
5575 	struct md_page *pvh;
5576 	pmap_t pmap;
5577 	struct rwlock *lock;
5578 	pv_entry_t next_pv, pv;
5579 	pml3_entry_t *l3e;
5580 	pt_entry_t oldpte, *pte;
5581 	int pvh_gen, md_gen;
5582 
5583 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5584 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5585 	    ("pmap_remove_write: page %p is not managed", m));
5586 	vm_page_assert_busied(m);
5587 
5588 	if (!pmap_page_is_write_mapped(m))
5589 		return;
5590 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5591 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5592 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5593 retry_pv_loop:
5594 	rw_wlock(lock);
5595 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5596 		pmap = PV_PMAP(pv);
5597 		if (!PMAP_TRYLOCK(pmap)) {
5598 			pvh_gen = pvh->pv_gen;
5599 			rw_wunlock(lock);
5600 			PMAP_LOCK(pmap);
5601 			rw_wlock(lock);
5602 			if (pvh_gen != pvh->pv_gen) {
5603 				PMAP_UNLOCK(pmap);
5604 				rw_wunlock(lock);
5605 				goto retry_pv_loop;
5606 			}
5607 		}
5608 		l3e = pmap_pml3e(pmap, pv->pv_va);
5609 		if ((be64toh(*l3e) & PG_RW) != 0)
5610 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5611 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5612 		    ("inconsistent pv lock %p %p for page %p",
5613 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5614 		PMAP_UNLOCK(pmap);
5615 	}
5616 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5617 		pmap = PV_PMAP(pv);
5618 		if (!PMAP_TRYLOCK(pmap)) {
5619 			pvh_gen = pvh->pv_gen;
5620 			md_gen = m->md.pv_gen;
5621 			rw_wunlock(lock);
5622 			PMAP_LOCK(pmap);
5623 			rw_wlock(lock);
5624 			if (pvh_gen != pvh->pv_gen ||
5625 			    md_gen != m->md.pv_gen) {
5626 				PMAP_UNLOCK(pmap);
5627 				rw_wunlock(lock);
5628 				goto retry_pv_loop;
5629 			}
5630 		}
5631 		l3e = pmap_pml3e(pmap, pv->pv_va);
5632 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5633 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5634 		    m));
5635 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5636 retry:
5637 		oldpte = be64toh(*pte);
5638 		if (oldpte & PG_RW) {
5639 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5640 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5641 				goto retry;
5642 			if ((oldpte & PG_M) != 0)
5643 				vm_page_dirty(m);
5644 			pmap_invalidate_page(pmap, pv->pv_va);
5645 		}
5646 		PMAP_UNLOCK(pmap);
5647 	}
5648 	rw_wunlock(lock);
5649 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5650 }
5651 
5652 /*
5653  *	Clear the wired attribute from the mappings for the specified range of
5654  *	addresses in the given pmap.  Every valid mapping within that range
5655  *	must have the wired attribute set.  In contrast, invalid mappings
5656  *	cannot have the wired attribute set, so they are ignored.
5657  *
5658  *	The wired attribute of the page table entry is not a hardware
5659  *	feature, so there is no need to invalidate any TLB entries.
5660  *	Since pmap_demote_l3e() for the wired entry must never fail,
5661  *	pmap_delayed_invl_started()/finished() calls around the
5662  *	function are not needed.
5663  */
5664 void
5665 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5666 {
5667 	vm_offset_t va_next;
5668 	pml1_entry_t *l1e;
5669 	pml2_entry_t *l2e;
5670 	pml3_entry_t *l3e;
5671 	pt_entry_t *pte;
5672 
5673 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5674 	PMAP_LOCK(pmap);
5675 	for (; sva < eva; sva = va_next) {
5676 		l1e = pmap_pml1e(pmap, sva);
5677 		if ((be64toh(*l1e) & PG_V) == 0) {
5678 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5679 			if (va_next < sva)
5680 				va_next = eva;
5681 			continue;
5682 		}
5683 		l2e = pmap_l1e_to_l2e(l1e, sva);
5684 		if ((be64toh(*l2e) & PG_V) == 0) {
5685 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5686 			if (va_next < sva)
5687 				va_next = eva;
5688 			continue;
5689 		}
5690 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5691 		if (va_next < sva)
5692 			va_next = eva;
5693 		l3e = pmap_l2e_to_l3e(l2e, sva);
5694 		if ((be64toh(*l3e) & PG_V) == 0)
5695 			continue;
5696 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5697 			if ((be64toh(*l3e) & PG_W) == 0)
5698 				panic("pmap_unwire: pde %#jx is missing PG_W",
5699 				    (uintmax_t)(be64toh(*l3e)));
5700 
5701 			/*
5702 			 * Are we unwiring the entire large page?  If not,
5703 			 * demote the mapping and fall through.
5704 			 */
5705 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5706 				atomic_clear_long(l3e, htobe64(PG_W));
5707 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5708 				    PAGE_SIZE;
5709 				continue;
5710 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5711 				panic("pmap_unwire: demotion failed");
5712 		}
5713 		if (va_next > eva)
5714 			va_next = eva;
5715 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5716 		    sva += PAGE_SIZE) {
5717 			MPASS(pte == pmap_pte(pmap, sva));
5718 			if ((be64toh(*pte) & PG_V) == 0)
5719 				continue;
5720 			if ((be64toh(*pte) & PG_W) == 0)
5721 				panic("pmap_unwire: pte %#jx is missing PG_W",
5722 				    (uintmax_t)(be64toh(*pte)));
5723 
5724 			/*
5725 			 * PG_W must be cleared atomically.  Although the pmap
5726 			 * lock synchronizes access to PG_W, another processor
5727 			 * could be setting PG_M and/or PG_A concurrently.
5728 			 */
5729 			atomic_clear_long(pte, htobe64(PG_W));
5730 			pmap->pm_stats.wired_count--;
5731 		}
5732 	}
5733 	PMAP_UNLOCK(pmap);
5734 }
5735 
5736 void
5737 mmu_radix_zero_page(vm_page_t m)
5738 {
5739 	vm_offset_t addr;
5740 
5741 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5742 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5743 	pagezero(addr);
5744 }
5745 
5746 void
5747 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5748 {
5749 	caddr_t addr;
5750 
5751 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5752 	MPASS(off + size <= PAGE_SIZE);
5753 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5754 	memset(addr + off, 0, size);
5755 }
5756 
5757 static int
5758 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5759 {
5760 	pml3_entry_t *l3ep;
5761 	pt_entry_t pte;
5762 	vm_paddr_t pa;
5763 	int val;
5764 
5765 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5766 	PMAP_LOCK(pmap);
5767 
5768 	l3ep = pmap_pml3e(pmap, addr);
5769 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5770 		if (be64toh(*l3ep) & RPTE_LEAF) {
5771 			pte = be64toh(*l3ep);
5772 			/* Compute the physical address of the 4KB page. */
5773 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5774 			    PG_FRAME;
5775 			val = MINCORE_PSIND(1);
5776 		} else {
5777 			/* Native endian PTE, do not pass to functions */
5778 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5779 			pa = pte & PG_FRAME;
5780 			val = 0;
5781 		}
5782 	} else {
5783 		pte = 0;
5784 		pa = 0;
5785 		val = 0;
5786 	}
5787 	if ((pte & PG_V) != 0) {
5788 		val |= MINCORE_INCORE;
5789 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5790 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5791 		if ((pte & PG_A) != 0)
5792 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5793 	}
5794 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5795 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5796 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5797 		*locked_pa = pa;
5798 	}
5799 	PMAP_UNLOCK(pmap);
5800 	return (val);
5801 }
5802 
5803 void
5804 mmu_radix_activate(struct thread *td)
5805 {
5806 	pmap_t pmap;
5807 	uint32_t curpid;
5808 
5809 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5810 	critical_enter();
5811 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5812 	curpid = mfspr(SPR_PID);
5813 	if (pmap->pm_pid > isa3_base_pid &&
5814 		curpid != pmap->pm_pid) {
5815 		mmu_radix_pid_set(pmap);
5816 	}
5817 	critical_exit();
5818 }
5819 
5820 /*
5821  *	Increase the starting virtual address of the given mapping if a
5822  *	different alignment might result in more superpage mappings.
5823  */
5824 void
5825 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5826     vm_offset_t *addr, vm_size_t size)
5827 {
5828 
5829 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5830 	    size);
5831 	vm_offset_t superpage_offset;
5832 
5833 	if (size < L3_PAGE_SIZE)
5834 		return;
5835 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5836 		offset += ptoa(object->pg_color);
5837 	superpage_offset = offset & L3_PAGE_MASK;
5838 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5839 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5840 		return;
5841 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5842 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5843 	else
5844 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5845 }
5846 
5847 static void *
5848 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5849 {
5850 	vm_offset_t va, tmpva, ppa, offset;
5851 
5852 	ppa = trunc_page(pa);
5853 	offset = pa & PAGE_MASK;
5854 	size = roundup2(offset + size, PAGE_SIZE);
5855 	if (pa < powerpc_ptob(Maxmem))
5856 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5857 			  pa, powerpc_ptob(Maxmem));
5858 	va = kva_alloc(size);
5859 	if (bootverbose)
5860 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5861 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5862 
5863 	if (!va)
5864 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5865 
5866 	for (tmpva = va; size > 0;) {
5867 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5868 		size -= PAGE_SIZE;
5869 		tmpva += PAGE_SIZE;
5870 		ppa += PAGE_SIZE;
5871 	}
5872 	ptesync();
5873 
5874 	return ((void *)(va + offset));
5875 }
5876 
5877 static void *
5878 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5879 {
5880 
5881 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5882 
5883 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5884 }
5885 
5886 void
5887 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5888 {
5889 
5890 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5891 	m->md.mdpg_cache_attrs = ma;
5892 
5893 	/*
5894 	 * If "m" is a normal page, update its direct mapping.  This update
5895 	 * can be relied upon to perform any cache operations that are
5896 	 * required for data coherence.
5897 	 */
5898 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5899 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5900 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5901 		panic("memory attribute change on the direct map failed");
5902 }
5903 
5904 static void
5905 mmu_radix_unmapdev(void *p, vm_size_t size)
5906 {
5907 	vm_offset_t offset, va;
5908 
5909 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, p, size);
5910 
5911 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5912 	va = (vm_offset_t)p;
5913 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5914 		return;
5915 
5916 	offset = va & PAGE_MASK;
5917 	size = round_page(offset + size);
5918 	va = trunc_page(va);
5919 
5920 	if (pmap_initialized) {
5921 		mmu_radix_qremove(va, atop(size));
5922 		kva_free(va, size);
5923 	}
5924 }
5925 
5926 void
5927 mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5928 {
5929 	vm_paddr_t pa = 0;
5930 	int sync_sz;
5931 
5932 	while (sz > 0) {
5933 		pa = pmap_extract(pm, va);
5934 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
5935 		sync_sz = min(sync_sz, sz);
5936 		if (pa != 0) {
5937 			pa += (va & PAGE_MASK);
5938 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
5939 		}
5940 		va += sync_sz;
5941 		sz -= sync_sz;
5942 	}
5943 }
5944 
5945 static __inline void
5946 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5947 {
5948 	uint64_t opte, npte;
5949 
5950 	/*
5951 	 * The cache mode bits are all in the low 32-bits of the
5952 	 * PTE, so we can just spin on updating the low 32-bits.
5953 	 */
5954 	do {
5955 		opte = be64toh(*pte);
5956 		npte = opte & ~mask;
5957 		npte |= cache_bits;
5958 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5959 }
5960 
5961 /*
5962  * Tries to demote a 1GB page mapping.
5963  */
5964 static boolean_t
5965 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5966 {
5967 	pml2_entry_t oldpdpe;
5968 	pml3_entry_t *firstpde, newpde, *pde;
5969 	vm_paddr_t pdpgpa;
5970 	vm_page_t pdpg;
5971 
5972 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5973 	oldpdpe = be64toh(*l2e);
5974 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5975 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5976 	pdpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
5977 	if (pdpg == NULL) {
5978 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5979 		    " in pmap %p", va, pmap);
5980 		return (FALSE);
5981 	}
5982 	pdpg->pindex = va >> L2_PAGE_SIZE_SHIFT;
5983 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5984 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5985 	KASSERT((oldpdpe & PG_A) != 0,
5986 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5987 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5988 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5989 	newpde = oldpdpe;
5990 
5991 	/*
5992 	 * Initialize the page directory page.
5993 	 */
5994 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5995 		*pde = htobe64(newpde);
5996 		newpde += L3_PAGE_SIZE;
5997 	}
5998 
5999 	/*
6000 	 * Demote the mapping.
6001 	 */
6002 	pde_store(l2e, pdpgpa);
6003 
6004 	/*
6005 	 * Flush PWC --- XXX revisit
6006 	 */
6007 	pmap_invalidate_all(pmap);
6008 
6009 	counter_u64_add(pmap_l2e_demotions, 1);
6010 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6011 	    " in pmap %p", va, pmap);
6012 	return (TRUE);
6013 }
6014 
6015 vm_paddr_t
6016 mmu_radix_kextract(vm_offset_t va)
6017 {
6018 	pml3_entry_t l3e;
6019 	vm_paddr_t pa;
6020 
6021 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6022 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6023 		pa = DMAP_TO_PHYS(va);
6024 	} else {
6025 		/* Big-endian PTE on stack */
6026 		l3e = *pmap_pml3e(kernel_pmap, va);
6027 		if (be64toh(l3e) & RPTE_LEAF) {
6028 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6029 			pa |= (va & L3_PAGE_MASK);
6030 		} else {
6031 			/*
6032 			 * Beware of a concurrent promotion that changes the
6033 			 * PDE at this point!  For example, vtopte() must not
6034 			 * be used to access the PTE because it would use the
6035 			 * new PDE.  It is, however, safe to use the old PDE
6036 			 * because the page table page is preserved by the
6037 			 * promotion.
6038 			 */
6039 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6040 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6041 			pa |= (va & PAGE_MASK);
6042 		}
6043 	}
6044 	return (pa);
6045 }
6046 
6047 static pt_entry_t
6048 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6049 {
6050 
6051 	if (ma != VM_MEMATTR_DEFAULT) {
6052 		return pmap_cache_bits(ma);
6053 	}
6054 
6055 	/*
6056 	 * Assume the page is cache inhibited and access is guarded unless
6057 	 * it's in our available memory array.
6058 	 */
6059 	for (int i = 0; i < pregions_sz; i++) {
6060 		if ((pa >= pregions[i].mr_start) &&
6061 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6062 			return (RPTE_ATTR_MEM);
6063 	}
6064 	return (RPTE_ATTR_GUARDEDIO);
6065 }
6066 
6067 static void
6068 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6069 {
6070 	pt_entry_t *pte, pteval;
6071 	uint64_t cache_bits;
6072 
6073 	pte = kvtopte(va);
6074 	MPASS(pte != NULL);
6075 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6076 	cache_bits = mmu_radix_calc_wimg(pa, ma);
6077 	pte_store(pte, pteval | cache_bits);
6078 }
6079 
6080 void
6081 mmu_radix_kremove(vm_offset_t va)
6082 {
6083 	pt_entry_t *pte;
6084 
6085 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6086 
6087 	pte = kvtopte(va);
6088 	pte_clear(pte);
6089 }
6090 
6091 int
6092 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6093     int *is_user, vm_offset_t *decoded)
6094 {
6095 
6096 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6097 	*decoded = addr;
6098 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6099 	return (0);
6100 }
6101 
6102 static boolean_t
6103 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6104 {
6105 
6106 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6107 	return (mem_valid(pa, size));
6108 }
6109 
6110 static void
6111 mmu_radix_scan_init(void)
6112 {
6113 
6114 	CTR1(KTR_PMAP, "%s()", __func__);
6115 	UNIMPLEMENTED();
6116 }
6117 
6118 static void
6119 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6120 	void **va)
6121 {
6122 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6123 	UNIMPLEMENTED();
6124 }
6125 
6126 vm_offset_t
6127 mmu_radix_quick_enter_page(vm_page_t m)
6128 {
6129 	vm_paddr_t paddr;
6130 
6131 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6132 	paddr = VM_PAGE_TO_PHYS(m);
6133 	return (PHYS_TO_DMAP(paddr));
6134 }
6135 
6136 void
6137 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6138 {
6139 	/* no work to do here */
6140 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6141 }
6142 
6143 static void
6144 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6145 {
6146 	cpu_flush_dcache((void *)sva, eva - sva);
6147 }
6148 
6149 int
6150 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6151     vm_memattr_t mode)
6152 {
6153 	int error;
6154 
6155 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6156 	PMAP_LOCK(kernel_pmap);
6157 	error = pmap_change_attr_locked(va, size, mode, true);
6158 	PMAP_UNLOCK(kernel_pmap);
6159 	return (error);
6160 }
6161 
6162 static int
6163 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6164 {
6165 	vm_offset_t base, offset, tmpva;
6166 	vm_paddr_t pa_start, pa_end, pa_end1;
6167 	pml2_entry_t *l2e;
6168 	pml3_entry_t *l3e;
6169 	pt_entry_t *pte;
6170 	int cache_bits, error;
6171 	boolean_t changed;
6172 
6173 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6174 	base = trunc_page(va);
6175 	offset = va & PAGE_MASK;
6176 	size = round_page(offset + size);
6177 
6178 	/*
6179 	 * Only supported on kernel virtual addresses, including the direct
6180 	 * map but excluding the recursive map.
6181 	 */
6182 	if (base < DMAP_MIN_ADDRESS)
6183 		return (EINVAL);
6184 
6185 	cache_bits = pmap_cache_bits(mode);
6186 	changed = FALSE;
6187 
6188 	/*
6189 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6190 	 * into 4KB pages if required.
6191 	 */
6192 	for (tmpva = base; tmpva < base + size; ) {
6193 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6194 		if (l2e == NULL || *l2e == 0)
6195 			return (EINVAL);
6196 		if (be64toh(*l2e) & RPTE_LEAF) {
6197 			/*
6198 			 * If the current 1GB page already has the required
6199 			 * memory type, then we need not demote this page. Just
6200 			 * increment tmpva to the next 1GB page frame.
6201 			 */
6202 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6203 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6204 				continue;
6205 			}
6206 
6207 			/*
6208 			 * If the current offset aligns with a 1GB page frame
6209 			 * and there is at least 1GB left within the range, then
6210 			 * we need not break down this page into 2MB pages.
6211 			 */
6212 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6213 			    tmpva + L2_PAGE_MASK < base + size) {
6214 				tmpva += L2_PAGE_MASK;
6215 				continue;
6216 			}
6217 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6218 				return (ENOMEM);
6219 		}
6220 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6221 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6222 		    tmpva, l2e));
6223 		if (*l3e == 0)
6224 			return (EINVAL);
6225 		if (be64toh(*l3e) & RPTE_LEAF) {
6226 			/*
6227 			 * If the current 2MB page already has the required
6228 			 * memory type, then we need not demote this page. Just
6229 			 * increment tmpva to the next 2MB page frame.
6230 			 */
6231 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6232 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6233 				continue;
6234 			}
6235 
6236 			/*
6237 			 * If the current offset aligns with a 2MB page frame
6238 			 * and there is at least 2MB left within the range, then
6239 			 * we need not break down this page into 4KB pages.
6240 			 */
6241 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6242 			    tmpva + L3_PAGE_MASK < base + size) {
6243 				tmpva += L3_PAGE_SIZE;
6244 				continue;
6245 			}
6246 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6247 				return (ENOMEM);
6248 		}
6249 		pte = pmap_l3e_to_pte(l3e, tmpva);
6250 		if (*pte == 0)
6251 			return (EINVAL);
6252 		tmpva += PAGE_SIZE;
6253 	}
6254 	error = 0;
6255 
6256 	/*
6257 	 * Ok, all the pages exist, so run through them updating their
6258 	 * cache mode if required.
6259 	 */
6260 	pa_start = pa_end = 0;
6261 	for (tmpva = base; tmpva < base + size; ) {
6262 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6263 		if (be64toh(*l2e) & RPTE_LEAF) {
6264 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6265 				pmap_pte_attr(l2e, cache_bits,
6266 				    RPTE_ATTR_MASK);
6267 				changed = TRUE;
6268 			}
6269 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6270 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6271 				if (pa_start == pa_end) {
6272 					/* Start physical address run. */
6273 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6274 					pa_end = pa_start + L2_PAGE_SIZE;
6275 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6276 					pa_end += L2_PAGE_SIZE;
6277 				else {
6278 					/* Run ended, update direct map. */
6279 					error = pmap_change_attr_locked(
6280 					    PHYS_TO_DMAP(pa_start),
6281 					    pa_end - pa_start, mode, flush);
6282 					if (error != 0)
6283 						break;
6284 					/* Start physical address run. */
6285 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6286 					pa_end = pa_start + L2_PAGE_SIZE;
6287 				}
6288 			}
6289 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6290 			continue;
6291 		}
6292 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6293 		if (be64toh(*l3e) & RPTE_LEAF) {
6294 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6295 				pmap_pte_attr(l3e, cache_bits,
6296 				    RPTE_ATTR_MASK);
6297 				changed = TRUE;
6298 			}
6299 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6300 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6301 				if (pa_start == pa_end) {
6302 					/* Start physical address run. */
6303 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6304 					pa_end = pa_start + L3_PAGE_SIZE;
6305 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6306 					pa_end += L3_PAGE_SIZE;
6307 				else {
6308 					/* Run ended, update direct map. */
6309 					error = pmap_change_attr_locked(
6310 					    PHYS_TO_DMAP(pa_start),
6311 					    pa_end - pa_start, mode, flush);
6312 					if (error != 0)
6313 						break;
6314 					/* Start physical address run. */
6315 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6316 					pa_end = pa_start + L3_PAGE_SIZE;
6317 				}
6318 			}
6319 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6320 		} else {
6321 			pte = pmap_l3e_to_pte(l3e, tmpva);
6322 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6323 				pmap_pte_attr(pte, cache_bits,
6324 				    RPTE_ATTR_MASK);
6325 				changed = TRUE;
6326 			}
6327 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6328 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6329 				if (pa_start == pa_end) {
6330 					/* Start physical address run. */
6331 					pa_start = be64toh(*pte) & PG_FRAME;
6332 					pa_end = pa_start + PAGE_SIZE;
6333 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6334 					pa_end += PAGE_SIZE;
6335 				else {
6336 					/* Run ended, update direct map. */
6337 					error = pmap_change_attr_locked(
6338 					    PHYS_TO_DMAP(pa_start),
6339 					    pa_end - pa_start, mode, flush);
6340 					if (error != 0)
6341 						break;
6342 					/* Start physical address run. */
6343 					pa_start = be64toh(*pte) & PG_FRAME;
6344 					pa_end = pa_start + PAGE_SIZE;
6345 				}
6346 			}
6347 			tmpva += PAGE_SIZE;
6348 		}
6349 	}
6350 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6351 		pa_end1 = MIN(pa_end, dmaplimit);
6352 		if (pa_start != pa_end1)
6353 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6354 			    pa_end1 - pa_start, mode, flush);
6355 	}
6356 
6357 	/*
6358 	 * Flush CPU caches if required to make sure any data isn't cached that
6359 	 * shouldn't be, etc.
6360 	 */
6361 	if (changed) {
6362 		pmap_invalidate_all(kernel_pmap);
6363 
6364 		if (flush)
6365 			pmap_invalidate_cache_range(base, tmpva);
6366 	}
6367 	return (error);
6368 }
6369 
6370 /*
6371  * Allocate physical memory for the vm_page array and map it into KVA,
6372  * attempting to back the vm_pages with domain-local memory.
6373  */
6374 void
6375 mmu_radix_page_array_startup(long pages)
6376 {
6377 #ifdef notyet
6378 	pml2_entry_t *l2e;
6379 	pml3_entry_t *pde;
6380 	pml3_entry_t newl3;
6381 	vm_offset_t va;
6382 	long pfn;
6383 	int domain, i;
6384 #endif
6385 	vm_paddr_t pa;
6386 	vm_offset_t start, end;
6387 
6388 	vm_page_array_size = pages;
6389 
6390 	start = VM_MIN_KERNEL_ADDRESS;
6391 	end = start + pages * sizeof(struct vm_page);
6392 
6393 	pa = vm_phys_early_alloc(0, end - start);
6394 
6395 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6396 #ifdef notyet
6397 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6398 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6399 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6400 		domain = vm_phys_domain(ptoa(pfn));
6401 		l2e = pmap_pml2e(kernel_pmap, va);
6402 		if ((be64toh(*l2e) & PG_V) == 0) {
6403 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6404 			dump_add_page(pa);
6405 			pagezero(PHYS_TO_DMAP(pa));
6406 			pde_store(l2e, (pml2_entry_t)pa);
6407 		}
6408 		pde = pmap_l2e_to_l3e(l2e, va);
6409 		if ((be64toh(*pde) & PG_V) != 0)
6410 			panic("Unexpected pde %p", pde);
6411 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6412 		for (i = 0; i < NPDEPG; i++)
6413 			dump_add_page(pa + i * PAGE_SIZE);
6414 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6415 		pte_store(pde, newl3);
6416 	}
6417 #endif
6418 	vm_page_array = (vm_page_t)start;
6419 }
6420 
6421 #ifdef DDB
6422 #include <sys/kdb.h>
6423 #include <ddb/ddb.h>
6424 
6425 static void
6426 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6427 {
6428 	pml1_entry_t *l1e;
6429 	pml2_entry_t *l2e;
6430 	pml3_entry_t *l3e;
6431 	pt_entry_t *pte;
6432 
6433 	l1e = &l1[pmap_pml1e_index(va)];
6434 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6435 	if ((be64toh(*l1e) & PG_V) == 0) {
6436 		db_printf("\n");
6437 		return;
6438 	}
6439 	l2e = pmap_l1e_to_l2e(l1e, va);
6440 	db_printf(" l2e %#016lx", be64toh(*l2e));
6441 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6442 		db_printf("\n");
6443 		return;
6444 	}
6445 	l3e = pmap_l2e_to_l3e(l2e, va);
6446 	db_printf(" l3e %#016lx", be64toh(*l3e));
6447 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6448 		db_printf("\n");
6449 		return;
6450 	}
6451 	pte = pmap_l3e_to_pte(l3e, va);
6452 	db_printf(" pte %#016lx\n", be64toh(*pte));
6453 }
6454 
6455 void
6456 pmap_page_print_mappings(vm_page_t m)
6457 {
6458 	pmap_t pmap;
6459 	pv_entry_t pv;
6460 
6461 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6462 	/* need to elide locks if running in ddb */
6463 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6464 		db_printf("pv: %p ", pv);
6465 		db_printf("va: %#016lx ", pv->pv_va);
6466 		pmap = PV_PMAP(pv);
6467 		db_printf("pmap %p  ", pmap);
6468 		if (pmap != NULL) {
6469 			db_printf("asid: %lu\n", pmap->pm_pid);
6470 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6471 		}
6472 	}
6473 }
6474 
6475 DB_SHOW_COMMAND(pte, pmap_print_pte)
6476 {
6477 	vm_offset_t va;
6478 	pmap_t pmap;
6479 
6480 	if (!have_addr) {
6481 		db_printf("show pte addr\n");
6482 		return;
6483 	}
6484 	va = (vm_offset_t)addr;
6485 
6486 	if (va >= DMAP_MIN_ADDRESS)
6487 		pmap = kernel_pmap;
6488 	else if (kdb_thread != NULL)
6489 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6490 	else
6491 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6492 
6493 	pmap_pte_walk(pmap->pm_pml1, va);
6494 }
6495 
6496 #endif
6497