xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision a91a2465)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/param.h>
31 #include <sys/kernel.h>
32 #include <sys/systm.h>
33 #include <sys/conf.h>
34 #include <sys/bitstring.h>
35 #include <sys/queue.h>
36 #include <sys/cpuset.h>
37 #include <sys/endian.h>
38 #include <sys/kerneldump.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/syslog.h>
42 #include <sys/msgbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/mman.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/vmem.h>
52 #include <sys/vmmeter.h>
53 #include <sys/smp.h>
54 
55 #include <sys/kdb.h>
56 
57 #include <dev/ofw/openfirm.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_phys.h>
69 #include <vm/vm_radix.h>
70 #include <vm/vm_reserv.h>
71 #include <vm/vm_dumpset.h>
72 #include <vm/uma.h>
73 
74 #include <machine/_inttypes.h>
75 #include <machine/cpu.h>
76 #include <machine/platform.h>
77 #include <machine/frame.h>
78 #include <machine/md_var.h>
79 #include <machine/psl.h>
80 #include <machine/bat.h>
81 #include <machine/hid.h>
82 #include <machine/pte.h>
83 #include <machine/sr.h>
84 #include <machine/trap.h>
85 #include <machine/mmuvar.h>
86 
87 /* For pseries bit. */
88 #include <powerpc/pseries/phyp-hvcall.h>
89 
90 #ifdef INVARIANTS
91 #include <vm/uma_dbg.h>
92 #endif
93 
94 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
95 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
96 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
97 
98 #include "opt_ddb.h"
99 
100 #ifdef DDB
101 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
102 #endif
103 
104 #define PG_W	RPTE_WIRED
105 #define PG_V	RPTE_VALID
106 #define PG_MANAGED	RPTE_MANAGED
107 #define PG_PROMOTED	RPTE_PROMOTED
108 #define PG_M	RPTE_C
109 #define PG_A	RPTE_R
110 #define PG_X	RPTE_EAA_X
111 #define PG_RW	RPTE_EAA_W
112 #define PG_PTE_CACHE RPTE_ATTR_MASK
113 
114 #define RPTE_SHIFT 9
115 #define NLS_MASK ((1UL<<5)-1)
116 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
117 #define RPTE_MASK (RPTE_ENTRIES-1)
118 
119 #define NLB_SHIFT 0
120 #define NLB_MASK (((1UL<<52)-1) << 8)
121 
122 extern int nkpt;
123 extern caddr_t crashdumpmap;
124 
125 #define RIC_FLUSH_TLB 0
126 #define RIC_FLUSH_PWC 1
127 #define RIC_FLUSH_ALL 2
128 
129 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
130 
131 #define PPC_INST_TLBIE			0x7c000264
132 #define PPC_INST_TLBIEL			0x7c000224
133 #define PPC_INST_SLBIA			0x7c0003e4
134 
135 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
136 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
137 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
138 #define ___PPC_RT(t)	___PPC_RS(t)
139 #define ___PPC_R(r)	(((r) & 0x1) << 16)
140 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
141 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
142 
143 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
144 				       ((IH & 0x7) << 21))
145 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
146 	__XSTRING(.long PPC_INST_TLBIE |			\
147 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
148 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
149 			  ___PPC_R(r))
150 
151 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
152 	 __XSTRING(.long PPC_INST_TLBIEL | \
153 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
154 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
155 			   ___PPC_R(r))
156 
157 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
158 
159 static __inline void
160 ttusync(void)
161 {
162 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
163 }
164 
165 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
166 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
167 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
168 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
169 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
170 
171 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
172 #define  TLBIE_ACTUAL_PAGE_4K		0x00
173 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
174 #define  TLBIE_ACTUAL_PAGE_2M		0x20
175 #define  TLBIE_ACTUAL_PAGE_1G		0x40
176 
177 #define TLBIE_PRS_PARTITION_SCOPE	0x0
178 #define TLBIE_PRS_PROCESS_SCOPE	0x1
179 
180 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
181 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
182 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
183 						 * cached {proc, part}tab entries
184 						 */
185 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
186 						 * Invalidate a range of translations
187 						 */
188 
189 static __always_inline void
190 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
191 			vm_offset_t va, uint16_t ap)
192 {
193 	uint64_t rb, rs;
194 
195 	MPASS((va & PAGE_MASK) == 0);
196 
197 	rs = ((uint64_t)pid << 32) | lpid;
198 	rb = va | is | ap;
199 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
200 		"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
201 }
202 
203 static __inline void
204 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
205 {
206 
207 	__asm __volatile("ptesync" ::: "memory");
208 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
209 	    TLBIEL_INVAL_PAGE, 0, 0, va, ap);
210 	__asm __volatile("ptesync" ::: "memory");
211 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
212 	    TLBIEL_INVAL_PAGE, pid, 0, va, ap);
213 }
214 
215 static __inline void
216 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
217 {
218 
219 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
220 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
221 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
222 }
223 
224 static __inline void
225 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
226 {
227 
228 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
229 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
230 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
231 }
232 
233 static __inline void
234 radix_tlbie_invlpwc_user(uint32_t pid)
235 {
236 
237 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
238 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
239 }
240 
241 static __inline void
242 radix_tlbie_flush_user(uint32_t pid)
243 {
244 
245 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
246 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
247 }
248 
249 static __inline void
250 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
251 {
252 
253 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
254 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
255 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
256 }
257 
258 static __inline void
259 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
260 {
261 
262 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
263 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
264 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
265 }
266 
267 /* 1GB pages aren't currently supported. */
268 static __inline __unused void
269 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
270 {
271 
272 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
273 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
274 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
275 }
276 
277 static __inline void
278 radix_tlbie_invlpwc_kernel(void)
279 {
280 
281 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
282 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
283 }
284 
285 static __inline void
286 radix_tlbie_flush_kernel(void)
287 {
288 
289 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
290 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
291 }
292 
293 static __inline vm_pindex_t
294 pmap_l3e_pindex(vm_offset_t va)
295 {
296 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
297 }
298 
299 static __inline vm_pindex_t
300 pmap_pml3e_index(vm_offset_t va)
301 {
302 
303 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
304 }
305 
306 static __inline vm_pindex_t
307 pmap_pml2e_index(vm_offset_t va)
308 {
309 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
310 }
311 
312 static __inline vm_pindex_t
313 pmap_pml1e_index(vm_offset_t va)
314 {
315 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
316 }
317 
318 /* Return various clipped indexes for a given VA */
319 static __inline vm_pindex_t
320 pmap_pte_index(vm_offset_t va)
321 {
322 
323 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
324 }
325 
326 /* Return a pointer to the PT slot that corresponds to a VA */
327 static __inline pt_entry_t *
328 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
329 {
330 	pt_entry_t *pte;
331 	vm_paddr_t ptepa;
332 
333 	ptepa = (be64toh(*l3e) & NLB_MASK);
334 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
335 	return (&pte[pmap_pte_index(va)]);
336 }
337 
338 /* Return a pointer to the PD slot that corresponds to a VA */
339 static __inline pt_entry_t *
340 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
341 {
342 	pt_entry_t *l3e;
343 	vm_paddr_t l3pa;
344 
345 	l3pa = (be64toh(*l2e) & NLB_MASK);
346 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
347 	return (&l3e[pmap_pml3e_index(va)]);
348 }
349 
350 /* Return a pointer to the PD slot that corresponds to a VA */
351 static __inline pt_entry_t *
352 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
353 {
354 	pt_entry_t *l2e;
355 	vm_paddr_t l2pa;
356 
357 	l2pa = (be64toh(*l1e) & NLB_MASK);
358 
359 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
360 	return (&l2e[pmap_pml2e_index(va)]);
361 }
362 
363 static __inline pml1_entry_t *
364 pmap_pml1e(pmap_t pmap, vm_offset_t va)
365 {
366 
367 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
368 }
369 
370 static pt_entry_t *
371 pmap_pml2e(pmap_t pmap, vm_offset_t va)
372 {
373 	pt_entry_t *l1e;
374 
375 	l1e = pmap_pml1e(pmap, va);
376 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
377 		return (NULL);
378 	return (pmap_l1e_to_l2e(l1e, va));
379 }
380 
381 static __inline pt_entry_t *
382 pmap_pml3e(pmap_t pmap, vm_offset_t va)
383 {
384 	pt_entry_t *l2e;
385 
386 	l2e = pmap_pml2e(pmap, va);
387 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
388 		return (NULL);
389 	return (pmap_l2e_to_l3e(l2e, va));
390 }
391 
392 static __inline pt_entry_t *
393 pmap_pte(pmap_t pmap, vm_offset_t va)
394 {
395 	pt_entry_t *l3e;
396 
397 	l3e = pmap_pml3e(pmap, va);
398 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
399 		return (NULL);
400 	return (pmap_l3e_to_pte(l3e, va));
401 }
402 
403 int nkpt = 64;
404 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
405     "Number of kernel page table pages allocated on bootup");
406 
407 vm_paddr_t dmaplimit;
408 
409 SYSCTL_DECL(_vm_pmap);
410 
411 #ifdef INVARIANTS
412 #define VERBOSE_PMAP 0
413 #define VERBOSE_PROTECT 0
414 static int pmap_logging;
415 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
416     &pmap_logging, 0, "verbose debug logging");
417 #endif
418 
419 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
420 
421 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
422 
423 static vm_offset_t qframe = 0;
424 static struct mtx qframe_mtx;
425 
426 void mmu_radix_activate(struct thread *);
427 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
428 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
429     vm_size_t);
430 void mmu_radix_clear_modify(vm_page_t);
431 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
432 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
433 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
434 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
435 	vm_prot_t);
436 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
437 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
438 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
439 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
440 vm_paddr_t mmu_radix_kextract(vm_offset_t);
441 void mmu_radix_kremove(vm_offset_t);
442 bool mmu_radix_is_modified(vm_page_t);
443 bool mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
444 bool mmu_radix_is_referenced(vm_page_t);
445 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
446 	vm_pindex_t, vm_size_t);
447 bool mmu_radix_page_exists_quick(pmap_t, vm_page_t);
448 void mmu_radix_page_init(vm_page_t);
449 bool mmu_radix_page_is_mapped(vm_page_t m);
450 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
451 int mmu_radix_page_wired_mappings(vm_page_t);
452 int mmu_radix_pinit(pmap_t);
453 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
454 bool mmu_radix_ps_enabled(pmap_t);
455 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
456 void mmu_radix_qremove(vm_offset_t, int);
457 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
458 void mmu_radix_quick_remove_page(vm_offset_t);
459 int mmu_radix_ts_referenced(vm_page_t);
460 void mmu_radix_release(pmap_t);
461 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
462 void mmu_radix_remove_all(vm_page_t);
463 void mmu_radix_remove_pages(pmap_t);
464 void mmu_radix_remove_write(vm_page_t);
465 void mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz);
466 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
467 void mmu_radix_zero_page(vm_page_t);
468 void mmu_radix_zero_page_area(vm_page_t, int, int);
469 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
470 void mmu_radix_page_array_startup(long pages);
471 
472 #include "mmu_oea64.h"
473 
474 /*
475  * Kernel MMU interface
476  */
477 
478 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
479 
480 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
481 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
482     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
483 static void mmu_radix_growkernel(vm_offset_t);
484 static void mmu_radix_init(void);
485 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
486 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
487 static void mmu_radix_pinit0(pmap_t);
488 
489 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
490 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
491 static void mmu_radix_unmapdev(void *, vm_size_t);
492 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
493 static int mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
494 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
495 static void mmu_radix_scan_init(void);
496 static void	mmu_radix_cpu_bootstrap(int ap);
497 static void	mmu_radix_tlbie_all(void);
498 
499 static struct pmap_funcs mmu_radix_methods = {
500 	.bootstrap = mmu_radix_bootstrap,
501 	.copy_page = mmu_radix_copy_page,
502 	.copy_pages = mmu_radix_copy_pages,
503 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
504 	.growkernel = mmu_radix_growkernel,
505 	.init = mmu_radix_init,
506 	.map =      		mmu_radix_map,
507 	.mincore =      	mmu_radix_mincore,
508 	.pinit = mmu_radix_pinit,
509 	.pinit0 = mmu_radix_pinit0,
510 
511 	.mapdev = mmu_radix_mapdev,
512 	.mapdev_attr = mmu_radix_mapdev_attr,
513 	.unmapdev = mmu_radix_unmapdev,
514 	.kenter_attr = mmu_radix_kenter_attr,
515 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
516 	.dumpsys_pa_init = mmu_radix_scan_init,
517 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
518 	.page_is_mapped = mmu_radix_page_is_mapped,
519 	.ps_enabled = mmu_radix_ps_enabled,
520 	.align_superpage = mmu_radix_align_superpage,
521 	.object_init_pt = mmu_radix_object_init_pt,
522 	.protect = mmu_radix_protect,
523 	/* pmap dispatcher interface */
524 	.clear_modify = mmu_radix_clear_modify,
525 	.copy = mmu_radix_copy,
526 	.enter = mmu_radix_enter,
527 	.enter_object = mmu_radix_enter_object,
528 	.enter_quick = mmu_radix_enter_quick,
529 	.extract = mmu_radix_extract,
530 	.extract_and_hold = mmu_radix_extract_and_hold,
531 	.is_modified = mmu_radix_is_modified,
532 	.is_prefaultable = mmu_radix_is_prefaultable,
533 	.is_referenced = mmu_radix_is_referenced,
534 	.ts_referenced = mmu_radix_ts_referenced,
535 	.page_exists_quick = mmu_radix_page_exists_quick,
536 	.page_init = mmu_radix_page_init,
537 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
538 	.qenter = mmu_radix_qenter,
539 	.qremove = mmu_radix_qremove,
540 	.release = mmu_radix_release,
541 	.remove = mmu_radix_remove,
542 	.remove_all = mmu_radix_remove_all,
543 	.remove_write = mmu_radix_remove_write,
544 	.sync_icache = mmu_radix_sync_icache,
545 	.unwire = mmu_radix_unwire,
546 	.zero_page = mmu_radix_zero_page,
547 	.zero_page_area = mmu_radix_zero_page_area,
548 	.activate = mmu_radix_activate,
549 	.quick_enter_page =  mmu_radix_quick_enter_page,
550 	.quick_remove_page =  mmu_radix_quick_remove_page,
551 	.page_set_memattr = mmu_radix_page_set_memattr,
552 	.page_array_startup =  mmu_radix_page_array_startup,
553 
554 	/* Internal interfaces */
555 	.kenter = mmu_radix_kenter,
556 	.kextract = mmu_radix_kextract,
557 	.kremove = mmu_radix_kremove,
558 	.change_attr = mmu_radix_change_attr,
559 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
560 
561 	.tlbie_all = mmu_radix_tlbie_all,
562 };
563 
564 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565 
566 static bool pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567 	struct rwlock **lockp);
568 static bool pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571     struct spglist *free, struct rwlock **lockp);
572 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576     struct spglist *free);
577 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579 
580 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581 		    u_int flags, struct rwlock **lockp);
582 #if VM_NRESERVLEVEL > 0
583 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584 	struct rwlock **lockp);
585 #endif
586 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590 
591 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592 	vm_prot_t prot, struct rwlock **lockp);
593 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594 	u_int flags, vm_page_t m, struct rwlock **lockp);
595 
596 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597 static void free_pv_chunk(struct pv_chunk *pc);
598 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600 	struct rwlock **lockp);
601 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602 	struct rwlock **lockp);
603 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604     struct spglist *free);
605 static bool pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606 
607 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608 static void pmap_invalidate_all(pmap_t pmap);
609 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
611 
612 /*
613  * Internal flags for pmap_enter()'s helper functions.
614  */
615 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
616 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
617 
618 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
619 #define UNTESTED() panic("%s not yet tested", __func__)
620 
621 /* Number of supported PID bits */
622 static unsigned int isa3_pid_bits;
623 
624 /* PID to start allocating from */
625 static unsigned int isa3_base_pid;
626 
627 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
628 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
629 
630 /*
631  * Map of physical memory regions.
632  */
633 static struct	mem_region *regions, *pregions;
634 static struct	numa_mem_region *numa_pregions;
635 static u_int	phys_avail_count;
636 static int	regions_sz, pregions_sz, numa_pregions_sz;
637 static struct pate *isa3_parttab;
638 static struct prte *isa3_proctab;
639 static vmem_t *asid_arena;
640 
641 extern void bs_remap_earlyboot(void);
642 
643 #define	RADIX_PGD_SIZE_SHIFT	16
644 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
645 
646 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
647 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
648 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
649 
650 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
651 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
652 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
653 
654 /* POWER9 only permits a 64k partition table size. */
655 #define	PARTTAB_SIZE_SHIFT	16
656 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
657 
658 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
659 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
660 
661 /* TLB flush actions. Used as argument to tlbiel_flush() */
662 enum {
663 	TLB_INVAL_SCOPE_LPID = 2,	/* invalidate TLBs for current LPID */
664 	TLB_INVAL_SCOPE_GLOBAL = 3,	/* invalidate all TLBs */
665 };
666 
667 #define	NPV_LIST_LOCKS	MAXCPU
668 static int pmap_initialized;
669 static vm_paddr_t proctab0pa;
670 static vm_paddr_t parttab_phys;
671 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
672 
673 /*
674  * Data for the pv entry allocation mechanism.
675  * Updates to pv_invl_gen are protected by the pv_list_locks[]
676  * elements, but reads are not.
677  */
678 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
679 static struct mtx __exclusive_cache_line pv_chunks_mutex;
680 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
681 static struct md_page *pv_table;
682 static struct md_page pv_dummy;
683 
684 #ifdef PV_STATS
685 #define PV_STAT(x)	do { x ; } while (0)
686 #else
687 #define PV_STAT(x)	do { } while (0)
688 #endif
689 
690 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
691 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
692 
693 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
694 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
695 
696 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
697 	struct rwlock **_lockp = (lockp);		\
698 	struct rwlock *_new_lock;			\
699 							\
700 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
701 	if (_new_lock != *_lockp) {			\
702 		if (*_lockp != NULL)			\
703 			rw_wunlock(*_lockp);		\
704 		*_lockp = _new_lock;			\
705 		rw_wlock(*_lockp);			\
706 	}						\
707 } while (0)
708 
709 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
710 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
711 
712 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
713 	struct rwlock **_lockp = (lockp);		\
714 							\
715 	if (*_lockp != NULL) {				\
716 		rw_wunlock(*_lockp);			\
717 		*_lockp = NULL;				\
718 	}						\
719 } while (0)
720 
721 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
722 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
723 
724 /*
725  * We support 52 bits, hence:
726  * bits 52 - 31 = 21, 0b10101
727  * RTS encoding details
728  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
729  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
730  */
731 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
732 
733 static int powernv_enabled = 1;
734 
735 static __always_inline void
736 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
737 	uint32_t pid, uint32_t ric, uint32_t prs)
738 {
739 	uint64_t rb;
740 	uint64_t rs;
741 
742 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
743 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
744 
745 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
746 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
747 		     : "memory");
748 }
749 
750 static void
751 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
752 {
753 	uint32_t set;
754 
755 	__asm __volatile("ptesync": : :"memory");
756 
757 	/*
758 	 * Flush the first set of the TLB, and the entire Page Walk Cache
759 	 * and partition table entries. Then flush the remaining sets of the
760 	 * TLB.
761 	 */
762 	if (is == TLB_INVAL_SCOPE_GLOBAL) {
763 		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
764 		for (set = 1; set < num_sets; set++)
765 			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
766 	}
767 
768 	/* Do the same for process scoped entries. */
769 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
770 	for (set = 1; set < num_sets; set++)
771 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
772 
773 	__asm __volatile("ptesync": : :"memory");
774 }
775 
776 static void
777 mmu_radix_tlbiel_flush(int scope)
778 {
779 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
780 		  scope == TLB_INVAL_SCOPE_GLOBAL);
781 
782 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
783 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
784 }
785 
786 static void
787 mmu_radix_tlbie_all(void)
788 {
789 	if (powernv_enabled)
790 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
791 	else
792 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
793 }
794 
795 static void
796 mmu_radix_init_amor(void)
797 {
798 	/*
799 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
800 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
801 	* Register), enable key 0 and set it to 1.
802 	*
803 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
804 	*/
805 	mtspr(SPR_AMOR, (3ul << 62));
806 }
807 
808 static void
809 mmu_radix_init_iamr(void)
810 {
811 	/*
812 	 * Radix always uses key0 of the IAMR to determine if an access is
813 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
814 	 * fetch.
815 	 */
816 	mtspr(SPR_IAMR, (1ul << 62));
817 }
818 
819 static void
820 mmu_radix_pid_set(pmap_t pmap)
821 {
822 
823 	mtspr(SPR_PID, pmap->pm_pid);
824 	isync();
825 }
826 
827 /* Quick sort callout for comparing physical addresses. */
828 static int
829 pa_cmp(const void *a, const void *b)
830 {
831 	const vm_paddr_t *pa = a, *pb = b;
832 
833 	if (*pa < *pb)
834 		return (-1);
835 	else if (*pa > *pb)
836 		return (1);
837 	else
838 		return (0);
839 }
840 
841 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
842 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
843 #define	pte_store(ptep, pte) do {	   \
844 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
845 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
846 } while (0)
847 /*
848  * NB: should only be used for adding directories - not for direct mappings
849  */
850 #define	pde_store(ptep, pa) do {				\
851 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
852 } while (0)
853 
854 #define	pte_clear(ptep) do {					\
855 		*(u_long *)(ptep) = (u_long)(0);		\
856 } while (0)
857 
858 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
859 
860 /*
861  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
862  * (PTE) page mappings have identical settings for the following fields:
863  */
864 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
865 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
866 
867 static __inline void
868 pmap_resident_count_inc(pmap_t pmap, int count)
869 {
870 
871 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
872 	pmap->pm_stats.resident_count += count;
873 }
874 
875 static __inline void
876 pmap_resident_count_dec(pmap_t pmap, int count)
877 {
878 
879 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
880 	KASSERT(pmap->pm_stats.resident_count >= count,
881 	    ("pmap %p resident count underflow %ld %d", pmap,
882 	    pmap->pm_stats.resident_count, count));
883 	pmap->pm_stats.resident_count -= count;
884 }
885 
886 static void
887 pagezero(vm_offset_t va)
888 {
889 	va = trunc_page(va);
890 
891 	bzero((void *)va, PAGE_SIZE);
892 }
893 
894 static uint64_t
895 allocpages(int n)
896 {
897 	u_int64_t ret;
898 
899 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
900 	for (int i = 0; i < n; i++)
901 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
902 	return (ret);
903 }
904 
905 static pt_entry_t *
906 kvtopte(vm_offset_t va)
907 {
908 	pt_entry_t *l3e;
909 
910 	l3e = pmap_pml3e(kernel_pmap, va);
911 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
912 		return (NULL);
913 	return (pmap_l3e_to_pte(l3e, va));
914 }
915 
916 void
917 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
918 {
919 	pt_entry_t *pte;
920 
921 	pte = kvtopte(va);
922 	MPASS(pte != NULL);
923 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
924 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
925 }
926 
927 bool
928 mmu_radix_ps_enabled(pmap_t pmap)
929 {
930 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
931 }
932 
933 static pt_entry_t *
934 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
935 {
936 	pml3_entry_t *l3e;
937 	pt_entry_t *pte;
938 
939 	va &= PG_PS_FRAME;
940 	l3e = pmap_pml3e(pmap, va);
941 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
942 		return (NULL);
943 
944 	if (be64toh(*l3e) & RPTE_LEAF) {
945 		*is_l3e = 1;
946 		return (l3e);
947 	}
948 	*is_l3e = 0;
949 	va &= PG_FRAME;
950 	pte = pmap_l3e_to_pte(l3e, va);
951 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
952 		return (NULL);
953 	return (pte);
954 }
955 
956 int
957 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
958 {
959 	pt_entry_t *pte;
960 	pt_entry_t startpte, origpte, newpte;
961 	vm_page_t m;
962 	int is_l3e;
963 
964 	startpte = 0;
965  retry:
966 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
967 		return (KERN_INVALID_ADDRESS);
968 	origpte = newpte = be64toh(*pte);
969 	if (startpte == 0) {
970 		startpte = origpte;
971 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
972 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
973 			pmap_invalidate_all(pmap);
974 #ifdef INVARIANTS
975 			if (VERBOSE_PMAP || pmap_logging)
976 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
977 				    __func__, pmap, va, flags, origpte);
978 #endif
979 			return (KERN_FAILURE);
980 		}
981 	}
982 #ifdef INVARIANTS
983 	if (VERBOSE_PMAP || pmap_logging)
984 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
985 		    flags, origpte);
986 #endif
987 	PMAP_LOCK(pmap);
988 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
989 	    be64toh(*pte) != origpte) {
990 		PMAP_UNLOCK(pmap);
991 		return (KERN_FAILURE);
992 	}
993 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
994 	MPASS(m != NULL);
995 	switch (flags) {
996 	case VM_PROT_READ:
997 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
998 			goto protfail;
999 		newpte |= PG_A;
1000 		vm_page_aflag_set(m, PGA_REFERENCED);
1001 		break;
1002 	case VM_PROT_WRITE:
1003 		if ((newpte & RPTE_EAA_W) == 0)
1004 			goto protfail;
1005 		if (is_l3e)
1006 			goto protfail;
1007 		newpte |= PG_M;
1008 		vm_page_dirty(m);
1009 		break;
1010 	case VM_PROT_EXECUTE:
1011 		if ((newpte & RPTE_EAA_X) == 0)
1012 			goto protfail;
1013 		newpte |= PG_A;
1014 		vm_page_aflag_set(m, PGA_REFERENCED);
1015 		break;
1016 	}
1017 
1018 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1019 		goto retry;
1020 	ptesync();
1021 	PMAP_UNLOCK(pmap);
1022 	if (startpte == newpte)
1023 		return (KERN_FAILURE);
1024 	return (0);
1025  protfail:
1026 	PMAP_UNLOCK(pmap);
1027 	return (KERN_PROTECTION_FAILURE);
1028 }
1029 
1030 /*
1031  * Returns true if the given page is mapped individually or as part of
1032  * a 2mpage.  Otherwise, returns false.
1033  */
1034 bool
1035 mmu_radix_page_is_mapped(vm_page_t m)
1036 {
1037 	struct rwlock *lock;
1038 	bool rv;
1039 
1040 	if ((m->oflags & VPO_UNMANAGED) != 0)
1041 		return (false);
1042 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1043 	rw_rlock(lock);
1044 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1045 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1046 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1047 	rw_runlock(lock);
1048 	return (rv);
1049 }
1050 
1051 /*
1052  * Determine the appropriate bits to set in a PTE or PDE for a specified
1053  * caching mode.
1054  */
1055 static int
1056 pmap_cache_bits(vm_memattr_t ma)
1057 {
1058 	if (ma != VM_MEMATTR_DEFAULT) {
1059 		switch (ma) {
1060 		case VM_MEMATTR_UNCACHEABLE:
1061 			return (RPTE_ATTR_GUARDEDIO);
1062 		case VM_MEMATTR_CACHEABLE:
1063 			return (RPTE_ATTR_MEM);
1064 		case VM_MEMATTR_WRITE_BACK:
1065 		case VM_MEMATTR_PREFETCHABLE:
1066 		case VM_MEMATTR_WRITE_COMBINING:
1067 			return (RPTE_ATTR_UNGUARDEDIO);
1068 		}
1069 	}
1070 	return (0);
1071 }
1072 
1073 static void
1074 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1075 {
1076 	ptesync();
1077 	if (pmap == kernel_pmap)
1078 		radix_tlbie_invlpg_kernel_4k(start);
1079 	else
1080 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1081 	ttusync();
1082 }
1083 
1084 static void
1085 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1086 {
1087 	ptesync();
1088 	if (pmap == kernel_pmap)
1089 		radix_tlbie_invlpg_kernel_2m(start);
1090 	else
1091 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1092 	ttusync();
1093 }
1094 
1095 static void
1096 pmap_invalidate_pwc(pmap_t pmap)
1097 {
1098 	ptesync();
1099 	if (pmap == kernel_pmap)
1100 		radix_tlbie_invlpwc_kernel();
1101 	else
1102 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1103 	ttusync();
1104 }
1105 
1106 static void
1107 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1108 {
1109 	if (((start - end) >> PAGE_SHIFT) > 8) {
1110 		pmap_invalidate_all(pmap);
1111 		return;
1112 	}
1113 	ptesync();
1114 	if (pmap == kernel_pmap) {
1115 		while (start < end) {
1116 			radix_tlbie_invlpg_kernel_4k(start);
1117 			start += PAGE_SIZE;
1118 		}
1119 	} else {
1120 		while (start < end) {
1121 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1122 			start += PAGE_SIZE;
1123 		}
1124 	}
1125 	ttusync();
1126 }
1127 
1128 static void
1129 pmap_invalidate_all(pmap_t pmap)
1130 {
1131 	ptesync();
1132 	if (pmap == kernel_pmap)
1133 		radix_tlbie_flush_kernel();
1134 	else
1135 		radix_tlbie_flush_user(pmap->pm_pid);
1136 	ttusync();
1137 }
1138 
1139 static void
1140 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1141 {
1142 
1143 	/*
1144 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1145 	 * by a promotion that did not invalidate the 512 4KB page mappings
1146 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1147 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1148 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1149 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1150 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1151 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1152 	 * TLB.
1153 	 */
1154 	ptesync();
1155 	if ((l3e & PG_PROMOTED) != 0)
1156 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1157 	else
1158 		pmap_invalidate_page_2m(pmap, va);
1159 
1160 	pmap_invalidate_pwc(pmap);
1161 }
1162 
1163 static __inline struct pv_chunk *
1164 pv_to_chunk(pv_entry_t pv)
1165 {
1166 
1167 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1168 }
1169 
1170 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1171 
1172 #define	PC_FREE0	0xfffffffffffffffful
1173 #define	PC_FREE1	((1ul << (_NPCPV % 64)) - 1)
1174 
1175 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1176 
1177 /*
1178  * Ensure that the number of spare PV entries in the specified pmap meets or
1179  * exceeds the given count, "needed".
1180  *
1181  * The given PV list lock may be released.
1182  */
1183 static void
1184 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1185 {
1186 	struct pch new_tail;
1187 	struct pv_chunk *pc;
1188 	vm_page_t m;
1189 	int avail, free;
1190 	bool reclaimed;
1191 
1192 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1193 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1194 
1195 	/*
1196 	 * Newly allocated PV chunks must be stored in a private list until
1197 	 * the required number of PV chunks have been allocated.  Otherwise,
1198 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1199 	 * contrast, these chunks must be added to the pmap upon allocation.
1200 	 */
1201 	TAILQ_INIT(&new_tail);
1202 retry:
1203 	avail = 0;
1204 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1205 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1206 		bit_count((bitstr_t *)pc->pc_map, 0,
1207 				  sizeof(pc->pc_map) * NBBY, &free);
1208 #if 0
1209 		free = popcnt_pc_map_pq(pc->pc_map);
1210 #endif
1211 		if (free == 0)
1212 			break;
1213 		avail += free;
1214 		if (avail >= needed)
1215 			break;
1216 	}
1217 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1218 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1219 		if (m == NULL) {
1220 			m = reclaim_pv_chunk(pmap, lockp);
1221 			if (m == NULL)
1222 				goto retry;
1223 			reclaimed = true;
1224 		}
1225 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1226 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1227 		dump_add_page(m->phys_addr);
1228 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1229 		pc->pc_pmap = pmap;
1230 		pc->pc_map[0] = PC_FREE0;
1231 		pc->pc_map[1] = PC_FREE1;
1232 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1233 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1234 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1235 
1236 		/*
1237 		 * The reclaim might have freed a chunk from the current pmap.
1238 		 * If that chunk contained available entries, we need to
1239 		 * re-count the number of available entries.
1240 		 */
1241 		if (reclaimed)
1242 			goto retry;
1243 	}
1244 	if (!TAILQ_EMPTY(&new_tail)) {
1245 		mtx_lock(&pv_chunks_mutex);
1246 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1247 		mtx_unlock(&pv_chunks_mutex);
1248 	}
1249 }
1250 
1251 /*
1252  * First find and then remove the pv entry for the specified pmap and virtual
1253  * address from the specified pv list.  Returns the pv entry if found and NULL
1254  * otherwise.  This operation can be performed on pv lists for either 4KB or
1255  * 2MB page mappings.
1256  */
1257 static __inline pv_entry_t
1258 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1259 {
1260 	pv_entry_t pv;
1261 
1262 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1263 #ifdef INVARIANTS
1264 		if (PV_PMAP(pv) == NULL) {
1265 			printf("corrupted pv_chunk/pv %p\n", pv);
1266 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1267 		}
1268 		MPASS(PV_PMAP(pv) != NULL);
1269 		MPASS(pv->pv_va != 0);
1270 #endif
1271 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1272 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1273 			pvh->pv_gen++;
1274 			break;
1275 		}
1276 	}
1277 	return (pv);
1278 }
1279 
1280 /*
1281  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1282  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1283  * entries for each of the 4KB page mappings.
1284  */
1285 static void
1286 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287     struct rwlock **lockp)
1288 {
1289 	struct md_page *pvh;
1290 	struct pv_chunk *pc;
1291 	pv_entry_t pv;
1292 	vm_offset_t va_last;
1293 	vm_page_t m;
1294 	int bit, field;
1295 
1296 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1297 	KASSERT((pa & L3_PAGE_MASK) == 0,
1298 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1299 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1300 
1301 	/*
1302 	 * Transfer the 2mpage's pv entry for this mapping to the first
1303 	 * page's pv list.  Once this transfer begins, the pv list lock
1304 	 * must not be released until the last pv entry is reinstantiated.
1305 	 */
1306 	pvh = pa_to_pvh(pa);
1307 	va = trunc_2mpage(va);
1308 	pv = pmap_pvh_remove(pvh, pmap, va);
1309 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1310 	m = PHYS_TO_VM_PAGE(pa);
1311 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1312 
1313 	m->md.pv_gen++;
1314 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1315 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1316 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1317 	for (;;) {
1318 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1319 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1320 		    , ("pmap_pv_demote_pde: missing spare"));
1321 		for (field = 0; field < _NPCM; field++) {
1322 			while (pc->pc_map[field]) {
1323 				bit = cnttzd(pc->pc_map[field]);
1324 				pc->pc_map[field] &= ~(1ul << bit);
1325 				pv = &pc->pc_pventry[field * 64 + bit];
1326 				va += PAGE_SIZE;
1327 				pv->pv_va = va;
1328 				m++;
1329 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1330 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1331 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1332 
1333 				m->md.pv_gen++;
1334 				if (va == va_last)
1335 					goto out;
1336 			}
1337 		}
1338 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1339 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1340 	}
1341 out:
1342 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1343 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1344 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1345 	}
1346 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1347 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1348 }
1349 
1350 static void
1351 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1352 {
1353 
1354 	if (pmap == NULL)
1355 		return;
1356 	pmap_invalidate_all(pmap);
1357 	if (pmap != locked_pmap)
1358 		PMAP_UNLOCK(pmap);
1359 }
1360 
1361 /*
1362  * We are in a serious low memory condition.  Resort to
1363  * drastic measures to free some pages so we can allocate
1364  * another pv entry chunk.
1365  *
1366  * Returns NULL if PV entries were reclaimed from the specified pmap.
1367  *
1368  * We do not, however, unmap 2mpages because subsequent accesses will
1369  * allocate per-page pv entries until repromotion occurs, thereby
1370  * exacerbating the shortage of free pv entries.
1371  */
1372 static int active_reclaims = 0;
1373 static vm_page_t
1374 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1375 {
1376 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1377 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1378 	struct md_page *pvh;
1379 	pml3_entry_t *l3e;
1380 	pmap_t next_pmap, pmap;
1381 	pt_entry_t *pte, tpte;
1382 	pv_entry_t pv;
1383 	vm_offset_t va;
1384 	vm_page_t m, m_pc;
1385 	struct spglist free;
1386 	uint64_t inuse;
1387 	int bit, field, freed;
1388 
1389 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1390 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1391 	pmap = NULL;
1392 	m_pc = NULL;
1393 	SLIST_INIT(&free);
1394 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1395 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1396 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1397 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1398 
1399 	mtx_lock(&pv_chunks_mutex);
1400 	active_reclaims++;
1401 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1402 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1403 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1404 	    SLIST_EMPTY(&free)) {
1405 		next_pmap = pc->pc_pmap;
1406 		if (next_pmap == NULL) {
1407 			/*
1408 			 * The next chunk is a marker.  However, it is
1409 			 * not our marker, so active_reclaims must be
1410 			 * > 1.  Consequently, the next_chunk code
1411 			 * will not rotate the pv_chunks list.
1412 			 */
1413 			goto next_chunk;
1414 		}
1415 		mtx_unlock(&pv_chunks_mutex);
1416 
1417 		/*
1418 		 * A pv_chunk can only be removed from the pc_lru list
1419 		 * when both pc_chunks_mutex is owned and the
1420 		 * corresponding pmap is locked.
1421 		 */
1422 		if (pmap != next_pmap) {
1423 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1424 			pmap = next_pmap;
1425 			/* Avoid deadlock and lock recursion. */
1426 			if (pmap > locked_pmap) {
1427 				RELEASE_PV_LIST_LOCK(lockp);
1428 				PMAP_LOCK(pmap);
1429 				mtx_lock(&pv_chunks_mutex);
1430 				continue;
1431 			} else if (pmap != locked_pmap) {
1432 				if (PMAP_TRYLOCK(pmap)) {
1433 					mtx_lock(&pv_chunks_mutex);
1434 					continue;
1435 				} else {
1436 					pmap = NULL; /* pmap is not locked */
1437 					mtx_lock(&pv_chunks_mutex);
1438 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1439 					if (pc == NULL ||
1440 					    pc->pc_pmap != next_pmap)
1441 						continue;
1442 					goto next_chunk;
1443 				}
1444 			}
1445 		}
1446 
1447 		/*
1448 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1449 		 */
1450 		freed = 0;
1451 		for (field = 0; field < _NPCM; field++) {
1452 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1453 			    inuse != 0; inuse &= ~(1UL << bit)) {
1454 				bit = cnttzd(inuse);
1455 				pv = &pc->pc_pventry[field * 64 + bit];
1456 				va = pv->pv_va;
1457 				l3e = pmap_pml3e(pmap, va);
1458 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1459 					continue;
1460 				pte = pmap_l3e_to_pte(l3e, va);
1461 				if ((be64toh(*pte) & PG_W) != 0)
1462 					continue;
1463 				tpte = be64toh(pte_load_clear(pte));
1464 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1465 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1466 					vm_page_dirty(m);
1467 				if ((tpte & PG_A) != 0)
1468 					vm_page_aflag_set(m, PGA_REFERENCED);
1469 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1470 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1471 
1472 				m->md.pv_gen++;
1473 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1474 				    (m->flags & PG_FICTITIOUS) == 0) {
1475 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1476 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1477 						vm_page_aflag_clear(m,
1478 						    PGA_WRITEABLE);
1479 					}
1480 				}
1481 				pc->pc_map[field] |= 1UL << bit;
1482 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1483 				freed++;
1484 			}
1485 		}
1486 		if (freed == 0) {
1487 			mtx_lock(&pv_chunks_mutex);
1488 			goto next_chunk;
1489 		}
1490 		/* Every freed mapping is for a 4 KB page. */
1491 		pmap_resident_count_dec(pmap, freed);
1492 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1493 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1494 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1495 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1496 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1497 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1498 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1499 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1500 			/* Entire chunk is free; return it. */
1501 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1502 			dump_drop_page(m_pc->phys_addr);
1503 			mtx_lock(&pv_chunks_mutex);
1504 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1505 			break;
1506 		}
1507 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1508 		mtx_lock(&pv_chunks_mutex);
1509 		/* One freed pv entry in locked_pmap is sufficient. */
1510 		if (pmap == locked_pmap)
1511 			break;
1512 next_chunk:
1513 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1514 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1515 		if (active_reclaims == 1 && pmap != NULL) {
1516 			/*
1517 			 * Rotate the pv chunks list so that we do not
1518 			 * scan the same pv chunks that could not be
1519 			 * freed (because they contained a wired
1520 			 * and/or superpage mapping) on every
1521 			 * invocation of reclaim_pv_chunk().
1522 			 */
1523 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1524 				MPASS(pc->pc_pmap != NULL);
1525 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1526 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1527 			}
1528 		}
1529 	}
1530 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1531 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1532 	active_reclaims--;
1533 	mtx_unlock(&pv_chunks_mutex);
1534 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1535 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1536 		m_pc = SLIST_FIRST(&free);
1537 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1538 		/* Recycle a freed page table page. */
1539 		m_pc->ref_count = 1;
1540 	}
1541 	vm_page_free_pages_toq(&free, true);
1542 	return (m_pc);
1543 }
1544 
1545 /*
1546  * free the pv_entry back to the free list
1547  */
1548 static void
1549 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1550 {
1551 	struct pv_chunk *pc;
1552 	int idx, field, bit;
1553 
1554 #ifdef VERBOSE_PV
1555 	if (pmap != kernel_pmap)
1556 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1557 #endif
1558 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1559 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1560 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1561 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1562 	pc = pv_to_chunk(pv);
1563 	idx = pv - &pc->pc_pventry[0];
1564 	field = idx / 64;
1565 	bit = idx % 64;
1566 	pc->pc_map[field] |= 1ul << bit;
1567 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1568 		/* 98% of the time, pc is already at the head of the list. */
1569 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1570 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1571 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1572 		}
1573 		return;
1574 	}
1575 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1576 	free_pv_chunk(pc);
1577 }
1578 
1579 static void
1580 free_pv_chunk(struct pv_chunk *pc)
1581 {
1582 	vm_page_t m;
1583 
1584 	mtx_lock(&pv_chunks_mutex);
1585  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1586 	mtx_unlock(&pv_chunks_mutex);
1587 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1588 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1589 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1590 	/* entire chunk is free, return it */
1591 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1592 	dump_drop_page(m->phys_addr);
1593 	vm_page_unwire_noq(m);
1594 	vm_page_free(m);
1595 }
1596 
1597 /*
1598  * Returns a new PV entry, allocating a new PV chunk from the system when
1599  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1600  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1601  * returned.
1602  *
1603  * The given PV list lock may be released.
1604  */
1605 static pv_entry_t
1606 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1607 {
1608 	int bit, field;
1609 	pv_entry_t pv;
1610 	struct pv_chunk *pc;
1611 	vm_page_t m;
1612 
1613 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1614 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1615 retry:
1616 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1617 	if (pc != NULL) {
1618 		for (field = 0; field < _NPCM; field++) {
1619 			if (pc->pc_map[field]) {
1620 				bit = cnttzd(pc->pc_map[field]);
1621 				break;
1622 			}
1623 		}
1624 		if (field < _NPCM) {
1625 			pv = &pc->pc_pventry[field * 64 + bit];
1626 			pc->pc_map[field] &= ~(1ul << bit);
1627 			/* If this was the last item, move it to tail */
1628 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1629 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1630 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1631 				    pc_list);
1632 			}
1633 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1634 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1635 			MPASS(PV_PMAP(pv) != NULL);
1636 			return (pv);
1637 		}
1638 	}
1639 	/* No free items, allocate another chunk */
1640 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1641 	if (m == NULL) {
1642 		if (lockp == NULL) {
1643 			PV_STAT(pc_chunk_tryfail++);
1644 			return (NULL);
1645 		}
1646 		m = reclaim_pv_chunk(pmap, lockp);
1647 		if (m == NULL)
1648 			goto retry;
1649 	}
1650 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1651 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1652 	dump_add_page(m->phys_addr);
1653 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1654 	pc->pc_pmap = pmap;
1655 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1656 	pc->pc_map[1] = PC_FREE1;
1657 	mtx_lock(&pv_chunks_mutex);
1658 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1659 	mtx_unlock(&pv_chunks_mutex);
1660 	pv = &pc->pc_pventry[0];
1661 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1662 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1663 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1664 	MPASS(PV_PMAP(pv) != NULL);
1665 	return (pv);
1666 }
1667 
1668 #if VM_NRESERVLEVEL > 0
1669 /*
1670  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1671  * replace the many pv entries for the 4KB page mappings by a single pv entry
1672  * for the 2MB page mapping.
1673  */
1674 static void
1675 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1676     struct rwlock **lockp)
1677 {
1678 	struct md_page *pvh;
1679 	pv_entry_t pv;
1680 	vm_offset_t va_last;
1681 	vm_page_t m;
1682 
1683 	KASSERT((pa & L3_PAGE_MASK) == 0,
1684 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1685 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1686 
1687 	/*
1688 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1689 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1690 	 * a transfer avoids the possibility that get_pv_entry() calls
1691 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1692 	 * mappings that is being promoted.
1693 	 */
1694 	m = PHYS_TO_VM_PAGE(pa);
1695 	va = trunc_2mpage(va);
1696 	pv = pmap_pvh_remove(&m->md, pmap, va);
1697 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1698 	pvh = pa_to_pvh(pa);
1699 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1700 	pvh->pv_gen++;
1701 	/* Free the remaining NPTEPG - 1 pv entries. */
1702 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1703 	do {
1704 		m++;
1705 		va += PAGE_SIZE;
1706 		pmap_pvh_free(&m->md, pmap, va);
1707 	} while (va < va_last);
1708 }
1709 #endif /* VM_NRESERVLEVEL > 0 */
1710 
1711 /*
1712  * First find and then destroy the pv entry for the specified pmap and virtual
1713  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1714  * page mappings.
1715  */
1716 static void
1717 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1718 {
1719 	pv_entry_t pv;
1720 
1721 	pv = pmap_pvh_remove(pvh, pmap, va);
1722 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1723 	free_pv_entry(pmap, pv);
1724 }
1725 
1726 /*
1727  * Conditionally create the PV entry for a 4KB page mapping if the required
1728  * memory can be allocated without resorting to reclamation.
1729  */
1730 static bool
1731 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1732     struct rwlock **lockp)
1733 {
1734 	pv_entry_t pv;
1735 
1736 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1737 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1738 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1739 		pv->pv_va = va;
1740 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1741 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1742 		m->md.pv_gen++;
1743 		return (true);
1744 	} else
1745 		return (false);
1746 }
1747 
1748 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1749 #ifdef INVARIANTS
1750 static void
1751 validate_addr(vm_paddr_t addr, vm_size_t size)
1752 {
1753 	vm_paddr_t end = addr + size;
1754 	bool found = false;
1755 
1756 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1757 		if (addr >= phys_avail_debug[i] &&
1758 			end <= phys_avail_debug[i + 1]) {
1759 			found = true;
1760 			break;
1761 		}
1762 	}
1763 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1764 					addr, end));
1765 }
1766 #else
1767 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1768 #endif
1769 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1770 
1771 static vm_paddr_t
1772 alloc_pt_page(void)
1773 {
1774 	vm_paddr_t page;
1775 
1776 	page = allocpages(1);
1777 	pagezero(PHYS_TO_DMAP(page));
1778 	return (page);
1779 }
1780 
1781 static void
1782 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1783 {
1784 	pt_entry_t *pte, pteval;
1785 	vm_paddr_t page;
1786 
1787 	if (bootverbose)
1788 		printf("%s %lx -> %lx\n", __func__, start, end);
1789 	while (start < end) {
1790 		pteval = start | DMAP_PAGE_BITS;
1791 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1792 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1793 			page = alloc_pt_page();
1794 			pde_store(pte, page);
1795 		}
1796 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1797 		if ((start & L2_PAGE_MASK) == 0 &&
1798 			end - start >= L2_PAGE_SIZE) {
1799 			start += L2_PAGE_SIZE;
1800 			goto done;
1801 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1802 			page = alloc_pt_page();
1803 			pde_store(pte, page);
1804 		}
1805 
1806 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1807 		if ((start & L3_PAGE_MASK) == 0 &&
1808 			end - start >= L3_PAGE_SIZE) {
1809 			start += L3_PAGE_SIZE;
1810 			goto done;
1811 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1812 			page = alloc_pt_page();
1813 			pde_store(pte, page);
1814 		}
1815 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1816 		start += PAGE_SIZE;
1817 	done:
1818 		pte_store(pte, pteval);
1819 	}
1820 }
1821 
1822 static void
1823 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1824 {
1825 	vm_paddr_t start, end;
1826 
1827 	for (int i = 0; i < pregions_sz; i++) {
1828 		start = pregions[i].mr_start;
1829 		end = start + pregions[i].mr_size;
1830 		if (hwphyssz && start >= hwphyssz)
1831 			break;
1832 		if (hwphyssz && hwphyssz < end)
1833 			end = hwphyssz;
1834 		mmu_radix_dmap_range(start, end);
1835 	}
1836 }
1837 
1838 static void
1839 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1840 {
1841 	vm_paddr_t ptpages, pages;
1842 	pt_entry_t *pte;
1843 	vm_paddr_t l1phys;
1844 
1845 	bzero(kernel_pmap, sizeof(struct pmap));
1846 	PMAP_LOCK_INIT(kernel_pmap);
1847 	vm_radix_init(&kernel_pmap->pm_radix);
1848 
1849 	ptpages = allocpages(3);
1850 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1851 	validate_addr(l1phys, RADIX_PGD_SIZE);
1852 	if (bootverbose)
1853 		printf("l1phys=%lx\n", l1phys);
1854 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1855 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1856 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1857 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1858 
1859 	mmu_radix_dmap_populate(hwphyssz);
1860 
1861 	/*
1862 	 * Create page tables for first 128MB of KVA
1863 	 */
1864 	pages = ptpages;
1865 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1866 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1867 	pages += PAGE_SIZE;
1868 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1869 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1870 	pages += PAGE_SIZE;
1871 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1872 	/*
1873 	 * the kernel page table pages need to be preserved in
1874 	 * phys_avail and not overlap with previous  allocations
1875 	 */
1876 	pages = allocpages(nkpt);
1877 	if (bootverbose) {
1878 		printf("phys_avail after dmap populate and nkpt allocation\n");
1879 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1880 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1881 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1882 	}
1883 	KPTphys = pages;
1884 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1885 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1886 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1887 	if (bootverbose)
1888 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1889 	/*
1890 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1891 	 * preallocated kernel page table pages so that vm_page structures
1892 	 * representing these pages will be created.  The vm_page structures
1893 	 * are required for promotion of the corresponding kernel virtual
1894 	 * addresses to superpage mappings.
1895 	 */
1896 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1897 }
1898 
1899 static void
1900 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1901 {
1902 	vm_paddr_t	kpstart, kpend;
1903 	vm_size_t	physsz, hwphyssz;
1904 	//uint64_t	l2virt;
1905 	int		rm_pavail, proctab_size;
1906 	int		i, j;
1907 
1908 	kpstart = start & ~DMAP_BASE_ADDRESS;
1909 	kpend = end & ~DMAP_BASE_ADDRESS;
1910 
1911 	/* Get physical memory regions from firmware */
1912 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1913 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1914 
1915 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1916 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1917 
1918 	if (bootverbose)
1919 		for (int i = 0; i < regions_sz; i++)
1920 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1921 			    i, regions[i].mr_start, i, regions[i].mr_size);
1922 	/*
1923 	 * XXX workaround a simulator bug
1924 	 */
1925 	for (int i = 0; i < regions_sz; i++)
1926 		if (regions[i].mr_start & PAGE_MASK) {
1927 			regions[i].mr_start += PAGE_MASK;
1928 			regions[i].mr_start &= ~PAGE_MASK;
1929 			regions[i].mr_size &= ~PAGE_MASK;
1930 		}
1931 	if (bootverbose)
1932 		for (int i = 0; i < pregions_sz; i++)
1933 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1934 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1935 
1936 	phys_avail_count = 0;
1937 	physsz = 0;
1938 	hwphyssz = 0;
1939 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1940 	for (i = 0, j = 0; i < regions_sz; i++) {
1941 		if (bootverbose)
1942 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1943 			    i, regions[i].mr_start, i, regions[i].mr_size);
1944 
1945 		if (regions[i].mr_size < PAGE_SIZE)
1946 			continue;
1947 
1948 		if (hwphyssz != 0 &&
1949 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1950 			if (physsz < hwphyssz) {
1951 				phys_avail[j] = regions[i].mr_start;
1952 				phys_avail[j + 1] = regions[i].mr_start +
1953 				    (hwphyssz - physsz);
1954 				physsz = hwphyssz;
1955 				phys_avail_count++;
1956 				dump_avail[j] = phys_avail[j];
1957 				dump_avail[j + 1] = phys_avail[j + 1];
1958 			}
1959 			break;
1960 		}
1961 		phys_avail[j] = regions[i].mr_start;
1962 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1963 		dump_avail[j] = phys_avail[j];
1964 		dump_avail[j + 1] = phys_avail[j + 1];
1965 
1966 		phys_avail_count++;
1967 		physsz += regions[i].mr_size;
1968 		j += 2;
1969 	}
1970 
1971 	/* Check for overlap with the kernel and exception vectors */
1972 	rm_pavail = 0;
1973 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1974 		if (phys_avail[j] < EXC_LAST)
1975 			phys_avail[j] += EXC_LAST;
1976 
1977 		if (phys_avail[j] >= kpstart &&
1978 		    phys_avail[j + 1] <= kpend) {
1979 			phys_avail[j] = phys_avail[j + 1] = ~0;
1980 			rm_pavail++;
1981 			continue;
1982 		}
1983 
1984 		if (kpstart >= phys_avail[j] &&
1985 		    kpstart < phys_avail[j + 1]) {
1986 			if (kpend < phys_avail[j + 1]) {
1987 				phys_avail[2 * phys_avail_count] =
1988 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1989 				phys_avail[2 * phys_avail_count + 1] =
1990 				    phys_avail[j + 1];
1991 				phys_avail_count++;
1992 			}
1993 
1994 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1995 		}
1996 
1997 		if (kpend >= phys_avail[j] &&
1998 		    kpend < phys_avail[j + 1]) {
1999 			if (kpstart > phys_avail[j]) {
2000 				phys_avail[2 * phys_avail_count] = phys_avail[j];
2001 				phys_avail[2 * phys_avail_count + 1] =
2002 				    kpstart & ~PAGE_MASK;
2003 				phys_avail_count++;
2004 			}
2005 
2006 			phys_avail[j] = (kpend & ~PAGE_MASK) +
2007 			    PAGE_SIZE;
2008 		}
2009 	}
2010 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2011 	for (i = 0; i < 2 * phys_avail_count; i++)
2012 		phys_avail_debug[i] = phys_avail[i];
2013 
2014 	/* Remove physical available regions marked for removal (~0) */
2015 	if (rm_pavail) {
2016 		phys_avail_count -= rm_pavail;
2017 		for (i = 2 * phys_avail_count;
2018 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
2019 			phys_avail[i] = phys_avail[i + 1] = 0;
2020 	}
2021 	if (bootverbose) {
2022 		printf("phys_avail ranges after filtering:\n");
2023 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2024 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2025 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2026 	}
2027 	physmem = btoc(physsz);
2028 
2029 	/* XXX assume we're running non-virtualized and
2030 	 * we don't support BHYVE
2031 	 */
2032 	if (isa3_pid_bits == 0)
2033 		isa3_pid_bits = 20;
2034 	if (powernv_enabled) {
2035 		parttab_phys =
2036 		    moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2037 		validate_addr(parttab_phys, PARTTAB_SIZE);
2038 		for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2039 			pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2040 
2041 	}
2042 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2043 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2044 	validate_addr(proctab0pa, proctab_size);
2045 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2046 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2047 
2048 	mmu_radix_setup_pagetables(hwphyssz);
2049 }
2050 
2051 static void
2052 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2053 {
2054 	int		i;
2055 	vm_paddr_t	pa;
2056 	void		*dpcpu;
2057 	vm_offset_t va;
2058 
2059 	/*
2060 	 * Set up the Open Firmware pmap and add its mappings if not in real
2061 	 * mode.
2062 	 */
2063 	if (bootverbose)
2064 		printf("%s enter\n", __func__);
2065 
2066 	/*
2067 	 * Calculate the last available physical address, and reserve the
2068 	 * vm_page_array (upper bound).
2069 	 */
2070 	Maxmem = 0;
2071 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
2072 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2073 
2074 	/*
2075 	 * Remap any early IO mappings (console framebuffer, etc.)
2076 	 */
2077 	bs_remap_earlyboot();
2078 
2079 	/*
2080 	 * Allocate a kernel stack with a guard page for thread0 and map it
2081 	 * into the kernel page map.
2082 	 */
2083 	pa = allocpages(kstack_pages);
2084 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2085 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2086 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2087 	thread0.td_kstack = va;
2088 	for (i = 0; i < kstack_pages; i++) {
2089 		mmu_radix_kenter(va, pa);
2090 		pa += PAGE_SIZE;
2091 		va += PAGE_SIZE;
2092 	}
2093 	thread0.td_kstack_pages = kstack_pages;
2094 
2095 	/*
2096 	 * Allocate virtual address space for the message buffer.
2097 	 */
2098 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2099 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2100 
2101 	/*
2102 	 * Allocate virtual address space for the dynamic percpu area.
2103 	 */
2104 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2105 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2106 	dpcpu_init(dpcpu, curcpu);
2107 
2108 	crashdumpmap = (caddr_t)virtual_avail;
2109 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2110 
2111 	/*
2112 	 * Reserve some special page table entries/VA space for temporary
2113 	 * mapping of pages.
2114 	 */
2115 }
2116 
2117 static void
2118 mmu_parttab_init(void)
2119 {
2120 	uint64_t ptcr;
2121 
2122 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2123 
2124 	if (bootverbose)
2125 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2126 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2127 	if (bootverbose)
2128 		printf("setting ptcr %lx\n", ptcr);
2129 	mtspr(SPR_PTCR, ptcr);
2130 }
2131 
2132 static void
2133 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2134 {
2135 	uint64_t prev;
2136 
2137 	if (bootverbose)
2138 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2139 			   lpid, pagetab, proctab);
2140 	prev = be64toh(isa3_parttab[lpid].pagetab);
2141 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2142 	isa3_parttab[lpid].proctab = htobe64(proctab);
2143 
2144 	if (prev & PARTTAB_HR) {
2145 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2146 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2147 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2148 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2149 	} else {
2150 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2151 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2152 	}
2153 	ttusync();
2154 }
2155 
2156 static void
2157 mmu_radix_parttab_init(void)
2158 {
2159 	uint64_t pagetab;
2160 
2161 	mmu_parttab_init();
2162 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2163 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2164 	mmu_parttab_update(0, pagetab, 0);
2165 }
2166 
2167 static void
2168 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2169 {
2170 	uint64_t pagetab, proctab;
2171 
2172 	pagetab = be64toh(isa3_parttab[0].pagetab);
2173 	proctab = proctabpa | table_size | PARTTAB_GR;
2174 	mmu_parttab_update(0, pagetab, proctab);
2175 }
2176 
2177 static void
2178 mmu_radix_proctab_init(void)
2179 {
2180 
2181 	isa3_base_pid = 1;
2182 
2183 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2184 	isa3_proctab->proctab0 =
2185 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2186 		RADIX_PGD_INDEX_SHIFT);
2187 
2188 	if (powernv_enabled) {
2189 		mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2190 		__asm __volatile("ptesync" : : : "memory");
2191 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2192 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2193 		__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2194 #ifdef PSERIES
2195 	} else {
2196 		int64_t rc;
2197 
2198 		rc = phyp_hcall(H_REGISTER_PROC_TBL,
2199 		    PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2200 		    proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2201 		if (rc != H_SUCCESS)
2202 			panic("mmu_radix_proctab_init: "
2203 				"failed to register process table: rc=%jd",
2204 				(intmax_t)rc);
2205 #endif
2206 	}
2207 
2208 	if (bootverbose)
2209 		printf("process table %p and kernel radix PDE: %p\n",
2210 			   isa3_proctab, kernel_pmap->pm_pml1);
2211 	mtmsr(mfmsr() | PSL_DR );
2212 	mtmsr(mfmsr() &  ~PSL_DR);
2213 	kernel_pmap->pm_pid = isa3_base_pid;
2214 	isa3_base_pid++;
2215 }
2216 
2217 void
2218 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2219     int advice)
2220 {
2221 	struct rwlock *lock;
2222 	pml1_entry_t *l1e;
2223 	pml2_entry_t *l2e;
2224 	pml3_entry_t oldl3e, *l3e;
2225 	pt_entry_t *pte;
2226 	vm_offset_t va, va_next;
2227 	vm_page_t m;
2228 	bool anychanged;
2229 
2230 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2231 		return;
2232 	anychanged = false;
2233 	PMAP_LOCK(pmap);
2234 	for (; sva < eva; sva = va_next) {
2235 		l1e = pmap_pml1e(pmap, sva);
2236 		if ((be64toh(*l1e) & PG_V) == 0) {
2237 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2238 			if (va_next < sva)
2239 				va_next = eva;
2240 			continue;
2241 		}
2242 		l2e = pmap_l1e_to_l2e(l1e, sva);
2243 		if ((be64toh(*l2e) & PG_V) == 0) {
2244 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2245 			if (va_next < sva)
2246 				va_next = eva;
2247 			continue;
2248 		}
2249 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2250 		if (va_next < sva)
2251 			va_next = eva;
2252 		l3e = pmap_l2e_to_l3e(l2e, sva);
2253 		oldl3e = be64toh(*l3e);
2254 		if ((oldl3e & PG_V) == 0)
2255 			continue;
2256 		else if ((oldl3e & RPTE_LEAF) != 0) {
2257 			if ((oldl3e & PG_MANAGED) == 0)
2258 				continue;
2259 			lock = NULL;
2260 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2261 				if (lock != NULL)
2262 					rw_wunlock(lock);
2263 
2264 				/*
2265 				 * The large page mapping was destroyed.
2266 				 */
2267 				continue;
2268 			}
2269 
2270 			/*
2271 			 * Unless the page mappings are wired, remove the
2272 			 * mapping to a single page so that a subsequent
2273 			 * access may repromote.  Choosing the last page
2274 			 * within the address range [sva, min(va_next, eva))
2275 			 * generally results in more repromotions.  Since the
2276 			 * underlying page table page is fully populated, this
2277 			 * removal never frees a page table page.
2278 			 */
2279 			if ((oldl3e & PG_W) == 0) {
2280 				va = eva;
2281 				if (va > va_next)
2282 					va = va_next;
2283 				va -= PAGE_SIZE;
2284 				KASSERT(va >= sva,
2285 				    ("mmu_radix_advise: no address gap"));
2286 				pte = pmap_l3e_to_pte(l3e, va);
2287 				KASSERT((be64toh(*pte) & PG_V) != 0,
2288 				    ("pmap_advise: invalid PTE"));
2289 				pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2290 				    &lock);
2291 				anychanged = true;
2292 			}
2293 			if (lock != NULL)
2294 				rw_wunlock(lock);
2295 		}
2296 		if (va_next > eva)
2297 			va_next = eva;
2298 		va = va_next;
2299 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2300 			 pte++, sva += PAGE_SIZE) {
2301 			MPASS(pte == pmap_pte(pmap, sva));
2302 
2303 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2304 				goto maybe_invlrng;
2305 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2306 				if (advice == MADV_DONTNEED) {
2307 					/*
2308 					 * Future calls to pmap_is_modified()
2309 					 * can be avoided by making the page
2310 					 * dirty now.
2311 					 */
2312 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2313 					vm_page_dirty(m);
2314 				}
2315 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2316 			} else if ((be64toh(*pte) & PG_A) != 0)
2317 				atomic_clear_long(pte, htobe64(PG_A));
2318 			else
2319 				goto maybe_invlrng;
2320 			anychanged = true;
2321 			continue;
2322 maybe_invlrng:
2323 			if (va != va_next) {
2324 				anychanged = true;
2325 				va = va_next;
2326 			}
2327 		}
2328 		if (va != va_next)
2329 			anychanged = true;
2330 	}
2331 	if (anychanged)
2332 		pmap_invalidate_all(pmap);
2333 	PMAP_UNLOCK(pmap);
2334 }
2335 
2336 /*
2337  * Routines used in machine-dependent code
2338  */
2339 static void
2340 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2341 {
2342 	uint64_t lpcr;
2343 
2344 	if (bootverbose)
2345 		printf("%s\n", __func__);
2346 	hw_direct_map = 1;
2347 	powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2348 	mmu_radix_early_bootstrap(start, end);
2349 	if (bootverbose)
2350 		printf("early bootstrap complete\n");
2351 	if (powernv_enabled) {
2352 		lpcr = mfspr(SPR_LPCR);
2353 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2354 		mmu_radix_parttab_init();
2355 		mmu_radix_init_amor();
2356 		if (bootverbose)
2357 			printf("powernv init complete\n");
2358 	}
2359 	mmu_radix_init_iamr();
2360 	mmu_radix_proctab_init();
2361 	mmu_radix_pid_set(kernel_pmap);
2362 	if (powernv_enabled)
2363 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2364 	else
2365 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2366 
2367 	mmu_radix_late_bootstrap(start, end);
2368 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2369 	if (bootverbose)
2370 		printf("%s done\n", __func__);
2371 	pmap_bootstrapped = 1;
2372 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2373 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2374 }
2375 
2376 static void
2377 mmu_radix_cpu_bootstrap(int ap)
2378 {
2379 	uint64_t lpcr;
2380 	uint64_t ptcr;
2381 
2382 	if (powernv_enabled) {
2383 		lpcr = mfspr(SPR_LPCR);
2384 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2385 
2386 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2387 		mtspr(SPR_PTCR, ptcr);
2388 		mmu_radix_init_amor();
2389 	}
2390 	mmu_radix_init_iamr();
2391 	mmu_radix_pid_set(kernel_pmap);
2392 	if (powernv_enabled)
2393 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2394 	else
2395 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2396 }
2397 
2398 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2399     "2MB page mapping counters");
2400 
2401 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2402 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2403     &pmap_l3e_demotions, "2MB page demotions");
2404 
2405 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2406 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2407     &pmap_l3e_mappings, "2MB page mappings");
2408 
2409 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2410 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2411     &pmap_l3e_p_failures, "2MB page promotion failures");
2412 
2413 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2414 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2415     &pmap_l3e_promotions, "2MB page promotions");
2416 
2417 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2418     "1GB page mapping counters");
2419 
2420 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2421 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2422     &pmap_l2e_demotions, "1GB page demotions");
2423 
2424 void
2425 mmu_radix_clear_modify(vm_page_t m)
2426 {
2427 	struct md_page *pvh;
2428 	pmap_t pmap;
2429 	pv_entry_t next_pv, pv;
2430 	pml3_entry_t oldl3e, *l3e;
2431 	pt_entry_t oldpte, *pte;
2432 	struct rwlock *lock;
2433 	vm_offset_t va;
2434 	int md_gen, pvh_gen;
2435 
2436 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2437 	    ("pmap_clear_modify: page %p is not managed", m));
2438 	vm_page_assert_busied(m);
2439 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2440 
2441 	/*
2442 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2443 	 * If the object containing the page is locked and the page is not
2444 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2445 	 */
2446 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2447 		return;
2448 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2449 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2450 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2451 	rw_wlock(lock);
2452 restart:
2453 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2454 		pmap = PV_PMAP(pv);
2455 		if (!PMAP_TRYLOCK(pmap)) {
2456 			pvh_gen = pvh->pv_gen;
2457 			rw_wunlock(lock);
2458 			PMAP_LOCK(pmap);
2459 			rw_wlock(lock);
2460 			if (pvh_gen != pvh->pv_gen) {
2461 				PMAP_UNLOCK(pmap);
2462 				goto restart;
2463 			}
2464 		}
2465 		va = pv->pv_va;
2466 		l3e = pmap_pml3e(pmap, va);
2467 		oldl3e = be64toh(*l3e);
2468 		if ((oldl3e & PG_RW) != 0 &&
2469 		    pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2470 		    (oldl3e & PG_W) == 0) {
2471 			/*
2472 			 * Write protect the mapping to a
2473 			 * single page so that a subsequent
2474 			 * write access may repromote.
2475 			 */
2476 			va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2477 			    PG_PS_FRAME);
2478 			pte = pmap_l3e_to_pte(l3e, va);
2479 			oldpte = be64toh(*pte);
2480 			while (!atomic_cmpset_long(pte,
2481 			    htobe64(oldpte),
2482 				htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2483 				   oldpte = be64toh(*pte);
2484 			vm_page_dirty(m);
2485 			pmap_invalidate_page(pmap, va);
2486 		}
2487 		PMAP_UNLOCK(pmap);
2488 	}
2489 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2490 		pmap = PV_PMAP(pv);
2491 		if (!PMAP_TRYLOCK(pmap)) {
2492 			md_gen = m->md.pv_gen;
2493 			pvh_gen = pvh->pv_gen;
2494 			rw_wunlock(lock);
2495 			PMAP_LOCK(pmap);
2496 			rw_wlock(lock);
2497 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2498 				PMAP_UNLOCK(pmap);
2499 				goto restart;
2500 			}
2501 		}
2502 		l3e = pmap_pml3e(pmap, pv->pv_va);
2503 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2504 		    " a 2mpage in page %p's pv list", m));
2505 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2506 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2507 			atomic_clear_long(pte, htobe64(PG_M));
2508 			pmap_invalidate_page(pmap, pv->pv_va);
2509 		}
2510 		PMAP_UNLOCK(pmap);
2511 	}
2512 	rw_wunlock(lock);
2513 }
2514 
2515 void
2516 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2517     vm_size_t len, vm_offset_t src_addr)
2518 {
2519 	struct rwlock *lock;
2520 	struct spglist free;
2521 	vm_offset_t addr;
2522 	vm_offset_t end_addr = src_addr + len;
2523 	vm_offset_t va_next;
2524 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2525 	bool invalidate_all;
2526 
2527 	CTR6(KTR_PMAP,
2528 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2529 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2530 
2531 	if (dst_addr != src_addr)
2532 		return;
2533 	lock = NULL;
2534 	invalidate_all = false;
2535 	if (dst_pmap < src_pmap) {
2536 		PMAP_LOCK(dst_pmap);
2537 		PMAP_LOCK(src_pmap);
2538 	} else {
2539 		PMAP_LOCK(src_pmap);
2540 		PMAP_LOCK(dst_pmap);
2541 	}
2542 
2543 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2544 		pml1_entry_t *l1e;
2545 		pml2_entry_t *l2e;
2546 		pml3_entry_t srcptepaddr, *l3e;
2547 		pt_entry_t *src_pte, *dst_pte;
2548 
2549 		l1e = pmap_pml1e(src_pmap, addr);
2550 		if ((be64toh(*l1e) & PG_V) == 0) {
2551 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2552 			if (va_next < addr)
2553 				va_next = end_addr;
2554 			continue;
2555 		}
2556 
2557 		l2e = pmap_l1e_to_l2e(l1e, addr);
2558 		if ((be64toh(*l2e) & PG_V) == 0) {
2559 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2560 			if (va_next < addr)
2561 				va_next = end_addr;
2562 			continue;
2563 		}
2564 
2565 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2566 		if (va_next < addr)
2567 			va_next = end_addr;
2568 
2569 		l3e = pmap_l2e_to_l3e(l2e, addr);
2570 		srcptepaddr = be64toh(*l3e);
2571 		if (srcptepaddr == 0)
2572 			continue;
2573 
2574 		if (srcptepaddr & RPTE_LEAF) {
2575 			if ((addr & L3_PAGE_MASK) != 0 ||
2576 			    addr + L3_PAGE_SIZE > end_addr)
2577 				continue;
2578 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2579 			if (dst_pdpg == NULL)
2580 				break;
2581 			l3e = (pml3_entry_t *)
2582 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2583 			l3e = &l3e[pmap_pml3e_index(addr)];
2584 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2585 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2586 			    PMAP_ENTER_NORECLAIM, &lock))) {
2587 				*l3e = htobe64(srcptepaddr & ~PG_W);
2588 				pmap_resident_count_inc(dst_pmap,
2589 				    L3_PAGE_SIZE / PAGE_SIZE);
2590 				counter_u64_add(pmap_l3e_mappings, 1);
2591 			} else
2592 				dst_pdpg->ref_count--;
2593 			continue;
2594 		}
2595 
2596 		srcptepaddr &= PG_FRAME;
2597 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2598 		KASSERT(srcmpte->ref_count > 0,
2599 		    ("pmap_copy: source page table page is unused"));
2600 
2601 		if (va_next > end_addr)
2602 			va_next = end_addr;
2603 
2604 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2605 		src_pte = &src_pte[pmap_pte_index(addr)];
2606 		dstmpte = NULL;
2607 		while (addr < va_next) {
2608 			pt_entry_t ptetemp;
2609 			ptetemp = be64toh(*src_pte);
2610 			/*
2611 			 * we only virtual copy managed pages
2612 			 */
2613 			if ((ptetemp & PG_MANAGED) != 0) {
2614 				if (dstmpte != NULL &&
2615 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2616 					dstmpte->ref_count++;
2617 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2618 				    addr, NULL)) == NULL)
2619 					goto out;
2620 				dst_pte = (pt_entry_t *)
2621 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2622 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2623 				if (be64toh(*dst_pte) == 0 &&
2624 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2625 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2626 				    &lock)) {
2627 					/*
2628 					 * Clear the wired, modified, and
2629 					 * accessed (referenced) bits
2630 					 * during the copy.
2631 					 */
2632 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2633 					    PG_A));
2634 					pmap_resident_count_inc(dst_pmap, 1);
2635 				} else {
2636 					SLIST_INIT(&free);
2637 					if (pmap_unwire_ptp(dst_pmap, addr,
2638 					    dstmpte, &free)) {
2639 						/*
2640 						 * Although "addr" is not
2641 						 * mapped, paging-structure
2642 						 * caches could nonetheless
2643 						 * have entries that refer to
2644 						 * the freed page table pages.
2645 						 * Invalidate those entries.
2646 						 */
2647 						invalidate_all = true;
2648 						vm_page_free_pages_toq(&free,
2649 						    true);
2650 					}
2651 					goto out;
2652 				}
2653 				if (dstmpte->ref_count >= srcmpte->ref_count)
2654 					break;
2655 			}
2656 			addr += PAGE_SIZE;
2657 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2658 				src_pte = pmap_pte(src_pmap, addr);
2659 			else
2660 				src_pte++;
2661 		}
2662 	}
2663 out:
2664 	if (invalidate_all)
2665 		pmap_invalidate_all(dst_pmap);
2666 	if (lock != NULL)
2667 		rw_wunlock(lock);
2668 	PMAP_UNLOCK(src_pmap);
2669 	PMAP_UNLOCK(dst_pmap);
2670 }
2671 
2672 static void
2673 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2674 {
2675 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2676 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2677 
2678 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2679 	/*
2680 	 * XXX slow
2681 	 */
2682 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2683 }
2684 
2685 static void
2686 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2687     vm_offset_t b_offset, int xfersize)
2688 {
2689         void *a_cp, *b_cp;
2690         vm_offset_t a_pg_offset, b_pg_offset;
2691         int cnt;
2692 
2693 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2694 	    a_offset, mb, b_offset, xfersize);
2695 
2696         while (xfersize > 0) {
2697                 a_pg_offset = a_offset & PAGE_MASK;
2698                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2699                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2700                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2701                     a_pg_offset;
2702                 b_pg_offset = b_offset & PAGE_MASK;
2703                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2704                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2705                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2706                     b_pg_offset;
2707                 bcopy(a_cp, b_cp, cnt);
2708                 a_offset += cnt;
2709                 b_offset += cnt;
2710                 xfersize -= cnt;
2711         }
2712 }
2713 
2714 #if VM_NRESERVLEVEL > 0
2715 /*
2716  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2717  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2718  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2719  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2720  * identical characteristics.
2721  */
2722 static int
2723 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2724     struct rwlock **lockp)
2725 {
2726 	pml3_entry_t newpde;
2727 	pt_entry_t *firstpte, oldpte, pa, *pte;
2728 	vm_page_t mpte;
2729 
2730 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2731 
2732 	/*
2733 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2734 	 * either invalid, unused, or does not map the first 4KB physical page
2735 	 * within a 2MB page.
2736 	 */
2737 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2738 setpde:
2739 	newpde = be64toh(*firstpte);
2740 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2741 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2742 		    " in pmap %p", va, pmap);
2743 		goto fail;
2744 	}
2745 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2746 		/*
2747 		 * When PG_M is already clear, PG_RW can be cleared without
2748 		 * a TLB invalidation.
2749 		 */
2750 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2751 			goto setpde;
2752 		newpde &= ~RPTE_EAA_W;
2753 	}
2754 
2755 	/*
2756 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2757 	 * PTE maps an unexpected 4KB physical page or does not have identical
2758 	 * characteristics to the first PTE.
2759 	 */
2760 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2761 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2762 setpte:
2763 		oldpte = be64toh(*pte);
2764 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2765 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2766 			    " in pmap %p", va, pmap);
2767 			goto fail;
2768 		}
2769 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2770 			/*
2771 			 * When PG_M is already clear, PG_RW can be cleared
2772 			 * without a TLB invalidation.
2773 			 */
2774 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2775 				goto setpte;
2776 			oldpte &= ~RPTE_EAA_W;
2777 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2778 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2779 			    (va & ~L3_PAGE_MASK), pmap);
2780 		}
2781 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2782 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2783 			    " in pmap %p", va, pmap);
2784 			goto fail;
2785 		}
2786 		pa -= PAGE_SIZE;
2787 	}
2788 
2789 	/*
2790 	 * Save the page table page in its current state until the PDE
2791 	 * mapping the superpage is demoted by pmap_demote_pde() or
2792 	 * destroyed by pmap_remove_pde().
2793 	 */
2794 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2795 	KASSERT(mpte >= vm_page_array &&
2796 	    mpte < &vm_page_array[vm_page_array_size],
2797 	    ("pmap_promote_l3e: page table page is out of range"));
2798 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2799 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2800 	if (pmap_insert_pt_page(pmap, mpte)) {
2801 		CTR2(KTR_PMAP,
2802 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2803 		    pmap);
2804 		goto fail;
2805 	}
2806 
2807 	/*
2808 	 * Promote the pv entries.
2809 	 */
2810 	if ((newpde & PG_MANAGED) != 0)
2811 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2812 
2813 	pte_store(pde, PG_PROMOTED | newpde);
2814 	ptesync();
2815 	counter_u64_add(pmap_l3e_promotions, 1);
2816 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2817 	    " in pmap %p", va, pmap);
2818 	return (0);
2819  fail:
2820 	counter_u64_add(pmap_l3e_p_failures, 1);
2821 	return (KERN_FAILURE);
2822 }
2823 #endif /* VM_NRESERVLEVEL > 0 */
2824 
2825 int
2826 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2827     vm_prot_t prot, u_int flags, int8_t psind)
2828 {
2829 	struct rwlock *lock;
2830 	pml3_entry_t *l3e;
2831 	pt_entry_t *pte;
2832 	pt_entry_t newpte, origpte;
2833 	pv_entry_t pv;
2834 	vm_paddr_t opa, pa;
2835 	vm_page_t mpte, om;
2836 	int rv, retrycount;
2837 	bool nosleep, invalidate_all, invalidate_page;
2838 
2839 	va = trunc_page(va);
2840 	retrycount = 0;
2841 	invalidate_page = invalidate_all = false;
2842 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2843 	    m, prot, flags, psind);
2844 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2845 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2846 	    ("pmap_enter: managed mapping within the clean submap"));
2847 	if ((m->oflags & VPO_UNMANAGED) == 0)
2848 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2849 
2850 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2851 	    ("pmap_enter: flags %u has reserved bits set", flags));
2852 	pa = VM_PAGE_TO_PHYS(m);
2853 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2854 	if ((flags & VM_PROT_WRITE) != 0)
2855 		newpte |= PG_M;
2856 	if ((flags & VM_PROT_READ) != 0)
2857 		newpte |= PG_A;
2858 	if (prot & VM_PROT_READ)
2859 		newpte |= RPTE_EAA_R;
2860 	if ((prot & VM_PROT_WRITE) != 0)
2861 		newpte |= RPTE_EAA_W;
2862 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2863 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2864 
2865 	if (prot & VM_PROT_EXECUTE)
2866 		newpte |= PG_X;
2867 	if ((flags & PMAP_ENTER_WIRED) != 0)
2868 		newpte |= PG_W;
2869 	if (va >= DMAP_MIN_ADDRESS)
2870 		newpte |= RPTE_EAA_P;
2871 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2872 	/*
2873 	 * Set modified bit gratuitously for writeable mappings if
2874 	 * the page is unmanaged. We do not want to take a fault
2875 	 * to do the dirty bit accounting for these mappings.
2876 	 */
2877 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2878 		if ((newpte & PG_RW) != 0)
2879 			newpte |= PG_M;
2880 	} else
2881 		newpte |= PG_MANAGED;
2882 
2883 	lock = NULL;
2884 	PMAP_LOCK(pmap);
2885 	if (psind == 1) {
2886 		/* Assert the required virtual and physical alignment. */
2887 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2888 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2889 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2890 		goto out;
2891 	}
2892 	mpte = NULL;
2893 
2894 	/*
2895 	 * In the case that a page table page is not
2896 	 * resident, we are creating it here.
2897 	 */
2898 retry:
2899 	l3e = pmap_pml3e(pmap, va);
2900 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2901 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2902 		pte = pmap_l3e_to_pte(l3e, va);
2903 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2904 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2905 			mpte->ref_count++;
2906 		}
2907 	} else if (va < VM_MAXUSER_ADDRESS) {
2908 		/*
2909 		 * Here if the pte page isn't mapped, or if it has been
2910 		 * deallocated.
2911 		 */
2912 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2913 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2914 		    nosleep ? NULL : &lock);
2915 		if (mpte == NULL && nosleep) {
2916 			rv = KERN_RESOURCE_SHORTAGE;
2917 			goto out;
2918 		}
2919 		if (__predict_false(retrycount++ == 6))
2920 			panic("too many retries");
2921 		invalidate_all = true;
2922 		goto retry;
2923 	} else
2924 		panic("pmap_enter: invalid page directory va=%#lx", va);
2925 
2926 	origpte = be64toh(*pte);
2927 	pv = NULL;
2928 
2929 	/*
2930 	 * Is the specified virtual address already mapped?
2931 	 */
2932 	if ((origpte & PG_V) != 0) {
2933 #ifdef INVARIANTS
2934 		if (VERBOSE_PMAP || pmap_logging) {
2935 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2936 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2937 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2938 			    curproc->p_pid, curproc->p_comm, origpte);
2939 #ifdef DDB
2940 			pmap_pte_walk(pmap->pm_pml1, va);
2941 #endif
2942 		}
2943 #endif
2944 		/*
2945 		 * Wiring change, just update stats. We don't worry about
2946 		 * wiring PT pages as they remain resident as long as there
2947 		 * are valid mappings in them. Hence, if a user page is wired,
2948 		 * the PT page will be also.
2949 		 */
2950 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2951 			pmap->pm_stats.wired_count++;
2952 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2953 			pmap->pm_stats.wired_count--;
2954 
2955 		/*
2956 		 * Remove the extra PT page reference.
2957 		 */
2958 		if (mpte != NULL) {
2959 			mpte->ref_count--;
2960 			KASSERT(mpte->ref_count > 0,
2961 			    ("pmap_enter: missing reference to page table page,"
2962 			     " va: 0x%lx", va));
2963 		}
2964 
2965 		/*
2966 		 * Has the physical page changed?
2967 		 */
2968 		opa = origpte & PG_FRAME;
2969 		if (opa == pa) {
2970 			/*
2971 			 * No, might be a protection or wiring change.
2972 			 */
2973 			if ((origpte & PG_MANAGED) != 0 &&
2974 			    (newpte & PG_RW) != 0)
2975 				vm_page_aflag_set(m, PGA_WRITEABLE);
2976 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2977 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2978 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2979 						goto retry;
2980 					if ((newpte & PG_M) != (origpte & PG_M))
2981 						vm_page_dirty(m);
2982 					if ((newpte & PG_A) != (origpte & PG_A))
2983 						vm_page_aflag_set(m, PGA_REFERENCED);
2984 					ptesync();
2985 				} else
2986 					invalidate_all = true;
2987 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2988 					goto unchanged;
2989 			}
2990 			goto validate;
2991 		}
2992 
2993 		/*
2994 		 * The physical page has changed.  Temporarily invalidate
2995 		 * the mapping.  This ensures that all threads sharing the
2996 		 * pmap keep a consistent view of the mapping, which is
2997 		 * necessary for the correct handling of COW faults.  It
2998 		 * also permits reuse of the old mapping's PV entry,
2999 		 * avoiding an allocation.
3000 		 *
3001 		 * For consistency, handle unmanaged mappings the same way.
3002 		 */
3003 		origpte = be64toh(pte_load_clear(pte));
3004 		KASSERT((origpte & PG_FRAME) == opa,
3005 		    ("pmap_enter: unexpected pa update for %#lx", va));
3006 		if ((origpte & PG_MANAGED) != 0) {
3007 			om = PHYS_TO_VM_PAGE(opa);
3008 
3009 			/*
3010 			 * The pmap lock is sufficient to synchronize with
3011 			 * concurrent calls to pmap_page_test_mappings() and
3012 			 * pmap_ts_referenced().
3013 			 */
3014 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3015 				vm_page_dirty(om);
3016 			if ((origpte & PG_A) != 0)
3017 				vm_page_aflag_set(om, PGA_REFERENCED);
3018 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3019 			pv = pmap_pvh_remove(&om->md, pmap, va);
3020 			if ((newpte & PG_MANAGED) == 0)
3021 				free_pv_entry(pmap, pv);
3022 #ifdef INVARIANTS
3023 			else if (origpte & PG_MANAGED) {
3024 				if (pv == NULL) {
3025 #ifdef DDB
3026 					pmap_page_print_mappings(om);
3027 #endif
3028 					MPASS(pv != NULL);
3029 				}
3030 			}
3031 #endif
3032 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3033 			    TAILQ_EMPTY(&om->md.pv_list) &&
3034 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3035 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3036 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3037 		}
3038 		if ((origpte & PG_A) != 0)
3039 			invalidate_page = true;
3040 		origpte = 0;
3041 	} else {
3042 		if (pmap != kernel_pmap) {
3043 #ifdef INVARIANTS
3044 			if (VERBOSE_PMAP || pmap_logging)
3045 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3046 				    pmap, va, m, prot, flags, psind,
3047 				    pmap->pm_pid, curproc->p_pid,
3048 				    curproc->p_comm);
3049 #endif
3050 		}
3051 
3052 		/*
3053 		 * Increment the counters.
3054 		 */
3055 		if ((newpte & PG_W) != 0)
3056 			pmap->pm_stats.wired_count++;
3057 		pmap_resident_count_inc(pmap, 1);
3058 	}
3059 
3060 	/*
3061 	 * Enter on the PV list if part of our managed memory.
3062 	 */
3063 	if ((newpte & PG_MANAGED) != 0) {
3064 		if (pv == NULL) {
3065 			pv = get_pv_entry(pmap, &lock);
3066 			pv->pv_va = va;
3067 		}
3068 #ifdef VERBOSE_PV
3069 		else
3070 			printf("reassigning pv: %p to pmap: %p\n",
3071 				   pv, pmap);
3072 #endif
3073 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3074 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3075 		m->md.pv_gen++;
3076 		if ((newpte & PG_RW) != 0)
3077 			vm_page_aflag_set(m, PGA_WRITEABLE);
3078 	}
3079 
3080 	/*
3081 	 * Update the PTE.
3082 	 */
3083 	if ((origpte & PG_V) != 0) {
3084 validate:
3085 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3086 		KASSERT((origpte & PG_FRAME) == pa,
3087 		    ("pmap_enter: unexpected pa update for %#lx", va));
3088 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3089 		    (PG_M | PG_RW)) {
3090 			if ((origpte & PG_MANAGED) != 0)
3091 				vm_page_dirty(m);
3092 			invalidate_page = true;
3093 
3094 			/*
3095 			 * Although the PTE may still have PG_RW set, TLB
3096 			 * invalidation may nonetheless be required because
3097 			 * the PTE no longer has PG_M set.
3098 			 */
3099 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3100 			/*
3101 			 * Removing capabilities requires invalidation on POWER
3102 			 */
3103 			invalidate_page = true;
3104 			goto unchanged;
3105 		}
3106 		if ((origpte & PG_A) != 0)
3107 			invalidate_page = true;
3108 	} else {
3109 		pte_store(pte, newpte);
3110 		ptesync();
3111 	}
3112 unchanged:
3113 
3114 #if VM_NRESERVLEVEL > 0
3115 	/*
3116 	 * If both the page table page and the reservation are fully
3117 	 * populated, then attempt promotion.
3118 	 */
3119 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3120 	    mmu_radix_ps_enabled(pmap) &&
3121 	    (m->flags & PG_FICTITIOUS) == 0 &&
3122 	    vm_reserv_level_iffullpop(m) == 0 &&
3123 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3124 		invalidate_all = true;
3125 #endif
3126 	if (invalidate_all)
3127 		pmap_invalidate_all(pmap);
3128 	else if (invalidate_page)
3129 		pmap_invalidate_page(pmap, va);
3130 
3131 	rv = KERN_SUCCESS;
3132 out:
3133 	if (lock != NULL)
3134 		rw_wunlock(lock);
3135 	PMAP_UNLOCK(pmap);
3136 
3137 	return (rv);
3138 }
3139 
3140 /*
3141  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3142  * if successful.  Returns false if (1) a page table page cannot be allocated
3143  * without sleeping, (2) a mapping already exists at the specified virtual
3144  * address, or (3) a PV entry cannot be allocated without reclaiming another
3145  * PV entry.
3146  */
3147 static bool
3148 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3149     struct rwlock **lockp)
3150 {
3151 	pml3_entry_t newpde;
3152 
3153 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3154 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3155 	    RPTE_LEAF | PG_V;
3156 	if ((m->oflags & VPO_UNMANAGED) == 0)
3157 		newpde |= PG_MANAGED;
3158 	if (prot & VM_PROT_EXECUTE)
3159 		newpde |= PG_X;
3160 	if (prot & VM_PROT_READ)
3161 		newpde |= RPTE_EAA_R;
3162 	if (va >= DMAP_MIN_ADDRESS)
3163 		newpde |= RPTE_EAA_P;
3164 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3165 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3166 	    KERN_SUCCESS);
3167 }
3168 
3169 /*
3170  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3171  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3172  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3173  * a mapping already exists at the specified virtual address.  Returns
3174  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3175  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3176  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3177  *
3178  * The parameter "m" is only used when creating a managed, writeable mapping.
3179  */
3180 static int
3181 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3182     vm_page_t m, struct rwlock **lockp)
3183 {
3184 	struct spglist free;
3185 	pml3_entry_t oldl3e, *l3e;
3186 	vm_page_t mt, pdpg;
3187 	vm_page_t uwptpg;
3188 
3189 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3190 	    ("pmap_enter_pde: newpde is missing PG_M"));
3191 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3192 
3193 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3194 	    NULL : lockp)) == NULL) {
3195 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3196 		    " in pmap %p", va, pmap);
3197 		return (KERN_RESOURCE_SHORTAGE);
3198 	}
3199 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3200 	l3e = &l3e[pmap_pml3e_index(va)];
3201 	oldl3e = be64toh(*l3e);
3202 	if ((oldl3e & PG_V) != 0) {
3203 		KASSERT(pdpg->ref_count > 1,
3204 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3205 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3206 			pdpg->ref_count--;
3207 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3208 			    " in pmap %p", va, pmap);
3209 			return (KERN_FAILURE);
3210 		}
3211 		/* Break the existing mapping(s). */
3212 		SLIST_INIT(&free);
3213 		if ((oldl3e & RPTE_LEAF) != 0) {
3214 			/*
3215 			 * The reference to the PD page that was acquired by
3216 			 * pmap_allocl3e() ensures that it won't be freed.
3217 			 * However, if the PDE resulted from a promotion, then
3218 			 * a reserved PT page could be freed.
3219 			 */
3220 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3221 			pmap_invalidate_l3e_page(pmap, va, oldl3e);
3222 		} else {
3223 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3224 			    &free, lockp))
3225 		               pmap_invalidate_all(pmap);
3226 		}
3227 		vm_page_free_pages_toq(&free, true);
3228 		if (va >= VM_MAXUSER_ADDRESS) {
3229 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3230 			if (pmap_insert_pt_page(pmap, mt)) {
3231 				/*
3232 				 * XXX Currently, this can't happen because
3233 				 * we do not perform pmap_enter(psind == 1)
3234 				 * on the kernel pmap.
3235 				 */
3236 				panic("pmap_enter_pde: trie insert failed");
3237 			}
3238 		} else
3239 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3240 			    l3e));
3241 	}
3242 
3243 	/*
3244 	 * Allocate leaf ptpage for wired userspace pages.
3245 	 */
3246 	uwptpg = NULL;
3247 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
3248 		uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3249 		if (uwptpg == NULL)
3250 			return (KERN_RESOURCE_SHORTAGE);
3251 		uwptpg->pindex = pmap_l3e_pindex(va);
3252 		if (pmap_insert_pt_page(pmap, uwptpg)) {
3253 			vm_page_unwire_noq(uwptpg);
3254 			vm_page_free(uwptpg);
3255 			return (KERN_RESOURCE_SHORTAGE);
3256 		}
3257 		pmap_resident_count_inc(pmap, 1);
3258 		uwptpg->ref_count = NPTEPG;
3259 		pmap_fill_ptp((pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(uwptpg)),
3260 		    newpde);
3261 	}
3262 	if ((newpde & PG_MANAGED) != 0) {
3263 		/*
3264 		 * Abort this mapping if its PV entry could not be created.
3265 		 */
3266 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3267 			SLIST_INIT(&free);
3268 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3269 				/*
3270 				 * Although "va" is not mapped, paging-
3271 				 * structure caches could nonetheless have
3272 				 * entries that refer to the freed page table
3273 				 * pages.  Invalidate those entries.
3274 				 */
3275 				pmap_invalidate_page(pmap, va);
3276 				vm_page_free_pages_toq(&free, true);
3277 			}
3278 			if (uwptpg != NULL) {
3279 				mt = pmap_remove_pt_page(pmap, va);
3280 				KASSERT(mt == uwptpg,
3281 				    ("removed pt page %p, expected %p", mt,
3282 				    uwptpg));
3283 				pmap_resident_count_dec(pmap, 1);
3284 				uwptpg->ref_count = 1;
3285 				vm_page_unwire_noq(uwptpg);
3286 				vm_page_free(uwptpg);
3287 			}
3288 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3289 			    " in pmap %p", va, pmap);
3290 			return (KERN_RESOURCE_SHORTAGE);
3291 		}
3292 		if ((newpde & PG_RW) != 0) {
3293 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3294 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3295 		}
3296 	}
3297 
3298 	/*
3299 	 * Increment counters.
3300 	 */
3301 	if ((newpde & PG_W) != 0)
3302 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3303 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3304 
3305 	/*
3306 	 * Map the superpage.  (This is not a promoted mapping; there will not
3307 	 * be any lingering 4KB page mappings in the TLB.)
3308 	 */
3309 	pte_store(l3e, newpde);
3310 	ptesync();
3311 
3312 	counter_u64_add(pmap_l3e_mappings, 1);
3313 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3314 	    " in pmap %p", va, pmap);
3315 	return (KERN_SUCCESS);
3316 }
3317 
3318 void
3319 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3320     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3321 {
3322 
3323 	struct rwlock *lock;
3324 	vm_offset_t va;
3325 	vm_page_t m, mpte;
3326 	vm_pindex_t diff, psize;
3327 	bool invalidate;
3328 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3329 
3330 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3331 	    end, m_start, prot);
3332 
3333 	invalidate = false;
3334 	psize = atop(end - start);
3335 	mpte = NULL;
3336 	m = m_start;
3337 	lock = NULL;
3338 	PMAP_LOCK(pmap);
3339 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3340 		va = start + ptoa(diff);
3341 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3342 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3343 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3344 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3345 		else
3346 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3347 			    mpte, &lock, &invalidate);
3348 		m = TAILQ_NEXT(m, listq);
3349 	}
3350 	ptesync();
3351 	if (lock != NULL)
3352 		rw_wunlock(lock);
3353 	if (invalidate)
3354 		pmap_invalidate_all(pmap);
3355 	PMAP_UNLOCK(pmap);
3356 }
3357 
3358 static vm_page_t
3359 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3360     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3361 {
3362 	struct spglist free;
3363 	pt_entry_t *pte;
3364 	vm_paddr_t pa;
3365 
3366 	KASSERT(!VA_IS_CLEANMAP(va) ||
3367 	    (m->oflags & VPO_UNMANAGED) != 0,
3368 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3369 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3370 
3371 	/*
3372 	 * In the case that a page table page is not
3373 	 * resident, we are creating it here.
3374 	 */
3375 	if (va < VM_MAXUSER_ADDRESS) {
3376 		vm_pindex_t ptepindex;
3377 		pml3_entry_t *ptepa;
3378 
3379 		/*
3380 		 * Calculate pagetable page index
3381 		 */
3382 		ptepindex = pmap_l3e_pindex(va);
3383 		if (mpte && (mpte->pindex == ptepindex)) {
3384 			mpte->ref_count++;
3385 		} else {
3386 			/*
3387 			 * Get the page directory entry
3388 			 */
3389 			ptepa = pmap_pml3e(pmap, va);
3390 
3391 			/*
3392 			 * If the page table page is mapped, we just increment
3393 			 * the hold count, and activate it.  Otherwise, we
3394 			 * attempt to allocate a page table page.  If this
3395 			 * attempt fails, we don't retry.  Instead, we give up.
3396 			 */
3397 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3398 				if (be64toh(*ptepa) & RPTE_LEAF)
3399 					return (NULL);
3400 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3401 				mpte->ref_count++;
3402 			} else {
3403 				/*
3404 				 * Pass NULL instead of the PV list lock
3405 				 * pointer, because we don't intend to sleep.
3406 				 */
3407 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3408 				if (mpte == NULL)
3409 					return (mpte);
3410 			}
3411 		}
3412 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3413 		pte = &pte[pmap_pte_index(va)];
3414 	} else {
3415 		mpte = NULL;
3416 		pte = pmap_pte(pmap, va);
3417 	}
3418 	if (be64toh(*pte)) {
3419 		if (mpte != NULL) {
3420 			mpte->ref_count--;
3421 			mpte = NULL;
3422 		}
3423 		return (mpte);
3424 	}
3425 
3426 	/*
3427 	 * Enter on the PV list if part of our managed memory.
3428 	 */
3429 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3430 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3431 		if (mpte != NULL) {
3432 			SLIST_INIT(&free);
3433 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3434 				/*
3435 				 * Although "va" is not mapped, paging-
3436 				 * structure caches could nonetheless have
3437 				 * entries that refer to the freed page table
3438 				 * pages.  Invalidate those entries.
3439 				 */
3440 				*invalidate = true;
3441 				vm_page_free_pages_toq(&free, true);
3442 			}
3443 			mpte = NULL;
3444 		}
3445 		return (mpte);
3446 	}
3447 
3448 	/*
3449 	 * Increment counters
3450 	 */
3451 	pmap_resident_count_inc(pmap, 1);
3452 
3453 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3454 	if (prot & VM_PROT_EXECUTE)
3455 		pa |= PG_X;
3456 	else
3457 		pa |= RPTE_EAA_R;
3458 	if ((m->oflags & VPO_UNMANAGED) == 0)
3459 		pa |= PG_MANAGED;
3460 
3461 	pte_store(pte, pa);
3462 	return (mpte);
3463 }
3464 
3465 void
3466 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3467     vm_prot_t prot)
3468 {
3469 	struct rwlock *lock;
3470 	bool invalidate;
3471 
3472 	lock = NULL;
3473 	invalidate = false;
3474 	PMAP_LOCK(pmap);
3475 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3476 	    &invalidate);
3477 	ptesync();
3478 	if (lock != NULL)
3479 		rw_wunlock(lock);
3480 	if (invalidate)
3481 		pmap_invalidate_all(pmap);
3482 	PMAP_UNLOCK(pmap);
3483 }
3484 
3485 vm_paddr_t
3486 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3487 {
3488 	pml3_entry_t *l3e;
3489 	pt_entry_t *pte;
3490 	vm_paddr_t pa;
3491 
3492 	l3e = pmap_pml3e(pmap, va);
3493 	if (__predict_false(l3e == NULL))
3494 		return (0);
3495 	if (be64toh(*l3e) & RPTE_LEAF) {
3496 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3497 		pa |= (va & L3_PAGE_MASK);
3498 	} else {
3499 		/*
3500 		 * Beware of a concurrent promotion that changes the
3501 		 * PDE at this point!  For example, vtopte() must not
3502 		 * be used to access the PTE because it would use the
3503 		 * new PDE.  It is, however, safe to use the old PDE
3504 		 * because the page table page is preserved by the
3505 		 * promotion.
3506 		 */
3507 		pte = pmap_l3e_to_pte(l3e, va);
3508 		if (__predict_false(pte == NULL))
3509 			return (0);
3510 		pa = be64toh(*pte);
3511 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3512 		pa |= (va & PAGE_MASK);
3513 	}
3514 	return (pa);
3515 }
3516 
3517 vm_page_t
3518 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3519 {
3520 	pml3_entry_t l3e, *l3ep;
3521 	pt_entry_t pte;
3522 	vm_page_t m;
3523 
3524 	m = NULL;
3525 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3526 	PMAP_LOCK(pmap);
3527 	l3ep = pmap_pml3e(pmap, va);
3528 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3529 		if (l3e & RPTE_LEAF) {
3530 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3531 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3532 				    (va & L3_PAGE_MASK));
3533 		} else {
3534 			/* Native endian PTE, do not pass to pmap functions */
3535 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3536 			if ((pte & PG_V) &&
3537 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3538 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3539 		}
3540 		if (m != NULL && !vm_page_wire_mapped(m))
3541 			m = NULL;
3542 	}
3543 	PMAP_UNLOCK(pmap);
3544 	return (m);
3545 }
3546 
3547 static void
3548 mmu_radix_growkernel(vm_offset_t addr)
3549 {
3550 	vm_paddr_t paddr;
3551 	vm_page_t nkpg;
3552 	pml3_entry_t *l3e;
3553 	pml2_entry_t *l2e;
3554 
3555 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3556 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3557 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3558 		return;
3559 
3560 	addr = roundup2(addr, L3_PAGE_SIZE);
3561 	if (addr - 1 >= vm_map_max(kernel_map))
3562 		addr = vm_map_max(kernel_map);
3563 	while (kernel_vm_end < addr) {
3564 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3565 		if ((be64toh(*l2e) & PG_V) == 0) {
3566 			/* We need a new PDP entry */
3567 			nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3568 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3569 			if (nkpg == NULL)
3570 				panic("pmap_growkernel: no memory to grow kernel");
3571 			nkpg->pindex = kernel_vm_end >> L2_PAGE_SIZE_SHIFT;
3572 			paddr = VM_PAGE_TO_PHYS(nkpg);
3573 			pde_store(l2e, paddr);
3574 			continue; /* try again */
3575 		}
3576 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3577 		if ((be64toh(*l3e) & PG_V) != 0) {
3578 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3579 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3580 				kernel_vm_end = vm_map_max(kernel_map);
3581 				break;
3582 			}
3583 			continue;
3584 		}
3585 
3586 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
3587 		    VM_ALLOC_ZERO);
3588 		if (nkpg == NULL)
3589 			panic("pmap_growkernel: no memory to grow kernel");
3590 		nkpg->pindex = pmap_l3e_pindex(kernel_vm_end);
3591 		paddr = VM_PAGE_TO_PHYS(nkpg);
3592 		pde_store(l3e, paddr);
3593 
3594 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3595 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3596 			kernel_vm_end = vm_map_max(kernel_map);
3597 			break;
3598 		}
3599 	}
3600 	ptesync();
3601 }
3602 
3603 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3604 static uma_zone_t zone_radix_pgd;
3605 
3606 static int
3607 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3608     int flags)
3609 {
3610 	int req;
3611 
3612 	req = VM_ALLOC_WIRED | malloc2vm_flags(flags);
3613 	for (int i = 0; i < count; i++) {
3614 		vm_page_t m = vm_page_alloc_noobj_contig(req,
3615 		    RADIX_PGD_SIZE / PAGE_SIZE,
3616 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3617 		    VM_MEMATTR_DEFAULT);
3618 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3619 	}
3620 	return (count);
3621 }
3622 
3623 static void
3624 radix_pgd_release(void *arg __unused, void **store, int count)
3625 {
3626 	vm_page_t m;
3627 	struct spglist free;
3628 	int page_count;
3629 
3630 	SLIST_INIT(&free);
3631 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3632 
3633 	for (int i = 0; i < count; i++) {
3634 		/*
3635 		 * XXX selectively remove dmap and KVA entries so we don't
3636 		 * need to bzero
3637 		 */
3638 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3639 		for (int j = page_count-1; j >= 0; j--) {
3640 			vm_page_unwire_noq(&m[j]);
3641 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3642 		}
3643 		vm_page_free_pages_toq(&free, false);
3644 	}
3645 }
3646 
3647 static void
3648 mmu_radix_init(void)
3649 {
3650 	vm_page_t mpte;
3651 	vm_size_t s;
3652 	int error, i, pv_npg;
3653 
3654 	/* XXX is this really needed for POWER? */
3655 	/* L1TF, reserve page @0 unconditionally */
3656 	vm_page_blacklist_add(0, bootverbose);
3657 
3658 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3659 		RADIX_PGD_SIZE, NULL, NULL,
3660 #ifdef INVARIANTS
3661 	    trash_init, trash_fini,
3662 #else
3663 	    NULL, NULL,
3664 #endif
3665 		radix_pgd_import, radix_pgd_release,
3666 		NULL, UMA_ZONE_NOBUCKET);
3667 
3668 	/*
3669 	 * Initialize the vm page array entries for the kernel pmap's
3670 	 * page table pages.
3671 	 */
3672 	PMAP_LOCK(kernel_pmap);
3673 	for (i = 0; i < nkpt; i++) {
3674 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3675 		KASSERT(mpte >= vm_page_array &&
3676 		    mpte < &vm_page_array[vm_page_array_size],
3677 		    ("pmap_init: page table page is out of range size: %lu",
3678 		     vm_page_array_size));
3679 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3680 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3681 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3682 		//pmap_insert_pt_page(kernel_pmap, mpte);
3683 		mpte->ref_count = 1;
3684 	}
3685 	PMAP_UNLOCK(kernel_pmap);
3686 	vm_wire_add(nkpt);
3687 
3688 	CTR1(KTR_PMAP, "%s()", __func__);
3689 	TAILQ_INIT(&pv_dummy.pv_list);
3690 
3691 	/*
3692 	 * Are large page mappings enabled?
3693 	 */
3694 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3695 	if (superpages_enabled) {
3696 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3697 		    ("pmap_init: can't assign to pagesizes[1]"));
3698 		pagesizes[1] = L3_PAGE_SIZE;
3699 	}
3700 
3701 	/*
3702 	 * Initialize the pv chunk list mutex.
3703 	 */
3704 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3705 
3706 	/*
3707 	 * Initialize the pool of pv list locks.
3708 	 */
3709 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3710 		rw_init(&pv_list_locks[i], "pmap pv list");
3711 
3712 	/*
3713 	 * Calculate the size of the pv head table for superpages.
3714 	 */
3715 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3716 
3717 	/*
3718 	 * Allocate memory for the pv head table for superpages.
3719 	 */
3720 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3721 	s = round_page(s);
3722 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
3723 	for (i = 0; i < pv_npg; i++)
3724 		TAILQ_INIT(&pv_table[i].pv_list);
3725 	TAILQ_INIT(&pv_dummy.pv_list);
3726 
3727 	pmap_initialized = 1;
3728 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3729 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3730 	    (vmem_addr_t *)&qframe);
3731 
3732 	if (error != 0)
3733 		panic("qframe allocation failed");
3734 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3735 	    1, 1, M_WAITOK);
3736 }
3737 
3738 static bool
3739 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
3740 {
3741 	struct rwlock *lock;
3742 	pv_entry_t pv;
3743 	struct md_page *pvh;
3744 	pt_entry_t *pte, mask;
3745 	pmap_t pmap;
3746 	int md_gen, pvh_gen;
3747 	bool rv;
3748 
3749 	rv = false;
3750 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3751 	rw_rlock(lock);
3752 restart:
3753 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3754 		pmap = PV_PMAP(pv);
3755 		if (!PMAP_TRYLOCK(pmap)) {
3756 			md_gen = m->md.pv_gen;
3757 			rw_runlock(lock);
3758 			PMAP_LOCK(pmap);
3759 			rw_rlock(lock);
3760 			if (md_gen != m->md.pv_gen) {
3761 				PMAP_UNLOCK(pmap);
3762 				goto restart;
3763 			}
3764 		}
3765 		pte = pmap_pte(pmap, pv->pv_va);
3766 		mask = 0;
3767 		if (modified)
3768 			mask |= PG_RW | PG_M;
3769 		if (accessed)
3770 			mask |= PG_V | PG_A;
3771 		rv = (be64toh(*pte) & mask) == mask;
3772 		PMAP_UNLOCK(pmap);
3773 		if (rv)
3774 			goto out;
3775 	}
3776 	if ((m->flags & PG_FICTITIOUS) == 0) {
3777 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3778 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3779 			pmap = PV_PMAP(pv);
3780 			if (!PMAP_TRYLOCK(pmap)) {
3781 				md_gen = m->md.pv_gen;
3782 				pvh_gen = pvh->pv_gen;
3783 				rw_runlock(lock);
3784 				PMAP_LOCK(pmap);
3785 				rw_rlock(lock);
3786 				if (md_gen != m->md.pv_gen ||
3787 				    pvh_gen != pvh->pv_gen) {
3788 					PMAP_UNLOCK(pmap);
3789 					goto restart;
3790 				}
3791 			}
3792 			pte = pmap_pml3e(pmap, pv->pv_va);
3793 			mask = 0;
3794 			if (modified)
3795 				mask |= PG_RW | PG_M;
3796 			if (accessed)
3797 				mask |= PG_V | PG_A;
3798 			rv = (be64toh(*pte) & mask) == mask;
3799 			PMAP_UNLOCK(pmap);
3800 			if (rv)
3801 				goto out;
3802 		}
3803 	}
3804 out:
3805 	rw_runlock(lock);
3806 	return (rv);
3807 }
3808 
3809 /*
3810  *	pmap_is_modified:
3811  *
3812  *	Return whether or not the specified physical page was modified
3813  *	in any physical maps.
3814  */
3815 bool
3816 mmu_radix_is_modified(vm_page_t m)
3817 {
3818 
3819 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3820 	    ("pmap_is_modified: page %p is not managed", m));
3821 
3822 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3823 	/*
3824 	 * If the page is not busied then this check is racy.
3825 	 */
3826 	if (!pmap_page_is_write_mapped(m))
3827 		return (false);
3828 	return (pmap_page_test_mappings(m, false, true));
3829 }
3830 
3831 bool
3832 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3833 {
3834 	pml3_entry_t *l3e;
3835 	pt_entry_t *pte;
3836 	bool rv;
3837 
3838 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3839 	rv = false;
3840 	PMAP_LOCK(pmap);
3841 	l3e = pmap_pml3e(pmap, addr);
3842 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3843 		pte = pmap_l3e_to_pte(l3e, addr);
3844 		rv = (be64toh(*pte) & PG_V) == 0;
3845 	}
3846 	PMAP_UNLOCK(pmap);
3847 	return (rv);
3848 }
3849 
3850 bool
3851 mmu_radix_is_referenced(vm_page_t m)
3852 {
3853 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3854 	    ("pmap_is_referenced: page %p is not managed", m));
3855 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3856 	return (pmap_page_test_mappings(m, true, false));
3857 }
3858 
3859 /*
3860  *	pmap_ts_referenced:
3861  *
3862  *	Return a count of reference bits for a page, clearing those bits.
3863  *	It is not necessary for every reference bit to be cleared, but it
3864  *	is necessary that 0 only be returned when there are truly no
3865  *	reference bits set.
3866  *
3867  *	As an optimization, update the page's dirty field if a modified bit is
3868  *	found while counting reference bits.  This opportunistic update can be
3869  *	performed at low cost and can eliminate the need for some future calls
3870  *	to pmap_is_modified().  However, since this function stops after
3871  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3872  *	dirty pages.  Those dirty pages will only be detected by a future call
3873  *	to pmap_is_modified().
3874  *
3875  *	A DI block is not needed within this function, because
3876  *	invalidations are performed before the PV list lock is
3877  *	released.
3878  */
3879 int
3880 mmu_radix_ts_referenced(vm_page_t m)
3881 {
3882 	struct md_page *pvh;
3883 	pv_entry_t pv, pvf;
3884 	pmap_t pmap;
3885 	struct rwlock *lock;
3886 	pml3_entry_t oldl3e, *l3e;
3887 	pt_entry_t *pte;
3888 	vm_paddr_t pa;
3889 	int cleared, md_gen, not_cleared, pvh_gen;
3890 	struct spglist free;
3891 
3892 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3893 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3894 	    ("pmap_ts_referenced: page %p is not managed", m));
3895 	SLIST_INIT(&free);
3896 	cleared = 0;
3897 	pa = VM_PAGE_TO_PHYS(m);
3898 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3899 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3900 	rw_wlock(lock);
3901 retry:
3902 	not_cleared = 0;
3903 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3904 		goto small_mappings;
3905 	pv = pvf;
3906 	do {
3907 		if (pvf == NULL)
3908 			pvf = pv;
3909 		pmap = PV_PMAP(pv);
3910 		if (!PMAP_TRYLOCK(pmap)) {
3911 			pvh_gen = pvh->pv_gen;
3912 			rw_wunlock(lock);
3913 			PMAP_LOCK(pmap);
3914 			rw_wlock(lock);
3915 			if (pvh_gen != pvh->pv_gen) {
3916 				PMAP_UNLOCK(pmap);
3917 				goto retry;
3918 			}
3919 		}
3920 		l3e = pmap_pml3e(pmap, pv->pv_va);
3921 		oldl3e = be64toh(*l3e);
3922 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3923 			/*
3924 			 * Although "oldpde" is mapping a 2MB page, because
3925 			 * this function is called at a 4KB page granularity,
3926 			 * we only update the 4KB page under test.
3927 			 */
3928 			vm_page_dirty(m);
3929 		}
3930 		if ((oldl3e & PG_A) != 0) {
3931 			/*
3932 			 * Since this reference bit is shared by 512 4KB
3933 			 * pages, it should not be cleared every time it is
3934 			 * tested.  Apply a simple "hash" function on the
3935 			 * physical page number, the virtual superpage number,
3936 			 * and the pmap address to select one 4KB page out of
3937 			 * the 512 on which testing the reference bit will
3938 			 * result in clearing that reference bit.  This
3939 			 * function is designed to avoid the selection of the
3940 			 * same 4KB page for every 2MB page mapping.
3941 			 *
3942 			 * On demotion, a mapping that hasn't been referenced
3943 			 * is simply destroyed.  To avoid the possibility of a
3944 			 * subsequent page fault on a demoted wired mapping,
3945 			 * always leave its reference bit set.  Moreover,
3946 			 * since the superpage is wired, the current state of
3947 			 * its reference bit won't affect page replacement.
3948 			 */
3949 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3950 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3951 			    (oldl3e & PG_W) == 0) {
3952 				atomic_clear_long(l3e, htobe64(PG_A));
3953 				pmap_invalidate_page(pmap, pv->pv_va);
3954 				cleared++;
3955 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3956 				    ("inconsistent pv lock %p %p for page %p",
3957 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3958 			} else
3959 				not_cleared++;
3960 		}
3961 		PMAP_UNLOCK(pmap);
3962 		/* Rotate the PV list if it has more than one entry. */
3963 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3964 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3965 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3966 			pvh->pv_gen++;
3967 		}
3968 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3969 			goto out;
3970 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3971 small_mappings:
3972 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3973 		goto out;
3974 	pv = pvf;
3975 	do {
3976 		if (pvf == NULL)
3977 			pvf = pv;
3978 		pmap = PV_PMAP(pv);
3979 		if (!PMAP_TRYLOCK(pmap)) {
3980 			pvh_gen = pvh->pv_gen;
3981 			md_gen = m->md.pv_gen;
3982 			rw_wunlock(lock);
3983 			PMAP_LOCK(pmap);
3984 			rw_wlock(lock);
3985 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3986 				PMAP_UNLOCK(pmap);
3987 				goto retry;
3988 			}
3989 		}
3990 		l3e = pmap_pml3e(pmap, pv->pv_va);
3991 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3992 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3993 		    m));
3994 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3995 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3996 			vm_page_dirty(m);
3997 		if ((be64toh(*pte) & PG_A) != 0) {
3998 			atomic_clear_long(pte, htobe64(PG_A));
3999 			pmap_invalidate_page(pmap, pv->pv_va);
4000 			cleared++;
4001 		}
4002 		PMAP_UNLOCK(pmap);
4003 		/* Rotate the PV list if it has more than one entry. */
4004 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
4005 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
4006 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
4007 			m->md.pv_gen++;
4008 		}
4009 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4010 	    not_cleared < PMAP_TS_REFERENCED_MAX);
4011 out:
4012 	rw_wunlock(lock);
4013 	vm_page_free_pages_toq(&free, true);
4014 	return (cleared + not_cleared);
4015 }
4016 
4017 static vm_offset_t
4018 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
4019     vm_paddr_t end, int prot __unused)
4020 {
4021 
4022 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
4023 		 prot);
4024 	return (PHYS_TO_DMAP(start));
4025 }
4026 
4027 void
4028 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
4029     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4030 {
4031 	pml3_entry_t *l3e;
4032 	vm_paddr_t pa, ptepa;
4033 	vm_page_t p, pdpg;
4034 	vm_memattr_t ma;
4035 
4036 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4037 	    object, pindex, size);
4038 	VM_OBJECT_ASSERT_WLOCKED(object);
4039 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4040 			("pmap_object_init_pt: non-device object"));
4041 	/* NB: size can be logically ored with addr here */
4042 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4043 		if (!mmu_radix_ps_enabled(pmap))
4044 			return;
4045 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4046 			return;
4047 		p = vm_page_lookup(object, pindex);
4048 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4049 		    ("pmap_object_init_pt: invalid page %p", p));
4050 		ma = p->md.mdpg_cache_attrs;
4051 
4052 		/*
4053 		 * Abort the mapping if the first page is not physically
4054 		 * aligned to a 2MB page boundary.
4055 		 */
4056 		ptepa = VM_PAGE_TO_PHYS(p);
4057 		if (ptepa & L3_PAGE_MASK)
4058 			return;
4059 
4060 		/*
4061 		 * Skip the first page.  Abort the mapping if the rest of
4062 		 * the pages are not physically contiguous or have differing
4063 		 * memory attributes.
4064 		 */
4065 		p = TAILQ_NEXT(p, listq);
4066 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4067 		    pa += PAGE_SIZE) {
4068 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4069 			    ("pmap_object_init_pt: invalid page %p", p));
4070 			if (pa != VM_PAGE_TO_PHYS(p) ||
4071 			    ma != p->md.mdpg_cache_attrs)
4072 				return;
4073 			p = TAILQ_NEXT(p, listq);
4074 		}
4075 
4076 		PMAP_LOCK(pmap);
4077 		for (pa = ptepa | pmap_cache_bits(ma);
4078 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
4079 			pdpg = pmap_allocl3e(pmap, addr, NULL);
4080 			if (pdpg == NULL) {
4081 				/*
4082 				 * The creation of mappings below is only an
4083 				 * optimization.  If a page directory page
4084 				 * cannot be allocated without blocking,
4085 				 * continue on to the next mapping rather than
4086 				 * blocking.
4087 				 */
4088 				addr += L3_PAGE_SIZE;
4089 				continue;
4090 			}
4091 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4092 			l3e = &l3e[pmap_pml3e_index(addr)];
4093 			if ((be64toh(*l3e) & PG_V) == 0) {
4094 				pa |= PG_M | PG_A | PG_RW;
4095 				pte_store(l3e, pa);
4096 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4097 				counter_u64_add(pmap_l3e_mappings, 1);
4098 			} else {
4099 				/* Continue on if the PDE is already valid. */
4100 				pdpg->ref_count--;
4101 				KASSERT(pdpg->ref_count > 0,
4102 				    ("pmap_object_init_pt: missing reference "
4103 				    "to page directory page, va: 0x%lx", addr));
4104 			}
4105 			addr += L3_PAGE_SIZE;
4106 		}
4107 		ptesync();
4108 		PMAP_UNLOCK(pmap);
4109 	}
4110 }
4111 
4112 bool
4113 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4114 {
4115 	struct md_page *pvh;
4116 	struct rwlock *lock;
4117 	pv_entry_t pv;
4118 	int loops = 0;
4119 	bool rv;
4120 
4121 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4122 	    ("pmap_page_exists_quick: page %p is not managed", m));
4123 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4124 	rv = false;
4125 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4126 	rw_rlock(lock);
4127 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4128 		if (PV_PMAP(pv) == pmap) {
4129 			rv = true;
4130 			break;
4131 		}
4132 		loops++;
4133 		if (loops >= 16)
4134 			break;
4135 	}
4136 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4137 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4138 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4139 			if (PV_PMAP(pv) == pmap) {
4140 				rv = true;
4141 				break;
4142 			}
4143 			loops++;
4144 			if (loops >= 16)
4145 				break;
4146 		}
4147 	}
4148 	rw_runlock(lock);
4149 	return (rv);
4150 }
4151 
4152 void
4153 mmu_radix_page_init(vm_page_t m)
4154 {
4155 
4156 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4157 	TAILQ_INIT(&m->md.pv_list);
4158 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4159 }
4160 
4161 int
4162 mmu_radix_page_wired_mappings(vm_page_t m)
4163 {
4164 	struct rwlock *lock;
4165 	struct md_page *pvh;
4166 	pmap_t pmap;
4167 	pt_entry_t *pte;
4168 	pv_entry_t pv;
4169 	int count, md_gen, pvh_gen;
4170 
4171 	if ((m->oflags & VPO_UNMANAGED) != 0)
4172 		return (0);
4173 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4174 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4175 	rw_rlock(lock);
4176 restart:
4177 	count = 0;
4178 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4179 		pmap = PV_PMAP(pv);
4180 		if (!PMAP_TRYLOCK(pmap)) {
4181 			md_gen = m->md.pv_gen;
4182 			rw_runlock(lock);
4183 			PMAP_LOCK(pmap);
4184 			rw_rlock(lock);
4185 			if (md_gen != m->md.pv_gen) {
4186 				PMAP_UNLOCK(pmap);
4187 				goto restart;
4188 			}
4189 		}
4190 		pte = pmap_pte(pmap, pv->pv_va);
4191 		if ((be64toh(*pte) & PG_W) != 0)
4192 			count++;
4193 		PMAP_UNLOCK(pmap);
4194 	}
4195 	if ((m->flags & PG_FICTITIOUS) == 0) {
4196 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4197 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4198 			pmap = PV_PMAP(pv);
4199 			if (!PMAP_TRYLOCK(pmap)) {
4200 				md_gen = m->md.pv_gen;
4201 				pvh_gen = pvh->pv_gen;
4202 				rw_runlock(lock);
4203 				PMAP_LOCK(pmap);
4204 				rw_rlock(lock);
4205 				if (md_gen != m->md.pv_gen ||
4206 				    pvh_gen != pvh->pv_gen) {
4207 					PMAP_UNLOCK(pmap);
4208 					goto restart;
4209 				}
4210 			}
4211 			pte = pmap_pml3e(pmap, pv->pv_va);
4212 			if ((be64toh(*pte) & PG_W) != 0)
4213 				count++;
4214 			PMAP_UNLOCK(pmap);
4215 		}
4216 	}
4217 	rw_runlock(lock);
4218 	return (count);
4219 }
4220 
4221 static void
4222 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4223 {
4224 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4225 }
4226 
4227 int
4228 mmu_radix_pinit(pmap_t pmap)
4229 {
4230 	vmem_addr_t pid;
4231 	vm_paddr_t l1pa;
4232 
4233 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4234 
4235 	/*
4236 	 * allocate the page directory page
4237 	 */
4238 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4239 
4240 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4241 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4242 	vm_radix_init(&pmap->pm_radix);
4243 	TAILQ_INIT(&pmap->pm_pvchunk);
4244 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4245 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4246 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4247 
4248 	pmap->pm_pid = pid;
4249 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4250 	mmu_radix_update_proctab(pid, l1pa);
4251 	__asm __volatile("ptesync;isync" : : : "memory");
4252 
4253 	return (1);
4254 }
4255 
4256 /*
4257  * This routine is called if the desired page table page does not exist.
4258  *
4259  * If page table page allocation fails, this routine may sleep before
4260  * returning NULL.  It sleeps only if a lock pointer was given.
4261  *
4262  * Note: If a page allocation fails at page table level two or three,
4263  * one or two pages may be held during the wait, only to be released
4264  * afterwards.  This conservative approach is easily argued to avoid
4265  * race conditions.
4266  */
4267 static vm_page_t
4268 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4269 {
4270 	vm_page_t m, pdppg, pdpg;
4271 
4272 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4273 
4274 	/*
4275 	 * Allocate a page table page.
4276 	 */
4277 	if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4278 		if (lockp != NULL) {
4279 			RELEASE_PV_LIST_LOCK(lockp);
4280 			PMAP_UNLOCK(pmap);
4281 			vm_wait(NULL);
4282 			PMAP_LOCK(pmap);
4283 		}
4284 		/*
4285 		 * Indicate the need to retry.  While waiting, the page table
4286 		 * page may have been allocated.
4287 		 */
4288 		return (NULL);
4289 	}
4290 	m->pindex = ptepindex;
4291 
4292 	/*
4293 	 * Map the pagetable page into the process address space, if
4294 	 * it isn't already there.
4295 	 */
4296 
4297 	if (ptepindex >= (NUPDE + NUPDPE)) {
4298 		pml1_entry_t *l1e;
4299 		vm_pindex_t pml1index;
4300 
4301 		/* Wire up a new PDPE page */
4302 		pml1index = ptepindex - (NUPDE + NUPDPE);
4303 		l1e = &pmap->pm_pml1[pml1index];
4304 		KASSERT((be64toh(*l1e) & PG_V) == 0,
4305 		    ("%s: L1 entry %#lx is valid", __func__, *l1e));
4306 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4307 	} else if (ptepindex >= NUPDE) {
4308 		vm_pindex_t pml1index;
4309 		vm_pindex_t pdpindex;
4310 		pml1_entry_t *l1e;
4311 		pml2_entry_t *l2e;
4312 
4313 		/* Wire up a new l2e page */
4314 		pdpindex = ptepindex - NUPDE;
4315 		pml1index = pdpindex >> RPTE_SHIFT;
4316 
4317 		l1e = &pmap->pm_pml1[pml1index];
4318 		if ((be64toh(*l1e) & PG_V) == 0) {
4319 			/* Have to allocate a new pdp, recurse */
4320 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4321 				lockp) == NULL) {
4322 				vm_page_unwire_noq(m);
4323 				vm_page_free_zero(m);
4324 				return (NULL);
4325 			}
4326 		} else {
4327 			/* Add reference to l2e page */
4328 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4329 			pdppg->ref_count++;
4330 		}
4331 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4332 
4333 		/* Now find the pdp page */
4334 		l2e = &l2e[pdpindex & RPTE_MASK];
4335 		KASSERT((be64toh(*l2e) & PG_V) == 0,
4336 		    ("%s: L2 entry %#lx is valid", __func__, *l2e));
4337 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4338 	} else {
4339 		vm_pindex_t pml1index;
4340 		vm_pindex_t pdpindex;
4341 		pml1_entry_t *l1e;
4342 		pml2_entry_t *l2e;
4343 		pml3_entry_t *l3e;
4344 
4345 		/* Wire up a new PTE page */
4346 		pdpindex = ptepindex >> RPTE_SHIFT;
4347 		pml1index = pdpindex >> RPTE_SHIFT;
4348 
4349 		/* First, find the pdp and check that its valid. */
4350 		l1e = &pmap->pm_pml1[pml1index];
4351 		if ((be64toh(*l1e) & PG_V) == 0) {
4352 			/* Have to allocate a new pd, recurse */
4353 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4354 			    lockp) == NULL) {
4355 				vm_page_unwire_noq(m);
4356 				vm_page_free_zero(m);
4357 				return (NULL);
4358 			}
4359 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4360 			l2e = &l2e[pdpindex & RPTE_MASK];
4361 		} else {
4362 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4363 			l2e = &l2e[pdpindex & RPTE_MASK];
4364 			if ((be64toh(*l2e) & PG_V) == 0) {
4365 				/* Have to allocate a new pd, recurse */
4366 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4367 				    lockp) == NULL) {
4368 					vm_page_unwire_noq(m);
4369 					vm_page_free_zero(m);
4370 					return (NULL);
4371 				}
4372 			} else {
4373 				/* Add reference to the pd page */
4374 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4375 				pdpg->ref_count++;
4376 			}
4377 		}
4378 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4379 
4380 		/* Now we know where the page directory page is */
4381 		l3e = &l3e[ptepindex & RPTE_MASK];
4382 		KASSERT((be64toh(*l3e) & PG_V) == 0,
4383 		    ("%s: L3 entry %#lx is valid", __func__, *l3e));
4384 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4385 	}
4386 
4387 	pmap_resident_count_inc(pmap, 1);
4388 	return (m);
4389 }
4390 static vm_page_t
4391 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4392 {
4393 	vm_pindex_t pdpindex, ptepindex;
4394 	pml2_entry_t *pdpe;
4395 	vm_page_t pdpg;
4396 
4397 retry:
4398 	pdpe = pmap_pml2e(pmap, va);
4399 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4400 		/* Add a reference to the pd page. */
4401 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4402 		pdpg->ref_count++;
4403 	} else {
4404 		/* Allocate a pd page. */
4405 		ptepindex = pmap_l3e_pindex(va);
4406 		pdpindex = ptepindex >> RPTE_SHIFT;
4407 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4408 		if (pdpg == NULL && lockp != NULL)
4409 			goto retry;
4410 	}
4411 	return (pdpg);
4412 }
4413 
4414 static vm_page_t
4415 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4416 {
4417 	vm_pindex_t ptepindex;
4418 	pml3_entry_t *pd;
4419 	vm_page_t m;
4420 
4421 	/*
4422 	 * Calculate pagetable page index
4423 	 */
4424 	ptepindex = pmap_l3e_pindex(va);
4425 retry:
4426 	/*
4427 	 * Get the page directory entry
4428 	 */
4429 	pd = pmap_pml3e(pmap, va);
4430 
4431 	/*
4432 	 * This supports switching from a 2MB page to a
4433 	 * normal 4K page.
4434 	 */
4435 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4436 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4437 			/*
4438 			 * Invalidation of the 2MB page mapping may have caused
4439 			 * the deallocation of the underlying PD page.
4440 			 */
4441 			pd = NULL;
4442 		}
4443 	}
4444 
4445 	/*
4446 	 * If the page table page is mapped, we just increment the
4447 	 * hold count, and activate it.
4448 	 */
4449 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4450 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4451 		m->ref_count++;
4452 	} else {
4453 		/*
4454 		 * Here if the pte page isn't mapped, or if it has been
4455 		 * deallocated.
4456 		 */
4457 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4458 		if (m == NULL && lockp != NULL)
4459 			goto retry;
4460 	}
4461 	return (m);
4462 }
4463 
4464 static void
4465 mmu_radix_pinit0(pmap_t pmap)
4466 {
4467 
4468 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4469 	PMAP_LOCK_INIT(pmap);
4470 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4471 	pmap->pm_pid = kernel_pmap->pm_pid;
4472 
4473 	vm_radix_init(&pmap->pm_radix);
4474 	TAILQ_INIT(&pmap->pm_pvchunk);
4475 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4476 	kernel_pmap->pm_flags =
4477 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4478 }
4479 /*
4480  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4481  */
4482 static bool
4483 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4484 {
4485 	pt_entry_t newpde, oldpde;
4486 	vm_offset_t eva, va;
4487 	vm_page_t m;
4488 	bool anychanged;
4489 
4490 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4491 	KASSERT((sva & L3_PAGE_MASK) == 0,
4492 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4493 	anychanged = false;
4494 retry:
4495 	oldpde = newpde = be64toh(*l3e);
4496 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4497 	    (PG_MANAGED | PG_M | PG_RW)) {
4498 		eva = sva + L3_PAGE_SIZE;
4499 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4500 		    va < eva; va += PAGE_SIZE, m++)
4501 			vm_page_dirty(m);
4502 	}
4503 	if ((prot & VM_PROT_WRITE) == 0) {
4504 		newpde &= ~(PG_RW | PG_M);
4505 		newpde |= RPTE_EAA_R;
4506 	}
4507 	if (prot & VM_PROT_EXECUTE)
4508 		newpde |= PG_X;
4509 	if (newpde != oldpde) {
4510 		/*
4511 		 * As an optimization to future operations on this PDE, clear
4512 		 * PG_PROMOTED.  The impending invalidation will remove any
4513 		 * lingering 4KB page mappings from the TLB.
4514 		 */
4515 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4516 			goto retry;
4517 		anychanged = true;
4518 	}
4519 	return (anychanged);
4520 }
4521 
4522 void
4523 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4524     vm_prot_t prot)
4525 {
4526 	vm_offset_t va_next;
4527 	pml1_entry_t *l1e;
4528 	pml2_entry_t *l2e;
4529 	pml3_entry_t ptpaddr, *l3e;
4530 	pt_entry_t *pte;
4531 	bool anychanged;
4532 
4533 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4534 	    prot);
4535 
4536 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4537 	if (prot == VM_PROT_NONE) {
4538 		mmu_radix_remove(pmap, sva, eva);
4539 		return;
4540 	}
4541 
4542 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4543 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4544 		return;
4545 
4546 #ifdef INVARIANTS
4547 	if (VERBOSE_PROTECT || pmap_logging)
4548 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4549 			   pmap, sva, eva, prot, pmap->pm_pid);
4550 #endif
4551 	anychanged = false;
4552 
4553 	PMAP_LOCK(pmap);
4554 	for (; sva < eva; sva = va_next) {
4555 		l1e = pmap_pml1e(pmap, sva);
4556 		if ((be64toh(*l1e) & PG_V) == 0) {
4557 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4558 			if (va_next < sva)
4559 				va_next = eva;
4560 			continue;
4561 		}
4562 
4563 		l2e = pmap_l1e_to_l2e(l1e, sva);
4564 		if ((be64toh(*l2e) & PG_V) == 0) {
4565 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4566 			if (va_next < sva)
4567 				va_next = eva;
4568 			continue;
4569 		}
4570 
4571 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4572 		if (va_next < sva)
4573 			va_next = eva;
4574 
4575 		l3e = pmap_l2e_to_l3e(l2e, sva);
4576 		ptpaddr = be64toh(*l3e);
4577 
4578 		/*
4579 		 * Weed out invalid mappings.
4580 		 */
4581 		if (ptpaddr == 0)
4582 			continue;
4583 
4584 		/*
4585 		 * Check for large page.
4586 		 */
4587 		if ((ptpaddr & RPTE_LEAF) != 0) {
4588 			/*
4589 			 * Are we protecting the entire large page?  If not,
4590 			 * demote the mapping and fall through.
4591 			 */
4592 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4593 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4594 					anychanged = true;
4595 				continue;
4596 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4597 				/*
4598 				 * The large page mapping was destroyed.
4599 				 */
4600 				continue;
4601 			}
4602 		}
4603 
4604 		if (va_next > eva)
4605 			va_next = eva;
4606 
4607 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4608 		    sva += PAGE_SIZE) {
4609 			pt_entry_t obits, pbits;
4610 			vm_page_t m;
4611 
4612 retry:
4613 			MPASS(pte == pmap_pte(pmap, sva));
4614 			obits = pbits = be64toh(*pte);
4615 			if ((pbits & PG_V) == 0)
4616 				continue;
4617 
4618 			if ((prot & VM_PROT_WRITE) == 0) {
4619 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4620 				    (PG_MANAGED | PG_M | PG_RW)) {
4621 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4622 					vm_page_dirty(m);
4623 				}
4624 				pbits &= ~(PG_RW | PG_M);
4625 				pbits |= RPTE_EAA_R;
4626 			}
4627 			if (prot & VM_PROT_EXECUTE)
4628 				pbits |= PG_X;
4629 
4630 			if (pbits != obits) {
4631 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4632 					goto retry;
4633 				if (obits & (PG_A|PG_M)) {
4634 					anychanged = true;
4635 #ifdef INVARIANTS
4636 					if (VERBOSE_PROTECT || pmap_logging)
4637 						printf("%#lx %#lx -> %#lx\n",
4638 						    sva, obits, pbits);
4639 #endif
4640 				}
4641 			}
4642 		}
4643 	}
4644 	if (anychanged)
4645 		pmap_invalidate_all(pmap);
4646 	PMAP_UNLOCK(pmap);
4647 }
4648 
4649 void
4650 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4651 {
4652 
4653 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4654 	pt_entry_t oldpte, pa, *pte;
4655 	vm_page_t m;
4656 	uint64_t cache_bits, attr_bits;
4657 	vm_offset_t va;
4658 
4659 	oldpte = 0;
4660 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4661 	va = sva;
4662 	pte = kvtopte(va);
4663 	while (va < sva + PAGE_SIZE * count) {
4664 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4665 			pte = kvtopte(va);
4666 		MPASS(pte == pmap_pte(kernel_pmap, va));
4667 
4668 		/*
4669 		 * XXX there has to be a more efficient way than traversing
4670 		 * the page table every time - but go for correctness for
4671 		 * today
4672 		 */
4673 
4674 		m = *ma++;
4675 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4676 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4677 		if (be64toh(*pte) != pa) {
4678 			oldpte |= be64toh(*pte);
4679 			pte_store(pte, pa);
4680 		}
4681 		va += PAGE_SIZE;
4682 		pte++;
4683 	}
4684 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4685 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4686 		    PAGE_SIZE);
4687 	else
4688 		ptesync();
4689 }
4690 
4691 void
4692 mmu_radix_qremove(vm_offset_t sva, int count)
4693 {
4694 	vm_offset_t va;
4695 	pt_entry_t *pte;
4696 
4697 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4698 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4699 
4700 	va = sva;
4701 	pte = kvtopte(va);
4702 	while (va < sva + PAGE_SIZE * count) {
4703 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4704 			pte = kvtopte(va);
4705 		pte_clear(pte);
4706 		pte++;
4707 		va += PAGE_SIZE;
4708 	}
4709 	pmap_invalidate_range(kernel_pmap, sva, va);
4710 }
4711 
4712 /***************************************************
4713  * Page table page management routines.....
4714  ***************************************************/
4715 /*
4716  * Schedule the specified unused page table page to be freed.  Specifically,
4717  * add the page to the specified list of pages that will be released to the
4718  * physical memory manager after the TLB has been updated.
4719  */
4720 static __inline void
4721 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4722 {
4723 
4724 	if (set_PG_ZERO)
4725 		m->flags |= PG_ZERO;
4726 	else
4727 		m->flags &= ~PG_ZERO;
4728 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4729 }
4730 
4731 /*
4732  * Inserts the specified page table page into the specified pmap's collection
4733  * of idle page table pages.  Each of a pmap's page table pages is responsible
4734  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4735  * ordered by this virtual address range.
4736  */
4737 static __inline int
4738 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4739 {
4740 
4741 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4742 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4743 }
4744 
4745 /*
4746  * Removes the page table page mapping the specified virtual address from the
4747  * specified pmap's collection of idle page table pages, and returns it.
4748  * Otherwise, returns NULL if there is no page table page corresponding to the
4749  * specified virtual address.
4750  */
4751 static __inline vm_page_t
4752 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4753 {
4754 
4755 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4756 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4757 }
4758 
4759 /*
4760  * Decrements a page table page's wire count, which is used to record the
4761  * number of valid page table entries within the page.  If the wire count
4762  * drops to zero, then the page table page is unmapped.  Returns true if the
4763  * page table page was unmapped and false otherwise.
4764  */
4765 static inline bool
4766 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4767 {
4768 
4769 	--m->ref_count;
4770 	if (m->ref_count == 0) {
4771 		_pmap_unwire_ptp(pmap, va, m, free);
4772 		return (true);
4773 	} else
4774 		return (false);
4775 }
4776 
4777 static void
4778 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4779 {
4780 
4781 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4782 	/*
4783 	 * unmap the page table page
4784 	 */
4785 	if (m->pindex >= NUPDE + NUPDPE) {
4786 		/* PDP page */
4787 		pml1_entry_t *pml1;
4788 		pml1 = pmap_pml1e(pmap, va);
4789 		*pml1 = 0;
4790 	} else if (m->pindex >= NUPDE) {
4791 		/* PD page */
4792 		pml2_entry_t *l2e;
4793 		l2e = pmap_pml2e(pmap, va);
4794 		*l2e = 0;
4795 	} else {
4796 		/* PTE page */
4797 		pml3_entry_t *l3e;
4798 		l3e = pmap_pml3e(pmap, va);
4799 		*l3e = 0;
4800 	}
4801 	pmap_resident_count_dec(pmap, 1);
4802 	if (m->pindex < NUPDE) {
4803 		/* We just released a PT, unhold the matching PD */
4804 		vm_page_t pdpg;
4805 
4806 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4807 		pmap_unwire_ptp(pmap, va, pdpg, free);
4808 	}
4809 	else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4810 		/* We just released a PD, unhold the matching PDP */
4811 		vm_page_t pdppg;
4812 
4813 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4814 		pmap_unwire_ptp(pmap, va, pdppg, free);
4815 	}
4816 
4817 	/*
4818 	 * Put page on a list so that it is released after
4819 	 * *ALL* TLB shootdown is done
4820 	 */
4821 	pmap_add_delayed_free_list(m, free, true);
4822 }
4823 
4824 /*
4825  * After removing a page table entry, this routine is used to
4826  * conditionally free the page, and manage the hold/wire counts.
4827  */
4828 static int
4829 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4830     struct spglist *free)
4831 {
4832 	vm_page_t mpte;
4833 
4834 	if (va >= VM_MAXUSER_ADDRESS)
4835 		return (0);
4836 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4837 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4838 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4839 }
4840 
4841 void
4842 mmu_radix_release(pmap_t pmap)
4843 {
4844 
4845 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4846 	KASSERT(pmap->pm_stats.resident_count == 0,
4847 	    ("pmap_release: pmap resident count %ld != 0",
4848 	    pmap->pm_stats.resident_count));
4849 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4850 	    ("pmap_release: pmap has reserved page table page(s)"));
4851 
4852 	pmap_invalidate_all(pmap);
4853 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4854 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4855 	vmem_free(asid_arena, pmap->pm_pid, 1);
4856 }
4857 
4858 /*
4859  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4860  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4861  * false if the PV entry cannot be allocated without resorting to reclamation.
4862  */
4863 static bool
4864 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4865     struct rwlock **lockp)
4866 {
4867 	struct md_page *pvh;
4868 	pv_entry_t pv;
4869 	vm_paddr_t pa;
4870 
4871 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4872 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4873 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4874 	    NULL : lockp)) == NULL)
4875 		return (false);
4876 	pv->pv_va = va;
4877 	pa = pde & PG_PS_FRAME;
4878 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4879 	pvh = pa_to_pvh(pa);
4880 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4881 	pvh->pv_gen++;
4882 	return (true);
4883 }
4884 
4885 /*
4886  * Fills a page table page with mappings to consecutive physical pages.
4887  */
4888 static void
4889 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4890 {
4891 	pt_entry_t *pte;
4892 
4893 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4894 		*pte = htobe64(newpte);
4895 		newpte += PAGE_SIZE;
4896 	}
4897 }
4898 
4899 static bool
4900 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4901 {
4902 	struct rwlock *lock;
4903 	bool rv;
4904 
4905 	lock = NULL;
4906 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4907 	if (lock != NULL)
4908 		rw_wunlock(lock);
4909 	return (rv);
4910 }
4911 
4912 static bool
4913 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4914     struct rwlock **lockp)
4915 {
4916 	pml3_entry_t oldpde;
4917 	pt_entry_t *firstpte;
4918 	vm_paddr_t mptepa;
4919 	vm_page_t mpte;
4920 	struct spglist free;
4921 	vm_offset_t sva;
4922 
4923 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4924 	oldpde = be64toh(*l3e);
4925 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4926 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4927 	    oldpde));
4928 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4929 	    NULL) {
4930 		KASSERT((oldpde & PG_W) == 0,
4931 		    ("pmap_demote_l3e: page table page for a wired mapping"
4932 		    " is missing"));
4933 
4934 		/*
4935 		 * Invalidate the 2MB page mapping and return "failure" if the
4936 		 * mapping was never accessed or the allocation of the new
4937 		 * page table page fails.  If the 2MB page mapping belongs to
4938 		 * the direct map region of the kernel's address space, then
4939 		 * the page allocation request specifies the highest possible
4940 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4941 		 * normal.  Page table pages are preallocated for every other
4942 		 * part of the kernel address space, so the direct map region
4943 		 * is the only part of the kernel address space that must be
4944 		 * handled here.
4945 		 */
4946 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc_noobj(
4947 		    (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ?
4948 		    VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED)) == NULL) {
4949 			SLIST_INIT(&free);
4950 			sva = trunc_2mpage(va);
4951 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4952 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4953 			vm_page_free_pages_toq(&free, true);
4954 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4955 			    " in pmap %p", va, pmap);
4956 			return (false);
4957 		}
4958 		mpte->pindex = pmap_l3e_pindex(va);
4959 		if (va < VM_MAXUSER_ADDRESS)
4960 			pmap_resident_count_inc(pmap, 1);
4961 	}
4962 	mptepa = VM_PAGE_TO_PHYS(mpte);
4963 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4964 	KASSERT((oldpde & PG_A) != 0,
4965 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4966 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4967 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4968 
4969 	/*
4970 	 * If the page table page is new, initialize it.
4971 	 */
4972 	if (mpte->ref_count == 1) {
4973 		mpte->ref_count = NPTEPG;
4974 		pmap_fill_ptp(firstpte, oldpde);
4975 	}
4976 
4977 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4978 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4979 	    " addresses"));
4980 
4981 	/*
4982 	 * If the mapping has changed attributes, update the page table
4983 	 * entries.
4984 	 */
4985 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4986 		pmap_fill_ptp(firstpte, oldpde);
4987 
4988 	/*
4989 	 * The spare PV entries must be reserved prior to demoting the
4990 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4991 	 * of the PDE and the PV lists will be inconsistent, which can result
4992 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4993 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4994 	 * PV entry for the 2MB page mapping that is being demoted.
4995 	 */
4996 	if ((oldpde & PG_MANAGED) != 0)
4997 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4998 
4999 	/*
5000 	 * Demote the mapping.  This pmap is locked.  The old PDE has
5001 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
5002 	 * set.  Thus, there is no danger of a race with another
5003 	 * processor changing the setting of PG_A and/or PG_M between
5004 	 * the read above and the store below.
5005 	 */
5006 	pde_store(l3e, mptepa);
5007 	pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
5008 	/*
5009 	 * Demote the PV entry.
5010 	 */
5011 	if ((oldpde & PG_MANAGED) != 0)
5012 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
5013 
5014 	counter_u64_add(pmap_l3e_demotions, 1);
5015 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
5016 	    " in pmap %p", va, pmap);
5017 	return (true);
5018 }
5019 
5020 /*
5021  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
5022  */
5023 static void
5024 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
5025 {
5026 	vm_paddr_t mptepa;
5027 	vm_page_t mpte;
5028 
5029 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5030 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5031 	mpte = pmap_remove_pt_page(pmap, va);
5032 	if (mpte == NULL)
5033 		panic("pmap_remove_kernel_pde: Missing pt page.");
5034 
5035 	mptepa = VM_PAGE_TO_PHYS(mpte);
5036 
5037 	/*
5038 	 * Initialize the page table page.
5039 	 */
5040 	pagezero(PHYS_TO_DMAP(mptepa));
5041 
5042 	/*
5043 	 * Demote the mapping.
5044 	 */
5045 	pde_store(l3e, mptepa);
5046 	ptesync();
5047 }
5048 
5049 /*
5050  * pmap_remove_l3e: do the things to unmap a superpage in a process
5051  */
5052 static int
5053 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5054     struct spglist *free, struct rwlock **lockp)
5055 {
5056 	struct md_page *pvh;
5057 	pml3_entry_t oldpde;
5058 	vm_offset_t eva, va;
5059 	vm_page_t m, mpte;
5060 
5061 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5062 	KASSERT((sva & L3_PAGE_MASK) == 0,
5063 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
5064 	oldpde = be64toh(pte_load_clear(pdq));
5065 	if (oldpde & PG_W)
5066 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5067 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5068 	if (oldpde & PG_MANAGED) {
5069 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5070 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5071 		pmap_pvh_free(pvh, pmap, sva);
5072 		eva = sva + L3_PAGE_SIZE;
5073 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5074 		    va < eva; va += PAGE_SIZE, m++) {
5075 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5076 				vm_page_dirty(m);
5077 			if (oldpde & PG_A)
5078 				vm_page_aflag_set(m, PGA_REFERENCED);
5079 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5080 			    TAILQ_EMPTY(&pvh->pv_list))
5081 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5082 		}
5083 	}
5084 	if (pmap == kernel_pmap) {
5085 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5086 	} else {
5087 		mpte = pmap_remove_pt_page(pmap, sva);
5088 		if (mpte != NULL) {
5089 			pmap_resident_count_dec(pmap, 1);
5090 			KASSERT(mpte->ref_count == NPTEPG,
5091 			    ("pmap_remove_l3e: pte page wire count error"));
5092 			mpte->ref_count = 0;
5093 			pmap_add_delayed_free_list(mpte, free, false);
5094 		}
5095 	}
5096 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5097 }
5098 
5099 /*
5100  * pmap_remove_pte: do the things to unmap a page in a process
5101  */
5102 static int
5103 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5104     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5105 {
5106 	struct md_page *pvh;
5107 	pt_entry_t oldpte;
5108 	vm_page_t m;
5109 
5110 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5111 	oldpte = be64toh(pte_load_clear(ptq));
5112 	if (oldpte & RPTE_WIRED)
5113 		pmap->pm_stats.wired_count -= 1;
5114 	pmap_resident_count_dec(pmap, 1);
5115 	if (oldpte & RPTE_MANAGED) {
5116 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5117 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5118 			vm_page_dirty(m);
5119 		if (oldpte & PG_A)
5120 			vm_page_aflag_set(m, PGA_REFERENCED);
5121 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5122 		pmap_pvh_free(&m->md, pmap, va);
5123 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5124 		    (m->flags & PG_FICTITIOUS) == 0) {
5125 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5126 			if (TAILQ_EMPTY(&pvh->pv_list))
5127 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5128 		}
5129 	}
5130 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5131 }
5132 
5133 /*
5134  * Remove a single page from a process address space
5135  */
5136 static bool
5137 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5138     struct spglist *free)
5139 {
5140 	struct rwlock *lock;
5141 	pt_entry_t *pte;
5142 	bool invalidate_all;
5143 
5144 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5145 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5146 		return (false);
5147 	}
5148 	pte = pmap_l3e_to_pte(l3e, va);
5149 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5150 		return (false);
5151 	}
5152 	lock = NULL;
5153 
5154 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5155 	if (lock != NULL)
5156 		rw_wunlock(lock);
5157 	if (!invalidate_all)
5158 		pmap_invalidate_page(pmap, va);
5159 	return (invalidate_all);
5160 }
5161 
5162 /*
5163  * Removes the specified range of addresses from the page table page.
5164  */
5165 static bool
5166 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5167     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5168 {
5169 	pt_entry_t *pte;
5170 	vm_offset_t va;
5171 	bool anyvalid;
5172 
5173 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5174 	anyvalid = false;
5175 	va = eva;
5176 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5177 	    sva += PAGE_SIZE) {
5178 		MPASS(pte == pmap_pte(pmap, sva));
5179 		if (*pte == 0) {
5180 			if (va != eva) {
5181 				anyvalid = true;
5182 				va = eva;
5183 			}
5184 			continue;
5185 		}
5186 		if (va == eva)
5187 			va = sva;
5188 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5189 			anyvalid = true;
5190 			sva += PAGE_SIZE;
5191 			break;
5192 		}
5193 	}
5194 	if (anyvalid)
5195 		pmap_invalidate_all(pmap);
5196 	else if (va != eva)
5197 		pmap_invalidate_range(pmap, va, sva);
5198 	return (anyvalid);
5199 }
5200 
5201 void
5202 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5203 {
5204 	struct rwlock *lock;
5205 	vm_offset_t va_next;
5206 	pml1_entry_t *l1e;
5207 	pml2_entry_t *l2e;
5208 	pml3_entry_t ptpaddr, *l3e;
5209 	struct spglist free;
5210 	bool anyvalid;
5211 
5212 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5213 
5214 	/*
5215 	 * Perform an unsynchronized read.  This is, however, safe.
5216 	 */
5217 	if (pmap->pm_stats.resident_count == 0)
5218 		return;
5219 
5220 	anyvalid = false;
5221 	SLIST_INIT(&free);
5222 
5223 	/* XXX something fishy here */
5224 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5225 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5226 
5227 	PMAP_LOCK(pmap);
5228 
5229 	/*
5230 	 * special handling of removing one page.  a very
5231 	 * common operation and easy to short circuit some
5232 	 * code.
5233 	 */
5234 	if (sva + PAGE_SIZE == eva) {
5235 		l3e = pmap_pml3e(pmap, sva);
5236 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5237 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5238 			goto out;
5239 		}
5240 	}
5241 
5242 	lock = NULL;
5243 	for (; sva < eva; sva = va_next) {
5244 		if (pmap->pm_stats.resident_count == 0)
5245 			break;
5246 		l1e = pmap_pml1e(pmap, sva);
5247 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5248 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5249 			if (va_next < sva)
5250 				va_next = eva;
5251 			continue;
5252 		}
5253 
5254 		l2e = pmap_l1e_to_l2e(l1e, sva);
5255 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5256 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5257 			if (va_next < sva)
5258 				va_next = eva;
5259 			continue;
5260 		}
5261 
5262 		/*
5263 		 * Calculate index for next page table.
5264 		 */
5265 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5266 		if (va_next < sva)
5267 			va_next = eva;
5268 
5269 		l3e = pmap_l2e_to_l3e(l2e, sva);
5270 		ptpaddr = be64toh(*l3e);
5271 
5272 		/*
5273 		 * Weed out invalid mappings.
5274 		 */
5275 		if (ptpaddr == 0)
5276 			continue;
5277 
5278 		/*
5279 		 * Check for large page.
5280 		 */
5281 		if ((ptpaddr & RPTE_LEAF) != 0) {
5282 			/*
5283 			 * Are we removing the entire large page?  If not,
5284 			 * demote the mapping and fall through.
5285 			 */
5286 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5287 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5288 				anyvalid = true;
5289 				continue;
5290 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5291 			    &lock)) {
5292 				/* The large page mapping was destroyed. */
5293 				continue;
5294 			} else
5295 				ptpaddr = be64toh(*l3e);
5296 		}
5297 
5298 		/*
5299 		 * Limit our scan to either the end of the va represented
5300 		 * by the current page table page, or to the end of the
5301 		 * range being removed.
5302 		 */
5303 		if (va_next > eva)
5304 			va_next = eva;
5305 
5306 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5307 			anyvalid = true;
5308 	}
5309 	if (lock != NULL)
5310 		rw_wunlock(lock);
5311 out:
5312 	if (anyvalid)
5313 		pmap_invalidate_all(pmap);
5314 	PMAP_UNLOCK(pmap);
5315 	vm_page_free_pages_toq(&free, true);
5316 }
5317 
5318 void
5319 mmu_radix_remove_all(vm_page_t m)
5320 {
5321 	struct md_page *pvh;
5322 	pv_entry_t pv;
5323 	pmap_t pmap;
5324 	struct rwlock *lock;
5325 	pt_entry_t *pte, tpte;
5326 	pml3_entry_t *l3e;
5327 	vm_offset_t va;
5328 	struct spglist free;
5329 	int pvh_gen, md_gen;
5330 
5331 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5332 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5333 	    ("pmap_remove_all: page %p is not managed", m));
5334 	SLIST_INIT(&free);
5335 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5336 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5337 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5338 retry:
5339 	rw_wlock(lock);
5340 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5341 		pmap = PV_PMAP(pv);
5342 		if (!PMAP_TRYLOCK(pmap)) {
5343 			pvh_gen = pvh->pv_gen;
5344 			rw_wunlock(lock);
5345 			PMAP_LOCK(pmap);
5346 			rw_wlock(lock);
5347 			if (pvh_gen != pvh->pv_gen) {
5348 				rw_wunlock(lock);
5349 				PMAP_UNLOCK(pmap);
5350 				goto retry;
5351 			}
5352 		}
5353 		va = pv->pv_va;
5354 		l3e = pmap_pml3e(pmap, va);
5355 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5356 		PMAP_UNLOCK(pmap);
5357 	}
5358 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5359 		pmap = PV_PMAP(pv);
5360 		if (!PMAP_TRYLOCK(pmap)) {
5361 			pvh_gen = pvh->pv_gen;
5362 			md_gen = m->md.pv_gen;
5363 			rw_wunlock(lock);
5364 			PMAP_LOCK(pmap);
5365 			rw_wlock(lock);
5366 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5367 				rw_wunlock(lock);
5368 				PMAP_UNLOCK(pmap);
5369 				goto retry;
5370 			}
5371 		}
5372 		pmap_resident_count_dec(pmap, 1);
5373 		l3e = pmap_pml3e(pmap, pv->pv_va);
5374 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5375 		    " a 2mpage in page %p's pv list", m));
5376 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5377 		tpte = be64toh(pte_load_clear(pte));
5378 		if (tpte & PG_W)
5379 			pmap->pm_stats.wired_count--;
5380 		if (tpte & PG_A)
5381 			vm_page_aflag_set(m, PGA_REFERENCED);
5382 
5383 		/*
5384 		 * Update the vm_page_t clean and reference bits.
5385 		 */
5386 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5387 			vm_page_dirty(m);
5388 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5389 		pmap_invalidate_page(pmap, pv->pv_va);
5390 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5391 		m->md.pv_gen++;
5392 		free_pv_entry(pmap, pv);
5393 		PMAP_UNLOCK(pmap);
5394 	}
5395 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5396 	rw_wunlock(lock);
5397 	vm_page_free_pages_toq(&free, true);
5398 }
5399 
5400 /*
5401  * Destroy all managed, non-wired mappings in the given user-space
5402  * pmap.  This pmap cannot be active on any processor besides the
5403  * caller.
5404  *
5405  * This function cannot be applied to the kernel pmap.  Moreover, it
5406  * is not intended for general use.  It is only to be used during
5407  * process termination.  Consequently, it can be implemented in ways
5408  * that make it faster than pmap_remove().  First, it can more quickly
5409  * destroy mappings by iterating over the pmap's collection of PV
5410  * entries, rather than searching the page table.  Second, it doesn't
5411  * have to test and clear the page table entries atomically, because
5412  * no processor is currently accessing the user address space.  In
5413  * particular, a page table entry's dirty bit won't change state once
5414  * this function starts.
5415  *
5416  * Although this function destroys all of the pmap's managed,
5417  * non-wired mappings, it can delay and batch the invalidation of TLB
5418  * entries without calling pmap_delayed_invl_started() and
5419  * pmap_delayed_invl_finished().  Because the pmap is not active on
5420  * any other processor, none of these TLB entries will ever be used
5421  * before their eventual invalidation.  Consequently, there is no need
5422  * for either pmap_remove_all() or pmap_remove_write() to wait for
5423  * that eventual TLB invalidation.
5424  */
5425 
5426 void
5427 mmu_radix_remove_pages(pmap_t pmap)
5428 {
5429 
5430 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5431 	pml3_entry_t ptel3e;
5432 	pt_entry_t *pte, tpte;
5433 	struct spglist free;
5434 	vm_page_t m, mpte, mt;
5435 	pv_entry_t pv;
5436 	struct md_page *pvh;
5437 	struct pv_chunk *pc, *npc;
5438 	struct rwlock *lock;
5439 	int64_t bit;
5440 	uint64_t inuse, bitmask;
5441 	int allfree, field, idx;
5442 #ifdef PV_STATS
5443 	int freed;
5444 #endif
5445 	bool superpage;
5446 	vm_paddr_t pa;
5447 
5448 	/*
5449 	 * Assert that the given pmap is only active on the current
5450 	 * CPU.  Unfortunately, we cannot block another CPU from
5451 	 * activating the pmap while this function is executing.
5452 	 */
5453 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5454 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5455 	    mfspr(SPR_PID)));
5456 
5457 	lock = NULL;
5458 
5459 	SLIST_INIT(&free);
5460 	PMAP_LOCK(pmap);
5461 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5462 		allfree = 1;
5463 #ifdef PV_STATS
5464 		freed = 0;
5465 #endif
5466 		for (field = 0; field < _NPCM; field++) {
5467 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5468 			while (inuse != 0) {
5469 				bit = cnttzd(inuse);
5470 				bitmask = 1UL << bit;
5471 				idx = field * 64 + bit;
5472 				pv = &pc->pc_pventry[idx];
5473 				inuse &= ~bitmask;
5474 
5475 				pte = pmap_pml2e(pmap, pv->pv_va);
5476 				ptel3e = be64toh(*pte);
5477 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5478 				tpte = be64toh(*pte);
5479 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5480 					superpage = false;
5481 					ptel3e = tpte;
5482 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5483 					    PG_FRAME);
5484 					pte = &pte[pmap_pte_index(pv->pv_va)];
5485 					tpte = be64toh(*pte);
5486 				} else {
5487 					/*
5488 					 * Keep track whether 'tpte' is a
5489 					 * superpage explicitly instead of
5490 					 * relying on RPTE_LEAF being set.
5491 					 *
5492 					 * This is because RPTE_LEAF is numerically
5493 					 * identical to PG_PTE_PAT and thus a
5494 					 * regular page could be mistaken for
5495 					 * a superpage.
5496 					 */
5497 					superpage = true;
5498 				}
5499 
5500 				if ((tpte & PG_V) == 0) {
5501 					panic("bad pte va %lx pte %lx",
5502 					    pv->pv_va, tpte);
5503 				}
5504 
5505 /*
5506  * We cannot remove wired pages from a process' mapping at this time
5507  */
5508 				if (tpte & PG_W) {
5509 					allfree = 0;
5510 					continue;
5511 				}
5512 
5513 				if (superpage)
5514 					pa = tpte & PG_PS_FRAME;
5515 				else
5516 					pa = tpte & PG_FRAME;
5517 
5518 				m = PHYS_TO_VM_PAGE(pa);
5519 				KASSERT(m->phys_addr == pa,
5520 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5521 				    m, (uintmax_t)m->phys_addr,
5522 				    (uintmax_t)tpte));
5523 
5524 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5525 				    m < &vm_page_array[vm_page_array_size],
5526 				    ("pmap_remove_pages: bad tpte %#jx",
5527 				    (uintmax_t)tpte));
5528 
5529 				pte_clear(pte);
5530 
5531 				/*
5532 				 * Update the vm_page_t clean/reference bits.
5533 				 */
5534 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5535 					if (superpage) {
5536 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5537 							vm_page_dirty(mt);
5538 					} else
5539 						vm_page_dirty(m);
5540 				}
5541 
5542 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5543 
5544 				/* Mark free */
5545 				pc->pc_map[field] |= bitmask;
5546 				if (superpage) {
5547 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5548 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5549 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5550 					pvh->pv_gen++;
5551 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5552 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5553 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5554 							    TAILQ_EMPTY(&mt->md.pv_list))
5555 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5556 					}
5557 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5558 					if (mpte != NULL) {
5559 						pmap_resident_count_dec(pmap, 1);
5560 						KASSERT(mpte->ref_count == NPTEPG,
5561 						    ("pmap_remove_pages: pte page wire count error"));
5562 						mpte->ref_count = 0;
5563 						pmap_add_delayed_free_list(mpte, &free, false);
5564 					}
5565 				} else {
5566 					pmap_resident_count_dec(pmap, 1);
5567 #ifdef VERBOSE_PV
5568 					printf("freeing pv (%p, %p)\n",
5569 						   pmap, pv);
5570 #endif
5571 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5572 					m->md.pv_gen++;
5573 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5574 					    TAILQ_EMPTY(&m->md.pv_list) &&
5575 					    (m->flags & PG_FICTITIOUS) == 0) {
5576 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5577 						if (TAILQ_EMPTY(&pvh->pv_list))
5578 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5579 					}
5580 				}
5581 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5582 #ifdef PV_STATS
5583 				freed++;
5584 #endif
5585 			}
5586 		}
5587 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5588 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5589 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5590 		if (allfree) {
5591 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5592 			free_pv_chunk(pc);
5593 		}
5594 	}
5595 	if (lock != NULL)
5596 		rw_wunlock(lock);
5597 	pmap_invalidate_all(pmap);
5598 	PMAP_UNLOCK(pmap);
5599 	vm_page_free_pages_toq(&free, true);
5600 }
5601 
5602 void
5603 mmu_radix_remove_write(vm_page_t m)
5604 {
5605 	struct md_page *pvh;
5606 	pmap_t pmap;
5607 	struct rwlock *lock;
5608 	pv_entry_t next_pv, pv;
5609 	pml3_entry_t *l3e;
5610 	pt_entry_t oldpte, *pte;
5611 	int pvh_gen, md_gen;
5612 
5613 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5614 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5615 	    ("pmap_remove_write: page %p is not managed", m));
5616 	vm_page_assert_busied(m);
5617 
5618 	if (!pmap_page_is_write_mapped(m))
5619 		return;
5620 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5621 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5622 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5623 retry_pv_loop:
5624 	rw_wlock(lock);
5625 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5626 		pmap = PV_PMAP(pv);
5627 		if (!PMAP_TRYLOCK(pmap)) {
5628 			pvh_gen = pvh->pv_gen;
5629 			rw_wunlock(lock);
5630 			PMAP_LOCK(pmap);
5631 			rw_wlock(lock);
5632 			if (pvh_gen != pvh->pv_gen) {
5633 				PMAP_UNLOCK(pmap);
5634 				rw_wunlock(lock);
5635 				goto retry_pv_loop;
5636 			}
5637 		}
5638 		l3e = pmap_pml3e(pmap, pv->pv_va);
5639 		if ((be64toh(*l3e) & PG_RW) != 0)
5640 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5641 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5642 		    ("inconsistent pv lock %p %p for page %p",
5643 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5644 		PMAP_UNLOCK(pmap);
5645 	}
5646 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5647 		pmap = PV_PMAP(pv);
5648 		if (!PMAP_TRYLOCK(pmap)) {
5649 			pvh_gen = pvh->pv_gen;
5650 			md_gen = m->md.pv_gen;
5651 			rw_wunlock(lock);
5652 			PMAP_LOCK(pmap);
5653 			rw_wlock(lock);
5654 			if (pvh_gen != pvh->pv_gen ||
5655 			    md_gen != m->md.pv_gen) {
5656 				PMAP_UNLOCK(pmap);
5657 				rw_wunlock(lock);
5658 				goto retry_pv_loop;
5659 			}
5660 		}
5661 		l3e = pmap_pml3e(pmap, pv->pv_va);
5662 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5663 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5664 		    m));
5665 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5666 retry:
5667 		oldpte = be64toh(*pte);
5668 		if (oldpte & PG_RW) {
5669 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5670 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5671 				goto retry;
5672 			if ((oldpte & PG_M) != 0)
5673 				vm_page_dirty(m);
5674 			pmap_invalidate_page(pmap, pv->pv_va);
5675 		}
5676 		PMAP_UNLOCK(pmap);
5677 	}
5678 	rw_wunlock(lock);
5679 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5680 }
5681 
5682 /*
5683  *	Clear the wired attribute from the mappings for the specified range of
5684  *	addresses in the given pmap.  Every valid mapping within that range
5685  *	must have the wired attribute set.  In contrast, invalid mappings
5686  *	cannot have the wired attribute set, so they are ignored.
5687  *
5688  *	The wired attribute of the page table entry is not a hardware
5689  *	feature, so there is no need to invalidate any TLB entries.
5690  *	Since pmap_demote_l3e() for the wired entry must never fail,
5691  *	pmap_delayed_invl_started()/finished() calls around the
5692  *	function are not needed.
5693  */
5694 void
5695 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5696 {
5697 	vm_offset_t va_next;
5698 	pml1_entry_t *l1e;
5699 	pml2_entry_t *l2e;
5700 	pml3_entry_t *l3e;
5701 	pt_entry_t *pte;
5702 
5703 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5704 	PMAP_LOCK(pmap);
5705 	for (; sva < eva; sva = va_next) {
5706 		l1e = pmap_pml1e(pmap, sva);
5707 		if ((be64toh(*l1e) & PG_V) == 0) {
5708 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5709 			if (va_next < sva)
5710 				va_next = eva;
5711 			continue;
5712 		}
5713 		l2e = pmap_l1e_to_l2e(l1e, sva);
5714 		if ((be64toh(*l2e) & PG_V) == 0) {
5715 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5716 			if (va_next < sva)
5717 				va_next = eva;
5718 			continue;
5719 		}
5720 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5721 		if (va_next < sva)
5722 			va_next = eva;
5723 		l3e = pmap_l2e_to_l3e(l2e, sva);
5724 		if ((be64toh(*l3e) & PG_V) == 0)
5725 			continue;
5726 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5727 			if ((be64toh(*l3e) & PG_W) == 0)
5728 				panic("pmap_unwire: pde %#jx is missing PG_W",
5729 				    (uintmax_t)(be64toh(*l3e)));
5730 
5731 			/*
5732 			 * Are we unwiring the entire large page?  If not,
5733 			 * demote the mapping and fall through.
5734 			 */
5735 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5736 				atomic_clear_long(l3e, htobe64(PG_W));
5737 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5738 				    PAGE_SIZE;
5739 				continue;
5740 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5741 				panic("pmap_unwire: demotion failed");
5742 		}
5743 		if (va_next > eva)
5744 			va_next = eva;
5745 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5746 		    sva += PAGE_SIZE) {
5747 			MPASS(pte == pmap_pte(pmap, sva));
5748 			if ((be64toh(*pte) & PG_V) == 0)
5749 				continue;
5750 			if ((be64toh(*pte) & PG_W) == 0)
5751 				panic("pmap_unwire: pte %#jx is missing PG_W",
5752 				    (uintmax_t)(be64toh(*pte)));
5753 
5754 			/*
5755 			 * PG_W must be cleared atomically.  Although the pmap
5756 			 * lock synchronizes access to PG_W, another processor
5757 			 * could be setting PG_M and/or PG_A concurrently.
5758 			 */
5759 			atomic_clear_long(pte, htobe64(PG_W));
5760 			pmap->pm_stats.wired_count--;
5761 		}
5762 	}
5763 	PMAP_UNLOCK(pmap);
5764 }
5765 
5766 void
5767 mmu_radix_zero_page(vm_page_t m)
5768 {
5769 	vm_offset_t addr;
5770 
5771 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5772 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5773 	pagezero(addr);
5774 }
5775 
5776 void
5777 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5778 {
5779 	caddr_t addr;
5780 
5781 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5782 	MPASS(off + size <= PAGE_SIZE);
5783 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5784 	memset(addr + off, 0, size);
5785 }
5786 
5787 static int
5788 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5789 {
5790 	pml3_entry_t *l3ep;
5791 	pt_entry_t pte;
5792 	vm_paddr_t pa;
5793 	int val;
5794 
5795 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5796 	PMAP_LOCK(pmap);
5797 
5798 	l3ep = pmap_pml3e(pmap, addr);
5799 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5800 		if (be64toh(*l3ep) & RPTE_LEAF) {
5801 			pte = be64toh(*l3ep);
5802 			/* Compute the physical address of the 4KB page. */
5803 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5804 			    PG_FRAME;
5805 			val = MINCORE_PSIND(1);
5806 		} else {
5807 			/* Native endian PTE, do not pass to functions */
5808 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5809 			pa = pte & PG_FRAME;
5810 			val = 0;
5811 		}
5812 	} else {
5813 		pte = 0;
5814 		pa = 0;
5815 		val = 0;
5816 	}
5817 	if ((pte & PG_V) != 0) {
5818 		val |= MINCORE_INCORE;
5819 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5820 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5821 		if ((pte & PG_A) != 0)
5822 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5823 	}
5824 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5825 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5826 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5827 		*locked_pa = pa;
5828 	}
5829 	PMAP_UNLOCK(pmap);
5830 	return (val);
5831 }
5832 
5833 void
5834 mmu_radix_activate(struct thread *td)
5835 {
5836 	pmap_t pmap;
5837 	uint32_t curpid;
5838 
5839 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5840 	critical_enter();
5841 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5842 	curpid = mfspr(SPR_PID);
5843 	if (pmap->pm_pid > isa3_base_pid &&
5844 		curpid != pmap->pm_pid) {
5845 		mmu_radix_pid_set(pmap);
5846 	}
5847 	critical_exit();
5848 }
5849 
5850 /*
5851  *	Increase the starting virtual address of the given mapping if a
5852  *	different alignment might result in more superpage mappings.
5853  */
5854 void
5855 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5856     vm_offset_t *addr, vm_size_t size)
5857 {
5858 
5859 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5860 	    size);
5861 	vm_offset_t superpage_offset;
5862 
5863 	if (size < L3_PAGE_SIZE)
5864 		return;
5865 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5866 		offset += ptoa(object->pg_color);
5867 	superpage_offset = offset & L3_PAGE_MASK;
5868 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5869 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5870 		return;
5871 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5872 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5873 	else
5874 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5875 }
5876 
5877 static void *
5878 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5879 {
5880 	vm_offset_t va, tmpva, ppa, offset;
5881 
5882 	ppa = trunc_page(pa);
5883 	offset = pa & PAGE_MASK;
5884 	size = roundup2(offset + size, PAGE_SIZE);
5885 	if (pa < powerpc_ptob(Maxmem))
5886 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5887 			  pa, powerpc_ptob(Maxmem));
5888 	va = kva_alloc(size);
5889 	if (bootverbose)
5890 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5891 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5892 
5893 	if (!va)
5894 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5895 
5896 	for (tmpva = va; size > 0;) {
5897 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5898 		size -= PAGE_SIZE;
5899 		tmpva += PAGE_SIZE;
5900 		ppa += PAGE_SIZE;
5901 	}
5902 	ptesync();
5903 
5904 	return ((void *)(va + offset));
5905 }
5906 
5907 static void *
5908 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5909 {
5910 
5911 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5912 
5913 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5914 }
5915 
5916 void
5917 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5918 {
5919 
5920 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5921 	m->md.mdpg_cache_attrs = ma;
5922 
5923 	/*
5924 	 * If "m" is a normal page, update its direct mapping.  This update
5925 	 * can be relied upon to perform any cache operations that are
5926 	 * required for data coherence.
5927 	 */
5928 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5929 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5930 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5931 		panic("memory attribute change on the direct map failed");
5932 }
5933 
5934 static void
5935 mmu_radix_unmapdev(void *p, vm_size_t size)
5936 {
5937 	vm_offset_t offset, va;
5938 
5939 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, p, size);
5940 
5941 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5942 	va = (vm_offset_t)p;
5943 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5944 		return;
5945 
5946 	offset = va & PAGE_MASK;
5947 	size = round_page(offset + size);
5948 	va = trunc_page(va);
5949 
5950 	if (pmap_initialized) {
5951 		mmu_radix_qremove(va, atop(size));
5952 		kva_free(va, size);
5953 	}
5954 }
5955 
5956 void
5957 mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5958 {
5959 	vm_paddr_t pa = 0;
5960 	int sync_sz;
5961 
5962 	if (__predict_false(pm == NULL))
5963 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
5964 
5965 	while (sz > 0) {
5966 		pa = pmap_extract(pm, va);
5967 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
5968 		sync_sz = min(sync_sz, sz);
5969 		if (pa != 0) {
5970 			pa += (va & PAGE_MASK);
5971 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
5972 		}
5973 		va += sync_sz;
5974 		sz -= sync_sz;
5975 	}
5976 }
5977 
5978 static __inline void
5979 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5980 {
5981 	uint64_t opte, npte;
5982 
5983 	/*
5984 	 * The cache mode bits are all in the low 32-bits of the
5985 	 * PTE, so we can just spin on updating the low 32-bits.
5986 	 */
5987 	do {
5988 		opte = be64toh(*pte);
5989 		npte = opte & ~mask;
5990 		npte |= cache_bits;
5991 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5992 }
5993 
5994 /*
5995  * Tries to demote a 1GB page mapping.
5996  */
5997 static bool
5998 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5999 {
6000 	pml2_entry_t oldpdpe;
6001 	pml3_entry_t *firstpde, newpde, *pde;
6002 	vm_paddr_t pdpgpa;
6003 	vm_page_t pdpg;
6004 
6005 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6006 	oldpdpe = be64toh(*l2e);
6007 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
6008 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
6009 	pdpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
6010 	if (pdpg == NULL) {
6011 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
6012 		    " in pmap %p", va, pmap);
6013 		return (false);
6014 	}
6015 	pdpg->pindex = va >> L2_PAGE_SIZE_SHIFT;
6016 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
6017 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
6018 	KASSERT((oldpdpe & PG_A) != 0,
6019 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
6020 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
6021 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
6022 	newpde = oldpdpe;
6023 
6024 	/*
6025 	 * Initialize the page directory page.
6026 	 */
6027 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
6028 		*pde = htobe64(newpde);
6029 		newpde += L3_PAGE_SIZE;
6030 	}
6031 
6032 	/*
6033 	 * Demote the mapping.
6034 	 */
6035 	pde_store(l2e, pdpgpa);
6036 
6037 	/*
6038 	 * Flush PWC --- XXX revisit
6039 	 */
6040 	pmap_invalidate_all(pmap);
6041 
6042 	counter_u64_add(pmap_l2e_demotions, 1);
6043 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6044 	    " in pmap %p", va, pmap);
6045 	return (true);
6046 }
6047 
6048 vm_paddr_t
6049 mmu_radix_kextract(vm_offset_t va)
6050 {
6051 	pml3_entry_t l3e;
6052 	vm_paddr_t pa;
6053 
6054 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6055 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6056 		pa = DMAP_TO_PHYS(va);
6057 	} else {
6058 		/* Big-endian PTE on stack */
6059 		l3e = *pmap_pml3e(kernel_pmap, va);
6060 		if (be64toh(l3e) & RPTE_LEAF) {
6061 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6062 			pa |= (va & L3_PAGE_MASK);
6063 		} else {
6064 			/*
6065 			 * Beware of a concurrent promotion that changes the
6066 			 * PDE at this point!  For example, vtopte() must not
6067 			 * be used to access the PTE because it would use the
6068 			 * new PDE.  It is, however, safe to use the old PDE
6069 			 * because the page table page is preserved by the
6070 			 * promotion.
6071 			 */
6072 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6073 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6074 			pa |= (va & PAGE_MASK);
6075 		}
6076 	}
6077 	return (pa);
6078 }
6079 
6080 static pt_entry_t
6081 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6082 {
6083 
6084 	if (ma != VM_MEMATTR_DEFAULT) {
6085 		return pmap_cache_bits(ma);
6086 	}
6087 
6088 	/*
6089 	 * Assume the page is cache inhibited and access is guarded unless
6090 	 * it's in our available memory array.
6091 	 */
6092 	for (int i = 0; i < pregions_sz; i++) {
6093 		if ((pa >= pregions[i].mr_start) &&
6094 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6095 			return (RPTE_ATTR_MEM);
6096 	}
6097 	return (RPTE_ATTR_GUARDEDIO);
6098 }
6099 
6100 static void
6101 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6102 {
6103 	pt_entry_t *pte, pteval;
6104 	uint64_t cache_bits;
6105 
6106 	pte = kvtopte(va);
6107 	MPASS(pte != NULL);
6108 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6109 	cache_bits = mmu_radix_calc_wimg(pa, ma);
6110 	pte_store(pte, pteval | cache_bits);
6111 }
6112 
6113 void
6114 mmu_radix_kremove(vm_offset_t va)
6115 {
6116 	pt_entry_t *pte;
6117 
6118 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6119 
6120 	pte = kvtopte(va);
6121 	pte_clear(pte);
6122 }
6123 
6124 int
6125 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6126     int *is_user, vm_offset_t *decoded)
6127 {
6128 
6129 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6130 	*decoded = addr;
6131 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6132 	return (0);
6133 }
6134 
6135 static int
6136 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6137 {
6138 
6139 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6140 	return (mem_valid(pa, size));
6141 }
6142 
6143 static void
6144 mmu_radix_scan_init(void)
6145 {
6146 
6147 	CTR1(KTR_PMAP, "%s()", __func__);
6148 	UNIMPLEMENTED();
6149 }
6150 
6151 static void
6152 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6153 	void **va)
6154 {
6155 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6156 	UNIMPLEMENTED();
6157 }
6158 
6159 vm_offset_t
6160 mmu_radix_quick_enter_page(vm_page_t m)
6161 {
6162 	vm_paddr_t paddr;
6163 
6164 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6165 	paddr = VM_PAGE_TO_PHYS(m);
6166 	return (PHYS_TO_DMAP(paddr));
6167 }
6168 
6169 void
6170 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6171 {
6172 	/* no work to do here */
6173 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6174 }
6175 
6176 static void
6177 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6178 {
6179 	cpu_flush_dcache((void *)sva, eva - sva);
6180 }
6181 
6182 int
6183 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6184     vm_memattr_t mode)
6185 {
6186 	int error;
6187 
6188 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6189 	PMAP_LOCK(kernel_pmap);
6190 	error = pmap_change_attr_locked(va, size, mode, true);
6191 	PMAP_UNLOCK(kernel_pmap);
6192 	return (error);
6193 }
6194 
6195 static int
6196 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6197 {
6198 	vm_offset_t base, offset, tmpva;
6199 	vm_paddr_t pa_start, pa_end, pa_end1;
6200 	pml2_entry_t *l2e;
6201 	pml3_entry_t *l3e;
6202 	pt_entry_t *pte;
6203 	int cache_bits, error;
6204 	bool changed;
6205 
6206 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6207 	base = trunc_page(va);
6208 	offset = va & PAGE_MASK;
6209 	size = round_page(offset + size);
6210 
6211 	/*
6212 	 * Only supported on kernel virtual addresses, including the direct
6213 	 * map but excluding the recursive map.
6214 	 */
6215 	if (base < DMAP_MIN_ADDRESS)
6216 		return (EINVAL);
6217 
6218 	cache_bits = pmap_cache_bits(mode);
6219 	changed = false;
6220 
6221 	/*
6222 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6223 	 * into 4KB pages if required.
6224 	 */
6225 	for (tmpva = base; tmpva < base + size; ) {
6226 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6227 		if (l2e == NULL || *l2e == 0)
6228 			return (EINVAL);
6229 		if (be64toh(*l2e) & RPTE_LEAF) {
6230 			/*
6231 			 * If the current 1GB page already has the required
6232 			 * memory type, then we need not demote this page. Just
6233 			 * increment tmpva to the next 1GB page frame.
6234 			 */
6235 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6236 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6237 				continue;
6238 			}
6239 
6240 			/*
6241 			 * If the current offset aligns with a 1GB page frame
6242 			 * and there is at least 1GB left within the range, then
6243 			 * we need not break down this page into 2MB pages.
6244 			 */
6245 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6246 			    tmpva + L2_PAGE_MASK < base + size) {
6247 				tmpva += L2_PAGE_MASK;
6248 				continue;
6249 			}
6250 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6251 				return (ENOMEM);
6252 		}
6253 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6254 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6255 		    tmpva, l2e));
6256 		if (*l3e == 0)
6257 			return (EINVAL);
6258 		if (be64toh(*l3e) & RPTE_LEAF) {
6259 			/*
6260 			 * If the current 2MB page already has the required
6261 			 * memory type, then we need not demote this page. Just
6262 			 * increment tmpva to the next 2MB page frame.
6263 			 */
6264 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6265 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6266 				continue;
6267 			}
6268 
6269 			/*
6270 			 * If the current offset aligns with a 2MB page frame
6271 			 * and there is at least 2MB left within the range, then
6272 			 * we need not break down this page into 4KB pages.
6273 			 */
6274 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6275 			    tmpva + L3_PAGE_MASK < base + size) {
6276 				tmpva += L3_PAGE_SIZE;
6277 				continue;
6278 			}
6279 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6280 				return (ENOMEM);
6281 		}
6282 		pte = pmap_l3e_to_pte(l3e, tmpva);
6283 		if (*pte == 0)
6284 			return (EINVAL);
6285 		tmpva += PAGE_SIZE;
6286 	}
6287 	error = 0;
6288 
6289 	/*
6290 	 * Ok, all the pages exist, so run through them updating their
6291 	 * cache mode if required.
6292 	 */
6293 	pa_start = pa_end = 0;
6294 	for (tmpva = base; tmpva < base + size; ) {
6295 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6296 		if (be64toh(*l2e) & RPTE_LEAF) {
6297 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6298 				pmap_pte_attr(l2e, cache_bits,
6299 				    RPTE_ATTR_MASK);
6300 				changed = true;
6301 			}
6302 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6303 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6304 				if (pa_start == pa_end) {
6305 					/* Start physical address run. */
6306 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6307 					pa_end = pa_start + L2_PAGE_SIZE;
6308 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6309 					pa_end += L2_PAGE_SIZE;
6310 				else {
6311 					/* Run ended, update direct map. */
6312 					error = pmap_change_attr_locked(
6313 					    PHYS_TO_DMAP(pa_start),
6314 					    pa_end - pa_start, mode, flush);
6315 					if (error != 0)
6316 						break;
6317 					/* Start physical address run. */
6318 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6319 					pa_end = pa_start + L2_PAGE_SIZE;
6320 				}
6321 			}
6322 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6323 			continue;
6324 		}
6325 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6326 		if (be64toh(*l3e) & RPTE_LEAF) {
6327 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6328 				pmap_pte_attr(l3e, cache_bits,
6329 				    RPTE_ATTR_MASK);
6330 				changed = true;
6331 			}
6332 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6333 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6334 				if (pa_start == pa_end) {
6335 					/* Start physical address run. */
6336 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6337 					pa_end = pa_start + L3_PAGE_SIZE;
6338 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6339 					pa_end += L3_PAGE_SIZE;
6340 				else {
6341 					/* Run ended, update direct map. */
6342 					error = pmap_change_attr_locked(
6343 					    PHYS_TO_DMAP(pa_start),
6344 					    pa_end - pa_start, mode, flush);
6345 					if (error != 0)
6346 						break;
6347 					/* Start physical address run. */
6348 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6349 					pa_end = pa_start + L3_PAGE_SIZE;
6350 				}
6351 			}
6352 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6353 		} else {
6354 			pte = pmap_l3e_to_pte(l3e, tmpva);
6355 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6356 				pmap_pte_attr(pte, cache_bits,
6357 				    RPTE_ATTR_MASK);
6358 				changed = true;
6359 			}
6360 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6361 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6362 				if (pa_start == pa_end) {
6363 					/* Start physical address run. */
6364 					pa_start = be64toh(*pte) & PG_FRAME;
6365 					pa_end = pa_start + PAGE_SIZE;
6366 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6367 					pa_end += PAGE_SIZE;
6368 				else {
6369 					/* Run ended, update direct map. */
6370 					error = pmap_change_attr_locked(
6371 					    PHYS_TO_DMAP(pa_start),
6372 					    pa_end - pa_start, mode, flush);
6373 					if (error != 0)
6374 						break;
6375 					/* Start physical address run. */
6376 					pa_start = be64toh(*pte) & PG_FRAME;
6377 					pa_end = pa_start + PAGE_SIZE;
6378 				}
6379 			}
6380 			tmpva += PAGE_SIZE;
6381 		}
6382 	}
6383 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6384 		pa_end1 = MIN(pa_end, dmaplimit);
6385 		if (pa_start != pa_end1)
6386 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6387 			    pa_end1 - pa_start, mode, flush);
6388 	}
6389 
6390 	/*
6391 	 * Flush CPU caches if required to make sure any data isn't cached that
6392 	 * shouldn't be, etc.
6393 	 */
6394 	if (changed) {
6395 		pmap_invalidate_all(kernel_pmap);
6396 
6397 		if (flush)
6398 			pmap_invalidate_cache_range(base, tmpva);
6399 	}
6400 	return (error);
6401 }
6402 
6403 /*
6404  * Allocate physical memory for the vm_page array and map it into KVA,
6405  * attempting to back the vm_pages with domain-local memory.
6406  */
6407 void
6408 mmu_radix_page_array_startup(long pages)
6409 {
6410 #ifdef notyet
6411 	pml2_entry_t *l2e;
6412 	pml3_entry_t *pde;
6413 	pml3_entry_t newl3;
6414 	vm_offset_t va;
6415 	long pfn;
6416 	int domain, i;
6417 #endif
6418 	vm_paddr_t pa;
6419 	vm_offset_t start, end;
6420 
6421 	vm_page_array_size = pages;
6422 
6423 	start = VM_MIN_KERNEL_ADDRESS;
6424 	end = start + pages * sizeof(struct vm_page);
6425 
6426 	pa = vm_phys_early_alloc(0, end - start);
6427 
6428 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6429 #ifdef notyet
6430 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6431 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6432 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6433 		domain = vm_phys_domain(ptoa(pfn));
6434 		l2e = pmap_pml2e(kernel_pmap, va);
6435 		if ((be64toh(*l2e) & PG_V) == 0) {
6436 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6437 			dump_add_page(pa);
6438 			pagezero(PHYS_TO_DMAP(pa));
6439 			pde_store(l2e, (pml2_entry_t)pa);
6440 		}
6441 		pde = pmap_l2e_to_l3e(l2e, va);
6442 		if ((be64toh(*pde) & PG_V) != 0)
6443 			panic("Unexpected pde %p", pde);
6444 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6445 		for (i = 0; i < NPDEPG; i++)
6446 			dump_add_page(pa + i * PAGE_SIZE);
6447 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6448 		pte_store(pde, newl3);
6449 	}
6450 #endif
6451 	vm_page_array = (vm_page_t)start;
6452 }
6453 
6454 #ifdef DDB
6455 #include <sys/kdb.h>
6456 #include <ddb/ddb.h>
6457 
6458 static void
6459 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6460 {
6461 	pml1_entry_t *l1e;
6462 	pml2_entry_t *l2e;
6463 	pml3_entry_t *l3e;
6464 	pt_entry_t *pte;
6465 
6466 	l1e = &l1[pmap_pml1e_index(va)];
6467 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6468 	if ((be64toh(*l1e) & PG_V) == 0) {
6469 		db_printf("\n");
6470 		return;
6471 	}
6472 	l2e = pmap_l1e_to_l2e(l1e, va);
6473 	db_printf(" l2e %#016lx", be64toh(*l2e));
6474 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6475 		db_printf("\n");
6476 		return;
6477 	}
6478 	l3e = pmap_l2e_to_l3e(l2e, va);
6479 	db_printf(" l3e %#016lx", be64toh(*l3e));
6480 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6481 		db_printf("\n");
6482 		return;
6483 	}
6484 	pte = pmap_l3e_to_pte(l3e, va);
6485 	db_printf(" pte %#016lx\n", be64toh(*pte));
6486 }
6487 
6488 void
6489 pmap_page_print_mappings(vm_page_t m)
6490 {
6491 	pmap_t pmap;
6492 	pv_entry_t pv;
6493 
6494 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6495 	/* need to elide locks if running in ddb */
6496 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6497 		db_printf("pv: %p ", pv);
6498 		db_printf("va: %#016lx ", pv->pv_va);
6499 		pmap = PV_PMAP(pv);
6500 		db_printf("pmap %p  ", pmap);
6501 		if (pmap != NULL) {
6502 			db_printf("asid: %lu\n", pmap->pm_pid);
6503 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6504 		}
6505 	}
6506 }
6507 
6508 DB_SHOW_COMMAND(pte, pmap_print_pte)
6509 {
6510 	vm_offset_t va;
6511 	pmap_t pmap;
6512 
6513 	if (!have_addr) {
6514 		db_printf("show pte addr\n");
6515 		return;
6516 	}
6517 	va = (vm_offset_t)addr;
6518 
6519 	if (va >= DMAP_MIN_ADDRESS)
6520 		pmap = kernel_pmap;
6521 	else if (kdb_thread != NULL)
6522 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6523 	else
6524 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6525 
6526 	pmap_pte_walk(pmap->pm_pml1, va);
6527 }
6528 
6529 #endif
6530