xref: /freebsd/sys/powerpc/aim/moea64_native.c (revision 2f513db7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND 4-Clause-BSD
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  * Native 64-bit page table operations for running without a hypervisor.
93  */
94 
95 #include <sys/param.h>
96 #include <sys/kernel.h>
97 #include <sys/ktr.h>
98 #include <sys/lock.h>
99 #include <sys/mutex.h>
100 #include <sys/proc.h>
101 #include <sys/sched.h>
102 #include <sys/sysctl.h>
103 #include <sys/systm.h>
104 #include <sys/rwlock.h>
105 #include <sys/endian.h>
106 
107 #include <sys/kdb.h>
108 
109 #include <vm/vm.h>
110 #include <vm/vm_param.h>
111 #include <vm/vm_kern.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_map.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_pageout.h>
117 
118 #include <machine/cpu.h>
119 #include <machine/hid.h>
120 #include <machine/md_var.h>
121 #include <machine/mmuvar.h>
122 
123 #include "mmu_oea64.h"
124 #include "mmu_if.h"
125 #include "moea64_if.h"
126 
127 #define	PTESYNC()	__asm __volatile("ptesync");
128 #define	TLBSYNC()	__asm __volatile("tlbsync; ptesync");
129 #define	SYNC()		__asm __volatile("sync");
130 #define	EIEIO()		__asm __volatile("eieio");
131 
132 #define	VSID_HASH_MASK	0x0000007fffffffffULL
133 
134 /* POWER9 only permits a 64k partition table size. */
135 #define	PART_SIZE	0x10000
136 
137 static bool moea64_crop_tlbie;
138 static bool moea64_need_lock;
139 
140 static __inline void
141 TLBIE(uint64_t vpn) {
142 #ifndef __powerpc64__
143 	register_t vpn_hi, vpn_lo;
144 	register_t msr;
145 	register_t scratch, intr;
146 #endif
147 
148 	static volatile u_int tlbie_lock = 0;
149 	bool need_lock = moea64_need_lock;
150 
151 	vpn <<= ADDR_PIDX_SHFT;
152 
153 	/* Hobo spinlock: we need stronger guarantees than mutexes provide */
154 	if (need_lock) {
155 		while (!atomic_cmpset_int(&tlbie_lock, 0, 1));
156 		isync(); /* Flush instruction queue once lock acquired */
157 
158 		if (moea64_crop_tlbie)
159 			vpn &= ~(0xffffULL << 48);
160 	}
161 
162 #ifdef __powerpc64__
163 	/*
164 	 * Explicitly clobber r0.  The tlbie instruction has two forms: an old
165 	 * one used by PowerISA 2.03 and prior, and a newer one used by PowerISA
166 	 * 2.06 (maybe 2.05?) and later.  We need to support both, and it just
167 	 * so happens that since we use 4k pages we can simply zero out r0, and
168 	 * clobber it, and the assembler will interpret the single-operand form
169 	 * of tlbie as having RB set, and everything else as 0.  The RS operand
170 	 * in the newer form is in the same position as the L(page size) bit of
171 	 * the old form, so a slong as RS is 0, we're good on both sides.
172 	 */
173 	__asm __volatile("li 0, 0 \n tlbie %0" :: "r"(vpn) : "r0", "memory");
174 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
175 #else
176 	vpn_hi = (uint32_t)(vpn >> 32);
177 	vpn_lo = (uint32_t)vpn;
178 
179 	intr = intr_disable();
180 	__asm __volatile("\
181 	    mfmsr %0; \
182 	    mr %1, %0; \
183 	    insrdi %1,%5,1,0; \
184 	    mtmsrd %1; isync; \
185 	    \
186 	    sld %1,%2,%4; \
187 	    or %1,%1,%3; \
188 	    tlbie %1; \
189 	    \
190 	    mtmsrd %0; isync; \
191 	    eieio; \
192 	    tlbsync; \
193 	    ptesync;"
194 	: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
195 	    : "memory");
196 	intr_restore(intr);
197 #endif
198 
199 	/* No barriers or special ops -- taken care of by ptesync above */
200 	if (need_lock)
201 		tlbie_lock = 0;
202 }
203 
204 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
205 #define ENABLE_TRANS(msr)	mtmsr(msr)
206 
207 /*
208  * PTEG data.
209  */
210 static volatile struct lpte *moea64_pteg_table;
211 static struct rwlock moea64_eviction_lock;
212 
213 static volatile struct pate *moea64_part_table;
214 
215 /*
216  * Dump function.
217  */
218 static void	*moea64_dump_pmap_native(mmu_t mmu, void *ctx, void *buf,
219 		    u_long *nbytes);
220 
221 /*
222  * PTE calls.
223  */
224 static int	moea64_pte_insert_native(mmu_t, struct pvo_entry *);
225 static int64_t	moea64_pte_synch_native(mmu_t, struct pvo_entry *);
226 static int64_t	moea64_pte_clear_native(mmu_t, struct pvo_entry *, uint64_t);
227 static int64_t	moea64_pte_replace_native(mmu_t, struct pvo_entry *, int);
228 static int64_t	moea64_pte_unset_native(mmu_t mmu, struct pvo_entry *);
229 
230 /*
231  * Utility routines.
232  */
233 static void	moea64_bootstrap_native(mmu_t mmup,
234 		    vm_offset_t kernelstart, vm_offset_t kernelend);
235 static void	moea64_cpu_bootstrap_native(mmu_t, int ap);
236 static void	tlbia(void);
237 
238 static mmu_method_t moea64_native_methods[] = {
239 	/* Internal interfaces */
240 	MMUMETHOD(mmu_bootstrap,	moea64_bootstrap_native),
241 	MMUMETHOD(mmu_cpu_bootstrap,	moea64_cpu_bootstrap_native),
242         MMUMETHOD(mmu_dump_pmap,        moea64_dump_pmap_native),
243 
244 	MMUMETHOD(moea64_pte_synch,	moea64_pte_synch_native),
245 	MMUMETHOD(moea64_pte_clear,	moea64_pte_clear_native),
246 	MMUMETHOD(moea64_pte_unset,	moea64_pte_unset_native),
247 	MMUMETHOD(moea64_pte_replace,	moea64_pte_replace_native),
248 	MMUMETHOD(moea64_pte_insert,	moea64_pte_insert_native),
249 
250 	{ 0, 0 }
251 };
252 
253 MMU_DEF_INHERIT(oea64_mmu_native, MMU_TYPE_G5, moea64_native_methods,
254     0, oea64_mmu);
255 
256 static int64_t
257 moea64_pte_synch_native(mmu_t mmu, struct pvo_entry *pvo)
258 {
259 	volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
260 	uint64_t ptelo, pvo_ptevpn;
261 
262 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
263 
264 	pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo);
265 
266 	rw_rlock(&moea64_eviction_lock);
267 	if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) {
268 		/* Evicted */
269 		rw_runlock(&moea64_eviction_lock);
270 		return (-1);
271 	}
272 
273 	PTESYNC();
274 	ptelo = be64toh(pt->pte_lo);
275 
276 	rw_runlock(&moea64_eviction_lock);
277 
278 	return (ptelo & (LPTE_REF | LPTE_CHG));
279 }
280 
281 static int64_t
282 moea64_pte_clear_native(mmu_t mmu, struct pvo_entry *pvo, uint64_t ptebit)
283 {
284 	volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
285 	struct lpte properpt;
286 	uint64_t ptelo;
287 
288 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
289 
290 	moea64_pte_from_pvo(pvo, &properpt);
291 
292 	rw_rlock(&moea64_eviction_lock);
293 	if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
294 	    (properpt.pte_hi & LPTE_AVPN_MASK)) {
295 		/* Evicted */
296 		rw_runlock(&moea64_eviction_lock);
297 		return (-1);
298 	}
299 
300 	if (ptebit == LPTE_REF) {
301 		/* See "Resetting the Reference Bit" in arch manual */
302 		PTESYNC();
303 		/* 2-step here safe: precision is not guaranteed */
304 		ptelo = be64toh(pt->pte_lo);
305 
306 		/* One-byte store to avoid touching the C bit */
307 		((volatile uint8_t *)(&pt->pte_lo))[6] =
308 #if BYTE_ORDER == BIG_ENDIAN
309 		    ((uint8_t *)(&properpt.pte_lo))[6];
310 #else
311 		    ((uint8_t *)(&properpt.pte_lo))[1];
312 #endif
313 		rw_runlock(&moea64_eviction_lock);
314 
315 		critical_enter();
316 		TLBIE(pvo->pvo_vpn);
317 		critical_exit();
318 	} else {
319 		rw_runlock(&moea64_eviction_lock);
320 		ptelo = moea64_pte_unset_native(mmu, pvo);
321 		moea64_pte_insert_native(mmu, pvo);
322 	}
323 
324 	return (ptelo & (LPTE_REF | LPTE_CHG));
325 }
326 
327 static int64_t
328 moea64_pte_unset_native(mmu_t mmu, struct pvo_entry *pvo)
329 {
330 	volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
331 	uint64_t ptelo, pvo_ptevpn;
332 
333 	pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo);
334 
335 	rw_rlock(&moea64_eviction_lock);
336 	if ((be64toh(pt->pte_hi & LPTE_AVPN_MASK)) != pvo_ptevpn) {
337 		/* Evicted */
338 		STAT_MOEA64(moea64_pte_overflow--);
339 		rw_runlock(&moea64_eviction_lock);
340 		return (-1);
341 	}
342 
343 	/*
344 	 * Invalidate the pte, briefly locking it to collect RC bits. No
345 	 * atomics needed since this is protected against eviction by the lock.
346 	 */
347 	isync();
348 	critical_enter();
349 	pt->pte_hi = be64toh((pt->pte_hi & ~LPTE_VALID) | LPTE_LOCKED);
350 	PTESYNC();
351 	TLBIE(pvo->pvo_vpn);
352 	ptelo = be64toh(pt->pte_lo);
353 	*((volatile int32_t *)(&pt->pte_hi) + 1) = 0; /* Release lock */
354 	critical_exit();
355 	rw_runlock(&moea64_eviction_lock);
356 
357 	/* Keep statistics */
358 	STAT_MOEA64(moea64_pte_valid--);
359 
360 	return (ptelo & (LPTE_CHG | LPTE_REF));
361 }
362 
363 static int64_t
364 moea64_pte_replace_inval_native(mmu_t mmu, struct pvo_entry *pvo,
365     volatile struct lpte *pt)
366 {
367 	struct lpte properpt;
368 	uint64_t ptelo;
369 
370 	moea64_pte_from_pvo(pvo, &properpt);
371 
372 	rw_rlock(&moea64_eviction_lock);
373 	if ((be64toh(pt->pte_hi & LPTE_AVPN_MASK)) !=
374 	    (properpt.pte_hi & LPTE_AVPN_MASK)) {
375 		/* Evicted */
376 		STAT_MOEA64(moea64_pte_overflow--);
377 		rw_runlock(&moea64_eviction_lock);
378 		return (-1);
379 	}
380 
381 	/*
382 	 * Replace the pte, briefly locking it to collect RC bits. No
383 	 * atomics needed since this is protected against eviction by the lock.
384 	 */
385 	isync();
386 	critical_enter();
387 	pt->pte_hi = be64toh((pt->pte_hi & ~LPTE_VALID) | LPTE_LOCKED);
388 	PTESYNC();
389 	TLBIE(pvo->pvo_vpn);
390 	ptelo = be64toh(pt->pte_lo);
391 	EIEIO();
392 	pt->pte_lo = htobe64(properpt.pte_lo);
393 	EIEIO();
394 	pt->pte_hi = htobe64(properpt.pte_hi); /* Release lock */
395 	PTESYNC();
396 	critical_exit();
397 	rw_runlock(&moea64_eviction_lock);
398 
399 	return (ptelo & (LPTE_CHG | LPTE_REF));
400 }
401 
402 static int64_t
403 moea64_pte_replace_native(mmu_t mmu, struct pvo_entry *pvo, int flags)
404 {
405 	volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot;
406 	struct lpte properpt;
407 	int64_t ptelo;
408 
409 	if (flags == 0) {
410 		/* Just some software bits changing. */
411 		moea64_pte_from_pvo(pvo, &properpt);
412 
413 		rw_rlock(&moea64_eviction_lock);
414 		if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) !=
415 		    (properpt.pte_hi & LPTE_AVPN_MASK)) {
416 			rw_runlock(&moea64_eviction_lock);
417 			return (-1);
418 		}
419 		pt->pte_hi = htobe64(properpt.pte_hi);
420 		ptelo = be64toh(pt->pte_lo);
421 		rw_runlock(&moea64_eviction_lock);
422 	} else {
423 		/* Otherwise, need reinsertion and deletion */
424 		ptelo = moea64_pte_replace_inval_native(mmu, pvo, pt);
425 	}
426 
427 	return (ptelo);
428 }
429 
430 static void
431 moea64_cpu_bootstrap_native(mmu_t mmup, int ap)
432 {
433 	int i = 0;
434 	#ifdef __powerpc64__
435 	struct slb *slb = PCPU_GET(aim.slb);
436 	register_t seg0;
437 	#endif
438 
439 	/*
440 	 * Initialize segment registers and MMU
441 	 */
442 
443 	mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR);
444 
445 	switch(mfpvr() >> 16) {
446 	case IBMPOWER9:
447 		mtspr(SPR_HID0, mfspr(SPR_HID0) & ~HID0_RADIX);
448 		break;
449 	}
450 
451 	/*
452 	 * Install kernel SLB entries
453 	 */
454 
455 	#ifdef __powerpc64__
456 		__asm __volatile ("slbia");
457 		__asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) :
458 		    "r"(0));
459 
460 		for (i = 0; i < n_slbs; i++) {
461 			if (!(slb[i].slbe & SLBE_VALID))
462 				continue;
463 
464 			__asm __volatile ("slbmte %0, %1" ::
465 			    "r"(slb[i].slbv), "r"(slb[i].slbe));
466 		}
467 	#else
468 		for (i = 0; i < 16; i++)
469 			mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
470 	#endif
471 
472 	/*
473 	 * Install page table
474 	 */
475 
476 	if (cpu_features2 & PPC_FEATURE2_ARCH_3_00)
477 		mtspr(SPR_PTCR,
478 		    ((uintptr_t)moea64_part_table & ~DMAP_BASE_ADDRESS) |
479 		     flsl((PART_SIZE >> 12) - 1));
480 	else
481 		__asm __volatile ("ptesync; mtsdr1 %0; isync"
482 		    :: "r"(((uintptr_t)moea64_pteg_table & ~DMAP_BASE_ADDRESS)
483 			     | (uintptr_t)(flsl(moea64_pteg_mask >> 11))));
484 	tlbia();
485 }
486 
487 static void
488 moea64_bootstrap_native(mmu_t mmup, vm_offset_t kernelstart,
489     vm_offset_t kernelend)
490 {
491 	vm_size_t	size;
492 	vm_offset_t	off;
493 	vm_paddr_t	pa;
494 	register_t	msr;
495 
496 	moea64_early_bootstrap(mmup, kernelstart, kernelend);
497 
498 	switch (mfpvr() >> 16) {
499 	case IBMPOWER9:
500 		moea64_need_lock = false;
501 		break;
502 	case IBMPOWER4:
503 	case IBMPOWER4PLUS:
504 	case IBM970:
505 	case IBM970FX:
506 	case IBM970GX:
507 	case IBM970MP:
508 		moea64_crop_tlbie = true;
509 	default:
510 		moea64_need_lock = true;
511 	}
512 	/*
513 	 * Allocate PTEG table.
514 	 */
515 
516 	size = moea64_pteg_count * sizeof(struct lpteg);
517 	CTR2(KTR_PMAP, "moea64_bootstrap: %lu PTEGs, %lu bytes",
518 	    moea64_pteg_count, size);
519 	rw_init(&moea64_eviction_lock, "pte eviction");
520 
521 	/*
522 	 * We now need to allocate memory. This memory, to be allocated,
523 	 * has to reside in a page table. The page table we are about to
524 	 * allocate. We don't have BAT. So drop to data real mode for a minute
525 	 * as a measure of last resort. We do this a couple times.
526 	 */
527 	/*
528 	 * PTEG table must be aligned on a 256k boundary, but can be placed
529 	 * anywhere with that alignment on POWER ISA 3+ systems. On earlier
530 	 * systems, offset addition is done by the CPU with bitwise OR rather
531 	 * than addition, so the table must also be aligned on a boundary of
532 	 * its own size. Pick the larger of the two, which works on all
533 	 * systems.
534 	 */
535 	moea64_pteg_table = (struct lpte *)moea64_bootstrap_alloc(size,
536 	    MAX(256*1024, size));
537 	if (hw_direct_map)
538 		moea64_pteg_table =
539 		    (struct lpte *)PHYS_TO_DMAP((vm_offset_t)moea64_pteg_table);
540 	/* Allocate partition table (ISA 3.0). */
541 	if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) {
542 		moea64_part_table =
543 		    (struct pate *)moea64_bootstrap_alloc(PART_SIZE, PART_SIZE);
544 		moea64_part_table =
545 		    (struct pate *)PHYS_TO_DMAP((vm_offset_t)moea64_part_table);
546 	}
547 	DISABLE_TRANS(msr);
548 	bzero(__DEVOLATILE(void *, moea64_pteg_table), moea64_pteg_count *
549 	    sizeof(struct lpteg));
550 	if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) {
551 		bzero(__DEVOLATILE(void *, moea64_part_table), PART_SIZE);
552 		moea64_part_table[0].pagetab =
553 			(DMAP_TO_PHYS((vm_offset_t)moea64_pteg_table)) |
554 			(uintptr_t)(flsl((moea64_pteg_count - 1) >> 11));
555 	}
556 	ENABLE_TRANS(msr);
557 
558 	CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
559 
560 	moea64_mid_bootstrap(mmup, kernelstart, kernelend);
561 
562 	/*
563 	 * Add a mapping for the page table itself if there is no direct map.
564 	 */
565 	if (!hw_direct_map) {
566 		size = moea64_pteg_count * sizeof(struct lpteg);
567 		off = (vm_offset_t)(moea64_pteg_table);
568 		DISABLE_TRANS(msr);
569 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
570 			pmap_kenter(pa, pa);
571 		ENABLE_TRANS(msr);
572 	}
573 
574 	/* Bring up virtual memory */
575 	moea64_late_bootstrap(mmup, kernelstart, kernelend);
576 }
577 
578 static void
579 tlbia(void)
580 {
581 	vm_offset_t i;
582 	#ifndef __powerpc64__
583 	register_t msr, scratch;
584 	#endif
585 
586 	i = 0xc00; /* IS = 11 */
587 	switch (mfpvr() >> 16) {
588 	case IBM970:
589 	case IBM970FX:
590 	case IBM970MP:
591 	case IBM970GX:
592 	case IBMPOWER4:
593 	case IBMPOWER4PLUS:
594 	case IBMPOWER5:
595 	case IBMPOWER5PLUS:
596 		i = 0; /* IS not supported */
597 		break;
598 	}
599 
600 	TLBSYNC();
601 
602 	for (; i < 0x400000; i += 0x00001000) {
603 		#ifdef __powerpc64__
604 		__asm __volatile("tlbiel %0" :: "r"(i));
605 		#else
606 		__asm __volatile("\
607 		    mfmsr %0; \
608 		    mr %1, %0; \
609 		    insrdi %1,%3,1,0; \
610 		    mtmsrd %1; \
611 		    isync; \
612 		    \
613 		    tlbiel %2; \
614 		    \
615 		    mtmsrd %0; \
616 		    isync;"
617 		: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
618 		#endif
619 	}
620 
621 	EIEIO();
622 	TLBSYNC();
623 }
624 
625 static int
626 atomic_pte_lock(volatile struct lpte *pte, uint64_t bitmask, uint64_t *oldhi)
627 {
628 	int	ret;
629 	uint32_t oldhihalf;
630 
631 	/*
632 	 * Note: in principle, if just the locked bit were set here, we
633 	 * could avoid needing the eviction lock. However, eviction occurs
634 	 * so rarely that it isn't worth bothering about in practice.
635 	 */
636 
637 	__asm __volatile (
638 		"1:\tlwarx %1, 0, %3\n\t"	/* load old value */
639 		"and. %0,%1,%4\n\t"		/* check if any bits set */
640 		"bne 2f\n\t"			/* exit if any set */
641 		"stwcx. %5, 0, %3\n\t"      	/* attempt to store */
642 		"bne- 1b\n\t"			/* spin if failed */
643 		"li %0, 1\n\t"			/* success - retval = 1 */
644 		"b 3f\n\t"			/* we've succeeded */
645 		"2:\n\t"
646 		"stwcx. %1, 0, %3\n\t"       	/* clear reservation (74xx) */
647 		"li %0, 0\n\t"			/* failure - retval = 0 */
648 		"3:\n\t"
649 		: "=&r" (ret), "=&r"(oldhihalf), "=m" (pte->pte_hi)
650 		: "r" ((volatile char *)&pte->pte_hi + 4),
651 		  "r" ((uint32_t)bitmask), "r" ((uint32_t)LPTE_LOCKED),
652 		  "m" (pte->pte_hi)
653 		: "cr0", "cr1", "cr2", "memory");
654 
655 	*oldhi = (pte->pte_hi & 0xffffffff00000000ULL) | oldhihalf;
656 
657 	return (ret);
658 }
659 
660 static uintptr_t
661 moea64_insert_to_pteg_native(struct lpte *pvo_pt, uintptr_t slotbase,
662     uint64_t mask)
663 {
664 	volatile struct lpte *pt;
665 	uint64_t oldptehi, va;
666 	uintptr_t k;
667 	int i, j;
668 
669 	/* Start at a random slot */
670 	i = mftb() % 8;
671 	for (j = 0; j < 8; j++) {
672 		k = slotbase + (i + j) % 8;
673 		pt = &moea64_pteg_table[k];
674 		/* Invalidate and seize lock only if no bits in mask set */
675 		if (atomic_pte_lock(pt, mask, &oldptehi)) /* Lock obtained */
676 			break;
677 	}
678 
679 	if (j == 8)
680 		return (-1);
681 
682 	if (oldptehi & LPTE_VALID) {
683 		KASSERT(!(oldptehi & LPTE_WIRED), ("Unmapped wired entry"));
684 		/*
685 		 * Need to invalidate old entry completely: see
686 		 * "Modifying a Page Table Entry". Need to reconstruct
687 		 * the virtual address for the outgoing entry to do that.
688 		 */
689 		va = oldptehi >> (ADDR_SR_SHFT - ADDR_API_SHFT64);
690 		if (oldptehi & LPTE_HID)
691 			va = (((k >> 3) ^ moea64_pteg_mask) ^ va) &
692 			    (ADDR_PIDX >> ADDR_PIDX_SHFT);
693 		else
694 			va = ((k >> 3) ^ va) & (ADDR_PIDX >> ADDR_PIDX_SHFT);
695 		va |= (oldptehi & LPTE_AVPN_MASK) <<
696 		    (ADDR_API_SHFT64 - ADDR_PIDX_SHFT);
697 		PTESYNC();
698 		TLBIE(va);
699 		STAT_MOEA64(moea64_pte_valid--);
700 		STAT_MOEA64(moea64_pte_overflow++);
701 	}
702 
703 	/*
704 	 * Update the PTE as per "Adding a Page Table Entry". Lock is released
705 	 * by setting the high doubleworld.
706 	 */
707 	pt->pte_lo = htobe64(pvo_pt->pte_lo);
708 	EIEIO();
709 	pt->pte_hi = htobe64(pvo_pt->pte_hi);
710 	PTESYNC();
711 
712 	/* Keep statistics */
713 	STAT_MOEA64(moea64_pte_valid++);
714 
715 	return (k);
716 }
717 
718 static int
719 moea64_pte_insert_native(mmu_t mmu, struct pvo_entry *pvo)
720 {
721 	struct lpte insertpt;
722 	uintptr_t slot;
723 
724 	/* Initialize PTE */
725 	moea64_pte_from_pvo(pvo, &insertpt);
726 
727 	/* Make sure further insertion is locked out during evictions */
728 	rw_rlock(&moea64_eviction_lock);
729 
730 	/*
731 	 * First try primary hash.
732 	 */
733 	pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */
734 	slot = moea64_insert_to_pteg_native(&insertpt, pvo->pvo_pte.slot,
735 	    LPTE_VALID | LPTE_WIRED | LPTE_LOCKED);
736 	if (slot != -1) {
737 		rw_runlock(&moea64_eviction_lock);
738 		pvo->pvo_pte.slot = slot;
739 		return (0);
740 	}
741 
742 	/*
743 	 * Now try secondary hash.
744 	 */
745 	pvo->pvo_vaddr ^= PVO_HID;
746 	insertpt.pte_hi ^= LPTE_HID;
747 	pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3);
748 	slot = moea64_insert_to_pteg_native(&insertpt, pvo->pvo_pte.slot,
749 	    LPTE_VALID | LPTE_WIRED | LPTE_LOCKED);
750 	if (slot != -1) {
751 		rw_runlock(&moea64_eviction_lock);
752 		pvo->pvo_pte.slot = slot;
753 		return (0);
754 	}
755 
756 	/*
757 	 * Out of luck. Find a PTE to sacrifice.
758 	 */
759 
760 	/* Lock out all insertions for a bit */
761 	if (!rw_try_upgrade(&moea64_eviction_lock)) {
762 		rw_runlock(&moea64_eviction_lock);
763 		rw_wlock(&moea64_eviction_lock);
764 	}
765 
766 	slot = moea64_insert_to_pteg_native(&insertpt, pvo->pvo_pte.slot,
767 	    LPTE_WIRED | LPTE_LOCKED);
768 	if (slot != -1) {
769 		rw_wunlock(&moea64_eviction_lock);
770 		pvo->pvo_pte.slot = slot;
771 		return (0);
772 	}
773 
774 	/* Try other hash table. Now we're getting desperate... */
775 	pvo->pvo_vaddr ^= PVO_HID;
776 	insertpt.pte_hi ^= LPTE_HID;
777 	pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3);
778 	slot = moea64_insert_to_pteg_native(&insertpt, pvo->pvo_pte.slot,
779 	    LPTE_WIRED | LPTE_LOCKED);
780 	if (slot != -1) {
781 		rw_wunlock(&moea64_eviction_lock);
782 		pvo->pvo_pte.slot = slot;
783 		return (0);
784 	}
785 
786 	/* No freeable slots in either PTEG? We're hosed. */
787 	rw_wunlock(&moea64_eviction_lock);
788 	panic("moea64_pte_insert: overflow");
789 	return (-1);
790 }
791 
792 static void *
793 moea64_dump_pmap_native(mmu_t mmu, void *ctx, void *buf, u_long *nbytes)
794 {
795 	struct dump_context *dctx;
796 	u_long ptex, ptex_end;
797 
798 	dctx = (struct dump_context *)ctx;
799 	ptex = dctx->ptex;
800 	ptex_end = ptex + dctx->blksz / sizeof(struct lpte);
801 	ptex_end = MIN(ptex_end, dctx->ptex_end);
802 	*nbytes = (ptex_end - ptex) * sizeof(struct lpte);
803 
804 	if (*nbytes == 0)
805 		return (NULL);
806 
807 	dctx->ptex = ptex_end;
808 	return (__DEVOLATILE(struct lpte *, moea64_pteg_table) + ptex);
809 }
810