xref: /freebsd/sys/riscv/riscv/machdep.c (revision 190cef3d)
1 /*-
2  * Copyright (c) 2014 Andrew Turner
3  * Copyright (c) 2015-2017 Ruslan Bukin <br@bsdpad.com>
4  * All rights reserved.
5  *
6  * Portions of this software were developed by SRI International and the
7  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
8  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
9  *
10  * Portions of this software were developed by the University of Cambridge
11  * Computer Laboratory as part of the CTSRD Project, with support from the
12  * UK Higher Education Innovation Fund (HEIF).
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include "opt_platform.h"
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/buf.h>
44 #include <sys/bus.h>
45 #include <sys/cons.h>
46 #include <sys/cpu.h>
47 #include <sys/exec.h>
48 #include <sys/imgact.h>
49 #include <sys/kdb.h>
50 #include <sys/kernel.h>
51 #include <sys/limits.h>
52 #include <sys/linker.h>
53 #include <sys/msgbuf.h>
54 #include <sys/pcpu.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/reboot.h>
58 #include <sys/rwlock.h>
59 #include <sys/sched.h>
60 #include <sys/signalvar.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/sysent.h>
63 #include <sys/sysproto.h>
64 #include <sys/ucontext.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_pager.h>
73 
74 #include <machine/riscvreg.h>
75 #include <machine/cpu.h>
76 #include <machine/kdb.h>
77 #include <machine/machdep.h>
78 #include <machine/pcb.h>
79 #include <machine/reg.h>
80 #include <machine/trap.h>
81 #include <machine/vmparam.h>
82 #include <machine/intr.h>
83 #include <machine/sbi.h>
84 
85 #include <machine/asm.h>
86 
87 #ifdef FPE
88 #include <machine/fpe.h>
89 #endif
90 
91 #ifdef FDT
92 #include <dev/fdt/fdt_common.h>
93 #include <dev/ofw/openfirm.h>
94 #endif
95 
96 struct pcpu __pcpu[MAXCPU];
97 
98 static struct trapframe proc0_tf;
99 
100 vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2];
101 vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2];
102 
103 int early_boot = 1;
104 int cold = 1;
105 long realmem = 0;
106 long Maxmem = 0;
107 
108 #define	DTB_SIZE_MAX	(1024 * 1024)
109 
110 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
111 vm_paddr_t physmap[PHYSMAP_SIZE];
112 u_int physmap_idx;
113 
114 struct kva_md_info kmi;
115 
116 int64_t dcache_line_size;	/* The minimum D cache line size */
117 int64_t icache_line_size;	/* The minimum I cache line size */
118 int64_t idcache_line_size;	/* The minimum cache line size */
119 
120 extern int *end;
121 extern int *initstack_end;
122 
123 struct pcpu *pcpup;
124 
125 uintptr_t mcall_trap(uintptr_t mcause, uintptr_t* regs);
126 
127 uintptr_t
128 mcall_trap(uintptr_t mcause, uintptr_t* regs)
129 {
130 
131 	return (0);
132 }
133 
134 static void
135 cpu_startup(void *dummy)
136 {
137 
138 	identify_cpu();
139 
140 	vm_ksubmap_init(&kmi);
141 	bufinit();
142 	vm_pager_bufferinit();
143 }
144 
145 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
146 
147 int
148 cpu_idle_wakeup(int cpu)
149 {
150 
151 	return (0);
152 }
153 
154 int
155 fill_regs(struct thread *td, struct reg *regs)
156 {
157 	struct trapframe *frame;
158 
159 	frame = td->td_frame;
160 	regs->sepc = frame->tf_sepc;
161 	regs->sstatus = frame->tf_sstatus;
162 	regs->ra = frame->tf_ra;
163 	regs->sp = frame->tf_sp;
164 	regs->gp = frame->tf_gp;
165 	regs->tp = frame->tf_tp;
166 
167 	memcpy(regs->t, frame->tf_t, sizeof(regs->t));
168 	memcpy(regs->s, frame->tf_s, sizeof(regs->s));
169 	memcpy(regs->a, frame->tf_a, sizeof(regs->a));
170 
171 	return (0);
172 }
173 
174 int
175 set_regs(struct thread *td, struct reg *regs)
176 {
177 	struct trapframe *frame;
178 
179 	frame = td->td_frame;
180 	frame->tf_sepc = regs->sepc;
181 	frame->tf_sstatus = regs->sstatus;
182 	frame->tf_ra = regs->ra;
183 	frame->tf_sp = regs->sp;
184 	frame->tf_gp = regs->gp;
185 	frame->tf_tp = regs->tp;
186 
187 	memcpy(frame->tf_t, regs->t, sizeof(frame->tf_t));
188 	memcpy(frame->tf_s, regs->s, sizeof(frame->tf_s));
189 	memcpy(frame->tf_a, regs->a, sizeof(frame->tf_a));
190 
191 	return (0);
192 }
193 
194 int
195 fill_fpregs(struct thread *td, struct fpreg *regs)
196 {
197 #ifdef FPE
198 	struct pcb *pcb;
199 
200 	pcb = td->td_pcb;
201 
202 	if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
203 		/*
204 		 * If we have just been running FPE instructions we will
205 		 * need to save the state to memcpy it below.
206 		 */
207 		fpe_state_save(td);
208 
209 		memcpy(regs->fp_x, pcb->pcb_x, sizeof(regs->fp_x));
210 		regs->fp_fcsr = pcb->pcb_fcsr;
211 	} else
212 #endif
213 		memset(regs->fp_x, 0, sizeof(regs->fp_x));
214 
215 	return (0);
216 }
217 
218 int
219 set_fpregs(struct thread *td, struct fpreg *regs)
220 {
221 #ifdef FPE
222 	struct pcb *pcb;
223 
224 	pcb = td->td_pcb;
225 
226 	memcpy(pcb->pcb_x, regs->fp_x, sizeof(regs->fp_x));
227 	pcb->pcb_fcsr = regs->fp_fcsr;
228 #endif
229 
230 	return (0);
231 }
232 
233 int
234 fill_dbregs(struct thread *td, struct dbreg *regs)
235 {
236 
237 	panic("fill_dbregs");
238 }
239 
240 int
241 set_dbregs(struct thread *td, struct dbreg *regs)
242 {
243 
244 	panic("set_dbregs");
245 }
246 
247 int
248 ptrace_set_pc(struct thread *td, u_long addr)
249 {
250 
251 	panic("ptrace_set_pc");
252 	return (0);
253 }
254 
255 int
256 ptrace_single_step(struct thread *td)
257 {
258 
259 	/* TODO; */
260 	return (0);
261 }
262 
263 int
264 ptrace_clear_single_step(struct thread *td)
265 {
266 
267 	/* TODO; */
268 	return (0);
269 }
270 
271 void
272 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
273 {
274 	struct trapframe *tf;
275 	struct pcb *pcb;
276 
277 	tf = td->td_frame;
278 	pcb = td->td_pcb;
279 
280 	memset(tf, 0, sizeof(struct trapframe));
281 
282 	tf->tf_a[0] = stack;
283 	tf->tf_sp = STACKALIGN(stack);
284 	tf->tf_ra = imgp->entry_addr;
285 	tf->tf_sepc = imgp->entry_addr;
286 
287 	pcb->pcb_fpflags &= ~PCB_FP_STARTED;
288 }
289 
290 /* Sanity check these are the same size, they will be memcpy'd to and fro */
291 CTASSERT(sizeof(((struct trapframe *)0)->tf_a) ==
292     sizeof((struct gpregs *)0)->gp_a);
293 CTASSERT(sizeof(((struct trapframe *)0)->tf_s) ==
294     sizeof((struct gpregs *)0)->gp_s);
295 CTASSERT(sizeof(((struct trapframe *)0)->tf_t) ==
296     sizeof((struct gpregs *)0)->gp_t);
297 CTASSERT(sizeof(((struct trapframe *)0)->tf_a) ==
298     sizeof((struct reg *)0)->a);
299 CTASSERT(sizeof(((struct trapframe *)0)->tf_s) ==
300     sizeof((struct reg *)0)->s);
301 CTASSERT(sizeof(((struct trapframe *)0)->tf_t) ==
302     sizeof((struct reg *)0)->t);
303 
304 /* Support for FDT configurations only. */
305 CTASSERT(FDT);
306 
307 int
308 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
309 {
310 	struct trapframe *tf = td->td_frame;
311 
312 	memcpy(mcp->mc_gpregs.gp_t, tf->tf_t, sizeof(mcp->mc_gpregs.gp_t));
313 	memcpy(mcp->mc_gpregs.gp_s, tf->tf_s, sizeof(mcp->mc_gpregs.gp_s));
314 	memcpy(mcp->mc_gpregs.gp_a, tf->tf_a, sizeof(mcp->mc_gpregs.gp_a));
315 
316 	if (clear_ret & GET_MC_CLEAR_RET) {
317 		mcp->mc_gpregs.gp_a[0] = 0;
318 		mcp->mc_gpregs.gp_t[0] = 0; /* clear syscall error */
319 	}
320 
321 	mcp->mc_gpregs.gp_ra = tf->tf_ra;
322 	mcp->mc_gpregs.gp_sp = tf->tf_sp;
323 	mcp->mc_gpregs.gp_gp = tf->tf_gp;
324 	mcp->mc_gpregs.gp_tp = tf->tf_tp;
325 	mcp->mc_gpregs.gp_sepc = tf->tf_sepc;
326 	mcp->mc_gpregs.gp_sstatus = tf->tf_sstatus;
327 
328 	return (0);
329 }
330 
331 int
332 set_mcontext(struct thread *td, mcontext_t *mcp)
333 {
334 	struct trapframe *tf;
335 
336 	tf = td->td_frame;
337 
338 	memcpy(tf->tf_t, mcp->mc_gpregs.gp_t, sizeof(tf->tf_t));
339 	memcpy(tf->tf_s, mcp->mc_gpregs.gp_s, sizeof(tf->tf_s));
340 	memcpy(tf->tf_a, mcp->mc_gpregs.gp_a, sizeof(tf->tf_a));
341 
342 	tf->tf_ra = mcp->mc_gpregs.gp_ra;
343 	tf->tf_sp = mcp->mc_gpregs.gp_sp;
344 	tf->tf_gp = mcp->mc_gpregs.gp_gp;
345 	tf->tf_sepc = mcp->mc_gpregs.gp_sepc;
346 	tf->tf_sstatus = mcp->mc_gpregs.gp_sstatus;
347 
348 	return (0);
349 }
350 
351 static void
352 get_fpcontext(struct thread *td, mcontext_t *mcp)
353 {
354 #ifdef FPE
355 	struct pcb *curpcb;
356 
357 	critical_enter();
358 
359 	curpcb = curthread->td_pcb;
360 
361 	KASSERT(td->td_pcb == curpcb, ("Invalid fpe pcb"));
362 
363 	if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
364 		/*
365 		 * If we have just been running FPE instructions we will
366 		 * need to save the state to memcpy it below.
367 		 */
368 		fpe_state_save(td);
369 
370 		KASSERT((curpcb->pcb_fpflags & ~PCB_FP_USERMASK) == 0,
371 		    ("Non-userspace FPE flags set in get_fpcontext"));
372 		memcpy(mcp->mc_fpregs.fp_x, curpcb->pcb_x,
373 		    sizeof(mcp->mc_fpregs));
374 		mcp->mc_fpregs.fp_fcsr = curpcb->pcb_fcsr;
375 		mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
376 		mcp->mc_flags |= _MC_FP_VALID;
377 	}
378 
379 	critical_exit();
380 #endif
381 }
382 
383 static void
384 set_fpcontext(struct thread *td, mcontext_t *mcp)
385 {
386 #ifdef FPE
387 	struct pcb *curpcb;
388 
389 	critical_enter();
390 
391 	if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
392 		curpcb = curthread->td_pcb;
393 		/* FPE usage is enabled, override registers. */
394 		memcpy(curpcb->pcb_x, mcp->mc_fpregs.fp_x,
395 		    sizeof(mcp->mc_fpregs));
396 		curpcb->pcb_fcsr = mcp->mc_fpregs.fp_fcsr;
397 		curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags & PCB_FP_USERMASK;
398 	}
399 
400 	critical_exit();
401 #endif
402 }
403 
404 void
405 cpu_idle(int busy)
406 {
407 
408 	spinlock_enter();
409 	if (!busy)
410 		cpu_idleclock();
411 	if (!sched_runnable())
412 		__asm __volatile(
413 		    "fence \n"
414 		    "wfi   \n");
415 	if (!busy)
416 		cpu_activeclock();
417 	spinlock_exit();
418 }
419 
420 void
421 cpu_halt(void)
422 {
423 
424 	panic("cpu_halt");
425 }
426 
427 /*
428  * Flush the D-cache for non-DMA I/O so that the I-cache can
429  * be made coherent later.
430  */
431 void
432 cpu_flush_dcache(void *ptr, size_t len)
433 {
434 
435 	/* TBD */
436 }
437 
438 /* Get current clock frequency for the given CPU ID. */
439 int
440 cpu_est_clockrate(int cpu_id, uint64_t *rate)
441 {
442 
443 	panic("cpu_est_clockrate");
444 }
445 
446 void
447 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
448 {
449 }
450 
451 void
452 spinlock_enter(void)
453 {
454 	struct thread *td;
455 
456 	td = curthread;
457 	if (td->td_md.md_spinlock_count == 0) {
458 		td->td_md.md_spinlock_count = 1;
459 		td->td_md.md_saved_sstatus_ie = intr_disable();
460 	} else
461 		td->td_md.md_spinlock_count++;
462 	critical_enter();
463 }
464 
465 void
466 spinlock_exit(void)
467 {
468 	struct thread *td;
469 	register_t sstatus_ie;
470 
471 	td = curthread;
472 	critical_exit();
473 	sstatus_ie = td->td_md.md_saved_sstatus_ie;
474 	td->td_md.md_spinlock_count--;
475 	if (td->td_md.md_spinlock_count == 0)
476 		intr_restore(sstatus_ie);
477 }
478 
479 #ifndef	_SYS_SYSPROTO_H_
480 struct sigreturn_args {
481 	ucontext_t *ucp;
482 };
483 #endif
484 
485 int
486 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
487 {
488 	uint64_t sstatus;
489 	ucontext_t uc;
490 	int error;
491 
492 	if (uap == NULL)
493 		return (EFAULT);
494 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
495 		return (EFAULT);
496 
497 	/*
498 	 * Make sure the processor mode has not been tampered with and
499 	 * interrupts have not been disabled.
500 	 * Supervisor interrupts in user mode are always enabled.
501 	 */
502 	sstatus = uc.uc_mcontext.mc_gpregs.gp_sstatus;
503 	if ((sstatus & SSTATUS_SPP) != 0)
504 		return (EINVAL);
505 
506 	error = set_mcontext(td, &uc.uc_mcontext);
507 	if (error != 0)
508 		return (error);
509 
510 	set_fpcontext(td, &uc.uc_mcontext);
511 
512 	/* Restore signal mask. */
513 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
514 
515 	return (EJUSTRETURN);
516 }
517 
518 /*
519  * Construct a PCB from a trapframe. This is called from kdb_trap() where
520  * we want to start a backtrace from the function that caused us to enter
521  * the debugger. We have the context in the trapframe, but base the trace
522  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
523  * enough for a backtrace.
524  */
525 void
526 makectx(struct trapframe *tf, struct pcb *pcb)
527 {
528 
529 	memcpy(pcb->pcb_t, tf->tf_t, sizeof(tf->tf_t));
530 	memcpy(pcb->pcb_s, tf->tf_s, sizeof(tf->tf_s));
531 	memcpy(pcb->pcb_a, tf->tf_a, sizeof(tf->tf_a));
532 
533 	pcb->pcb_ra = tf->tf_ra;
534 	pcb->pcb_sp = tf->tf_sp;
535 	pcb->pcb_gp = tf->tf_gp;
536 	pcb->pcb_tp = tf->tf_tp;
537 	pcb->pcb_sepc = tf->tf_sepc;
538 }
539 
540 void
541 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
542 {
543 	struct sigframe *fp, frame;
544 	struct sysentvec *sysent;
545 	struct trapframe *tf;
546 	struct sigacts *psp;
547 	struct thread *td;
548 	struct proc *p;
549 	int onstack;
550 	int sig;
551 
552 	td = curthread;
553 	p = td->td_proc;
554 	PROC_LOCK_ASSERT(p, MA_OWNED);
555 
556 	sig = ksi->ksi_signo;
557 	psp = p->p_sigacts;
558 	mtx_assert(&psp->ps_mtx, MA_OWNED);
559 
560 	tf = td->td_frame;
561 	onstack = sigonstack(tf->tf_sp);
562 
563 	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
564 	    catcher, sig);
565 
566 	/* Allocate and validate space for the signal handler context. */
567 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
568 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
569 		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
570 		    td->td_sigstk.ss_size);
571 	} else {
572 		fp = (struct sigframe *)td->td_frame->tf_sp;
573 	}
574 
575 	/* Make room, keeping the stack aligned */
576 	fp--;
577 	fp = (struct sigframe *)STACKALIGN(fp);
578 
579 	/* Fill in the frame to copy out */
580 	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
581 	get_fpcontext(td, &frame.sf_uc.uc_mcontext);
582 	frame.sf_si = ksi->ksi_info;
583 	frame.sf_uc.uc_sigmask = *mask;
584 	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
585 	    ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
586 	frame.sf_uc.uc_stack = td->td_sigstk;
587 	mtx_unlock(&psp->ps_mtx);
588 	PROC_UNLOCK(td->td_proc);
589 
590 	/* Copy the sigframe out to the user's stack. */
591 	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
592 		/* Process has trashed its stack. Kill it. */
593 		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
594 		PROC_LOCK(p);
595 		sigexit(td, SIGILL);
596 	}
597 
598 	tf->tf_a[0] = sig;
599 	tf->tf_a[1] = (register_t)&fp->sf_si;
600 	tf->tf_a[2] = (register_t)&fp->sf_uc;
601 
602 	tf->tf_sepc = (register_t)catcher;
603 	tf->tf_sp = (register_t)fp;
604 
605 	sysent = p->p_sysent;
606 	if (sysent->sv_sigcode_base != 0)
607 		tf->tf_ra = (register_t)sysent->sv_sigcode_base;
608 	else
609 		tf->tf_ra = (register_t)(sysent->sv_psstrings -
610 		    *(sysent->sv_szsigcode));
611 
612 	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_sepc,
613 	    tf->tf_sp);
614 
615 	PROC_LOCK(p);
616 	mtx_lock(&psp->ps_mtx);
617 }
618 
619 static void
620 init_proc0(vm_offset_t kstack)
621 {
622 
623 	pcpup = &__pcpu[0];
624 
625 	proc_linkup0(&proc0, &thread0);
626 	thread0.td_kstack = kstack;
627 	thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1;
628 	thread0.td_pcb->pcb_fpflags = 0;
629 	thread0.td_frame = &proc0_tf;
630 	pcpup->pc_curpcb = thread0.td_pcb;
631 }
632 
633 static int
634 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
635     u_int *physmap_idxp)
636 {
637 	u_int i, insert_idx, _physmap_idx;
638 
639 	_physmap_idx = *physmap_idxp;
640 
641 	if (length == 0)
642 		return (1);
643 
644 	/*
645 	 * Find insertion point while checking for overlap.  Start off by
646 	 * assuming the new entry will be added to the end.
647 	 */
648 	insert_idx = _physmap_idx;
649 	for (i = 0; i <= _physmap_idx; i += 2) {
650 		if (base < physmap[i + 1]) {
651 			if (base + length <= physmap[i]) {
652 				insert_idx = i;
653 				break;
654 			}
655 			if (boothowto & RB_VERBOSE)
656 				printf(
657 		    "Overlapping memory regions, ignoring second region\n");
658 			return (1);
659 		}
660 	}
661 
662 	/* See if we can prepend to the next entry. */
663 	if (insert_idx <= _physmap_idx &&
664 	    base + length == physmap[insert_idx]) {
665 		physmap[insert_idx] = base;
666 		return (1);
667 	}
668 
669 	/* See if we can append to the previous entry. */
670 	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
671 		physmap[insert_idx - 1] += length;
672 		return (1);
673 	}
674 
675 	_physmap_idx += 2;
676 	*physmap_idxp = _physmap_idx;
677 	if (_physmap_idx == PHYSMAP_SIZE) {
678 		printf(
679 		"Too many segments in the physical address map, giving up\n");
680 		return (0);
681 	}
682 
683 	/*
684 	 * Move the last 'N' entries down to make room for the new
685 	 * entry if needed.
686 	 */
687 	for (i = _physmap_idx; i > insert_idx; i -= 2) {
688 		physmap[i] = physmap[i - 2];
689 		physmap[i + 1] = physmap[i - 1];
690 	}
691 
692 	/* Insert the new entry. */
693 	physmap[insert_idx] = base;
694 	physmap[insert_idx + 1] = base + length;
695 
696 	printf("physmap[%d] = 0x%016lx\n", insert_idx, base);
697 	printf("physmap[%d] = 0x%016lx\n", insert_idx + 1, base + length);
698 	return (1);
699 }
700 
701 #ifdef FDT
702 static void
703 try_load_dtb(caddr_t kmdp, vm_offset_t dtbp)
704 {
705 
706 #if defined(FDT_DTB_STATIC)
707 	dtbp = (vm_offset_t)&fdt_static_dtb;
708 #endif
709 
710 	if (dtbp == (vm_offset_t)NULL) {
711 		printf("ERROR loading DTB\n");
712 		return;
713 	}
714 
715 	if (OF_install(OFW_FDT, 0) == FALSE)
716 		panic("Cannot install FDT");
717 
718 	if (OF_init((void *)dtbp) != 0)
719 		panic("OF_init failed with the found device tree");
720 }
721 #endif
722 
723 static void
724 cache_setup(void)
725 {
726 
727 	/* TODO */
728 }
729 
730 /*
731  * Fake up a boot descriptor table.
732  * RISCVTODO: This needs to be done via loader (when it's available).
733  */
734 vm_offset_t
735 fake_preload_metadata(struct riscv_bootparams *rvbp __unused)
736 {
737 	static uint32_t fake_preload[35];
738 #ifdef DDB
739 	vm_offset_t zstart = 0, zend = 0;
740 #endif
741 	vm_offset_t lastaddr;
742 	int i;
743 
744 	i = 0;
745 
746 	fake_preload[i++] = MODINFO_NAME;
747 	fake_preload[i++] = strlen("kernel") + 1;
748 	strcpy((char*)&fake_preload[i++], "kernel");
749 	i += 1;
750 	fake_preload[i++] = MODINFO_TYPE;
751 	fake_preload[i++] = strlen("elf64 kernel") + 1;
752 	strcpy((char*)&fake_preload[i++], "elf64 kernel");
753 	i += 3;
754 	fake_preload[i++] = MODINFO_ADDR;
755 	fake_preload[i++] = sizeof(vm_offset_t);
756 	*(vm_offset_t *)&fake_preload[i++] =
757 	    (vm_offset_t)(KERNBASE + KERNENTRY);
758 	i += 1;
759 	fake_preload[i++] = MODINFO_SIZE;
760 	fake_preload[i++] = sizeof(vm_offset_t);
761 	fake_preload[i++] = (vm_offset_t)&end -
762 	    (vm_offset_t)(KERNBASE + KERNENTRY);
763 	i += 1;
764 #ifdef DDB
765 #if 0
766 	/* RISCVTODO */
767 	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
768 		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
769 		fake_preload[i++] = sizeof(vm_offset_t);
770 		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
771 		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
772 		fake_preload[i++] = sizeof(vm_offset_t);
773 		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
774 		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
775 		zend = lastaddr;
776 		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
777 		db_fetch_ksymtab(zstart, zend);
778 	} else
779 #endif
780 #endif
781 		lastaddr = (vm_offset_t)&end;
782 	fake_preload[i++] = 0;
783 	fake_preload[i] = 0;
784 	preload_metadata = (void *)fake_preload;
785 
786 	return (lastaddr);
787 }
788 
789 void
790 initriscv(struct riscv_bootparams *rvbp)
791 {
792 	struct mem_region mem_regions[FDT_MEM_REGIONS];
793 	vm_offset_t rstart, rend;
794 	vm_offset_t s, e;
795 	int mem_regions_sz;
796 	vm_offset_t lastaddr;
797 	vm_size_t kernlen;
798 	caddr_t kmdp;
799 	int i;
800 
801 	/* Set the module data location */
802 	lastaddr = fake_preload_metadata(rvbp);
803 
804 	/* Find the kernel address */
805 	kmdp = preload_search_by_type("elf kernel");
806 	if (kmdp == NULL)
807 		kmdp = preload_search_by_type("elf64 kernel");
808 
809 	boothowto = RB_VERBOSE | RB_SINGLE;
810 	boothowto = RB_VERBOSE;
811 
812 	kern_envp = NULL;
813 
814 #ifdef FDT
815 	try_load_dtb(kmdp, rvbp->dtbp_virt);
816 #endif
817 
818 	/* Load the physical memory ranges */
819 	physmap_idx = 0;
820 
821 #ifdef FDT
822 	/* Grab physical memory regions information from device tree. */
823 	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, NULL) != 0)
824 		panic("Cannot get physical memory regions");
825 
826 	s = rvbp->dtbp_phys;
827 	e = s + DTB_SIZE_MAX;
828 
829 	for (i = 0; i < mem_regions_sz; i++) {
830 		rstart = mem_regions[i].mr_start;
831 		rend = (mem_regions[i].mr_start + mem_regions[i].mr_size);
832 
833 		if ((rstart < s) && (rend > e)) {
834 			/* Exclude DTB region. */
835 			add_physmap_entry(rstart, (s - rstart), physmap, &physmap_idx);
836 			add_physmap_entry(e, (rend - e), physmap, &physmap_idx);
837 		} else {
838 			add_physmap_entry(mem_regions[i].mr_start,
839 			    mem_regions[i].mr_size, physmap, &physmap_idx);
840 		}
841 	}
842 #endif
843 
844 	/* Set the pcpu data, this is needed by pmap_bootstrap */
845 	pcpup = &__pcpu[0];
846 	pcpu_init(pcpup, 0, sizeof(struct pcpu));
847 
848 	/* Set the pcpu pointer */
849 	__asm __volatile("mv gp, %0" :: "r"(pcpup));
850 
851 	PCPU_SET(curthread, &thread0);
852 
853 	/* Do basic tuning, hz etc */
854 	init_param1();
855 
856 	cache_setup();
857 
858 	/* Bootstrap enough of pmap to enter the kernel proper */
859 	kernlen = (lastaddr - KERNBASE);
860 	pmap_bootstrap(rvbp->kern_l1pt, mem_regions[0].mr_start, kernlen);
861 
862 	cninit();
863 
864 	init_proc0(rvbp->kern_stack);
865 
866 	/* set page table base register for thread0 */
867 	thread0.td_pcb->pcb_l1addr = \
868 	    (rvbp->kern_l1pt - KERNBASE + rvbp->kern_phys);
869 
870 	msgbufinit(msgbufp, msgbufsize);
871 	mutex_init();
872 	init_param2(physmem);
873 	kdb_init();
874 
875 	early_boot = 0;
876 }
877 
878 #undef bzero
879 void
880 bzero(void *buf, size_t len)
881 {
882 	uint8_t *p;
883 
884 	p = buf;
885 	while(len-- > 0)
886 		*p++ = 0;
887 }
888