xref: /freebsd/sys/riscv/riscv/mp_machdep.c (revision 19261079)
1 /*-
2  * Copyright (c) 2015 The FreeBSD Foundation
3  * Copyright (c) 2016 Ruslan Bukin <br@bsdpad.com>
4  * All rights reserved.
5  *
6  * Portions of this software were developed by Andrew Turner under
7  * sponsorship from the FreeBSD Foundation.
8  *
9  * Portions of this software were developed by SRI International and the
10  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
11  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
12  *
13  * Portions of this software were developed by the University of Cambridge
14  * Computer Laboratory as part of the CTSRD Project, with support from the
15  * UK Higher Education Innovation Fund (HEIF).
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include "opt_kstack_pages.h"
40 #include "opt_platform.h"
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bus.h>
48 #include <sys/cpu.h>
49 #include <sys/cpuset.h>
50 #include <sys/kernel.h>
51 #include <sys/ktr.h>
52 #include <sys/malloc.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/sched.h>
57 #include <sys/smp.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_extern.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_map.h>
64 
65 #include <machine/intr.h>
66 #include <machine/smp.h>
67 #include <machine/sbi.h>
68 
69 #ifdef FDT
70 #include <dev/ofw/openfirm.h>
71 #include <dev/ofw/ofw_cpu.h>
72 #endif
73 
74 boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *);
75 
76 uint32_t __riscv_boot_ap[MAXCPU];
77 
78 static enum {
79 	CPUS_UNKNOWN,
80 #ifdef FDT
81 	CPUS_FDT,
82 #endif
83 } cpu_enum_method;
84 
85 static device_identify_t riscv64_cpu_identify;
86 static device_probe_t riscv64_cpu_probe;
87 static device_attach_t riscv64_cpu_attach;
88 
89 static int ipi_handler(void *);
90 
91 struct pcb stoppcbs[MAXCPU];
92 
93 extern uint32_t boot_hart;
94 extern cpuset_t all_harts;
95 
96 #ifdef INVARIANTS
97 static uint32_t cpu_reg[MAXCPU][2];
98 #endif
99 static device_t cpu_list[MAXCPU];
100 
101 void mpentry(u_long hartid);
102 void init_secondary(uint64_t);
103 
104 static struct mtx ap_boot_mtx;
105 
106 /* Stacks for AP initialization, discarded once idle threads are started. */
107 void *bootstack;
108 static void *bootstacks[MAXCPU];
109 
110 /* Count of started APs, used to synchronize access to bootstack. */
111 static volatile int aps_started;
112 
113 /* Set to 1 once we're ready to let the APs out of the pen. */
114 static volatile int aps_ready;
115 
116 /* Temporary variables for init_secondary()  */
117 void *dpcpu[MAXCPU - 1];
118 
119 static device_method_t riscv64_cpu_methods[] = {
120 	/* Device interface */
121 	DEVMETHOD(device_identify,	riscv64_cpu_identify),
122 	DEVMETHOD(device_probe,		riscv64_cpu_probe),
123 	DEVMETHOD(device_attach,	riscv64_cpu_attach),
124 
125 	DEVMETHOD_END
126 };
127 
128 static devclass_t riscv64_cpu_devclass;
129 static driver_t riscv64_cpu_driver = {
130 	"riscv64_cpu",
131 	riscv64_cpu_methods,
132 	0
133 };
134 
135 DRIVER_MODULE(riscv64_cpu, cpu, riscv64_cpu_driver, riscv64_cpu_devclass, 0, 0);
136 
137 static void
138 riscv64_cpu_identify(driver_t *driver, device_t parent)
139 {
140 
141 	if (device_find_child(parent, "riscv64_cpu", -1) != NULL)
142 		return;
143 	if (BUS_ADD_CHILD(parent, 0, "riscv64_cpu", -1) == NULL)
144 		device_printf(parent, "add child failed\n");
145 }
146 
147 static int
148 riscv64_cpu_probe(device_t dev)
149 {
150 	u_int cpuid;
151 
152 	cpuid = device_get_unit(dev);
153 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
154 		return (EINVAL);
155 
156 	device_quiet(dev);
157 	return (0);
158 }
159 
160 static int
161 riscv64_cpu_attach(device_t dev)
162 {
163 	const uint32_t *reg;
164 	size_t reg_size;
165 	u_int cpuid;
166 	int i;
167 
168 	cpuid = device_get_unit(dev);
169 
170 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
171 		return (EINVAL);
172 	KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
173 
174 	reg = cpu_get_cpuid(dev, &reg_size);
175 	if (reg == NULL)
176 		return (EINVAL);
177 
178 	if (bootverbose) {
179 		device_printf(dev, "register <");
180 		for (i = 0; i < reg_size; i++)
181 			printf("%s%x", (i == 0) ? "" : " ", reg[i]);
182 		printf(">\n");
183 	}
184 
185 	/* Set the device to start it later */
186 	cpu_list[cpuid] = dev;
187 
188 	return (0);
189 }
190 
191 static void
192 release_aps(void *dummy __unused)
193 {
194 	cpuset_t mask;
195 	int i;
196 
197 	if (mp_ncpus == 1)
198 		return;
199 
200 	/* Setup the IPI handler */
201 	riscv_setup_ipihandler(ipi_handler);
202 
203 	atomic_store_rel_int(&aps_ready, 1);
204 
205 	/* Wake up the other CPUs */
206 	mask = all_harts;
207 	CPU_CLR(boot_hart, &mask);
208 
209 	printf("Release APs\n");
210 
211 	sbi_send_ipi(mask.__bits);
212 
213 	for (i = 0; i < 2000; i++) {
214 		if (smp_started)
215 			return;
216 		DELAY(1000);
217 	}
218 
219 	printf("APs not started\n");
220 }
221 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
222 
223 void
224 init_secondary(uint64_t hart)
225 {
226 	struct pcpu *pcpup;
227 	u_int cpuid;
228 
229 	/* Renumber this cpu */
230 	cpuid = hart;
231 	if (cpuid < boot_hart)
232 		cpuid += mp_maxid + 1;
233 	cpuid -= boot_hart;
234 
235 	/* Setup the pcpu pointer */
236 	pcpup = &__pcpu[cpuid];
237 	__asm __volatile("mv tp, %0" :: "r"(pcpup));
238 
239 	/* Workaround: make sure wfi doesn't halt the hart */
240 	csr_set(sie, SIE_SSIE);
241 	csr_set(sip, SIE_SSIE);
242 
243 	/* Signal the BSP and spin until it has released all APs. */
244 	atomic_add_int(&aps_started, 1);
245 	while (!atomic_load_int(&aps_ready))
246 		__asm __volatile("wfi");
247 
248 	/* Initialize curthread */
249 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
250 	pcpup->pc_curthread = pcpup->pc_idlethread;
251 
252 	/*
253 	 * Identify current CPU. This is necessary to setup
254 	 * affinity registers and to provide support for
255 	 * runtime chip identification.
256 	 */
257 	identify_cpu();
258 
259 	/* Enable software interrupts */
260 	riscv_unmask_ipi();
261 
262 #ifndef EARLY_AP_STARTUP
263 	/* Start per-CPU event timers. */
264 	cpu_initclocks_ap();
265 #endif
266 
267 	/* Enable external (PLIC) interrupts */
268 	csr_set(sie, SIE_SEIE);
269 
270 	/* Activate this hart in the kernel pmap. */
271 	CPU_SET_ATOMIC(hart, &kernel_pmap->pm_active);
272 
273 	/* Activate process 0's pmap. */
274 	pmap_activate_boot(vmspace_pmap(proc0.p_vmspace));
275 
276 	mtx_lock_spin(&ap_boot_mtx);
277 
278 	atomic_add_rel_32(&smp_cpus, 1);
279 
280 	if (smp_cpus == mp_ncpus) {
281 		/* enable IPI's, tlb shootdown, freezes etc */
282 		atomic_store_rel_int(&smp_started, 1);
283 	}
284 
285 	mtx_unlock_spin(&ap_boot_mtx);
286 
287 	/*
288 	 * Assert that smp_after_idle_runnable condition is reasonable.
289 	 */
290 	MPASS(PCPU_GET(curpcb) == NULL);
291 
292 	/* Enter the scheduler */
293 	sched_throw(NULL);
294 
295 	panic("scheduler returned us to init_secondary");
296 	/* NOTREACHED */
297 }
298 
299 static void
300 smp_after_idle_runnable(void *arg __unused)
301 {
302 	struct pcpu *pc;
303 	int cpu;
304 
305 	for (cpu = 1; cpu <= mp_maxid; cpu++) {
306 		if (bootstacks[cpu] != NULL) {
307 			pc = pcpu_find(cpu);
308 			while (atomic_load_ptr(&pc->pc_curpcb) == NULL)
309 				cpu_spinwait();
310 			kmem_free((vm_offset_t)bootstacks[cpu], PAGE_SIZE);
311 		}
312 	}
313 }
314 SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY,
315     smp_after_idle_runnable, NULL);
316 
317 static int
318 ipi_handler(void *arg)
319 {
320 	u_int ipi_bitmap;
321 	u_int cpu, ipi;
322 	int bit;
323 
324 	csr_clear(sip, SIP_SSIP);
325 
326 	cpu = PCPU_GET(cpuid);
327 
328 	mb();
329 
330 	ipi_bitmap = atomic_readandclear_int(PCPU_PTR(pending_ipis));
331 	if (ipi_bitmap == 0)
332 		return (FILTER_HANDLED);
333 
334 	while ((bit = ffs(ipi_bitmap))) {
335 		bit = (bit - 1);
336 		ipi = (1 << bit);
337 		ipi_bitmap &= ~ipi;
338 
339 		mb();
340 
341 		switch (ipi) {
342 		case IPI_AST:
343 			CTR0(KTR_SMP, "IPI_AST");
344 			break;
345 		case IPI_PREEMPT:
346 			CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
347 			sched_preempt(curthread);
348 			break;
349 		case IPI_RENDEZVOUS:
350 			CTR0(KTR_SMP, "IPI_RENDEZVOUS");
351 			smp_rendezvous_action();
352 			break;
353 		case IPI_STOP:
354 		case IPI_STOP_HARD:
355 			CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD");
356 			savectx(&stoppcbs[cpu]);
357 
358 			/* Indicate we are stopped */
359 			CPU_SET_ATOMIC(cpu, &stopped_cpus);
360 
361 			/* Wait for restart */
362 			while (!CPU_ISSET(cpu, &started_cpus))
363 				cpu_spinwait();
364 
365 			CPU_CLR_ATOMIC(cpu, &started_cpus);
366 			CPU_CLR_ATOMIC(cpu, &stopped_cpus);
367 			CTR0(KTR_SMP, "IPI_STOP (restart)");
368 
369 			/*
370 			 * The kernel debugger might have set a breakpoint,
371 			 * so flush the instruction cache.
372 			 */
373 			fence_i();
374 			break;
375 		case IPI_HARDCLOCK:
376 			CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
377 			hardclockintr();
378 			break;
379 		default:
380 			panic("Unknown IPI %#0x on cpu %d", ipi, curcpu);
381 		}
382 	}
383 
384 	return (FILTER_HANDLED);
385 }
386 
387 struct cpu_group *
388 cpu_topo(void)
389 {
390 
391 	return (smp_topo_none());
392 }
393 
394 /* Determine if we running MP machine */
395 int
396 cpu_mp_probe(void)
397 {
398 
399 	return (mp_ncpus > 1);
400 }
401 
402 #ifdef FDT
403 static boolean_t
404 cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
405 {
406 	struct pcpu *pcpup;
407 	vm_paddr_t start_addr;
408 	uint64_t hart;
409 	u_int cpuid;
410 	int naps;
411 	int error;
412 
413 	/* Check if this hart supports MMU. */
414 	if (OF_getproplen(node, "mmu-type") < 0)
415 		return (0);
416 
417 	KASSERT(id < MAXCPU, ("Too many CPUs"));
418 
419 	KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
420 #ifdef INVARIANTS
421 	cpu_reg[id][0] = reg[0];
422 	if (addr_size == 2)
423 		cpu_reg[id][1] = reg[1];
424 #endif
425 
426 	hart = reg[0];
427 	if (addr_size == 2) {
428 		hart <<= 32;
429 		hart |= reg[1];
430 	}
431 
432 	KASSERT(hart < MAXCPU, ("Too many harts."));
433 
434 	/* We are already running on this cpu */
435 	if (hart == boot_hart)
436 		return (1);
437 
438 	/*
439 	 * Rotate the CPU IDs to put the boot CPU as CPU 0.
440 	 * We keep the other CPUs ordered.
441 	 */
442 	cpuid = hart;
443 	if (cpuid < boot_hart)
444 		cpuid += mp_maxid + 1;
445 	cpuid -= boot_hart;
446 
447 	/* Check if we are able to start this cpu */
448 	if (cpuid > mp_maxid)
449 		return (0);
450 
451 	/*
452 	 * Depending on the SBI implementation, APs are waiting either in
453 	 * locore.S or to be activated explicitly, via SBI call.
454 	 */
455 	if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0) {
456 		start_addr = pmap_kextract((vm_offset_t)mpentry);
457 		error = sbi_hsm_hart_start(hart, start_addr, 0);
458 		if (error != 0) {
459 			mp_ncpus--;
460 
461 			/* Send a warning to the user and continue. */
462 			printf("AP %u (hart %lu) failed to start, error %d\n",
463 			    cpuid, hart, error);
464 			return (0);
465 		}
466 	}
467 
468 	pcpup = &__pcpu[cpuid];
469 	pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
470 	pcpup->pc_hart = hart;
471 
472 	dpcpu[cpuid - 1] = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
473 	dpcpu_init(dpcpu[cpuid - 1], cpuid);
474 
475 	bootstacks[cpuid] = (void *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO);
476 
477 	naps = atomic_load_int(&aps_started);
478 	bootstack = (char *)bootstacks[cpuid] + PAGE_SIZE;
479 
480 	printf("Starting CPU %u (hart %lx)\n", cpuid, hart);
481 	atomic_store_32(&__riscv_boot_ap[hart], 1);
482 
483 	/* Wait for the AP to switch to its boot stack. */
484 	while (atomic_load_int(&aps_started) < naps + 1)
485 		cpu_spinwait();
486 
487 	CPU_SET(cpuid, &all_cpus);
488 	CPU_SET(hart, &all_harts);
489 
490 	return (1);
491 }
492 #endif
493 
494 /* Initialize and fire up non-boot processors */
495 void
496 cpu_mp_start(void)
497 {
498 
499 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
500 
501 	CPU_SET(0, &all_cpus);
502 	CPU_SET(boot_hart, &all_harts);
503 
504 	switch(cpu_enum_method) {
505 #ifdef FDT
506 	case CPUS_FDT:
507 		ofw_cpu_early_foreach(cpu_init_fdt, true);
508 		break;
509 #endif
510 	case CPUS_UNKNOWN:
511 		break;
512 	}
513 }
514 
515 /* Introduce rest of cores to the world */
516 void
517 cpu_mp_announce(void)
518 {
519 }
520 
521 static boolean_t
522 cpu_check_mmu(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
523 {
524 
525 	/* Check if this hart supports MMU. */
526 	if (OF_getproplen(node, "mmu-type") < 0)
527 		return (0);
528 
529 	return (1);
530 }
531 
532 void
533 cpu_mp_setmaxid(void)
534 {
535 	int cores;
536 
537 #ifdef FDT
538 	cores = ofw_cpu_early_foreach(cpu_check_mmu, true);
539 	if (cores > 0) {
540 		cores = MIN(cores, MAXCPU);
541 		if (bootverbose)
542 			printf("Found %d CPUs in the device tree\n", cores);
543 		mp_ncpus = cores;
544 		mp_maxid = cores - 1;
545 		cpu_enum_method = CPUS_FDT;
546 	} else
547 #endif
548 	{
549 		if (bootverbose)
550 			printf("No CPU data, limiting to 1 core\n");
551 		mp_ncpus = 1;
552 		mp_maxid = 0;
553 	}
554 
555 	if (TUNABLE_INT_FETCH("hw.ncpu", &cores)) {
556 		if (cores > 0 && cores < mp_ncpus) {
557 			mp_ncpus = cores;
558 			mp_maxid = cores - 1;
559 		}
560 	}
561 }
562