xref: /freebsd/sys/riscv/riscv/mp_machdep.c (revision a91a2465)
1 /*-
2  * Copyright (c) 2015 The FreeBSD Foundation
3  * Copyright (c) 2016 Ruslan Bukin <br@bsdpad.com>
4  * All rights reserved.
5  *
6  * Portions of this software were developed by Andrew Turner under
7  * sponsorship from the FreeBSD Foundation.
8  *
9  * Portions of this software were developed by SRI International and the
10  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
11  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
12  *
13  * Portions of this software were developed by the University of Cambridge
14  * Computer Laboratory as part of the CTSRD Project, with support from the
15  * UK Higher Education Innovation Fund (HEIF).
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include "opt_kstack_pages.h"
40 #include "opt_platform.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/cpu.h>
46 #include <sys/cpuset.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/malloc.h>
50 #include <sys/module.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_map.h>
61 
62 #include <machine/intr.h>
63 #include <machine/smp.h>
64 #include <machine/sbi.h>
65 
66 #ifdef FDT
67 #include <dev/ofw/openfirm.h>
68 #include <dev/ofw/ofw_cpu.h>
69 #endif
70 
71 #define	MP_BOOTSTACK_SIZE	(kstack_pages * PAGE_SIZE)
72 
73 uint32_t __riscv_boot_ap[MAXCPU];
74 
75 static enum {
76 	CPUS_UNKNOWN,
77 #ifdef FDT
78 	CPUS_FDT,
79 #endif
80 } cpu_enum_method;
81 
82 static void ipi_ast(void *);
83 static void ipi_hardclock(void *);
84 static void ipi_preempt(void *);
85 static void ipi_rendezvous(void *);
86 static void ipi_stop(void *);
87 
88 extern uint32_t boot_hart;
89 extern cpuset_t all_harts;
90 
91 #ifdef INVARIANTS
92 static uint32_t cpu_reg[MAXCPU][2];
93 #endif
94 
95 void mpentry(u_long hartid);
96 void init_secondary(uint64_t);
97 
98 static struct mtx ap_boot_mtx;
99 
100 /* Stacks for AP initialization, discarded once idle threads are started. */
101 void *bootstack;
102 static void *bootstacks[MAXCPU];
103 
104 /* Count of started APs, used to synchronize access to bootstack. */
105 static volatile int aps_started;
106 
107 /* Set to 1 once we're ready to let the APs out of the pen. */
108 static volatile int aps_ready;
109 
110 /* Temporary variables for init_secondary()  */
111 void *dpcpu[MAXCPU - 1];
112 
113 static void
114 release_aps(void *dummy __unused)
115 {
116 	cpuset_t mask;
117 	int i;
118 
119 	if (mp_ncpus == 1)
120 		return;
121 
122 	/* Setup the IPI handlers */
123 	intr_ipi_setup(IPI_AST, "ast", ipi_ast, NULL);
124 	intr_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL);
125 	intr_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL);
126 	intr_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL);
127 	intr_ipi_setup(IPI_STOP_HARD, "stop hard", ipi_stop, NULL);
128 	intr_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL);
129 
130 	atomic_store_rel_int(&aps_ready, 1);
131 
132 	/* Wake up the other CPUs */
133 	mask = all_harts;
134 	CPU_CLR(boot_hart, &mask);
135 
136 	printf("Release APs\n");
137 
138 	sbi_send_ipi(mask.__bits);
139 
140 	for (i = 0; i < 2000; i++) {
141 		if (atomic_load_acq_int(&smp_started))
142 			return;
143 		DELAY(1000);
144 	}
145 
146 	printf("APs not started\n");
147 }
148 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
149 
150 void
151 init_secondary(uint64_t hart)
152 {
153 	struct pcpu *pcpup;
154 	u_int cpuid;
155 
156 	/* Renumber this cpu */
157 	cpuid = hart;
158 	if (cpuid < boot_hart)
159 		cpuid += mp_maxid + 1;
160 	cpuid -= boot_hart;
161 
162 	/* Setup the pcpu pointer */
163 	pcpup = &__pcpu[cpuid];
164 	__asm __volatile("mv tp, %0" :: "r"(pcpup));
165 
166 	/* Workaround: make sure wfi doesn't halt the hart */
167 	csr_set(sie, SIE_SSIE);
168 	csr_set(sip, SIE_SSIE);
169 
170 	/* Signal the BSP and spin until it has released all APs. */
171 	atomic_add_int(&aps_started, 1);
172 	while (!atomic_load_int(&aps_ready))
173 		__asm __volatile("wfi");
174 
175 	/* Initialize curthread */
176 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
177 	pcpup->pc_curthread = pcpup->pc_idlethread;
178 	schedinit_ap();
179 
180 	/* Setup and enable interrupts */
181 	intr_pic_init_secondary();
182 
183 #ifndef EARLY_AP_STARTUP
184 	/* Start per-CPU event timers. */
185 	cpu_initclocks_ap();
186 #endif
187 
188 	/* Activate this hart in the kernel pmap. */
189 	CPU_SET_ATOMIC(hart, &kernel_pmap->pm_active);
190 
191 	/* Activate process 0's pmap. */
192 	pmap_activate_boot(vmspace_pmap(proc0.p_vmspace));
193 
194 	mtx_lock_spin(&ap_boot_mtx);
195 
196 	atomic_add_rel_32(&smp_cpus, 1);
197 
198 	if (smp_cpus == mp_ncpus) {
199 		/* enable IPI's, tlb shootdown, freezes etc */
200 		atomic_store_rel_int(&smp_started, 1);
201 	}
202 
203 	mtx_unlock_spin(&ap_boot_mtx);
204 
205 	if (bootverbose)
206 		printf("Secondary CPU %u fully online\n", cpuid);
207 
208 	/* Enter the scheduler */
209 	sched_ap_entry();
210 
211 	panic("scheduler returned us to init_secondary");
212 	/* NOTREACHED */
213 }
214 
215 static void
216 smp_after_idle_runnable(void *arg __unused)
217 {
218 	int cpu;
219 
220 	if (mp_ncpus == 1)
221 		return;
222 
223 	KASSERT(smp_started != 0, ("%s: SMP not started yet", __func__));
224 
225 	/*
226 	 * Wait for all APs to handle an interrupt.  After that, we know that
227 	 * the APs have entered the scheduler at least once, so the boot stacks
228 	 * are safe to free.
229 	 */
230 	smp_rendezvous(smp_no_rendezvous_barrier, NULL,
231 	    smp_no_rendezvous_barrier, NULL);
232 
233 	for (cpu = 1; cpu <= mp_maxid; cpu++) {
234 		if (bootstacks[cpu] != NULL)
235 			kmem_free(bootstacks[cpu], MP_BOOTSTACK_SIZE);
236 	}
237 }
238 SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY,
239     smp_after_idle_runnable, NULL);
240 
241 static void
242 ipi_ast(void *dummy __unused)
243 {
244 	CTR0(KTR_SMP, "IPI_AST");
245 }
246 
247 static void
248 ipi_preempt(void *dummy __unused)
249 {
250 	CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
251 	sched_preempt(curthread);
252 }
253 
254 static void
255 ipi_rendezvous(void *dummy __unused)
256 {
257 	CTR0(KTR_SMP, "IPI_RENDEZVOUS");
258 	smp_rendezvous_action();
259 }
260 
261 static void
262 ipi_stop(void *dummy __unused)
263 {
264 	u_int cpu;
265 
266 	CTR0(KTR_SMP, "IPI_STOP");
267 
268 	cpu = PCPU_GET(cpuid);
269 	savectx(&stoppcbs[cpu]);
270 
271 	/* Indicate we are stopped */
272 	CPU_SET_ATOMIC(cpu, &stopped_cpus);
273 
274 	/* Wait for restart */
275 	while (!CPU_ISSET(cpu, &started_cpus))
276 		cpu_spinwait();
277 
278 	CPU_CLR_ATOMIC(cpu, &started_cpus);
279 	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
280 	CTR0(KTR_SMP, "IPI_STOP (restart)");
281 
282 	/*
283 	 * The kernel debugger might have set a breakpoint,
284 	 * so flush the instruction cache.
285 	 */
286 	fence_i();
287 }
288 
289 static void
290 ipi_hardclock(void *dummy __unused)
291 {
292 	CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
293 	hardclockintr();
294 }
295 
296 struct cpu_group *
297 cpu_topo(void)
298 {
299 
300 	return (smp_topo_none());
301 }
302 
303 /* Determine if we running MP machine */
304 int
305 cpu_mp_probe(void)
306 {
307 
308 	return (mp_ncpus > 1);
309 }
310 
311 #ifdef FDT
312 static bool
313 cpu_check_mmu(u_int id __unused, phandle_t node, u_int addr_size __unused,
314     pcell_t *reg __unused)
315 {
316 	char type[32];
317 
318 	/* Check if this hart supports MMU. */
319 	if (OF_getprop(node, "mmu-type", (void *)type, sizeof(type)) == -1 ||
320 	    strncmp(type, "riscv,none", 10) == 0)
321 		return (false);
322 
323 	return (true);
324 }
325 
326 static bool
327 cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
328 {
329 	struct pcpu *pcpup;
330 	vm_paddr_t start_addr;
331 	uint64_t hart;
332 	u_int cpuid;
333 	int naps;
334 	int error;
335 
336 	if (!cpu_check_mmu(id, node, addr_size, reg))
337 		return (false);
338 
339 	KASSERT(id < MAXCPU, ("Too many CPUs"));
340 
341 	KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
342 #ifdef INVARIANTS
343 	cpu_reg[id][0] = reg[0];
344 	if (addr_size == 2)
345 		cpu_reg[id][1] = reg[1];
346 #endif
347 
348 	hart = reg[0];
349 	if (addr_size == 2) {
350 		hart <<= 32;
351 		hart |= reg[1];
352 	}
353 
354 	KASSERT(hart < MAXCPU, ("Too many harts."));
355 
356 	/* We are already running on this cpu */
357 	if (hart == boot_hart)
358 		return (true);
359 
360 	/*
361 	 * Rotate the CPU IDs to put the boot CPU as CPU 0.
362 	 * We keep the other CPUs ordered.
363 	 */
364 	cpuid = hart;
365 	if (cpuid < boot_hart)
366 		cpuid += mp_maxid + 1;
367 	cpuid -= boot_hart;
368 
369 	/* Check if we are able to start this cpu */
370 	if (cpuid > mp_maxid)
371 		return (false);
372 
373 	/*
374 	 * Depending on the SBI implementation, APs are waiting either in
375 	 * locore.S or to be activated explicitly, via SBI call.
376 	 */
377 	if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0) {
378 		start_addr = pmap_kextract((vm_offset_t)mpentry);
379 		error = sbi_hsm_hart_start(hart, start_addr, 0);
380 		if (error != 0) {
381 			mp_ncpus--;
382 
383 			/* Send a warning to the user and continue. */
384 			printf("AP %u (hart %lu) failed to start, error %d\n",
385 			    cpuid, hart, error);
386 			return (false);
387 		}
388 	}
389 
390 	pcpup = &__pcpu[cpuid];
391 	pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
392 	pcpup->pc_hart = hart;
393 
394 	dpcpu[cpuid - 1] = kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
395 	dpcpu_init(dpcpu[cpuid - 1], cpuid);
396 
397 	bootstacks[cpuid] = kmem_malloc(MP_BOOTSTACK_SIZE, M_WAITOK | M_ZERO);
398 
399 	naps = atomic_load_int(&aps_started);
400 	bootstack = (char *)bootstacks[cpuid] + MP_BOOTSTACK_SIZE;
401 
402 	if (bootverbose)
403 		printf("Starting CPU %u (hart %lx)\n", cpuid, hart);
404 	atomic_store_32(&__riscv_boot_ap[hart], 1);
405 
406 	/* Wait for the AP to switch to its boot stack. */
407 	while (atomic_load_int(&aps_started) < naps + 1)
408 		cpu_spinwait();
409 
410 	CPU_SET(cpuid, &all_cpus);
411 	CPU_SET(hart, &all_harts);
412 
413 	return (true);
414 }
415 #endif
416 
417 /* Initialize and fire up non-boot processors */
418 void
419 cpu_mp_start(void)
420 {
421 	u_int cpu;
422 
423 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
424 
425 	CPU_SET(0, &all_cpus);
426 	CPU_SET(boot_hart, &all_harts);
427 
428 	switch(cpu_enum_method) {
429 #ifdef FDT
430 	case CPUS_FDT:
431 		ofw_cpu_early_foreach(cpu_init_fdt, true);
432 		break;
433 #endif
434 	case CPUS_UNKNOWN:
435 		break;
436 	}
437 
438 	CPU_FOREACH(cpu) {
439 		/* Already identified. */
440 		if (cpu == 0)
441 			continue;
442 
443 		identify_cpu(cpu);
444 	}
445 }
446 
447 /* Introduce rest of cores to the world */
448 void
449 cpu_mp_announce(void)
450 {
451 	u_int cpu;
452 
453 	CPU_FOREACH(cpu) {
454 		/* Already announced. */
455 		if (cpu == 0)
456 			continue;
457 
458 		printcpuinfo(cpu);
459 	}
460 }
461 
462 void
463 cpu_mp_setmaxid(void)
464 {
465 	int cores;
466 
467 #ifdef FDT
468 	cores = ofw_cpu_early_foreach(cpu_check_mmu, true);
469 	if (cores > 0) {
470 		cores = MIN(cores, MAXCPU);
471 		if (bootverbose)
472 			printf("Found %d CPUs in the device tree\n", cores);
473 		mp_ncpus = cores;
474 		mp_maxid = cores - 1;
475 		cpu_enum_method = CPUS_FDT;
476 	} else
477 #endif
478 	{
479 		if (bootverbose)
480 			printf("No CPU data, limiting to 1 core\n");
481 		mp_ncpus = 1;
482 		mp_maxid = 0;
483 	}
484 
485 	if (TUNABLE_INT_FETCH("hw.ncpu", &cores)) {
486 		if (cores > 0 && cores < mp_ncpus) {
487 			mp_ncpus = cores;
488 			mp_maxid = cores - 1;
489 		}
490 	}
491 }
492 
493 void
494 ipi_all_but_self(u_int ipi)
495 {
496 	cpuset_t other_cpus;
497 
498 	other_cpus = all_cpus;
499 	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
500 
501 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
502 	intr_ipi_send(other_cpus, ipi);
503 }
504 
505 void
506 ipi_cpu(int cpu, u_int ipi)
507 {
508 	cpuset_t cpus;
509 
510 	CPU_ZERO(&cpus);
511 	CPU_SET(cpu, &cpus);
512 
513 	CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi);
514 	intr_ipi_send(cpus, ipi);
515 }
516 
517 void
518 ipi_selected(cpuset_t cpus, u_int ipi)
519 {
520 	CTR1(KTR_SMP, "ipi_selected: ipi: %x", ipi);
521 	intr_ipi_send(cpus, ipi);
522 }
523