xref: /freebsd/sys/riscv/riscv/mp_machdep.c (revision f374ba41)
1 /*-
2  * Copyright (c) 2015 The FreeBSD Foundation
3  * Copyright (c) 2016 Ruslan Bukin <br@bsdpad.com>
4  * All rights reserved.
5  *
6  * Portions of this software were developed by Andrew Turner under
7  * sponsorship from the FreeBSD Foundation.
8  *
9  * Portions of this software were developed by SRI International and the
10  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
11  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
12  *
13  * Portions of this software were developed by the University of Cambridge
14  * Computer Laboratory as part of the CTSRD Project, with support from the
15  * UK Higher Education Innovation Fund (HEIF).
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include "opt_kstack_pages.h"
40 #include "opt_platform.h"
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bus.h>
48 #include <sys/cpu.h>
49 #include <sys/cpuset.h>
50 #include <sys/kernel.h>
51 #include <sys/ktr.h>
52 #include <sys/malloc.h>
53 #include <sys/module.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/sched.h>
57 #include <sys/smp.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_extern.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_map.h>
64 
65 #include <machine/intr.h>
66 #include <machine/smp.h>
67 #include <machine/sbi.h>
68 
69 #ifdef FDT
70 #include <dev/ofw/openfirm.h>
71 #include <dev/ofw/ofw_cpu.h>
72 #endif
73 
74 #define	MP_BOOTSTACK_SIZE	(kstack_pages * PAGE_SIZE)
75 
76 uint32_t __riscv_boot_ap[MAXCPU];
77 
78 static enum {
79 	CPUS_UNKNOWN,
80 #ifdef FDT
81 	CPUS_FDT,
82 #endif
83 } cpu_enum_method;
84 
85 static device_identify_t riscv64_cpu_identify;
86 static device_probe_t riscv64_cpu_probe;
87 static device_attach_t riscv64_cpu_attach;
88 
89 static int ipi_handler(void *);
90 
91 struct pcb stoppcbs[MAXCPU];
92 
93 extern uint32_t boot_hart;
94 extern cpuset_t all_harts;
95 
96 #ifdef INVARIANTS
97 static uint32_t cpu_reg[MAXCPU][2];
98 #endif
99 static device_t cpu_list[MAXCPU];
100 
101 void mpentry(u_long hartid);
102 void init_secondary(uint64_t);
103 
104 static struct mtx ap_boot_mtx;
105 
106 /* Stacks for AP initialization, discarded once idle threads are started. */
107 void *bootstack;
108 static void *bootstacks[MAXCPU];
109 
110 /* Count of started APs, used to synchronize access to bootstack. */
111 static volatile int aps_started;
112 
113 /* Set to 1 once we're ready to let the APs out of the pen. */
114 static volatile int aps_ready;
115 
116 /* Temporary variables for init_secondary()  */
117 void *dpcpu[MAXCPU - 1];
118 
119 static device_method_t riscv64_cpu_methods[] = {
120 	/* Device interface */
121 	DEVMETHOD(device_identify,	riscv64_cpu_identify),
122 	DEVMETHOD(device_probe,		riscv64_cpu_probe),
123 	DEVMETHOD(device_attach,	riscv64_cpu_attach),
124 
125 	DEVMETHOD_END
126 };
127 
128 static driver_t riscv64_cpu_driver = {
129 	"riscv64_cpu",
130 	riscv64_cpu_methods,
131 	0
132 };
133 
134 DRIVER_MODULE(riscv64_cpu, cpu, riscv64_cpu_driver, 0, 0);
135 
136 static void
137 riscv64_cpu_identify(driver_t *driver, device_t parent)
138 {
139 
140 	if (device_find_child(parent, "riscv64_cpu", -1) != NULL)
141 		return;
142 	if (BUS_ADD_CHILD(parent, 0, "riscv64_cpu", -1) == NULL)
143 		device_printf(parent, "add child failed\n");
144 }
145 
146 static int
147 riscv64_cpu_probe(device_t dev)
148 {
149 	u_int cpuid;
150 
151 	cpuid = device_get_unit(dev);
152 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
153 		return (EINVAL);
154 
155 	device_quiet(dev);
156 	return (0);
157 }
158 
159 static int
160 riscv64_cpu_attach(device_t dev)
161 {
162 	const uint32_t *reg;
163 	size_t reg_size;
164 	u_int cpuid;
165 	int i;
166 
167 	cpuid = device_get_unit(dev);
168 
169 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
170 		return (EINVAL);
171 	KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
172 
173 	reg = cpu_get_cpuid(dev, &reg_size);
174 	if (reg == NULL)
175 		return (EINVAL);
176 
177 	if (bootverbose) {
178 		device_printf(dev, "register <");
179 		for (i = 0; i < reg_size; i++)
180 			printf("%s%x", (i == 0) ? "" : " ", reg[i]);
181 		printf(">\n");
182 	}
183 
184 	/* Set the device to start it later */
185 	cpu_list[cpuid] = dev;
186 
187 	return (0);
188 }
189 
190 static void
191 release_aps(void *dummy __unused)
192 {
193 	cpuset_t mask;
194 	int i;
195 
196 	if (mp_ncpus == 1)
197 		return;
198 
199 	/* Setup the IPI handler */
200 	riscv_setup_ipihandler(ipi_handler);
201 
202 	atomic_store_rel_int(&aps_ready, 1);
203 
204 	/* Wake up the other CPUs */
205 	mask = all_harts;
206 	CPU_CLR(boot_hart, &mask);
207 
208 	printf("Release APs\n");
209 
210 	sbi_send_ipi(mask.__bits);
211 
212 	for (i = 0; i < 2000; i++) {
213 		if (atomic_load_acq_int(&smp_started))
214 			return;
215 		DELAY(1000);
216 	}
217 
218 	printf("APs not started\n");
219 }
220 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
221 
222 void
223 init_secondary(uint64_t hart)
224 {
225 	struct pcpu *pcpup;
226 	u_int cpuid;
227 
228 	/* Renumber this cpu */
229 	cpuid = hart;
230 	if (cpuid < boot_hart)
231 		cpuid += mp_maxid + 1;
232 	cpuid -= boot_hart;
233 
234 	/* Setup the pcpu pointer */
235 	pcpup = &__pcpu[cpuid];
236 	__asm __volatile("mv tp, %0" :: "r"(pcpup));
237 
238 	/* Workaround: make sure wfi doesn't halt the hart */
239 	csr_set(sie, SIE_SSIE);
240 	csr_set(sip, SIE_SSIE);
241 
242 	/* Signal the BSP and spin until it has released all APs. */
243 	atomic_add_int(&aps_started, 1);
244 	while (!atomic_load_int(&aps_ready))
245 		__asm __volatile("wfi");
246 
247 	/* Initialize curthread */
248 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
249 	pcpup->pc_curthread = pcpup->pc_idlethread;
250 	schedinit_ap();
251 
252 	/*
253 	 * Identify current CPU. This is necessary to setup
254 	 * affinity registers and to provide support for
255 	 * runtime chip identification.
256 	 */
257 	identify_cpu();
258 
259 	/* Enable software interrupts */
260 	riscv_unmask_ipi();
261 
262 #ifndef EARLY_AP_STARTUP
263 	/* Start per-CPU event timers. */
264 	cpu_initclocks_ap();
265 #endif
266 
267 	/* Enable external (PLIC) interrupts */
268 	csr_set(sie, SIE_SEIE);
269 
270 	/* Activate this hart in the kernel pmap. */
271 	CPU_SET_ATOMIC(hart, &kernel_pmap->pm_active);
272 
273 	/* Activate process 0's pmap. */
274 	pmap_activate_boot(vmspace_pmap(proc0.p_vmspace));
275 
276 	mtx_lock_spin(&ap_boot_mtx);
277 
278 	atomic_add_rel_32(&smp_cpus, 1);
279 
280 	if (smp_cpus == mp_ncpus) {
281 		/* enable IPI's, tlb shootdown, freezes etc */
282 		atomic_store_rel_int(&smp_started, 1);
283 	}
284 
285 	mtx_unlock_spin(&ap_boot_mtx);
286 
287 	/* Enter the scheduler */
288 	sched_ap_entry();
289 
290 	panic("scheduler returned us to init_secondary");
291 	/* NOTREACHED */
292 }
293 
294 static void
295 smp_after_idle_runnable(void *arg __unused)
296 {
297 	int cpu;
298 
299 	if (mp_ncpus == 1)
300 		return;
301 
302 	KASSERT(smp_started != 0, ("%s: SMP not started yet", __func__));
303 
304 	/*
305 	 * Wait for all APs to handle an interrupt.  After that, we know that
306 	 * the APs have entered the scheduler at least once, so the boot stacks
307 	 * are safe to free.
308 	 */
309 	smp_rendezvous(smp_no_rendezvous_barrier, NULL,
310 	    smp_no_rendezvous_barrier, NULL);
311 
312 	for (cpu = 1; cpu <= mp_maxid; cpu++) {
313 		if (bootstacks[cpu] != NULL)
314 			kmem_free(bootstacks[cpu], MP_BOOTSTACK_SIZE);
315 	}
316 }
317 SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY,
318     smp_after_idle_runnable, NULL);
319 
320 static int
321 ipi_handler(void *arg)
322 {
323 	u_int ipi_bitmap;
324 	u_int cpu, ipi;
325 	int bit;
326 
327 	csr_clear(sip, SIP_SSIP);
328 
329 	cpu = PCPU_GET(cpuid);
330 
331 	mb();
332 
333 	ipi_bitmap = atomic_readandclear_int(PCPU_PTR(pending_ipis));
334 	if (ipi_bitmap == 0)
335 		return (FILTER_HANDLED);
336 
337 	while ((bit = ffs(ipi_bitmap))) {
338 		bit = (bit - 1);
339 		ipi = (1 << bit);
340 		ipi_bitmap &= ~ipi;
341 
342 		mb();
343 
344 		switch (ipi) {
345 		case IPI_AST:
346 			CTR0(KTR_SMP, "IPI_AST");
347 			break;
348 		case IPI_PREEMPT:
349 			CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
350 			sched_preempt(curthread);
351 			break;
352 		case IPI_RENDEZVOUS:
353 			CTR0(KTR_SMP, "IPI_RENDEZVOUS");
354 			smp_rendezvous_action();
355 			break;
356 		case IPI_STOP:
357 		case IPI_STOP_HARD:
358 			CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD");
359 			savectx(&stoppcbs[cpu]);
360 
361 			/* Indicate we are stopped */
362 			CPU_SET_ATOMIC(cpu, &stopped_cpus);
363 
364 			/* Wait for restart */
365 			while (!CPU_ISSET(cpu, &started_cpus))
366 				cpu_spinwait();
367 
368 			CPU_CLR_ATOMIC(cpu, &started_cpus);
369 			CPU_CLR_ATOMIC(cpu, &stopped_cpus);
370 			CTR0(KTR_SMP, "IPI_STOP (restart)");
371 
372 			/*
373 			 * The kernel debugger might have set a breakpoint,
374 			 * so flush the instruction cache.
375 			 */
376 			fence_i();
377 			break;
378 		case IPI_HARDCLOCK:
379 			CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
380 			hardclockintr();
381 			break;
382 		default:
383 			panic("Unknown IPI %#0x on cpu %d", ipi, curcpu);
384 		}
385 	}
386 
387 	return (FILTER_HANDLED);
388 }
389 
390 struct cpu_group *
391 cpu_topo(void)
392 {
393 
394 	return (smp_topo_none());
395 }
396 
397 /* Determine if we running MP machine */
398 int
399 cpu_mp_probe(void)
400 {
401 
402 	return (mp_ncpus > 1);
403 }
404 
405 #ifdef FDT
406 static boolean_t
407 cpu_check_mmu(u_int id __unused, phandle_t node, u_int addr_size __unused,
408     pcell_t *reg __unused)
409 {
410 	char type[32];
411 
412 	/* Check if this hart supports MMU. */
413 	if (OF_getprop(node, "mmu-type", (void *)type, sizeof(type)) == -1 ||
414 	    strncmp(type, "riscv,none", 10) == 0)
415 		return (0);
416 
417 	return (1);
418 }
419 
420 static boolean_t
421 cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
422 {
423 	struct pcpu *pcpup;
424 	vm_paddr_t start_addr;
425 	uint64_t hart;
426 	u_int cpuid;
427 	int naps;
428 	int error;
429 
430 	if (!cpu_check_mmu(id, node, addr_size, reg))
431 		return (0);
432 
433 	KASSERT(id < MAXCPU, ("Too many CPUs"));
434 
435 	KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
436 #ifdef INVARIANTS
437 	cpu_reg[id][0] = reg[0];
438 	if (addr_size == 2)
439 		cpu_reg[id][1] = reg[1];
440 #endif
441 
442 	hart = reg[0];
443 	if (addr_size == 2) {
444 		hart <<= 32;
445 		hart |= reg[1];
446 	}
447 
448 	KASSERT(hart < MAXCPU, ("Too many harts."));
449 
450 	/* We are already running on this cpu */
451 	if (hart == boot_hart)
452 		return (1);
453 
454 	/*
455 	 * Rotate the CPU IDs to put the boot CPU as CPU 0.
456 	 * We keep the other CPUs ordered.
457 	 */
458 	cpuid = hart;
459 	if (cpuid < boot_hart)
460 		cpuid += mp_maxid + 1;
461 	cpuid -= boot_hart;
462 
463 	/* Check if we are able to start this cpu */
464 	if (cpuid > mp_maxid)
465 		return (0);
466 
467 	/*
468 	 * Depending on the SBI implementation, APs are waiting either in
469 	 * locore.S or to be activated explicitly, via SBI call.
470 	 */
471 	if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0) {
472 		start_addr = pmap_kextract((vm_offset_t)mpentry);
473 		error = sbi_hsm_hart_start(hart, start_addr, 0);
474 		if (error != 0) {
475 			mp_ncpus--;
476 
477 			/* Send a warning to the user and continue. */
478 			printf("AP %u (hart %lu) failed to start, error %d\n",
479 			    cpuid, hart, error);
480 			return (0);
481 		}
482 	}
483 
484 	pcpup = &__pcpu[cpuid];
485 	pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
486 	pcpup->pc_hart = hart;
487 
488 	dpcpu[cpuid - 1] = kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
489 	dpcpu_init(dpcpu[cpuid - 1], cpuid);
490 
491 	bootstacks[cpuid] = kmem_malloc(MP_BOOTSTACK_SIZE, M_WAITOK | M_ZERO);
492 
493 	naps = atomic_load_int(&aps_started);
494 	bootstack = (char *)bootstacks[cpuid] + MP_BOOTSTACK_SIZE;
495 
496 	printf("Starting CPU %u (hart %lx)\n", cpuid, hart);
497 	atomic_store_32(&__riscv_boot_ap[hart], 1);
498 
499 	/* Wait for the AP to switch to its boot stack. */
500 	while (atomic_load_int(&aps_started) < naps + 1)
501 		cpu_spinwait();
502 
503 	CPU_SET(cpuid, &all_cpus);
504 	CPU_SET(hart, &all_harts);
505 
506 	return (1);
507 }
508 #endif
509 
510 /* Initialize and fire up non-boot processors */
511 void
512 cpu_mp_start(void)
513 {
514 
515 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
516 
517 	CPU_SET(0, &all_cpus);
518 	CPU_SET(boot_hart, &all_harts);
519 
520 	switch(cpu_enum_method) {
521 #ifdef FDT
522 	case CPUS_FDT:
523 		ofw_cpu_early_foreach(cpu_init_fdt, true);
524 		break;
525 #endif
526 	case CPUS_UNKNOWN:
527 		break;
528 	}
529 }
530 
531 /* Introduce rest of cores to the world */
532 void
533 cpu_mp_announce(void)
534 {
535 }
536 
537 void
538 cpu_mp_setmaxid(void)
539 {
540 	int cores;
541 
542 #ifdef FDT
543 	cores = ofw_cpu_early_foreach(cpu_check_mmu, true);
544 	if (cores > 0) {
545 		cores = MIN(cores, MAXCPU);
546 		if (bootverbose)
547 			printf("Found %d CPUs in the device tree\n", cores);
548 		mp_ncpus = cores;
549 		mp_maxid = cores - 1;
550 		cpu_enum_method = CPUS_FDT;
551 	} else
552 #endif
553 	{
554 		if (bootverbose)
555 			printf("No CPU data, limiting to 1 core\n");
556 		mp_ncpus = 1;
557 		mp_maxid = 0;
558 	}
559 
560 	if (TUNABLE_INT_FETCH("hw.ncpu", &cores)) {
561 		if (cores > 0 && cores < mp_ncpus) {
562 			mp_ncpus = cores;
563 			mp_maxid = cores - 1;
564 		}
565 	}
566 }
567