xref: /freebsd/sys/sys/time.h (revision 4d3fc8b0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)time.h	8.5 (Berkeley) 5/4/95
32  * $FreeBSD$
33  */
34 
35 #ifndef _SYS_TIME_H_
36 #define	_SYS_TIME_H_
37 
38 #include <sys/_timeval.h>
39 #include <sys/types.h>
40 #include <sys/timespec.h>
41 #include <sys/_clock_id.h>
42 
43 struct timezone {
44 	int	tz_minuteswest;	/* minutes west of Greenwich */
45 	int	tz_dsttime;	/* type of dst correction */
46 };
47 #define	DST_NONE	0	/* not on dst */
48 #define	DST_USA		1	/* USA style dst */
49 #define	DST_AUST	2	/* Australian style dst */
50 #define	DST_WET		3	/* Western European dst */
51 #define	DST_MET		4	/* Middle European dst */
52 #define	DST_EET		5	/* Eastern European dst */
53 #define	DST_CAN		6	/* Canada */
54 
55 #if __BSD_VISIBLE
56 struct bintime {
57 	time_t	sec;
58 	uint64_t frac;
59 };
60 
61 static __inline void
62 bintime_addx(struct bintime *_bt, uint64_t _x)
63 {
64 	uint64_t _u;
65 
66 	_u = _bt->frac;
67 	_bt->frac += _x;
68 	if (_u > _bt->frac)
69 		_bt->sec++;
70 }
71 
72 static __inline void
73 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
74 {
75 	uint64_t _u;
76 
77 	_u = _bt->frac;
78 	_bt->frac += _bt2->frac;
79 	if (_u > _bt->frac)
80 		_bt->sec++;
81 	_bt->sec += _bt2->sec;
82 }
83 
84 static __inline void
85 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
86 {
87 	uint64_t _u;
88 
89 	_u = _bt->frac;
90 	_bt->frac -= _bt2->frac;
91 	if (_u < _bt->frac)
92 		_bt->sec--;
93 	_bt->sec -= _bt2->sec;
94 }
95 
96 static __inline void
97 bintime_mul(struct bintime *_bt, u_int _x)
98 {
99 	uint64_t _p1, _p2;
100 
101 	_p1 = (_bt->frac & 0xffffffffull) * _x;
102 	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
103 	_bt->sec *= _x;
104 	_bt->sec += (_p2 >> 32);
105 	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
106 }
107 
108 static __inline void
109 bintime_shift(struct bintime *_bt, int _exp)
110 {
111 
112 	if (_exp > 0) {
113 		_bt->sec <<= _exp;
114 		_bt->sec |= _bt->frac >> (64 - _exp);
115 		_bt->frac <<= _exp;
116 	} else if (_exp < 0) {
117 		_bt->frac >>= -_exp;
118 		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
119 		_bt->sec >>= -_exp;
120 	}
121 }
122 
123 #define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
124 #define	bintime_isset(a)	((a)->sec || (a)->frac)
125 #define	bintime_cmp(a, b, cmp)						\
126 	(((a)->sec == (b)->sec) ?					\
127 	    ((a)->frac cmp (b)->frac) :					\
128 	    ((a)->sec cmp (b)->sec))
129 
130 #define	SBT_1S	((sbintime_t)1 << 32)
131 #define	SBT_1M	(SBT_1S * 60)
132 #define	SBT_1MS	(SBT_1S / 1000)
133 #define	SBT_1US	(SBT_1S / 1000000)
134 #define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
135 #define	SBT_MAX	0x7fffffffffffffffLL
136 
137 static __inline int
138 sbintime_getsec(sbintime_t _sbt)
139 {
140 
141 	return (_sbt >> 32);
142 }
143 
144 static __inline sbintime_t
145 bttosbt(const struct bintime _bt)
146 {
147 
148 	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
149 }
150 
151 static __inline struct bintime
152 sbttobt(sbintime_t _sbt)
153 {
154 	struct bintime _bt;
155 
156 	_bt.sec = _sbt >> 32;
157 	_bt.frac = _sbt << 32;
158 	return (_bt);
159 }
160 
161 /*
162  * Scaling functions for signed and unsigned 64-bit time using any
163  * 32-bit fraction:
164  */
165 
166 static __inline int64_t
167 __stime64_scale32_ceil(int64_t x, int32_t factor, int32_t divisor)
168 {
169 	const int64_t rem = x % divisor;
170 
171 	return (x / divisor * factor + (rem * factor + divisor - 1) / divisor);
172 }
173 
174 static __inline int64_t
175 __stime64_scale32_floor(int64_t x, int32_t factor, int32_t divisor)
176 {
177 	const int64_t rem = x % divisor;
178 
179 	return (x / divisor * factor + (rem * factor) / divisor);
180 }
181 
182 static __inline uint64_t
183 __utime64_scale32_ceil(uint64_t x, uint32_t factor, uint32_t divisor)
184 {
185 	const uint64_t rem = x % divisor;
186 
187 	return (x / divisor * factor + (rem * factor + divisor - 1) / divisor);
188 }
189 
190 static __inline uint64_t
191 __utime64_scale32_floor(uint64_t x, uint32_t factor, uint32_t divisor)
192 {
193 	const uint64_t rem = x % divisor;
194 
195 	return (x / divisor * factor + (rem * factor) / divisor);
196 }
197 
198 /*
199  * This function finds the common divisor between the two arguments,
200  * in powers of two. Use a macro, so the compiler will output a
201  * warning if the value overflows!
202  *
203  * Detailed description:
204  *
205  * Create a variable with 1's at the positions of the leading 0's
206  * starting at the least significant bit, producing 0 if none (e.g.,
207  * 01011000 -> 0000 0111). Then these two variables are bitwise AND'ed
208  * together, to produce the greatest common power of two minus one. In
209  * the end add one to flip the value to the actual power of two (e.g.,
210  * 0000 0111 + 1 -> 0000 1000).
211  */
212 #define	__common_powers_of_two(a, b) \
213 	((~(a) & ((a) - 1) & ~(b) & ((b) - 1)) + 1)
214 
215 /*
216  * Scaling functions for signed and unsigned 64-bit time assuming
217  * reducable 64-bit fractions to 32-bit fractions:
218  */
219 
220 static __inline int64_t
221 __stime64_scale64_ceil(int64_t x, int64_t factor, int64_t divisor)
222 {
223 	const int64_t gcd = __common_powers_of_two(factor, divisor);
224 
225 	return (__stime64_scale32_ceil(x, factor / gcd, divisor / gcd));
226 }
227 
228 static __inline int64_t
229 __stime64_scale64_floor(int64_t x, int64_t factor, int64_t divisor)
230 {
231 	const int64_t gcd = __common_powers_of_two(factor, divisor);
232 
233 	return (__stime64_scale32_floor(x, factor / gcd, divisor / gcd));
234 }
235 
236 static __inline uint64_t
237 __utime64_scale64_ceil(uint64_t x, uint64_t factor, uint64_t divisor)
238 {
239 	const uint64_t gcd = __common_powers_of_two(factor, divisor);
240 
241 	return (__utime64_scale32_ceil(x, factor / gcd, divisor / gcd));
242 }
243 
244 static __inline uint64_t
245 __utime64_scale64_floor(uint64_t x, uint64_t factor, uint64_t divisor)
246 {
247 	const uint64_t gcd = __common_powers_of_two(factor, divisor);
248 
249 	return (__utime64_scale32_floor(x, factor / gcd, divisor / gcd));
250 }
251 
252 /*
253  * Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS
254  * results in large roundoff errors which sbttons() and nstosbt()
255  * avoid. Millisecond and microsecond functions are also provided for
256  * completeness.
257  *
258  * When converting from sbt to another unit, the result is always
259  * rounded down. When converting back to sbt the result is always
260  * rounded up. This gives the property that sbttoX(Xtosbt(y)) == y .
261  *
262  * The conversion functions can also handle negative values.
263  */
264 #define	SBT_DECLARE_CONVERSION_PAIR(name, units_per_second)	\
265 static __inline int64_t \
266 sbtto##name(sbintime_t sbt) \
267 { \
268 	return (__stime64_scale64_floor(sbt, units_per_second, SBT_1S)); \
269 } \
270 static __inline sbintime_t \
271 name##tosbt(int64_t name) \
272 { \
273 	return (__stime64_scale64_ceil(name, SBT_1S, units_per_second)); \
274 }
275 
276 SBT_DECLARE_CONVERSION_PAIR(ns, 1000000000)
277 SBT_DECLARE_CONVERSION_PAIR(us, 1000000)
278 SBT_DECLARE_CONVERSION_PAIR(ms, 1000)
279 
280 /*-
281  * Background information:
282  *
283  * When converting between timestamps on parallel timescales of differing
284  * resolutions it is historical and scientific practice to round down rather
285  * than doing 4/5 rounding.
286  *
287  *   The date changes at midnight, not at noon.
288  *
289  *   Even at 15:59:59.999999999 it's not four'o'clock.
290  *
291  *   time_second ticks after N.999999999 not after N.4999999999
292  */
293 
294 static __inline void
295 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
296 {
297 
298 	_ts->tv_sec = _bt->sec;
299 	_ts->tv_nsec = __utime64_scale64_floor(
300 	    _bt->frac, 1000000000, 1ULL << 32) >> 32;
301 }
302 
303 static __inline uint64_t
304 bintime2ns(const struct bintime *_bt)
305 {
306 	uint64_t ret;
307 
308 	ret = (uint64_t)(_bt->sec) * (uint64_t)1000000000;
309 	ret += __utime64_scale64_floor(
310 	    _bt->frac, 1000000000, 1ULL << 32) >> 32;
311 	return (ret);
312 }
313 
314 static __inline void
315 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
316 {
317 
318 	_bt->sec = _ts->tv_sec;
319 	_bt->frac = __utime64_scale64_floor(
320 	    (uint64_t)_ts->tv_nsec << 32, 1ULL << 32, 1000000000);
321 }
322 
323 static __inline void
324 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
325 {
326 
327 	_tv->tv_sec = _bt->sec;
328 	_tv->tv_usec = __utime64_scale64_floor(
329 	    _bt->frac, 1000000, 1ULL << 32) >> 32;
330 }
331 
332 static __inline void
333 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
334 {
335 
336 	_bt->sec = _tv->tv_sec;
337 	_bt->frac = __utime64_scale64_floor(
338 	    (uint64_t)_tv->tv_usec << 32, 1ULL << 32, 1000000);
339 }
340 
341 static __inline struct timespec
342 sbttots(sbintime_t _sbt)
343 {
344 	struct timespec _ts;
345 
346 	_ts.tv_sec = _sbt >> 32;
347 	_ts.tv_nsec = sbttons((uint32_t)_sbt);
348 	return (_ts);
349 }
350 
351 static __inline sbintime_t
352 tstosbt(struct timespec _ts)
353 {
354 
355 	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
356 }
357 
358 static __inline struct timeval
359 sbttotv(sbintime_t _sbt)
360 {
361 	struct timeval _tv;
362 
363 	_tv.tv_sec = _sbt >> 32;
364 	_tv.tv_usec = sbttous((uint32_t)_sbt);
365 	return (_tv);
366 }
367 
368 static __inline sbintime_t
369 tvtosbt(struct timeval _tv)
370 {
371 
372 	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
373 }
374 #endif /* __BSD_VISIBLE */
375 
376 #ifdef _KERNEL
377 /*
378  * Simple macros to convert ticks to milliseconds
379  * or microseconds and vice-versa. The answer
380  * will always be at least 1. Note the return
381  * value is a uint32_t however we step up the
382  * operations to 64 bit to avoid any overflow/underflow
383  * problems.
384  */
385 #define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
386 	  (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
387 #define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
388 	  ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
389 #define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
390 	  (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
391 #define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
392 	 ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
393 
394 #endif
395 /* Operations on timespecs */
396 #define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
397 #define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
398 #define	timespeccmp(tvp, uvp, cmp)					\
399 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
400 	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
401 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
402 
403 #define	timespecadd(tsp, usp, vsp)					\
404 	do {								\
405 		(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;		\
406 		(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;	\
407 		if ((vsp)->tv_nsec >= 1000000000L) {			\
408 			(vsp)->tv_sec++;				\
409 			(vsp)->tv_nsec -= 1000000000L;			\
410 		}							\
411 	} while (0)
412 #define	timespecsub(tsp, usp, vsp)					\
413 	do {								\
414 		(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;		\
415 		(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;	\
416 		if ((vsp)->tv_nsec < 0) {				\
417 			(vsp)->tv_sec--;				\
418 			(vsp)->tv_nsec += 1000000000L;			\
419 		}							\
420 	} while (0)
421 #define	timespecvalid_interval(tsp)	((tsp)->tv_sec >= 0 &&		\
422 	    (tsp)->tv_nsec >= 0 && (tsp)->tv_nsec < 1000000000L)
423 
424 #ifdef _KERNEL
425 
426 /* Operations on timevals. */
427 
428 #define	timevalclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
429 #define	timevalisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
430 #define	timevalcmp(tvp, uvp, cmp)					\
431 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
432 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
433 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
434 
435 /* timevaladd and timevalsub are not inlined */
436 
437 #endif /* _KERNEL */
438 
439 #ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
440 
441 #define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
442 #define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
443 #define	timercmp(tvp, uvp, cmp)					\
444 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
445 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
446 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
447 #define	timeradd(tvp, uvp, vvp)						\
448 	do {								\
449 		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
450 		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
451 		if ((vvp)->tv_usec >= 1000000) {			\
452 			(vvp)->tv_sec++;				\
453 			(vvp)->tv_usec -= 1000000;			\
454 		}							\
455 	} while (0)
456 #define	timersub(tvp, uvp, vvp)						\
457 	do {								\
458 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
459 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
460 		if ((vvp)->tv_usec < 0) {				\
461 			(vvp)->tv_sec--;				\
462 			(vvp)->tv_usec += 1000000;			\
463 		}							\
464 	} while (0)
465 #endif
466 
467 /*
468  * Names of the interval timers, and structure
469  * defining a timer setting.
470  */
471 #define	ITIMER_REAL	0
472 #define	ITIMER_VIRTUAL	1
473 #define	ITIMER_PROF	2
474 
475 struct itimerval {
476 	struct	timeval it_interval;	/* timer interval */
477 	struct	timeval it_value;	/* current value */
478 };
479 
480 /*
481  * Getkerninfo clock information structure
482  */
483 struct clockinfo {
484 	int	hz;		/* clock frequency */
485 	int	tick;		/* micro-seconds per hz tick */
486 	int	spare;
487 	int	stathz;		/* statistics clock frequency */
488 	int	profhz;		/* profiling clock frequency */
489 };
490 
491 #if __BSD_VISIBLE
492 #define	CPUCLOCK_WHICH_PID	0
493 #define	CPUCLOCK_WHICH_TID	1
494 #endif
495 
496 #if defined(_KERNEL) || defined(_STANDALONE)
497 
498 /*
499  * Kernel to clock driver interface.
500  */
501 void	inittodr(time_t base);
502 void	resettodr(void);
503 
504 extern volatile time_t	time_second;
505 extern volatile time_t	time_uptime;
506 extern struct bintime tc_tick_bt;
507 extern sbintime_t tc_tick_sbt;
508 extern time_t tick_seconds_max;
509 extern struct bintime tick_bt;
510 extern sbintime_t tick_sbt;
511 extern int tc_precexp;
512 extern int tc_timepercentage;
513 extern struct bintime bt_timethreshold;
514 extern struct bintime bt_tickthreshold;
515 extern sbintime_t sbt_timethreshold;
516 extern sbintime_t sbt_tickthreshold;
517 
518 extern volatile int rtc_generation;
519 
520 /*
521  * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
522  *
523  * Functions without the "get" prefix returns the best timestamp
524  * we can produce in the given format.
525  *
526  * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
527  * "nano"  == struct timespec == seconds + nanoseconds.
528  * "micro" == struct timeval  == seconds + microseconds.
529  *
530  * Functions containing "up" returns time relative to boot and
531  * should be used for calculating time intervals.
532  *
533  * Functions without "up" returns UTC time.
534  *
535  * Functions with the "get" prefix returns a less precise result
536  * much faster than the functions without "get" prefix and should
537  * be used where a precision of 1/hz seconds is acceptable or where
538  * performance is priority. (NB: "precision", _not_ "resolution" !)
539  */
540 
541 void	binuptime(struct bintime *bt);
542 void	nanouptime(struct timespec *tsp);
543 void	microuptime(struct timeval *tvp);
544 
545 static __inline sbintime_t
546 sbinuptime(void)
547 {
548 	struct bintime _bt;
549 
550 	binuptime(&_bt);
551 	return (bttosbt(_bt));
552 }
553 
554 void	bintime(struct bintime *bt);
555 void	nanotime(struct timespec *tsp);
556 void	microtime(struct timeval *tvp);
557 
558 void	getbinuptime(struct bintime *bt);
559 void	getnanouptime(struct timespec *tsp);
560 void	getmicrouptime(struct timeval *tvp);
561 
562 static __inline sbintime_t
563 getsbinuptime(void)
564 {
565 	struct bintime _bt;
566 
567 	getbinuptime(&_bt);
568 	return (bttosbt(_bt));
569 }
570 
571 void	getbintime(struct bintime *bt);
572 void	getnanotime(struct timespec *tsp);
573 void	getmicrotime(struct timeval *tvp);
574 
575 void	getboottime(struct timeval *boottime);
576 void	getboottimebin(struct bintime *boottimebin);
577 
578 /* Other functions */
579 int	itimerdecr(struct itimerval *itp, int usec);
580 int	itimerfix(struct timeval *tv);
581 int	eventratecheck(struct timeval *, int *, int);
582 #define	ppsratecheck(t, c, m) eventratecheck(t, c, m)
583 int	ratecheck(struct timeval *, const struct timeval *);
584 void	timevaladd(struct timeval *t1, const struct timeval *t2);
585 void	timevalsub(struct timeval *t1, const struct timeval *t2);
586 int	tvtohz(struct timeval *tv);
587 
588 /*
589  * The following HZ limits allow the tvtohz() function
590  * to only use integer computations.
591  */
592 #define	HZ_MAXIMUM (INT_MAX / (1000000 >> 6)) /* 137kHz */
593 #define	HZ_MINIMUM 8 /* hz */
594 
595 #define	TC_DEFAULTPERC		5
596 
597 #define	BT2FREQ(bt)                                                     \
598 	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
599 	    ((bt)->frac >> 1))
600 
601 #define	SBT2FREQ(sbt)	((SBT_1S + ((sbt) >> 1)) / (sbt))
602 
603 #define	FREQ2BT(freq, bt)                                               \
604 {									\
605 	(bt)->sec = 0;                                                  \
606 	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
607 }
608 
609 #define	TIMESEL(sbt, sbt2)						\
610 	(((sbt2) >= sbt_timethreshold) ?				\
611 	    ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
612 
613 #else /* !_KERNEL && !_STANDALONE */
614 #include <time.h>
615 
616 #include <sys/cdefs.h>
617 #include <sys/select.h>
618 
619 __BEGIN_DECLS
620 int	setitimer(int, const struct itimerval *, struct itimerval *);
621 int	utimes(const char *, const struct timeval *);
622 
623 #if __BSD_VISIBLE
624 int	adjtime(const struct timeval *, struct timeval *);
625 int	clock_getcpuclockid2(id_t, int, clockid_t *);
626 int	futimes(int, const struct timeval *);
627 int	futimesat(int, const char *, const struct timeval [2]);
628 int	lutimes(const char *, const struct timeval *);
629 int	settimeofday(const struct timeval *, const struct timezone *);
630 #endif
631 
632 #if __XSI_VISIBLE
633 int	getitimer(int, struct itimerval *);
634 int	gettimeofday(struct timeval *, struct timezone *);
635 #endif
636 
637 __END_DECLS
638 
639 #endif /* !_KERNEL */
640 
641 #endif /* !_SYS_TIME_H_ */
642