xref: /freebsd/sys/sys/tree.h (revision f374ba41)
1 /*	$NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $	*/
2 /*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
3 /* $FreeBSD$ */
4 
5 /*-
6  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
7  *
8  * Copyright 2002 Niels Provos <provos@citi.umich.edu>
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef	_SYS_TREE_H_
33 #define	_SYS_TREE_H_
34 
35 #include <sys/cdefs.h>
36 
37 /*
38  * This file defines data structures for different types of trees:
39  * splay trees and rank-balanced trees.
40  *
41  * A splay tree is a self-organizing data structure.  Every operation
42  * on the tree causes a splay to happen.  The splay moves the requested
43  * node to the root of the tree and partly rebalances it.
44  *
45  * This has the benefit that request locality causes faster lookups as
46  * the requested nodes move to the top of the tree.  On the other hand,
47  * every lookup causes memory writes.
48  *
49  * The Balance Theorem bounds the total access time for m operations
50  * and n inserts on an initially empty tree as O((m + n)lg n).  The
51  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
52  *
53  * A rank-balanced tree is a binary search tree with an integer
54  * rank-difference as an attribute of each pointer from parent to child.
55  * The sum of the rank-differences on any path from a node down to null is
56  * the same, and defines the rank of that node. The rank of the null node
57  * is -1.
58  *
59  * Different additional conditions define different sorts of balanced trees,
60  * including "red-black" and "AVL" trees.  The set of conditions applied here
61  * are the "weak-AVL" conditions of Haeupler, Sen and Tarjan presented in in
62  * "Rank Balanced Trees", ACM Transactions on Algorithms Volume 11 Issue 4 June
63  * 2015 Article No.: 30pp 1–26 https://doi.org/10.1145/2689412 (the HST paper):
64  *	- every rank-difference is 1 or 2.
65  *	- the rank of any leaf is 1.
66  *
67  * For historical reasons, rank differences that are even are associated
68  * with the color red (Rank-Even-Difference), and the child that a red edge
69  * points to is called a red child.
70  *
71  * Every operation on a rank-balanced tree is bounded as O(lg n).
72  * The maximum height of a rank-balanced tree is 2lg (n+1).
73  */
74 
75 #define SPLAY_HEAD(name, type)						\
76 struct name {								\
77 	struct type *sph_root; /* root of the tree */			\
78 }
79 
80 #define SPLAY_INITIALIZER(root)						\
81 	{ NULL }
82 
83 #define SPLAY_INIT(root) do {						\
84 	(root)->sph_root = NULL;					\
85 } while (/*CONSTCOND*/ 0)
86 
87 #define SPLAY_ENTRY(type)						\
88 struct {								\
89 	struct type *spe_left; /* left element */			\
90 	struct type *spe_right; /* right element */			\
91 }
92 
93 #define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
94 #define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
95 #define SPLAY_ROOT(head)		(head)->sph_root
96 #define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
97 
98 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
99 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
100 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
101 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
102 	(head)->sph_root = tmp;						\
103 } while (/*CONSTCOND*/ 0)
104 
105 #define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
106 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
107 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
108 	(head)->sph_root = tmp;						\
109 } while (/*CONSTCOND*/ 0)
110 
111 #define SPLAY_LINKLEFT(head, tmp, field) do {				\
112 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
113 	tmp = (head)->sph_root;						\
114 	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
115 } while (/*CONSTCOND*/ 0)
116 
117 #define SPLAY_LINKRIGHT(head, tmp, field) do {				\
118 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
119 	tmp = (head)->sph_root;						\
120 	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
121 } while (/*CONSTCOND*/ 0)
122 
123 #define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
124 	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
125 	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
126 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
127 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
128 } while (/*CONSTCOND*/ 0)
129 
130 /* Generates prototypes and inline functions */
131 
132 #define SPLAY_PROTOTYPE(name, type, field, cmp)				\
133 void name##_SPLAY(struct name *, struct type *);			\
134 void name##_SPLAY_MINMAX(struct name *, int);				\
135 struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
136 struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
137 									\
138 /* Finds the node with the same key as elm */				\
139 static __unused __inline struct type *					\
140 name##_SPLAY_FIND(struct name *head, struct type *elm)			\
141 {									\
142 	if (SPLAY_EMPTY(head))						\
143 		return(NULL);						\
144 	name##_SPLAY(head, elm);					\
145 	if ((cmp)(elm, (head)->sph_root) == 0)				\
146 		return (head->sph_root);				\
147 	return (NULL);							\
148 }									\
149 									\
150 static __unused __inline struct type *					\
151 name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
152 {									\
153 	name##_SPLAY(head, elm);					\
154 	if (SPLAY_RIGHT(elm, field) != NULL) {				\
155 		elm = SPLAY_RIGHT(elm, field);				\
156 		while (SPLAY_LEFT(elm, field) != NULL) {		\
157 			elm = SPLAY_LEFT(elm, field);			\
158 		}							\
159 	} else								\
160 		elm = NULL;						\
161 	return (elm);							\
162 }									\
163 									\
164 static __unused __inline struct type *					\
165 name##_SPLAY_MIN_MAX(struct name *head, int val)			\
166 {									\
167 	name##_SPLAY_MINMAX(head, val);					\
168 	return (SPLAY_ROOT(head));					\
169 }
170 
171 /* Main splay operation.
172  * Moves node close to the key of elm to top
173  */
174 #define SPLAY_GENERATE(name, type, field, cmp)				\
175 struct type *								\
176 name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
177 {									\
178     if (SPLAY_EMPTY(head)) {						\
179 	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
180     } else {								\
181 	    __typeof(cmp(NULL, NULL)) __comp;				\
182 	    name##_SPLAY(head, elm);					\
183 	    __comp = (cmp)(elm, (head)->sph_root);			\
184 	    if (__comp < 0) {						\
185 		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
186 		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
187 		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
188 	    } else if (__comp > 0) {					\
189 		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
190 		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
191 		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
192 	    } else							\
193 		    return ((head)->sph_root);				\
194     }									\
195     (head)->sph_root = (elm);						\
196     return (NULL);							\
197 }									\
198 									\
199 struct type *								\
200 name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
201 {									\
202 	struct type *__tmp;						\
203 	if (SPLAY_EMPTY(head))						\
204 		return (NULL);						\
205 	name##_SPLAY(head, elm);					\
206 	if ((cmp)(elm, (head)->sph_root) == 0) {			\
207 		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
208 			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
209 		} else {						\
210 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
211 			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
212 			name##_SPLAY(head, elm);			\
213 			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
214 		}							\
215 		return (elm);						\
216 	}								\
217 	return (NULL);							\
218 }									\
219 									\
220 void									\
221 name##_SPLAY(struct name *head, struct type *elm)			\
222 {									\
223 	struct type __node, *__left, *__right, *__tmp;			\
224 	__typeof(cmp(NULL, NULL)) __comp;				\
225 \
226 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
227 	__left = __right = &__node;					\
228 \
229 	while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {		\
230 		if (__comp < 0) {					\
231 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
232 			if (__tmp == NULL)				\
233 				break;					\
234 			if ((cmp)(elm, __tmp) < 0){			\
235 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
236 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
237 					break;				\
238 			}						\
239 			SPLAY_LINKLEFT(head, __right, field);		\
240 		} else if (__comp > 0) {				\
241 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
242 			if (__tmp == NULL)				\
243 				break;					\
244 			if ((cmp)(elm, __tmp) > 0){			\
245 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
246 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
247 					break;				\
248 			}						\
249 			SPLAY_LINKRIGHT(head, __left, field);		\
250 		}							\
251 	}								\
252 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
253 }									\
254 									\
255 /* Splay with either the minimum or the maximum element			\
256  * Used to find minimum or maximum element in tree.			\
257  */									\
258 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
259 {									\
260 	struct type __node, *__left, *__right, *__tmp;			\
261 \
262 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
263 	__left = __right = &__node;					\
264 \
265 	while (1) {							\
266 		if (__comp < 0) {					\
267 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
268 			if (__tmp == NULL)				\
269 				break;					\
270 			if (__comp < 0){				\
271 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
272 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
273 					break;				\
274 			}						\
275 			SPLAY_LINKLEFT(head, __right, field);		\
276 		} else if (__comp > 0) {				\
277 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
278 			if (__tmp == NULL)				\
279 				break;					\
280 			if (__comp > 0) {				\
281 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
282 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
283 					break;				\
284 			}						\
285 			SPLAY_LINKRIGHT(head, __left, field);		\
286 		}							\
287 	}								\
288 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
289 }
290 
291 #define SPLAY_NEGINF	-1
292 #define SPLAY_INF	1
293 
294 #define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
295 #define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
296 #define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
297 #define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
298 #define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
299 					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
300 #define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
301 					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
302 
303 #define SPLAY_FOREACH(x, name, head)					\
304 	for ((x) = SPLAY_MIN(name, head);				\
305 	     (x) != NULL;						\
306 	     (x) = SPLAY_NEXT(name, head, x))
307 
308 /* Macros that define a rank-balanced tree */
309 #define RB_HEAD(name, type)						\
310 struct name {								\
311 	struct type *rbh_root; /* root of the tree */			\
312 }
313 
314 #define RB_INITIALIZER(root)						\
315 	{ NULL }
316 
317 #define RB_INIT(root) do {						\
318 	(root)->rbh_root = NULL;					\
319 } while (/*CONSTCOND*/ 0)
320 
321 #define RB_ENTRY(type)							\
322 struct {								\
323 	struct type *rbe_link[3];					\
324 }
325 
326 /*
327  * With the expectation that any object of struct type has an
328  * address that is a multiple of 4, and that therefore the
329  * 2 least significant bits of a pointer to struct type are
330  * always zero, this implementation sets those bits to indicate
331  * that the left or right child of the tree node is "red".
332  */
333 #define _RB_LINK(elm, dir, field)	(elm)->field.rbe_link[dir]
334 #define _RB_UP(elm, field)		_RB_LINK(elm, 0, field)
335 #define _RB_L				((__uintptr_t)1)
336 #define _RB_R				((__uintptr_t)2)
337 #define _RB_LR				((__uintptr_t)3)
338 #define _RB_BITS(elm)			(*(__uintptr_t *)&elm)
339 #define _RB_BITSUP(elm, field)		_RB_BITS(_RB_UP(elm, field))
340 #define _RB_PTR(elm)			(__typeof(elm))			\
341 					((__uintptr_t)elm & ~_RB_LR)
342 
343 #define RB_PARENT(elm, field)		_RB_PTR(_RB_UP(elm, field))
344 #define RB_LEFT(elm, field)		_RB_LINK(elm, _RB_L, field)
345 #define RB_RIGHT(elm, field)		_RB_LINK(elm, _RB_R, field)
346 #define RB_ROOT(head)			(head)->rbh_root
347 #define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
348 
349 #define RB_SET_PARENT(dst, src, field) do {				\
350 	_RB_BITSUP(dst, field) = (__uintptr_t)src |			\
351 	    (_RB_BITSUP(dst, field) & _RB_LR);				\
352 } while (/*CONSTCOND*/ 0)
353 
354 #define RB_SET(elm, parent, field) do {					\
355 	_RB_UP(elm, field) = parent;					\
356 	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
357 } while (/*CONSTCOND*/ 0)
358 
359 /*
360  * Either RB_AUGMENT or RB_AUGMENT_CHECK is invoked in a loop at the root of
361  * every modified subtree, from the bottom up to the root, to update augmented
362  * node data.  RB_AUGMENT_CHECK returns true only when the update changes the
363  * node data, so that updating can be stopped short of the root when it returns
364  * false.
365  */
366 #ifndef RB_AUGMENT_CHECK
367 #ifndef RB_AUGMENT
368 #define RB_AUGMENT_CHECK(x) 0
369 #else
370 #define RB_AUGMENT_CHECK(x) (RB_AUGMENT(x), 1)
371 #endif
372 #endif
373 
374 #define RB_UPDATE_AUGMENT(elm, field) do {				\
375 	__typeof(elm) rb_update_tmp = (elm);				\
376 	while (RB_AUGMENT_CHECK(rb_update_tmp) &&			\
377 	    (rb_update_tmp = RB_PARENT(rb_update_tmp, field)) != NULL)	\
378 		;							\
379 } while (0)
380 
381 #define RB_SWAP_CHILD(head, par, out, in, field) do {			\
382 	if (par == NULL)						\
383 		RB_ROOT(head) = (in);					\
384 	else if ((out) == RB_LEFT(par, field))				\
385 		RB_LEFT(par, field) = (in);				\
386 	else								\
387 		RB_RIGHT(par, field) = (in);				\
388 } while (/*CONSTCOND*/ 0)
389 
390 /*
391  * RB_ROTATE macro partially restructures the tree to improve balance. In the
392  * case when dir is _RB_L, tmp is a right child of elm.  After rotation, elm
393  * is a left child of tmp, and the subtree that represented the items between
394  * them, which formerly hung to the left of tmp now hangs to the right of elm.
395  * The parent-child relationship between elm and its former parent is not
396  * changed; where this macro once updated those fields, that is now left to the
397  * caller of RB_ROTATE to clean up, so that a pair of rotations does not twice
398  * update the same pair of pointer fields with distinct values.
399  */
400 #define RB_ROTATE(elm, tmp, dir, field) do {				\
401 	if ((_RB_LINK(elm, dir ^ _RB_LR, field) =			\
402 	    _RB_LINK(tmp, dir, field)) != NULL)				\
403 		RB_SET_PARENT(_RB_LINK(tmp, dir, field), elm, field);	\
404 	_RB_LINK(tmp, dir, field) = (elm);				\
405 	RB_SET_PARENT(elm, tmp, field);					\
406 } while (/*CONSTCOND*/ 0)
407 
408 /* Generates prototypes and inline functions */
409 #define	RB_PROTOTYPE(name, type, field, cmp)				\
410 	RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
411 #define	RB_PROTOTYPE_STATIC(name, type, field, cmp)			\
412 	RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
413 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr)		\
414 	RB_PROTOTYPE_RANK(name, type, attr)				\
415 	RB_PROTOTYPE_INSERT_COLOR(name, type, attr);			\
416 	RB_PROTOTYPE_REMOVE_COLOR(name, type, attr);			\
417 	RB_PROTOTYPE_INSERT_FINISH(name, type, attr);			\
418 	RB_PROTOTYPE_INSERT(name, type, attr);				\
419 	RB_PROTOTYPE_REMOVE(name, type, attr);				\
420 	RB_PROTOTYPE_FIND(name, type, attr);				\
421 	RB_PROTOTYPE_NFIND(name, type, attr);				\
422 	RB_PROTOTYPE_NEXT(name, type, attr);				\
423 	RB_PROTOTYPE_INSERT_NEXT(name, type, attr);			\
424 	RB_PROTOTYPE_PREV(name, type, attr);				\
425 	RB_PROTOTYPE_INSERT_PREV(name, type, attr);			\
426 	RB_PROTOTYPE_MINMAX(name, type, attr);				\
427 	RB_PROTOTYPE_REINSERT(name, type, attr);
428 #ifdef _RB_DIAGNOSTIC
429 #define RB_PROTOTYPE_RANK(name, type, attr)				\
430 	attr int name##_RB_RANK(struct type *);
431 #else
432 #define RB_PROTOTYPE_RANK(name, type, attr)
433 #endif
434 #define RB_PROTOTYPE_INSERT_COLOR(name, type, attr)			\
435 	attr struct type *name##_RB_INSERT_COLOR(struct name *,		\
436 	    struct type *, struct type *)
437 #define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr)			\
438 	attr struct type *name##_RB_REMOVE_COLOR(struct name *,		\
439 	    struct type *, struct type *)
440 #define RB_PROTOTYPE_REMOVE(name, type, attr)				\
441 	attr struct type *name##_RB_REMOVE(struct name *, struct type *)
442 #define RB_PROTOTYPE_INSERT_FINISH(name, type, attr)			\
443 	attr struct type *name##_RB_INSERT_FINISH(struct name *,	\
444 	    struct type *, struct type **, struct type *)
445 #define RB_PROTOTYPE_INSERT(name, type, attr)				\
446 	attr struct type *name##_RB_INSERT(struct name *, struct type *)
447 #define RB_PROTOTYPE_FIND(name, type, attr)				\
448 	attr struct type *name##_RB_FIND(struct name *, struct type *)
449 #define RB_PROTOTYPE_NFIND(name, type, attr)				\
450 	attr struct type *name##_RB_NFIND(struct name *, struct type *)
451 #define RB_PROTOTYPE_NEXT(name, type, attr)				\
452 	attr struct type *name##_RB_NEXT(struct type *)
453 #define RB_PROTOTYPE_INSERT_NEXT(name, type, attr)			\
454 	attr struct type *name##_RB_INSERT_NEXT(struct name *,		\
455 	    struct type *, struct type *)
456 #define RB_PROTOTYPE_PREV(name, type, attr)				\
457 	attr struct type *name##_RB_PREV(struct type *)
458 #define RB_PROTOTYPE_INSERT_PREV(name, type, attr)			\
459 	attr struct type *name##_RB_INSERT_PREV(struct name *,		\
460 	    struct type *, struct type *)
461 #define RB_PROTOTYPE_MINMAX(name, type, attr)				\
462 	attr struct type *name##_RB_MINMAX(struct name *, int)
463 #define RB_PROTOTYPE_REINSERT(name, type, attr)			\
464 	attr struct type *name##_RB_REINSERT(struct name *, struct type *)
465 
466 /* Main rb operation.
467  * Moves node close to the key of elm to top
468  */
469 #define	RB_GENERATE(name, type, field, cmp)				\
470 	RB_GENERATE_INTERNAL(name, type, field, cmp,)
471 #define	RB_GENERATE_STATIC(name, type, field, cmp)			\
472 	RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
473 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr)		\
474 	RB_GENERATE_RANK(name, type, field, attr)			\
475 	RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
476 	RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
477 	RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
478 	RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
479 	RB_GENERATE_REMOVE(name, type, field, attr)			\
480 	RB_GENERATE_FIND(name, type, field, cmp, attr)			\
481 	RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
482 	RB_GENERATE_NEXT(name, type, field, attr)			\
483 	RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
484 	RB_GENERATE_PREV(name, type, field, attr)			\
485 	RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
486 	RB_GENERATE_MINMAX(name, type, field, attr)			\
487 	RB_GENERATE_REINSERT(name, type, field, cmp, attr)
488 
489 #ifdef _RB_DIAGNOSTIC
490 #ifndef RB_AUGMENT
491 #define _RB_AUGMENT_VERIFY(x) RB_AUGMENT_CHECK(x)
492 #else
493 #define _RB_AUGMENT_VERIFY(x) 0
494 #endif
495 #define RB_GENERATE_RANK(name, type, field, attr)			\
496 /*									\
497  * Return the rank of the subtree rooted at elm, or -1 if the subtree	\
498  * is not rank-balanced, or has inconsistent augmentation data.
499  */									\
500 attr int								\
501 name##_RB_RANK(struct type *elm)					\
502 {									\
503 	struct type *left, *right, *up;					\
504 	int left_rank, right_rank;					\
505 									\
506 	if (elm == NULL)						\
507 		return (0);						\
508 	up = _RB_UP(elm, field);					\
509 	left = RB_LEFT(elm, field);					\
510 	left_rank = ((_RB_BITS(up) & _RB_L) ? 2 : 1) +			\
511 	    name##_RB_RANK(left);					\
512 	right = RB_RIGHT(elm, field);					\
513 	right_rank = ((_RB_BITS(up) & _RB_R) ? 2 : 1) +			\
514 	    name##_RB_RANK(right);					\
515 	if (left_rank != right_rank ||					\
516 	    (left_rank == 2 && left == NULL && right == NULL) ||	\
517 	    _RB_AUGMENT_VERIFY(elm))					\
518 		return (-1);						\
519 	return (left_rank);						\
520 }
521 #else
522 #define RB_GENERATE_RANK(name, type, field, attr)
523 #endif
524 
525 #define RB_GENERATE_INSERT_COLOR(name, type, field, attr)		\
526 attr struct type *							\
527 name##_RB_INSERT_COLOR(struct name *head,				\
528     struct type *parent, struct type *elm)				\
529 {									\
530 	/*								\
531 	 * Initially, elm is a leaf.  Either its parent was previously	\
532 	 * a leaf, with two black null children, or an interior node	\
533 	 * with a black non-null child and a red null child. The        \
534 	 * balance criterion "the rank of any leaf is 1" precludes the  \
535 	 * possibility of two red null children for the initial parent. \
536 	 * So the first loop iteration cannot lead to accessing an      \
537 	 * uninitialized 'child', and a later iteration can only happen \
538 	 * when a value has been assigned to 'child' in the previous    \
539 	 * one.								\
540 	 */								\
541 	struct type *child, *child_up, *gpar;				\
542 	__uintptr_t elmdir, sibdir;					\
543 									\
544 	do {								\
545 		/* the rank of the tree rooted at elm grew */		\
546 		gpar = _RB_UP(parent, field);				\
547 		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
548 		if (_RB_BITS(gpar) & elmdir) {				\
549 			/* shorten the parent-elm edge to rebalance */	\
550 			_RB_BITSUP(parent, field) ^= elmdir;		\
551 			return (NULL);					\
552 		}							\
553 		sibdir = elmdir ^ _RB_LR;				\
554 		/* the other edge must change length */			\
555 		_RB_BITSUP(parent, field) ^= sibdir;			\
556 		if ((_RB_BITS(gpar) & _RB_LR) == 0) {			\
557 			/* both edges now short, retry from parent */	\
558 			child = elm;					\
559 			elm = parent;					\
560 			continue;					\
561 		}							\
562 		_RB_UP(parent, field) = gpar = _RB_PTR(gpar);		\
563 		if (_RB_BITSUP(elm, field) & elmdir) {			\
564 			/*						\
565 			 * Exactly one of the edges descending from elm \
566 			 * is long. The long one is in the same		\
567 			 * direction as the edge from parent to elm,	\
568 			 * so change that by rotation.  The edge from	\
569 			 * parent to z was shortened above.  Shorten	\
570 			 * the long edge down from elm, and adjust	\
571 			 * other edge lengths based on the downward	\
572 			 * edges from 'child'.				\
573 			 *						\
574 			 *	     par		 par		\
575 			 *	    /	\		/   \		\
576 			 *	  elm	 z	       /     z		\
577 			 *	 /  \		     child		\
578 			 *	/  child	     /	 \		\
579 			 *     /   /  \		   elm	  \		\
580 			 *    w	  /    \	  /   \    y		\
581 			 *	 x      y	 w     \		\
582 			 *				x		\
583 			 */						\
584 			RB_ROTATE(elm, child, elmdir, field);		\
585 			child_up = _RB_UP(child, field);		\
586 			if (_RB_BITS(child_up) & sibdir)		\
587 				_RB_BITSUP(parent, field) ^= elmdir;	\
588 			if (_RB_BITS(child_up) & elmdir)		\
589 				_RB_BITSUP(elm, field) ^= _RB_LR;	\
590 			else						\
591 				_RB_BITSUP(elm, field) ^= elmdir;	\
592 			/* if child is a leaf, don't augment elm,	\
593 			 * since it is restored to be a leaf again. */	\
594 			if ((_RB_BITS(child_up) & _RB_LR) == 0)		\
595 				elm = child;				\
596 		} else							\
597 			child = elm;					\
598 									\
599 		/*							\
600 		 * The long edge descending from 'child' points back	\
601 		 * in the direction of 'parent'. Rotate to make		\
602 		 * 'parent' a child of 'child', then make both edges	\
603 		 * of 'child' short to rebalance.			\
604 		 *							\
605 		 *	     par		 child			\
606 		 *	    /	\		/     \			\
607 		 *	   /	 z	       x       par		\
608 		 *	child			      /	  \		\
609 		 *	 /  \			     /	   z		\
610 		 *	x    \			    y			\
611 		 *	      y						\
612 		 */							\
613 		RB_ROTATE(parent, child, sibdir, field);		\
614 		_RB_UP(child, field) = gpar;				\
615 		RB_SWAP_CHILD(head, gpar, parent, child, field);	\
616 		/*							\
617 		 * Elements rotated down have new, smaller subtrees,	\
618 		 * so update augmentation for them.			\
619 		 */							\
620 		if (elm != child)					\
621 			(void)RB_AUGMENT_CHECK(elm);			\
622 		(void)RB_AUGMENT_CHECK(parent);				\
623 		return (child);						\
624 	} while ((parent = gpar) != NULL);				\
625 	return (NULL);							\
626 }
627 
628 #ifndef RB_STRICT_HST
629 /*
630  * In REMOVE_COLOR, the HST paper, in figure 3, in the single-rotate case, has
631  * 'parent' with one higher rank, and then reduces its rank if 'parent' has
632  * become a leaf.  This implementation always has the parent in its new position
633  * with lower rank, to avoid the leaf check.  Define RB_STRICT_HST to 1 to get
634  * the behavior that HST describes.
635  */
636 #define RB_STRICT_HST 0
637 #endif
638 
639 #define RB_GENERATE_REMOVE_COLOR(name, type, field, attr)		\
640 attr struct type *							\
641 name##_RB_REMOVE_COLOR(struct name *head,				\
642     struct type *parent, struct type *elm)				\
643 {									\
644 	struct type *gpar, *sib, *up;					\
645 	__uintptr_t elmdir, sibdir;					\
646 									\
647 	if (RB_RIGHT(parent, field) == elm &&				\
648 	    RB_LEFT(parent, field) == elm) {				\
649 		/* Deleting a leaf that is an only-child creates a	\
650 		 * rank-2 leaf. Demote that leaf. */			\
651 		_RB_UP(parent, field) = _RB_PTR(_RB_UP(parent, field));	\
652 		elm = parent;						\
653 		if ((parent = _RB_UP(elm, field)) == NULL)		\
654 			return (NULL);					\
655 	}								\
656 	do {								\
657 		/* the rank of the tree rooted at elm shrank */		\
658 		gpar = _RB_UP(parent, field);				\
659 		elmdir = RB_RIGHT(parent, field) == elm ? _RB_R : _RB_L; \
660 		_RB_BITS(gpar) ^= elmdir;				\
661 		if (_RB_BITS(gpar) & elmdir) {				\
662 			/* lengthen the parent-elm edge to rebalance */	\
663 			_RB_UP(parent, field) = gpar;			\
664 			return (NULL);					\
665 		}							\
666 		if (_RB_BITS(gpar) & _RB_LR) {				\
667 			/* shorten other edge, retry from parent */	\
668 			_RB_BITS(gpar) ^= _RB_LR;			\
669 			_RB_UP(parent, field) = gpar;			\
670 			gpar = _RB_PTR(gpar);				\
671 			continue;					\
672 		}							\
673 		sibdir = elmdir ^ _RB_LR;				\
674 		sib = _RB_LINK(parent, sibdir, field);			\
675 		up = _RB_UP(sib, field);				\
676 		_RB_BITS(up) ^= _RB_LR;					\
677 		if ((_RB_BITS(up) & _RB_LR) == 0) {			\
678 			/* shorten edges descending from sib, retry */	\
679 			_RB_UP(sib, field) = up;			\
680 			continue;					\
681 		}							\
682 		if ((_RB_BITS(up) & sibdir) == 0) {			\
683 			/*						\
684 			 * The edge descending from 'sib' away from	\
685 			 * 'parent' is long.  The short edge descending	\
686 			 * from 'sib' toward 'parent' points to 'elm*'	\
687 			 * Rotate to make 'sib' a child of 'elm*'	\
688 			 * then adjust the lengths of the edges		\
689 			 * descending from 'sib' and 'elm*'.		\
690 			 *						\
691 			 *	     par		 par		\
692 			 *	    /	\		/   \		\
693 			 *	   /	sib	      elm    \		\
694 			 *	  /	/ \	            elm*	\
695 			 *	elm   elm* \	            /  \	\
696 			 *	      /	\   \		   /    \	\
697 			 *	     /   \   z		  /      \	\
698 			 *	    x	  y		 x      sib	\
699 			 *				        /  \	\
700 			 *				       /    z	\
701 			 *				      y		\
702 			 */						\
703 			elm = _RB_LINK(sib, elmdir, field);		\
704 			/* elm is a 1-child.  First rotate at elm. */	\
705 			RB_ROTATE(sib, elm, sibdir, field);		\
706 			up = _RB_UP(elm, field);			\
707 			_RB_BITSUP(parent, field) ^=			\
708 			    (_RB_BITS(up) & elmdir) ? _RB_LR : elmdir;	\
709 			_RB_BITSUP(sib, field) ^=			\
710 			    (_RB_BITS(up) & sibdir) ? _RB_LR : sibdir;	\
711 			_RB_BITSUP(elm, field) |= _RB_LR;		\
712 		} else {						\
713 			if ((_RB_BITS(up) & elmdir) == 0 &&		\
714 			    RB_STRICT_HST && elm != NULL) {		\
715 				/* if parent does not become a leaf,	\
716 				   do not demote parent yet. */		\
717 				_RB_BITSUP(parent, field) ^= sibdir;	\
718 				_RB_BITSUP(sib, field) ^= _RB_LR;	\
719 			} else if ((_RB_BITS(up) & elmdir) == 0) {	\
720 				/* demote parent. */			\
721 				_RB_BITSUP(parent, field) ^= elmdir;	\
722 				_RB_BITSUP(sib, field) ^= sibdir;	\
723 			} else						\
724 				_RB_BITSUP(sib, field) ^= sibdir;	\
725 			elm = sib;					\
726 		}							\
727 									\
728 		/*							\
729 		 * The edge descending from 'elm' away from 'parent'	\
730 		 * is short.  Rotate to make 'parent' a child of 'elm', \
731 		 * then lengthen the short edges descending from	\
732 		 * 'parent' and 'elm' to rebalance.			\
733 		 *							\
734 		 *	     par		 elm			\
735 		 *	    /	\		/   \			\
736 		 *	   e	 \	       /     \			\
737 		 *		 elm	      /	      \			\
738 		 *		/  \	    par	       s		\
739 		 *	       /    \	   /   \			\
740 		 *	      /	     \	  e	\			\
741 		 *	     x	      s		 x			\
742 		 */							\
743 		RB_ROTATE(parent, elm, elmdir, field);			\
744 		RB_SET_PARENT(elm, gpar, field);			\
745 		RB_SWAP_CHILD(head, gpar, parent, elm, field);		\
746 		/*							\
747 		 * An element rotated down, but not into the search	\
748 		 * path has a new, smaller subtree, so update		\
749 		 * augmentation for it.					\
750 		 */							\
751 		if (sib != elm)						\
752 			(void)RB_AUGMENT_CHECK(sib);			\
753 		return (parent);					\
754 	} while (elm = parent, (parent = gpar) != NULL);		\
755 	return (NULL);							\
756 }
757 
758 #define _RB_AUGMENT_WALK(elm, match, field)				\
759 do {									\
760 	if (match == elm)						\
761 		match = NULL;						\
762 } while (RB_AUGMENT_CHECK(elm) &&					\
763     (elm = RB_PARENT(elm, field)) != NULL)
764 
765 #define RB_GENERATE_REMOVE(name, type, field, attr)			\
766 attr struct type *							\
767 name##_RB_REMOVE(struct name *head, struct type *out)			\
768 {									\
769 	struct type *child, *in, *opar, *parent;			\
770 									\
771 	child = RB_LEFT(out, field);					\
772 	in = RB_RIGHT(out, field);					\
773 	opar = _RB_UP(out, field);					\
774 	if (in == NULL || child == NULL) {				\
775 		in = child = (in == NULL ? child : in);			\
776 		parent = opar = _RB_PTR(opar);				\
777 	} else {							\
778 		parent = in;						\
779 		while (RB_LEFT(in, field))				\
780 			in = RB_LEFT(in, field);			\
781 		RB_SET_PARENT(child, in, field);			\
782 		RB_LEFT(in, field) = child;				\
783 		child = RB_RIGHT(in, field);				\
784 		if (parent != in) {					\
785 			RB_SET_PARENT(parent, in, field);		\
786 			RB_RIGHT(in, field) = parent;			\
787 			parent = RB_PARENT(in, field);			\
788 			RB_LEFT(parent, field) = child;			\
789 		}							\
790 		_RB_UP(in, field) = opar;				\
791 		opar = _RB_PTR(opar);					\
792 	}								\
793 	RB_SWAP_CHILD(head, opar, out, in, field);			\
794 	if (child != NULL)						\
795 		_RB_UP(child, field) = parent;				\
796 	if (parent != NULL) {						\
797 		opar = name##_RB_REMOVE_COLOR(head, parent, child);	\
798 		/* if rotation has made 'parent' the root of the same	\
799 		 * subtree as before, don't re-augment it. */		\
800 		if (parent == in && RB_LEFT(parent, field) == NULL) {	\
801 			opar = NULL;					\
802 			parent = RB_PARENT(parent, field);		\
803 		}							\
804 		_RB_AUGMENT_WALK(parent, opar, field);			\
805 		if (opar != NULL) {					\
806 			/*						\
807 			 * Elements rotated into the search path have	\
808 			 * changed subtrees, so update augmentation for	\
809 			 * them if AUGMENT_WALK didn't.			\
810 			 */						\
811 			(void)RB_AUGMENT_CHECK(opar);			\
812 			(void)RB_AUGMENT_CHECK(RB_PARENT(opar, field));	\
813 		}							\
814 	}								\
815 	return (out);							\
816 }
817 
818 #define RB_GENERATE_INSERT_FINISH(name, type, field, attr)		\
819 /* Inserts a node into the RB tree */					\
820 attr struct type *							\
821 name##_RB_INSERT_FINISH(struct name *head, struct type *parent,		\
822     struct type **pptr, struct type *elm)				\
823 {									\
824 	struct type *tmp = NULL;					\
825 									\
826 	RB_SET(elm, parent, field);					\
827 	*pptr = elm;							\
828 	if (parent != NULL)						\
829 		tmp = name##_RB_INSERT_COLOR(head, parent, elm);	\
830 	_RB_AUGMENT_WALK(elm, tmp, field);				\
831 	if (tmp != NULL)						\
832 		/*							\
833 		 * An element rotated into the search path has a	\
834 		 * changed subtree, so update augmentation for it if	\
835 		 * AUGMENT_WALK didn't.					\
836 		 */							\
837 		(void)RB_AUGMENT_CHECK(tmp);				\
838 	return (NULL);							\
839 }
840 
841 #define RB_GENERATE_INSERT(name, type, field, cmp, attr)		\
842 /* Inserts a node into the RB tree */					\
843 attr struct type *							\
844 name##_RB_INSERT(struct name *head, struct type *elm)			\
845 {									\
846 	struct type *tmp;						\
847 	struct type **tmpp = &RB_ROOT(head);				\
848 	struct type *parent = NULL;					\
849 									\
850 	while ((tmp = *tmpp) != NULL) {					\
851 		parent = tmp;						\
852 		__typeof(cmp(NULL, NULL)) comp = (cmp)(elm, parent);	\
853 		if (comp < 0)						\
854 			tmpp = &RB_LEFT(parent, field);			\
855 		else if (comp > 0)					\
856 			tmpp = &RB_RIGHT(parent, field);		\
857 		else							\
858 			return (parent);				\
859 	}								\
860 	return (name##_RB_INSERT_FINISH(head, parent, tmpp, elm));	\
861 }
862 
863 #define RB_GENERATE_FIND(name, type, field, cmp, attr)			\
864 /* Finds the node with the same key as elm */				\
865 attr struct type *							\
866 name##_RB_FIND(struct name *head, struct type *elm)			\
867 {									\
868 	struct type *tmp = RB_ROOT(head);				\
869 	__typeof(cmp(NULL, NULL)) comp;					\
870 	while (tmp) {							\
871 		comp = cmp(elm, tmp);					\
872 		if (comp < 0)						\
873 			tmp = RB_LEFT(tmp, field);			\
874 		else if (comp > 0)					\
875 			tmp = RB_RIGHT(tmp, field);			\
876 		else							\
877 			return (tmp);					\
878 	}								\
879 	return (NULL);							\
880 }
881 
882 #define RB_GENERATE_NFIND(name, type, field, cmp, attr)			\
883 /* Finds the first node greater than or equal to the search key */	\
884 attr struct type *							\
885 name##_RB_NFIND(struct name *head, struct type *elm)			\
886 {									\
887 	struct type *tmp = RB_ROOT(head);				\
888 	struct type *res = NULL;					\
889 	__typeof(cmp(NULL, NULL)) comp;					\
890 	while (tmp) {							\
891 		comp = cmp(elm, tmp);					\
892 		if (comp < 0) {						\
893 			res = tmp;					\
894 			tmp = RB_LEFT(tmp, field);			\
895 		}							\
896 		else if (comp > 0)					\
897 			tmp = RB_RIGHT(tmp, field);			\
898 		else							\
899 			return (tmp);					\
900 	}								\
901 	return (res);							\
902 }
903 
904 #define RB_GENERATE_NEXT(name, type, field, attr)			\
905 /* ARGSUSED */								\
906 attr struct type *							\
907 name##_RB_NEXT(struct type *elm)					\
908 {									\
909 	if (RB_RIGHT(elm, field)) {					\
910 		elm = RB_RIGHT(elm, field);				\
911 		while (RB_LEFT(elm, field))				\
912 			elm = RB_LEFT(elm, field);			\
913 	} else {							\
914 		while (RB_PARENT(elm, field) &&				\
915 		    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))	\
916 			elm = RB_PARENT(elm, field);			\
917 		elm = RB_PARENT(elm, field);				\
918 	}								\
919 	return (elm);							\
920 }
921 
922 #if defined(_KERNEL) && defined(DIAGNOSTIC)
923 #define _RB_ORDER_CHECK(cmp, lo, hi) do {				\
924 	KASSERT((cmp)(lo, hi) < 0, ("out of order insertion"));		\
925 } while (0)
926 #else
927 #define _RB_ORDER_CHECK(cmp, lo, hi) do {} while (0)
928 #endif
929 
930 #define RB_GENERATE_INSERT_NEXT(name, type, field, cmp, attr)		\
931 /* Inserts a node into the next position in the RB tree */		\
932 attr struct type *							\
933 name##_RB_INSERT_NEXT(struct name *head,				\
934     struct type *elm, struct type *next)				\
935 {									\
936 	struct type *tmp;						\
937 	struct type **tmpp = &RB_RIGHT(elm, field);			\
938 									\
939 	_RB_ORDER_CHECK(cmp, elm, next);				\
940 	if (name##_RB_NEXT(elm) != NULL)				\
941 		_RB_ORDER_CHECK(cmp, next, name##_RB_NEXT(elm));	\
942 	while ((tmp = *tmpp) != NULL) {					\
943 		elm = tmp;						\
944 		tmpp = &RB_LEFT(elm, field);				\
945 	}								\
946 	return (name##_RB_INSERT_FINISH(head, elm, tmpp, next));	\
947 }
948 
949 #define RB_GENERATE_PREV(name, type, field, attr)			\
950 /* ARGSUSED */								\
951 attr struct type *							\
952 name##_RB_PREV(struct type *elm)					\
953 {									\
954 	if (RB_LEFT(elm, field)) {					\
955 		elm = RB_LEFT(elm, field);				\
956 		while (RB_RIGHT(elm, field))				\
957 			elm = RB_RIGHT(elm, field);			\
958 	} else {							\
959 		while (RB_PARENT(elm, field) &&				\
960 		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
961 			elm = RB_PARENT(elm, field);			\
962 		elm = RB_PARENT(elm, field);				\
963 	}								\
964 	return (elm);							\
965 }
966 
967 #define RB_GENERATE_INSERT_PREV(name, type, field, cmp, attr)		\
968 /* Inserts a node into the prev position in the RB tree */		\
969 attr struct type *							\
970 name##_RB_INSERT_PREV(struct name *head,				\
971     struct type *elm, struct type *prev)				\
972 {									\
973 	struct type *tmp;						\
974 	struct type **tmpp = &RB_LEFT(elm, field);			\
975 									\
976 	_RB_ORDER_CHECK(cmp, prev, elm);				\
977 	if (name##_RB_PREV(elm) != NULL)				\
978 		_RB_ORDER_CHECK(cmp, name##_RB_PREV(elm), prev);	\
979 	while ((tmp = *tmpp) != NULL) {					\
980 		elm = tmp;						\
981 		tmpp = &RB_RIGHT(elm, field);				\
982 	}								\
983 	return (name##_RB_INSERT_FINISH(head, elm, tmpp, prev));	\
984 }
985 
986 #define RB_GENERATE_MINMAX(name, type, field, attr)			\
987 attr struct type *							\
988 name##_RB_MINMAX(struct name *head, int val)				\
989 {									\
990 	struct type *tmp = RB_ROOT(head);				\
991 	struct type *parent = NULL;					\
992 	while (tmp) {							\
993 		parent = tmp;						\
994 		if (val < 0)						\
995 			tmp = RB_LEFT(tmp, field);			\
996 		else							\
997 			tmp = RB_RIGHT(tmp, field);			\
998 	}								\
999 	return (parent);						\
1000 }
1001 
1002 #define	RB_GENERATE_REINSERT(name, type, field, cmp, attr)		\
1003 attr struct type *							\
1004 name##_RB_REINSERT(struct name *head, struct type *elm)			\
1005 {									\
1006 	struct type *cmpelm;						\
1007 	if (((cmpelm = RB_PREV(name, head, elm)) != NULL &&		\
1008 	    cmp(cmpelm, elm) >= 0) ||					\
1009 	    ((cmpelm = RB_NEXT(name, head, elm)) != NULL &&		\
1010 	    cmp(elm, cmpelm) >= 0)) {					\
1011 		/* XXXLAS: Remove/insert is heavy handed. */		\
1012 		RB_REMOVE(name, head, elm);				\
1013 		return (RB_INSERT(name, head, elm));			\
1014 	}								\
1015 	return (NULL);							\
1016 }									\
1017 
1018 #define RB_NEGINF	-1
1019 #define RB_INF	1
1020 
1021 #define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
1022 #define RB_INSERT_NEXT(name, x, y, z)	name##_RB_INSERT_NEXT(x, y, z)
1023 #define RB_INSERT_PREV(name, x, y, z)	name##_RB_INSERT_PREV(x, y, z)
1024 #define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
1025 #define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
1026 #define RB_NFIND(name, x, y)	name##_RB_NFIND(x, y)
1027 #define RB_NEXT(name, x, y)	name##_RB_NEXT(y)
1028 #define RB_PREV(name, x, y)	name##_RB_PREV(y)
1029 #define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
1030 #define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)
1031 #define RB_REINSERT(name, x, y)	name##_RB_REINSERT(x, y)
1032 
1033 #define RB_FOREACH(x, name, head)					\
1034 	for ((x) = RB_MIN(name, head);					\
1035 	     (x) != NULL;						\
1036 	     (x) = name##_RB_NEXT(x))
1037 
1038 #define RB_FOREACH_FROM(x, name, y)					\
1039 	for ((x) = (y);							\
1040 	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1041 	     (x) = (y))
1042 
1043 #define RB_FOREACH_SAFE(x, name, head, y)				\
1044 	for ((x) = RB_MIN(name, head);					\
1045 	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
1046 	     (x) = (y))
1047 
1048 #define RB_FOREACH_REVERSE(x, name, head)				\
1049 	for ((x) = RB_MAX(name, head);					\
1050 	     (x) != NULL;						\
1051 	     (x) = name##_RB_PREV(x))
1052 
1053 #define RB_FOREACH_REVERSE_FROM(x, name, y)				\
1054 	for ((x) = (y);							\
1055 	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1056 	     (x) = (y))
1057 
1058 #define RB_FOREACH_REVERSE_SAFE(x, name, head, y)			\
1059 	for ((x) = RB_MAX(name, head);					\
1060 	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
1061 	     (x) = (y))
1062 
1063 #endif	/* _SYS_TREE_H_ */
1064