xref: /freebsd/sys/ufs/ufs/ufs_bmap.c (revision 2f513db7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)ufs_bmap.c	8.7 (Berkeley) 3/21/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bio.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/racct.h>
50 #include <sys/resourcevar.h>
51 #include <sys/stat.h>
52 
53 #include <ufs/ufs/extattr.h>
54 #include <ufs/ufs/quota.h>
55 #include <ufs/ufs/inode.h>
56 #include <ufs/ufs/ufsmount.h>
57 #include <ufs/ufs/ufs_extern.h>
58 
59 static ufs_lbn_t lbn_count(struct ufsmount *, int);
60 static int readindir(struct vnode *, ufs_lbn_t, ufs2_daddr_t, struct buf **);
61 
62 /*
63  * Bmap converts the logical block number of a file to its physical block
64  * number on the disk. The conversion is done by using the logical block
65  * number to index into the array of block pointers described by the dinode.
66  */
67 int
68 ufs_bmap(ap)
69 	struct vop_bmap_args /* {
70 		struct vnode *a_vp;
71 		daddr_t a_bn;
72 		struct bufobj **a_bop;
73 		daddr_t *a_bnp;
74 		int *a_runp;
75 		int *a_runb;
76 	} */ *ap;
77 {
78 	ufs2_daddr_t blkno;
79 	int error;
80 
81 	/*
82 	 * Check for underlying vnode requests and ensure that logical
83 	 * to physical mapping is requested.
84 	 */
85 	if (ap->a_bop != NULL)
86 		*ap->a_bop = &VFSTOUFS(ap->a_vp->v_mount)->um_devvp->v_bufobj;
87 	if (ap->a_bnp == NULL)
88 		return (0);
89 
90 	error = ufs_bmaparray(ap->a_vp, ap->a_bn, &blkno, NULL,
91 	    ap->a_runp, ap->a_runb);
92 	*ap->a_bnp = blkno;
93 	return (error);
94 }
95 
96 static int
97 readindir(vp, lbn, daddr, bpp)
98 	struct vnode *vp;
99 	ufs_lbn_t lbn;
100 	ufs2_daddr_t daddr;
101 	struct buf **bpp;
102 {
103 	struct buf *bp;
104 	struct mount *mp;
105 	struct ufsmount *ump;
106 	int error;
107 
108 	mp = vp->v_mount;
109 	ump = VFSTOUFS(mp);
110 
111 	bp = getblk(vp, lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
112 	if ((bp->b_flags & B_CACHE) == 0) {
113 		KASSERT(daddr != 0,
114 		    ("readindir: indirect block not in cache"));
115 
116 		bp->b_blkno = blkptrtodb(ump, daddr);
117 		bp->b_iocmd = BIO_READ;
118 		bp->b_flags &= ~B_INVAL;
119 		bp->b_ioflags &= ~BIO_ERROR;
120 		vfs_busy_pages(bp, 0);
121 		bp->b_iooffset = dbtob(bp->b_blkno);
122 		bstrategy(bp);
123 #ifdef RACCT
124 		if (racct_enable) {
125 			PROC_LOCK(curproc);
126 			racct_add_buf(curproc, bp, 0);
127 			PROC_UNLOCK(curproc);
128 		}
129 #endif
130 		curthread->td_ru.ru_inblock++;
131 		error = bufwait(bp);
132 		if (error != 0) {
133 			brelse(bp);
134 			return (error);
135 		}
136 	}
137 	*bpp = bp;
138 	return (0);
139 }
140 
141 /*
142  * Indirect blocks are now on the vnode for the file.  They are given negative
143  * logical block numbers.  Indirect blocks are addressed by the negative
144  * address of the first data block to which they point.  Double indirect blocks
145  * are addressed by one less than the address of the first indirect block to
146  * which they point.  Triple indirect blocks are addressed by one less than
147  * the address of the first double indirect block to which they point.
148  *
149  * ufs_bmaparray does the bmap conversion, and if requested returns the
150  * array of logical blocks which must be traversed to get to a block.
151  * Each entry contains the offset into that block that gets you to the
152  * next block and the disk address of the block (if it is assigned).
153  */
154 
155 int
156 ufs_bmaparray(vp, bn, bnp, nbp, runp, runb)
157 	struct vnode *vp;
158 	ufs2_daddr_t bn;
159 	ufs2_daddr_t *bnp;
160 	struct buf *nbp;
161 	int *runp;
162 	int *runb;
163 {
164 	struct inode *ip;
165 	struct buf *bp;
166 	struct ufsmount *ump;
167 	struct mount *mp;
168 	struct indir a[UFS_NIADDR+1], *ap;
169 	ufs2_daddr_t daddr;
170 	ufs_lbn_t metalbn;
171 	int error, num, maxrun = 0;
172 	int *nump;
173 
174 	ap = NULL;
175 	ip = VTOI(vp);
176 	mp = vp->v_mount;
177 	ump = VFSTOUFS(mp);
178 
179 	if (runp) {
180 		maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;
181 		*runp = 0;
182 	}
183 
184 	if (runb) {
185 		*runb = 0;
186 	}
187 
188 
189 	ap = a;
190 	nump = &num;
191 	error = ufs_getlbns(vp, bn, ap, nump);
192 	if (error)
193 		return (error);
194 
195 	num = *nump;
196 	if (num == 0) {
197 		if (bn >= 0 && bn < UFS_NDADDR) {
198 			*bnp = blkptrtodb(ump, DIP(ip, i_db[bn]));
199 		} else if (bn < 0 && bn >= -UFS_NXADDR) {
200 			*bnp = blkptrtodb(ump, ip->i_din2->di_extb[-1 - bn]);
201 			if (*bnp == 0)
202 				*bnp = -1;
203 			if (nbp == NULL) {
204 				/* indirect block not found */
205 				return (EINVAL);
206 			}
207 			nbp->b_xflags |= BX_ALTDATA;
208 			return (0);
209 		} else {
210 			/* blkno out of range */
211 			return (EINVAL);
212 		}
213 		/*
214 		 * Since this is FFS independent code, we are out of
215 		 * scope for the definitions of BLK_NOCOPY and
216 		 * BLK_SNAP, but we do know that they will fall in
217 		 * the range 1..um_seqinc, so we use that test and
218 		 * return a request for a zeroed out buffer if attempts
219 		 * are made to read a BLK_NOCOPY or BLK_SNAP block.
220 		 */
221 		if ((ip->i_flags & SF_SNAPSHOT) && DIP(ip, i_db[bn]) > 0 &&
222 		    DIP(ip, i_db[bn]) < ump->um_seqinc) {
223 			*bnp = -1;
224 		} else if (*bnp == 0) {
225 			if (ip->i_flags & SF_SNAPSHOT)
226 				*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
227 			else
228 				*bnp = -1;
229 		} else if (runp) {
230 			ufs2_daddr_t bnb = bn;
231 			for (++bn; bn < UFS_NDADDR && *runp < maxrun &&
232 			    is_sequential(ump, DIP(ip, i_db[bn - 1]),
233 			    DIP(ip, i_db[bn]));
234 			    ++bn, ++*runp);
235 			bn = bnb;
236 			if (runb && (bn > 0)) {
237 				for (--bn; (bn >= 0) && (*runb < maxrun) &&
238 					is_sequential(ump, DIP(ip, i_db[bn]),
239 						DIP(ip, i_db[bn+1]));
240 						--bn, ++*runb);
241 			}
242 		}
243 		return (0);
244 	}
245 
246 
247 	/* Get disk address out of indirect block array */
248 	daddr = DIP(ip, i_ib[ap->in_off]);
249 
250 	for (bp = NULL, ++ap; --num; ++ap) {
251 		/*
252 		 * Exit the loop if there is no disk address assigned yet and
253 		 * the indirect block isn't in the cache, or if we were
254 		 * looking for an indirect block and we've found it.
255 		 */
256 
257 		metalbn = ap->in_lbn;
258 		if ((daddr == 0 && !incore(&vp->v_bufobj, metalbn)) || metalbn == bn)
259 			break;
260 		/*
261 		 * If we get here, we've either got the block in the cache
262 		 * or we have a disk address for it, go fetch it.
263 		 */
264 		if (bp)
265 			bqrelse(bp);
266 		error = readindir(vp, metalbn, daddr, &bp);
267 		if (error != 0)
268 			return (error);
269 
270 		if (I_IS_UFS1(ip))
271 			daddr = ((ufs1_daddr_t *)bp->b_data)[ap->in_off];
272 		else
273 			daddr = ((ufs2_daddr_t *)bp->b_data)[ap->in_off];
274 		if ((error = UFS_CHECK_BLKNO(mp, ip->i_number, daddr,
275 		     mp->mnt_stat.f_iosize)) != 0) {
276 			bqrelse(bp);
277 			return (error);
278 		}
279 		if (I_IS_UFS1(ip)) {
280 			if (num == 1 && daddr && runp) {
281 				for (bn = ap->in_off + 1;
282 				    bn < MNINDIR(ump) && *runp < maxrun &&
283 				    is_sequential(ump,
284 				    ((ufs1_daddr_t *)bp->b_data)[bn - 1],
285 				    ((ufs1_daddr_t *)bp->b_data)[bn]);
286 				    ++bn, ++*runp);
287 				bn = ap->in_off;
288 				if (runb && bn) {
289 					for (--bn; bn >= 0 && *runb < maxrun &&
290 					    is_sequential(ump,
291 					    ((ufs1_daddr_t *)bp->b_data)[bn],
292 					    ((ufs1_daddr_t *)bp->b_data)[bn+1]);
293 					    --bn, ++*runb);
294 				}
295 			}
296 			continue;
297 		}
298 		if (num == 1 && daddr && runp) {
299 			for (bn = ap->in_off + 1;
300 			    bn < MNINDIR(ump) && *runp < maxrun &&
301 			    is_sequential(ump,
302 			    ((ufs2_daddr_t *)bp->b_data)[bn - 1],
303 			    ((ufs2_daddr_t *)bp->b_data)[bn]);
304 			    ++bn, ++*runp);
305 			bn = ap->in_off;
306 			if (runb && bn) {
307 				for (--bn; bn >= 0 && *runb < maxrun &&
308 				    is_sequential(ump,
309 				    ((ufs2_daddr_t *)bp->b_data)[bn],
310 				    ((ufs2_daddr_t *)bp->b_data)[bn + 1]);
311 				    --bn, ++*runb);
312 			}
313 		}
314 	}
315 	if (bp)
316 		bqrelse(bp);
317 
318 	/*
319 	 * Since this is FFS independent code, we are out of scope for the
320 	 * definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
321 	 * will fall in the range 1..um_seqinc, so we use that test and
322 	 * return a request for a zeroed out buffer if attempts are made
323 	 * to read a BLK_NOCOPY or BLK_SNAP block.
324 	 */
325 	if ((ip->i_flags & SF_SNAPSHOT) && daddr > 0 && daddr < ump->um_seqinc){
326 		*bnp = -1;
327 		return (0);
328 	}
329 	*bnp = blkptrtodb(ump, daddr);
330 	if (*bnp == 0) {
331 		if (ip->i_flags & SF_SNAPSHOT)
332 			*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
333 		else
334 			*bnp = -1;
335 	}
336 	return (0);
337 }
338 
339 static ufs_lbn_t
340 lbn_count(ump, level)
341 	struct ufsmount *ump;
342 	int level;
343 {
344 	ufs_lbn_t blockcnt;
345 
346 	for (blockcnt = 1; level > 0; level--)
347 		blockcnt *= MNINDIR(ump);
348 	return (blockcnt);
349 }
350 
351 int
352 ufs_bmap_seekdata(vp, offp)
353 	struct vnode *vp;
354 	off_t *offp;
355 {
356 	struct buf *bp;
357 	struct indir a[UFS_NIADDR + 1], *ap;
358 	struct inode *ip;
359 	struct mount *mp;
360 	struct ufsmount *ump;
361 	ufs2_daddr_t bn, daddr, nextbn;
362 	uint64_t bsize;
363 	off_t numblks;
364 	int error, num, num1, off;
365 
366 	bp = NULL;
367 	error = 0;
368 	ip = VTOI(vp);
369 	mp = vp->v_mount;
370 	ump = VFSTOUFS(mp);
371 
372 	if (vp->v_type != VREG || (ip->i_flags & SF_SNAPSHOT) != 0)
373 		return (EINVAL);
374 	if (*offp < 0 || *offp >= ip->i_size)
375 		return (ENXIO);
376 
377 	bsize = mp->mnt_stat.f_iosize;
378 	for (bn = *offp / bsize, numblks = howmany(ip->i_size, bsize);
379 	    bn < numblks; bn = nextbn) {
380 		if (bn < UFS_NDADDR) {
381 			daddr = DIP(ip, i_db[bn]);
382 			if (daddr != 0)
383 				break;
384 			nextbn = bn + 1;
385 			continue;
386 		}
387 
388 		ap = a;
389 		error = ufs_getlbns(vp, bn, ap, &num);
390 		if (error != 0)
391 			break;
392 		MPASS(num >= 2);
393 		daddr = DIP(ip, i_ib[ap->in_off]);
394 		ap++, num--;
395 		for (nextbn = UFS_NDADDR, num1 = num - 1; num1 > 0; num1--)
396 			nextbn += lbn_count(ump, num1);
397 		if (daddr == 0) {
398 			nextbn += lbn_count(ump, num);
399 			continue;
400 		}
401 
402 		for (; daddr != 0 && num > 0; ap++, num--) {
403 			if (bp != NULL)
404 				bqrelse(bp);
405 			error = readindir(vp, ap->in_lbn, daddr, &bp);
406 			if (error != 0)
407 				return (error);
408 
409 			/*
410 			 * Scan the indirect block until we find a non-zero
411 			 * pointer.
412 			 */
413 			off = ap->in_off;
414 			do {
415 				daddr = I_IS_UFS1(ip) ?
416 				    ((ufs1_daddr_t *)bp->b_data)[off] :
417 				    ((ufs2_daddr_t *)bp->b_data)[off];
418 			} while (daddr == 0 && ++off < MNINDIR(ump));
419 			nextbn += off * lbn_count(ump, num - 1);
420 
421 			/*
422 			 * We need to recompute the LBNs of indirect
423 			 * blocks, so restart with the updated block offset.
424 			 */
425 			if (off != ap->in_off)
426 				break;
427 		}
428 		if (num == 0) {
429 			/*
430 			 * We found a data block.
431 			 */
432 			bn = nextbn;
433 			break;
434 		}
435 	}
436 	if (bp != NULL)
437 		bqrelse(bp);
438 	if (bn >= numblks)
439 		error = ENXIO;
440 	if (error == 0 && *offp < bn * bsize)
441 		*offp = bn * bsize;
442 	return (error);
443 }
444 
445 /*
446  * Create an array of logical block number/offset pairs which represent the
447  * path of indirect blocks required to access a data block.  The first "pair"
448  * contains the logical block number of the appropriate single, double or
449  * triple indirect block and the offset into the inode indirect block array.
450  * Note, the logical block number of the inode single/double/triple indirect
451  * block appears twice in the array, once with the offset into the i_ib and
452  * once with the offset into the page itself.
453  */
454 int
455 ufs_getlbns(vp, bn, ap, nump)
456 	struct vnode *vp;
457 	ufs2_daddr_t bn;
458 	struct indir *ap;
459 	int *nump;
460 {
461 	ufs2_daddr_t blockcnt;
462 	ufs_lbn_t metalbn, realbn;
463 	struct ufsmount *ump;
464 	int i, numlevels, off;
465 
466 	ump = VFSTOUFS(vp->v_mount);
467 	if (nump)
468 		*nump = 0;
469 	numlevels = 0;
470 	realbn = bn;
471 	if (bn < 0)
472 		bn = -bn;
473 
474 	/* The first UFS_NDADDR blocks are direct blocks. */
475 	if (bn < UFS_NDADDR)
476 		return (0);
477 
478 	/*
479 	 * Determine the number of levels of indirection.  After this loop
480 	 * is done, blockcnt indicates the number of data blocks possible
481 	 * at the previous level of indirection, and UFS_NIADDR - i is the
482 	 * number of levels of indirection needed to locate the requested block.
483 	 */
484 	for (blockcnt = 1, i = UFS_NIADDR, bn -= UFS_NDADDR; ;
485 	    i--, bn -= blockcnt) {
486 		if (i == 0)
487 			return (EFBIG);
488 		blockcnt *= MNINDIR(ump);
489 		if (bn < blockcnt)
490 			break;
491 	}
492 
493 	/* Calculate the address of the first meta-block. */
494 	if (realbn >= 0)
495 		metalbn = -(realbn - bn + UFS_NIADDR - i);
496 	else
497 		metalbn = -(-realbn - bn + UFS_NIADDR - i);
498 
499 	/*
500 	 * At each iteration, off is the offset into the bap array which is
501 	 * an array of disk addresses at the current level of indirection.
502 	 * The logical block number and the offset in that block are stored
503 	 * into the argument array.
504 	 */
505 	ap->in_lbn = metalbn;
506 	ap->in_off = off = UFS_NIADDR - i;
507 	ap++;
508 	for (++numlevels; i <= UFS_NIADDR; i++) {
509 		/* If searching for a meta-data block, quit when found. */
510 		if (metalbn == realbn)
511 			break;
512 
513 		blockcnt /= MNINDIR(ump);
514 		off = (bn / blockcnt) % MNINDIR(ump);
515 
516 		++numlevels;
517 		ap->in_lbn = metalbn;
518 		ap->in_off = off;
519 		++ap;
520 
521 		metalbn -= -1 + off * blockcnt;
522 	}
523 	if (nump)
524 		*nump = numlevels;
525 	return (0);
526 }
527