xref: /freebsd/sys/vm/swap_pager.c (revision 1f474190)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119 
120 #include <geom/geom.h>
121 
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define	MAX_PAGEOUT_CLUSTER	32
128 #endif
129 
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
132 #endif
133 
134 #define	SWAP_META_PAGES		PCTRIE_COUNT
135 
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143 	vm_pindex_t	p;
144 	daddr_t		d[SWAP_META_PAGES];
145 };
146 
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
154 
155 static __exclusive_cache_line u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161 
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A",
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A",
167     "Total amount of available swap storage.");
168 
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179 
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184 
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189 
190 /* bits from overcommit */
191 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
192 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
193 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
194 
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198 	uint64_t newval;
199 	u_long value = *(u_long *)arg1;
200 
201 	newval = ((uint64_t)value) << PAGE_SHIFT;
202 	return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204 
205 static bool
206 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
207 {
208 	struct uidinfo *uip;
209 	u_long prev;
210 
211 	uip = cred->cr_ruidinfo;
212 
213 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
214 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
216 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
217 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
218 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
219 		return (false);
220 	}
221 	return (true);
222 }
223 
224 static void
225 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
226 {
227 	struct uidinfo *uip;
228 #ifdef INVARIANTS
229 	u_long prev;
230 #endif
231 
232 	uip = cred->cr_ruidinfo;
233 
234 #ifdef INVARIANTS
235 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
236 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
237 #else
238 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241 
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245 	struct uidinfo *uip;
246 
247 	uip = cred->cr_ruidinfo;
248 	atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250 
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254 
255 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257 
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261 	u_long r, s, prev, pincr;
262 #ifdef RACCT
263 	int error;
264 #endif
265 	int oc;
266 	static int curfail;
267 	static struct timeval lastfail;
268 
269 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
270 	    (uintmax_t)incr));
271 
272 #ifdef RACCT
273 	if (RACCT_ENABLED()) {
274 		PROC_LOCK(curproc);
275 		error = racct_add(curproc, RACCT_SWAP, incr);
276 		PROC_UNLOCK(curproc);
277 		if (error != 0)
278 			return (false);
279 	}
280 #endif
281 
282 	pincr = atop(incr);
283 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
284 	r = prev + pincr;
285 	s = swap_total;
286 	oc = atomic_load_int(&overcommit);
287 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289 		    vm_wire_count();
290 	}
291 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
295 		goto out_error;
296 	}
297 
298 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
299 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
301 		goto out_error;
302 	}
303 
304 	return (true);
305 
306 out_error:
307 	if (ppsratecheck(&lastfail, &curfail, 1)) {
308 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
309 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
310 	}
311 #ifdef RACCT
312 	if (RACCT_ENABLED()) {
313 		PROC_LOCK(curproc);
314 		racct_sub(curproc, RACCT_SWAP, incr);
315 		PROC_UNLOCK(curproc);
316 	}
317 #endif
318 
319 	return (false);
320 }
321 
322 void
323 swap_reserve_force(vm_ooffset_t incr)
324 {
325 	u_long pincr;
326 
327 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
328 	    (uintmax_t)incr));
329 
330 #ifdef RACCT
331 	if (RACCT_ENABLED()) {
332 		PROC_LOCK(curproc);
333 		racct_add_force(curproc, RACCT_SWAP, incr);
334 		PROC_UNLOCK(curproc);
335 	}
336 #endif
337 	pincr = atop(incr);
338 	atomic_add_long(&swap_reserved, pincr);
339 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
340 }
341 
342 void
343 swap_release(vm_ooffset_t decr)
344 {
345 	struct ucred *cred;
346 
347 	PROC_LOCK(curproc);
348 	cred = curproc->p_ucred;
349 	swap_release_by_cred(decr, cred);
350 	PROC_UNLOCK(curproc);
351 }
352 
353 void
354 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
355 {
356 	u_long pdecr;
357 #ifdef INVARIANTS
358 	u_long prev;
359 #endif
360 
361 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
362 	    (uintmax_t)decr));
363 
364 	pdecr = atop(decr);
365 #ifdef INVARIANTS
366 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
367 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
368 #else
369 	atomic_subtract_long(&swap_reserved, pdecr);
370 #endif
371 
372 	swap_release_by_cred_rlimit(pdecr, cred);
373 #ifdef RACCT
374 	if (racct_enable)
375 		racct_sub_cred(cred, RACCT_SWAP, decr);
376 #endif
377 }
378 
379 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
380 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
381 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
382 static int nsw_wcount_async;	/* limit async write buffers */
383 static int nsw_wcount_async_max;/* assigned maximum			*/
384 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
385 
386 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
387 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
388     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
389     "Maximum running async swap ops");
390 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
391 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
392     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
393     "Swap Fragmentation Info");
394 
395 static struct sx sw_alloc_sx;
396 
397 /*
398  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
399  * of searching a named list by hashing it just a little.
400  */
401 
402 #define NOBJLISTS		8
403 
404 #define NOBJLIST(handle)	\
405 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
406 
407 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
408 static uma_zone_t swwbuf_zone;
409 static uma_zone_t swrbuf_zone;
410 static uma_zone_t swblk_zone;
411 static uma_zone_t swpctrie_zone;
412 
413 /*
414  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
415  * calls hooked from other parts of the VM system and do not appear here.
416  * (see vm/swap_pager.h).
417  */
418 static vm_object_t
419 		swap_pager_alloc(void *handle, vm_ooffset_t size,
420 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
421 static void	swap_pager_dealloc(vm_object_t object);
422 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
423     int *);
424 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
425     int *, pgo_getpages_iodone_t, void *);
426 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
427 static boolean_t
428 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
429 static void	swap_pager_init(void);
430 static void	swap_pager_unswapped(vm_page_t);
431 static void	swap_pager_swapoff(struct swdevt *sp);
432 static void	swap_pager_update_writecount(vm_object_t object,
433     vm_offset_t start, vm_offset_t end);
434 static void	swap_pager_release_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 
437 struct pagerops swappagerops = {
438 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
439 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
440 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
441 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
442 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
443 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
444 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
445 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
446 	.pgo_update_writecount = swap_pager_update_writecount,
447 	.pgo_release_writecount = swap_pager_release_writecount,
448 };
449 
450 /*
451  * swap_*() routines are externally accessible.  swp_*() routines are
452  * internal.
453  */
454 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
455 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
456 
457 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
458     "Maximum size of a swap block in pages");
459 
460 static void	swp_sizecheck(void);
461 static void	swp_pager_async_iodone(struct buf *bp);
462 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
463 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
464 static int	swapongeom(struct vnode *);
465 static int	swaponvp(struct thread *, struct vnode *, u_long);
466 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
467 
468 /*
469  * Swap bitmap functions
470  */
471 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
472 static daddr_t	swp_pager_getswapspace(int *npages);
473 
474 /*
475  * Metadata functions
476  */
477 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
478 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
479 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
480     vm_pindex_t pindex, vm_pindex_t count);
481 static void swp_pager_meta_free_all(vm_object_t);
482 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
483 
484 static void
485 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
486 {
487 
488 	*start = SWAPBLK_NONE;
489 	*num = 0;
490 }
491 
492 static void
493 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
494 {
495 
496 	if (*start + *num == addr) {
497 		(*num)++;
498 	} else {
499 		swp_pager_freeswapspace(*start, *num);
500 		*start = addr;
501 		*num = 1;
502 	}
503 }
504 
505 static void *
506 swblk_trie_alloc(struct pctrie *ptree)
507 {
508 
509 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
510 	    M_USE_RESERVE : 0)));
511 }
512 
513 static void
514 swblk_trie_free(struct pctrie *ptree, void *node)
515 {
516 
517 	uma_zfree(swpctrie_zone, node);
518 }
519 
520 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
521 
522 /*
523  * SWP_SIZECHECK() -	update swap_pager_full indication
524  *
525  *	update the swap_pager_almost_full indication and warn when we are
526  *	about to run out of swap space, using lowat/hiwat hysteresis.
527  *
528  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
529  *
530  *	No restrictions on call
531  *	This routine may not block.
532  */
533 static void
534 swp_sizecheck(void)
535 {
536 
537 	if (swap_pager_avail < nswap_lowat) {
538 		if (swap_pager_almost_full == 0) {
539 			printf("swap_pager: out of swap space\n");
540 			swap_pager_almost_full = 1;
541 		}
542 	} else {
543 		swap_pager_full = 0;
544 		if (swap_pager_avail > nswap_hiwat)
545 			swap_pager_almost_full = 0;
546 	}
547 }
548 
549 /*
550  * SWAP_PAGER_INIT() -	initialize the swap pager!
551  *
552  *	Expected to be started from system init.  NOTE:  This code is run
553  *	before much else so be careful what you depend on.  Most of the VM
554  *	system has yet to be initialized at this point.
555  */
556 static void
557 swap_pager_init(void)
558 {
559 	/*
560 	 * Initialize object lists
561 	 */
562 	int i;
563 
564 	for (i = 0; i < NOBJLISTS; ++i)
565 		TAILQ_INIT(&swap_pager_object_list[i]);
566 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
567 	sx_init(&sw_alloc_sx, "swspsx");
568 	sx_init(&swdev_syscall_lock, "swsysc");
569 }
570 
571 /*
572  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
573  *
574  *	Expected to be started from pageout process once, prior to entering
575  *	its main loop.
576  */
577 void
578 swap_pager_swap_init(void)
579 {
580 	unsigned long n, n2;
581 
582 	/*
583 	 * Number of in-transit swap bp operations.  Don't
584 	 * exhaust the pbufs completely.  Make sure we
585 	 * initialize workable values (0 will work for hysteresis
586 	 * but it isn't very efficient).
587 	 *
588 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
589 	 * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
590 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
591 	 * constrained by the swap device interleave stripe size.
592 	 *
593 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
594 	 * designed to prevent other I/O from having high latencies due to
595 	 * our pageout I/O.  The value 4 works well for one or two active swap
596 	 * devices but is probably a little low if you have more.  Even so,
597 	 * a higher value would probably generate only a limited improvement
598 	 * with three or four active swap devices since the system does not
599 	 * typically have to pageout at extreme bandwidths.   We will want
600 	 * at least 2 per swap devices, and 4 is a pretty good value if you
601 	 * have one NFS swap device due to the command/ack latency over NFS.
602 	 * So it all works out pretty well.
603 	 */
604 	nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
605 
606 	nsw_wcount_async = 4;
607 	nsw_wcount_async_max = nsw_wcount_async;
608 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
609 
610 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
611 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
612 
613 	/*
614 	 * Initialize our zone, taking the user's requested size or
615 	 * estimating the number we need based on the number of pages
616 	 * in the system.
617 	 */
618 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
619 	    vm_cnt.v_page_count / 2;
620 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
621 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
622 	if (swpctrie_zone == NULL)
623 		panic("failed to create swap pctrie zone.");
624 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
625 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
626 	if (swblk_zone == NULL)
627 		panic("failed to create swap blk zone.");
628 	n2 = n;
629 	do {
630 		if (uma_zone_reserve_kva(swblk_zone, n))
631 			break;
632 		/*
633 		 * if the allocation failed, try a zone two thirds the
634 		 * size of the previous attempt.
635 		 */
636 		n -= ((n + 2) / 3);
637 	} while (n > 0);
638 
639 	/*
640 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
641 	 * requested size.  Account for the difference when
642 	 * calculating swap_maxpages.
643 	 */
644 	n = uma_zone_get_max(swblk_zone);
645 
646 	if (n < n2)
647 		printf("Swap blk zone entries changed from %lu to %lu.\n",
648 		    n2, n);
649 	/* absolute maximum we can handle assuming 100% efficiency */
650 	swap_maxpages = n * SWAP_META_PAGES;
651 	swzone = n * sizeof(struct swblk);
652 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
653 		printf("Cannot reserve swap pctrie zone, "
654 		    "reduce kern.maxswzone.\n");
655 }
656 
657 static vm_object_t
658 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
659     vm_ooffset_t offset)
660 {
661 	vm_object_t object;
662 
663 	if (cred != NULL) {
664 		if (!swap_reserve_by_cred(size, cred))
665 			return (NULL);
666 		crhold(cred);
667 	}
668 
669 	/*
670 	 * The un_pager.swp.swp_blks trie is initialized by
671 	 * vm_object_allocate() to ensure the correct order of
672 	 * visibility to other threads.
673 	 */
674 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
675 	    PAGE_MASK + size));
676 
677 	object->un_pager.swp.writemappings = 0;
678 	object->handle = handle;
679 	if (cred != NULL) {
680 		object->cred = cred;
681 		object->charge = size;
682 	}
683 	return (object);
684 }
685 
686 /*
687  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
688  *			its metadata structures.
689  *
690  *	This routine is called from the mmap and fork code to create a new
691  *	OBJT_SWAP object.
692  *
693  *	This routine must ensure that no live duplicate is created for
694  *	the named object request, which is protected against by
695  *	holding the sw_alloc_sx lock in case handle != NULL.
696  */
697 static vm_object_t
698 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
699     vm_ooffset_t offset, struct ucred *cred)
700 {
701 	vm_object_t object;
702 
703 	if (handle != NULL) {
704 		/*
705 		 * Reference existing named region or allocate new one.  There
706 		 * should not be a race here against swp_pager_meta_build()
707 		 * as called from vm_page_remove() in regards to the lookup
708 		 * of the handle.
709 		 */
710 		sx_xlock(&sw_alloc_sx);
711 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
712 		if (object == NULL) {
713 			object = swap_pager_alloc_init(handle, cred, size,
714 			    offset);
715 			if (object != NULL) {
716 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
717 				    object, pager_object_list);
718 			}
719 		}
720 		sx_xunlock(&sw_alloc_sx);
721 	} else {
722 		object = swap_pager_alloc_init(handle, cred, size, offset);
723 	}
724 	return (object);
725 }
726 
727 /*
728  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
729  *
730  *	The swap backing for the object is destroyed.  The code is
731  *	designed such that we can reinstantiate it later, but this
732  *	routine is typically called only when the entire object is
733  *	about to be destroyed.
734  *
735  *	The object must be locked.
736  */
737 static void
738 swap_pager_dealloc(vm_object_t object)
739 {
740 
741 	VM_OBJECT_ASSERT_WLOCKED(object);
742 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
743 
744 	/*
745 	 * Remove from list right away so lookups will fail if we block for
746 	 * pageout completion.
747 	 */
748 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
749 		VM_OBJECT_WUNLOCK(object);
750 		sx_xlock(&sw_alloc_sx);
751 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
752 		    pager_object_list);
753 		sx_xunlock(&sw_alloc_sx);
754 		VM_OBJECT_WLOCK(object);
755 	}
756 
757 	vm_object_pip_wait(object, "swpdea");
758 
759 	/*
760 	 * Free all remaining metadata.  We only bother to free it from
761 	 * the swap meta data.  We do not attempt to free swapblk's still
762 	 * associated with vm_page_t's for this object.  We do not care
763 	 * if paging is still in progress on some objects.
764 	 */
765 	swp_pager_meta_free_all(object);
766 	object->handle = NULL;
767 	object->type = OBJT_DEAD;
768 }
769 
770 /************************************************************************
771  *			SWAP PAGER BITMAP ROUTINES			*
772  ************************************************************************/
773 
774 /*
775  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
776  *
777  *	Allocate swap for up to the requested number of pages.  The
778  *	starting swap block number (a page index) is returned or
779  *	SWAPBLK_NONE if the allocation failed.
780  *
781  *	Also has the side effect of advising that somebody made a mistake
782  *	when they configured swap and didn't configure enough.
783  *
784  *	This routine may not sleep.
785  *
786  *	We allocate in round-robin fashion from the configured devices.
787  */
788 static daddr_t
789 swp_pager_getswapspace(int *io_npages)
790 {
791 	daddr_t blk;
792 	struct swdevt *sp;
793 	int mpages, npages;
794 
795 	KASSERT(*io_npages >= 1,
796 	    ("%s: npages not positive", __func__));
797 	blk = SWAPBLK_NONE;
798 	mpages = *io_npages;
799 	npages = imin(BLIST_MAX_ALLOC, mpages);
800 	mtx_lock(&sw_dev_mtx);
801 	sp = swdevhd;
802 	while (!TAILQ_EMPTY(&swtailq)) {
803 		if (sp == NULL)
804 			sp = TAILQ_FIRST(&swtailq);
805 		if ((sp->sw_flags & SW_CLOSING) == 0)
806 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
807 		if (blk != SWAPBLK_NONE)
808 			break;
809 		sp = TAILQ_NEXT(sp, sw_list);
810 		if (swdevhd == sp) {
811 			if (npages == 1)
812 				break;
813 			mpages = npages - 1;
814 			npages >>= 1;
815 		}
816 	}
817 	if (blk != SWAPBLK_NONE) {
818 		*io_npages = npages;
819 		blk += sp->sw_first;
820 		sp->sw_used += npages;
821 		swap_pager_avail -= npages;
822 		swp_sizecheck();
823 		swdevhd = TAILQ_NEXT(sp, sw_list);
824 	} else {
825 		if (swap_pager_full != 2) {
826 			printf("swp_pager_getswapspace(%d): failed\n",
827 			    *io_npages);
828 			swap_pager_full = 2;
829 			swap_pager_almost_full = 1;
830 		}
831 		swdevhd = NULL;
832 	}
833 	mtx_unlock(&sw_dev_mtx);
834 	return (blk);
835 }
836 
837 static bool
838 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
839 {
840 
841 	return (blk >= sp->sw_first && blk < sp->sw_end);
842 }
843 
844 static void
845 swp_pager_strategy(struct buf *bp)
846 {
847 	struct swdevt *sp;
848 
849 	mtx_lock(&sw_dev_mtx);
850 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
851 		if (swp_pager_isondev(bp->b_blkno, sp)) {
852 			mtx_unlock(&sw_dev_mtx);
853 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
854 			    unmapped_buf_allowed) {
855 				bp->b_data = unmapped_buf;
856 				bp->b_offset = 0;
857 			} else {
858 				pmap_qenter((vm_offset_t)bp->b_data,
859 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
860 			}
861 			sp->sw_strategy(bp, sp);
862 			return;
863 		}
864 	}
865 	panic("Swapdev not found");
866 }
867 
868 /*
869  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
870  *
871  *	This routine returns the specified swap blocks back to the bitmap.
872  *
873  *	This routine may not sleep.
874  */
875 static void
876 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
877 {
878 	struct swdevt *sp;
879 
880 	if (npages == 0)
881 		return;
882 	mtx_lock(&sw_dev_mtx);
883 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
884 		if (swp_pager_isondev(blk, sp)) {
885 			sp->sw_used -= npages;
886 			/*
887 			 * If we are attempting to stop swapping on
888 			 * this device, we don't want to mark any
889 			 * blocks free lest they be reused.
890 			 */
891 			if ((sp->sw_flags & SW_CLOSING) == 0) {
892 				blist_free(sp->sw_blist, blk - sp->sw_first,
893 				    npages);
894 				swap_pager_avail += npages;
895 				swp_sizecheck();
896 			}
897 			mtx_unlock(&sw_dev_mtx);
898 			return;
899 		}
900 	}
901 	panic("Swapdev not found");
902 }
903 
904 /*
905  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
906  */
907 static int
908 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
909 {
910 	struct sbuf sbuf;
911 	struct swdevt *sp;
912 	const char *devname;
913 	int error;
914 
915 	error = sysctl_wire_old_buffer(req, 0);
916 	if (error != 0)
917 		return (error);
918 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
919 	mtx_lock(&sw_dev_mtx);
920 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
921 		if (vn_isdisk(sp->sw_vp))
922 			devname = devtoname(sp->sw_vp->v_rdev);
923 		else
924 			devname = "[file]";
925 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
926 		blist_stats(sp->sw_blist, &sbuf);
927 	}
928 	mtx_unlock(&sw_dev_mtx);
929 	error = sbuf_finish(&sbuf);
930 	sbuf_delete(&sbuf);
931 	return (error);
932 }
933 
934 /*
935  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
936  *				range within an object.
937  *
938  *	This is a globally accessible routine.
939  *
940  *	This routine removes swapblk assignments from swap metadata.
941  *
942  *	The external callers of this routine typically have already destroyed
943  *	or renamed vm_page_t's associated with this range in the object so
944  *	we should be ok.
945  *
946  *	The object must be locked.
947  */
948 void
949 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
950 {
951 
952 	swp_pager_meta_free(object, start, size);
953 }
954 
955 /*
956  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
957  *
958  *	Assigns swap blocks to the specified range within the object.  The
959  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
960  *
961  *	Returns 0 on success, -1 on failure.
962  */
963 int
964 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
965 {
966 	daddr_t addr, blk, n_free, s_free;
967 	int i, j, n;
968 
969 	swp_pager_init_freerange(&s_free, &n_free);
970 	VM_OBJECT_WLOCK(object);
971 	for (i = 0; i < size; i += n) {
972 		n = size - i;
973 		blk = swp_pager_getswapspace(&n);
974 		if (blk == SWAPBLK_NONE) {
975 			swp_pager_meta_free(object, start, i);
976 			VM_OBJECT_WUNLOCK(object);
977 			return (-1);
978 		}
979 		for (j = 0; j < n; ++j) {
980 			addr = swp_pager_meta_build(object,
981 			    start + i + j, blk + j);
982 			if (addr != SWAPBLK_NONE)
983 				swp_pager_update_freerange(&s_free, &n_free,
984 				    addr);
985 		}
986 	}
987 	swp_pager_freeswapspace(s_free, n_free);
988 	VM_OBJECT_WUNLOCK(object);
989 	return (0);
990 }
991 
992 static bool
993 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
994     vm_pindex_t pindex, daddr_t addr)
995 {
996 	daddr_t dstaddr;
997 
998 	KASSERT(srcobject->type == OBJT_SWAP,
999 	    ("%s: Srcobject not swappable", __func__));
1000 	if (dstobject->type == OBJT_SWAP &&
1001 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1002 		/* Caller should destroy the source block. */
1003 		return (false);
1004 	}
1005 
1006 	/*
1007 	 * Destination has no swapblk and is not resident, transfer source.
1008 	 * swp_pager_meta_build() can sleep.
1009 	 */
1010 	VM_OBJECT_WUNLOCK(srcobject);
1011 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1012 	KASSERT(dstaddr == SWAPBLK_NONE,
1013 	    ("Unexpected destination swapblk"));
1014 	VM_OBJECT_WLOCK(srcobject);
1015 
1016 	return (true);
1017 }
1018 
1019 /*
1020  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1021  *			and destroy the source.
1022  *
1023  *	Copy any valid swapblks from the source to the destination.  In
1024  *	cases where both the source and destination have a valid swapblk,
1025  *	we keep the destination's.
1026  *
1027  *	This routine is allowed to sleep.  It may sleep allocating metadata
1028  *	indirectly through swp_pager_meta_build().
1029  *
1030  *	The source object contains no vm_page_t's (which is just as well)
1031  *
1032  *	The source object is of type OBJT_SWAP.
1033  *
1034  *	The source and destination objects must be locked.
1035  *	Both object locks may temporarily be released.
1036  */
1037 void
1038 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1039     vm_pindex_t offset, int destroysource)
1040 {
1041 
1042 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1043 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1044 
1045 	/*
1046 	 * If destroysource is set, we remove the source object from the
1047 	 * swap_pager internal queue now.
1048 	 */
1049 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1050 	    srcobject->handle != NULL) {
1051 		VM_OBJECT_WUNLOCK(srcobject);
1052 		VM_OBJECT_WUNLOCK(dstobject);
1053 		sx_xlock(&sw_alloc_sx);
1054 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1055 		    pager_object_list);
1056 		sx_xunlock(&sw_alloc_sx);
1057 		VM_OBJECT_WLOCK(dstobject);
1058 		VM_OBJECT_WLOCK(srcobject);
1059 	}
1060 
1061 	/*
1062 	 * Transfer source to destination.
1063 	 */
1064 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1065 
1066 	/*
1067 	 * Free left over swap blocks in source.
1068 	 *
1069 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1070 	 * double-remove the object from the swap queues.
1071 	 */
1072 	if (destroysource) {
1073 		swp_pager_meta_free_all(srcobject);
1074 		/*
1075 		 * Reverting the type is not necessary, the caller is going
1076 		 * to destroy srcobject directly, but I'm doing it here
1077 		 * for consistency since we've removed the object from its
1078 		 * queues.
1079 		 */
1080 		srcobject->type = OBJT_DEFAULT;
1081 	}
1082 }
1083 
1084 /*
1085  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1086  *				the requested page.
1087  *
1088  *	We determine whether good backing store exists for the requested
1089  *	page and return TRUE if it does, FALSE if it doesn't.
1090  *
1091  *	If TRUE, we also try to determine how much valid, contiguous backing
1092  *	store exists before and after the requested page.
1093  */
1094 static boolean_t
1095 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1096     int *after)
1097 {
1098 	daddr_t blk, blk0;
1099 	int i;
1100 
1101 	VM_OBJECT_ASSERT_LOCKED(object);
1102 	KASSERT(object->type == OBJT_SWAP,
1103 	    ("%s: object not swappable", __func__));
1104 
1105 	/*
1106 	 * do we have good backing store at the requested index ?
1107 	 */
1108 	blk0 = swp_pager_meta_lookup(object, pindex);
1109 	if (blk0 == SWAPBLK_NONE) {
1110 		if (before)
1111 			*before = 0;
1112 		if (after)
1113 			*after = 0;
1114 		return (FALSE);
1115 	}
1116 
1117 	/*
1118 	 * find backwards-looking contiguous good backing store
1119 	 */
1120 	if (before != NULL) {
1121 		for (i = 1; i < SWB_NPAGES; i++) {
1122 			if (i > pindex)
1123 				break;
1124 			blk = swp_pager_meta_lookup(object, pindex - i);
1125 			if (blk != blk0 - i)
1126 				break;
1127 		}
1128 		*before = i - 1;
1129 	}
1130 
1131 	/*
1132 	 * find forward-looking contiguous good backing store
1133 	 */
1134 	if (after != NULL) {
1135 		for (i = 1; i < SWB_NPAGES; i++) {
1136 			blk = swp_pager_meta_lookup(object, pindex + i);
1137 			if (blk != blk0 + i)
1138 				break;
1139 		}
1140 		*after = i - 1;
1141 	}
1142 	return (TRUE);
1143 }
1144 
1145 /*
1146  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1147  *
1148  *	This removes any associated swap backing store, whether valid or
1149  *	not, from the page.
1150  *
1151  *	This routine is typically called when a page is made dirty, at
1152  *	which point any associated swap can be freed.  MADV_FREE also
1153  *	calls us in a special-case situation
1154  *
1155  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1156  *	should make the page dirty before calling this routine.  This routine
1157  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1158  *	depends on it.
1159  *
1160  *	This routine may not sleep.
1161  *
1162  *	The object containing the page may be locked.
1163  */
1164 static void
1165 swap_pager_unswapped(vm_page_t m)
1166 {
1167 	struct swblk *sb;
1168 	vm_object_t obj;
1169 
1170 	/*
1171 	 * Handle enqueing deferred frees first.  If we do not have the
1172 	 * object lock we wait for the page daemon to clear the space.
1173 	 */
1174 	obj = m->object;
1175 	if (!VM_OBJECT_WOWNED(obj)) {
1176 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1177 		/*
1178 		 * The caller is responsible for synchronization but we
1179 		 * will harmlessly handle races.  This is typically provided
1180 		 * by only calling unswapped() when a page transitions from
1181 		 * clean to dirty.
1182 		 */
1183 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1184 		    PGA_SWAP_SPACE) {
1185 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1186 			counter_u64_add(swap_free_deferred, 1);
1187 		}
1188 		return;
1189 	}
1190 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1191 		counter_u64_add(swap_free_completed, 1);
1192 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1193 
1194 	/*
1195 	 * The meta data only exists if the object is OBJT_SWAP
1196 	 * and even then might not be allocated yet.
1197 	 */
1198 	KASSERT(m->object->type == OBJT_SWAP,
1199 	    ("Free object not swappable"));
1200 
1201 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1202 	    rounddown(m->pindex, SWAP_META_PAGES));
1203 	if (sb == NULL)
1204 		return;
1205 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1206 		return;
1207 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1208 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1209 	swp_pager_free_empty_swblk(m->object, sb);
1210 }
1211 
1212 /*
1213  * swap_pager_getpages() - bring pages in from swap
1214  *
1215  *	Attempt to page in the pages in array "ma" of length "count".  The
1216  *	caller may optionally specify that additional pages preceding and
1217  *	succeeding the specified range be paged in.  The number of such pages
1218  *	is returned in the "rbehind" and "rahead" parameters, and they will
1219  *	be in the inactive queue upon return.
1220  *
1221  *	The pages in "ma" must be busied and will remain busied upon return.
1222  */
1223 static int
1224 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1225     int *rbehind, int *rahead)
1226 {
1227 	struct buf *bp;
1228 	vm_page_t bm, mpred, msucc, p;
1229 	vm_pindex_t pindex;
1230 	daddr_t blk;
1231 	int i, maxahead, maxbehind, reqcount;
1232 
1233 	VM_OBJECT_ASSERT_WLOCKED(object);
1234 	reqcount = count;
1235 
1236 	KASSERT(object->type == OBJT_SWAP,
1237 	    ("%s: object not swappable", __func__));
1238 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1239 		VM_OBJECT_WUNLOCK(object);
1240 		return (VM_PAGER_FAIL);
1241 	}
1242 
1243 	KASSERT(reqcount - 1 <= maxahead,
1244 	    ("page count %d extends beyond swap block", reqcount));
1245 
1246 	/*
1247 	 * Do not transfer any pages other than those that are xbusied
1248 	 * when running during a split or collapse operation.  This
1249 	 * prevents clustering from re-creating pages which are being
1250 	 * moved into another object.
1251 	 */
1252 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1253 		maxahead = reqcount - 1;
1254 		maxbehind = 0;
1255 	}
1256 
1257 	/*
1258 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1259 	 */
1260 	if (rahead != NULL) {
1261 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1262 		pindex = ma[reqcount - 1]->pindex;
1263 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1264 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1265 			*rahead = msucc->pindex - pindex - 1;
1266 	}
1267 	if (rbehind != NULL) {
1268 		*rbehind = imin(*rbehind, maxbehind);
1269 		pindex = ma[0]->pindex;
1270 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1271 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1272 			*rbehind = pindex - mpred->pindex - 1;
1273 	}
1274 
1275 	bm = ma[0];
1276 	for (i = 0; i < count; i++)
1277 		ma[i]->oflags |= VPO_SWAPINPROG;
1278 
1279 	/*
1280 	 * Allocate readahead and readbehind pages.
1281 	 */
1282 	if (rbehind != NULL) {
1283 		for (i = 1; i <= *rbehind; i++) {
1284 			p = vm_page_alloc(object, ma[0]->pindex - i,
1285 			    VM_ALLOC_NORMAL);
1286 			if (p == NULL)
1287 				break;
1288 			p->oflags |= VPO_SWAPINPROG;
1289 			bm = p;
1290 		}
1291 		*rbehind = i - 1;
1292 	}
1293 	if (rahead != NULL) {
1294 		for (i = 0; i < *rahead; i++) {
1295 			p = vm_page_alloc(object,
1296 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1297 			if (p == NULL)
1298 				break;
1299 			p->oflags |= VPO_SWAPINPROG;
1300 		}
1301 		*rahead = i;
1302 	}
1303 	if (rbehind != NULL)
1304 		count += *rbehind;
1305 	if (rahead != NULL)
1306 		count += *rahead;
1307 
1308 	vm_object_pip_add(object, count);
1309 
1310 	pindex = bm->pindex;
1311 	blk = swp_pager_meta_lookup(object, pindex);
1312 	KASSERT(blk != SWAPBLK_NONE,
1313 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1314 
1315 	VM_OBJECT_WUNLOCK(object);
1316 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1317 	/* Pages cannot leave the object while busy. */
1318 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1319 		MPASS(p->pindex == bm->pindex + i);
1320 		bp->b_pages[i] = p;
1321 	}
1322 
1323 	bp->b_flags |= B_PAGING;
1324 	bp->b_iocmd = BIO_READ;
1325 	bp->b_iodone = swp_pager_async_iodone;
1326 	bp->b_rcred = crhold(thread0.td_ucred);
1327 	bp->b_wcred = crhold(thread0.td_ucred);
1328 	bp->b_blkno = blk;
1329 	bp->b_bcount = PAGE_SIZE * count;
1330 	bp->b_bufsize = PAGE_SIZE * count;
1331 	bp->b_npages = count;
1332 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1333 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1334 
1335 	VM_CNT_INC(v_swapin);
1336 	VM_CNT_ADD(v_swappgsin, count);
1337 
1338 	/*
1339 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1340 	 * this point because we automatically release it on completion.
1341 	 * Instead, we look at the one page we are interested in which we
1342 	 * still hold a lock on even through the I/O completion.
1343 	 *
1344 	 * The other pages in our ma[] array are also released on completion,
1345 	 * so we cannot assume they are valid anymore either.
1346 	 *
1347 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1348 	 */
1349 	BUF_KERNPROC(bp);
1350 	swp_pager_strategy(bp);
1351 
1352 	/*
1353 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1354 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1355 	 * is set in the metadata for each page in the request.
1356 	 */
1357 	VM_OBJECT_WLOCK(object);
1358 	/* This could be implemented more efficiently with aflags */
1359 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1360 		ma[0]->oflags |= VPO_SWAPSLEEP;
1361 		VM_CNT_INC(v_intrans);
1362 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1363 		    "swread", hz * 20)) {
1364 			printf(
1365 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1366 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1367 		}
1368 	}
1369 	VM_OBJECT_WUNLOCK(object);
1370 
1371 	/*
1372 	 * If we had an unrecoverable read error pages will not be valid.
1373 	 */
1374 	for (i = 0; i < reqcount; i++)
1375 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1376 			return (VM_PAGER_ERROR);
1377 
1378 	return (VM_PAGER_OK);
1379 
1380 	/*
1381 	 * A final note: in a low swap situation, we cannot deallocate swap
1382 	 * and mark a page dirty here because the caller is likely to mark
1383 	 * the page clean when we return, causing the page to possibly revert
1384 	 * to all-zero's later.
1385 	 */
1386 }
1387 
1388 static int
1389 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1390     int *rbehind, int *rahead)
1391 {
1392 
1393 	VM_OBJECT_WLOCK(object);
1394 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1395 }
1396 
1397 /*
1398  * 	swap_pager_getpages_async():
1399  *
1400  *	Right now this is emulation of asynchronous operation on top of
1401  *	swap_pager_getpages().
1402  */
1403 static int
1404 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1405     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1406 {
1407 	int r, error;
1408 
1409 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1410 	switch (r) {
1411 	case VM_PAGER_OK:
1412 		error = 0;
1413 		break;
1414 	case VM_PAGER_ERROR:
1415 		error = EIO;
1416 		break;
1417 	case VM_PAGER_FAIL:
1418 		error = EINVAL;
1419 		break;
1420 	default:
1421 		panic("unhandled swap_pager_getpages() error %d", r);
1422 	}
1423 	(iodone)(arg, ma, count, error);
1424 
1425 	return (r);
1426 }
1427 
1428 /*
1429  *	swap_pager_putpages:
1430  *
1431  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1432  *
1433  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1434  *	are automatically converted to SWAP objects.
1435  *
1436  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1437  *	vm_page reservation system coupled with properly written VFS devices
1438  *	should ensure that no low-memory deadlock occurs.  This is an area
1439  *	which needs work.
1440  *
1441  *	The parent has N vm_object_pip_add() references prior to
1442  *	calling us and will remove references for rtvals[] that are
1443  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1444  *	completion.
1445  *
1446  *	The parent has soft-busy'd the pages it passes us and will unbusy
1447  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1448  *	We need to unbusy the rest on I/O completion.
1449  */
1450 static void
1451 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1452     int flags, int *rtvals)
1453 {
1454 	struct buf *bp;
1455 	daddr_t addr, blk, n_free, s_free;
1456 	vm_page_t mreq;
1457 	int i, j, n;
1458 	bool async;
1459 
1460 	KASSERT(count == 0 || ma[0]->object == object,
1461 	    ("%s: object mismatch %p/%p",
1462 	    __func__, object, ma[0]->object));
1463 
1464 	/*
1465 	 * Step 1
1466 	 *
1467 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1468 	 */
1469 	if (object->type != OBJT_SWAP) {
1470 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1471 		KASSERT(addr == SWAPBLK_NONE,
1472 		    ("unexpected object swap block"));
1473 	}
1474 	VM_OBJECT_WUNLOCK(object);
1475 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1476 	swp_pager_init_freerange(&s_free, &n_free);
1477 
1478 	/*
1479 	 * Step 2
1480 	 *
1481 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1482 	 * The page is left dirty until the pageout operation completes
1483 	 * successfully.
1484 	 */
1485 	for (i = 0; i < count; i += n) {
1486 		/* Maximum I/O size is limited by maximum swap block size. */
1487 		n = min(count - i, nsw_cluster_max);
1488 
1489 		if (async) {
1490 			mtx_lock(&swbuf_mtx);
1491 			while (nsw_wcount_async == 0)
1492 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1493 				    "swbufa", 0);
1494 			nsw_wcount_async--;
1495 			mtx_unlock(&swbuf_mtx);
1496 		}
1497 
1498 		/* Get a block of swap of size up to size n. */
1499 		VM_OBJECT_WLOCK(object);
1500 		blk = swp_pager_getswapspace(&n);
1501 		if (blk == SWAPBLK_NONE) {
1502 			VM_OBJECT_WUNLOCK(object);
1503 			mtx_lock(&swbuf_mtx);
1504 			if (++nsw_wcount_async == 1)
1505 				wakeup(&nsw_wcount_async);
1506 			mtx_unlock(&swbuf_mtx);
1507 			for (j = 0; j < n; ++j)
1508 				rtvals[i + j] = VM_PAGER_FAIL;
1509 			continue;
1510 		}
1511 		for (j = 0; j < n; ++j) {
1512 			mreq = ma[i + j];
1513 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1514 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1515 			    blk + j);
1516 			if (addr != SWAPBLK_NONE)
1517 				swp_pager_update_freerange(&s_free, &n_free,
1518 				    addr);
1519 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1520 			mreq->oflags |= VPO_SWAPINPROG;
1521 		}
1522 		VM_OBJECT_WUNLOCK(object);
1523 
1524 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1525 		if (async)
1526 			bp->b_flags = B_ASYNC;
1527 		bp->b_flags |= B_PAGING;
1528 		bp->b_iocmd = BIO_WRITE;
1529 
1530 		bp->b_rcred = crhold(thread0.td_ucred);
1531 		bp->b_wcred = crhold(thread0.td_ucred);
1532 		bp->b_bcount = PAGE_SIZE * n;
1533 		bp->b_bufsize = PAGE_SIZE * n;
1534 		bp->b_blkno = blk;
1535 		for (j = 0; j < n; j++)
1536 			bp->b_pages[j] = ma[i + j];
1537 		bp->b_npages = n;
1538 
1539 		/*
1540 		 * Must set dirty range for NFS to work.
1541 		 */
1542 		bp->b_dirtyoff = 0;
1543 		bp->b_dirtyend = bp->b_bcount;
1544 
1545 		VM_CNT_INC(v_swapout);
1546 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1547 
1548 		/*
1549 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1550 		 * can call the async completion routine at the end of a
1551 		 * synchronous I/O operation.  Otherwise, our caller would
1552 		 * perform duplicate unbusy and wakeup operations on the page
1553 		 * and object, respectively.
1554 		 */
1555 		for (j = 0; j < n; j++)
1556 			rtvals[i + j] = VM_PAGER_PEND;
1557 
1558 		/*
1559 		 * asynchronous
1560 		 *
1561 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1562 		 */
1563 		if (async) {
1564 			bp->b_iodone = swp_pager_async_iodone;
1565 			BUF_KERNPROC(bp);
1566 			swp_pager_strategy(bp);
1567 			continue;
1568 		}
1569 
1570 		/*
1571 		 * synchronous
1572 		 *
1573 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1574 		 */
1575 		bp->b_iodone = bdone;
1576 		swp_pager_strategy(bp);
1577 
1578 		/*
1579 		 * Wait for the sync I/O to complete.
1580 		 */
1581 		bwait(bp, PVM, "swwrt");
1582 
1583 		/*
1584 		 * Now that we are through with the bp, we can call the
1585 		 * normal async completion, which frees everything up.
1586 		 */
1587 		swp_pager_async_iodone(bp);
1588 	}
1589 	swp_pager_freeswapspace(s_free, n_free);
1590 	VM_OBJECT_WLOCK(object);
1591 }
1592 
1593 /*
1594  *	swp_pager_async_iodone:
1595  *
1596  *	Completion routine for asynchronous reads and writes from/to swap.
1597  *	Also called manually by synchronous code to finish up a bp.
1598  *
1599  *	This routine may not sleep.
1600  */
1601 static void
1602 swp_pager_async_iodone(struct buf *bp)
1603 {
1604 	int i;
1605 	vm_object_t object = NULL;
1606 
1607 	/*
1608 	 * Report error - unless we ran out of memory, in which case
1609 	 * we've already logged it in swapgeom_strategy().
1610 	 */
1611 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1612 		printf(
1613 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1614 			"size %ld, error %d\n",
1615 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1616 		    (long)bp->b_blkno,
1617 		    (long)bp->b_bcount,
1618 		    bp->b_error
1619 		);
1620 	}
1621 
1622 	/*
1623 	 * remove the mapping for kernel virtual
1624 	 */
1625 	if (buf_mapped(bp))
1626 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1627 	else
1628 		bp->b_data = bp->b_kvabase;
1629 
1630 	if (bp->b_npages) {
1631 		object = bp->b_pages[0]->object;
1632 		VM_OBJECT_WLOCK(object);
1633 	}
1634 
1635 	/*
1636 	 * cleanup pages.  If an error occurs writing to swap, we are in
1637 	 * very serious trouble.  If it happens to be a disk error, though,
1638 	 * we may be able to recover by reassigning the swap later on.  So
1639 	 * in this case we remove the m->swapblk assignment for the page
1640 	 * but do not free it in the rlist.  The errornous block(s) are thus
1641 	 * never reallocated as swap.  Redirty the page and continue.
1642 	 */
1643 	for (i = 0; i < bp->b_npages; ++i) {
1644 		vm_page_t m = bp->b_pages[i];
1645 
1646 		m->oflags &= ~VPO_SWAPINPROG;
1647 		if (m->oflags & VPO_SWAPSLEEP) {
1648 			m->oflags &= ~VPO_SWAPSLEEP;
1649 			wakeup(&object->handle);
1650 		}
1651 
1652 		/* We always have space after I/O, successful or not. */
1653 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1654 
1655 		if (bp->b_ioflags & BIO_ERROR) {
1656 			/*
1657 			 * If an error occurs I'd love to throw the swapblk
1658 			 * away without freeing it back to swapspace, so it
1659 			 * can never be used again.  But I can't from an
1660 			 * interrupt.
1661 			 */
1662 			if (bp->b_iocmd == BIO_READ) {
1663 				/*
1664 				 * NOTE: for reads, m->dirty will probably
1665 				 * be overridden by the original caller of
1666 				 * getpages so don't play cute tricks here.
1667 				 */
1668 				vm_page_invalid(m);
1669 			} else {
1670 				/*
1671 				 * If a write error occurs, reactivate page
1672 				 * so it doesn't clog the inactive list,
1673 				 * then finish the I/O.
1674 				 */
1675 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1676 
1677 				/* PQ_UNSWAPPABLE? */
1678 				vm_page_activate(m);
1679 				vm_page_sunbusy(m);
1680 			}
1681 		} else if (bp->b_iocmd == BIO_READ) {
1682 			/*
1683 			 * NOTE: for reads, m->dirty will probably be
1684 			 * overridden by the original caller of getpages so
1685 			 * we cannot set them in order to free the underlying
1686 			 * swap in a low-swap situation.  I don't think we'd
1687 			 * want to do that anyway, but it was an optimization
1688 			 * that existed in the old swapper for a time before
1689 			 * it got ripped out due to precisely this problem.
1690 			 */
1691 			KASSERT(!pmap_page_is_mapped(m),
1692 			    ("swp_pager_async_iodone: page %p is mapped", m));
1693 			KASSERT(m->dirty == 0,
1694 			    ("swp_pager_async_iodone: page %p is dirty", m));
1695 
1696 			vm_page_valid(m);
1697 			if (i < bp->b_pgbefore ||
1698 			    i >= bp->b_npages - bp->b_pgafter)
1699 				vm_page_readahead_finish(m);
1700 		} else {
1701 			/*
1702 			 * For write success, clear the dirty
1703 			 * status, then finish the I/O ( which decrements the
1704 			 * busy count and possibly wakes waiter's up ).
1705 			 * A page is only written to swap after a period of
1706 			 * inactivity.  Therefore, we do not expect it to be
1707 			 * reused.
1708 			 */
1709 			KASSERT(!pmap_page_is_write_mapped(m),
1710 			    ("swp_pager_async_iodone: page %p is not write"
1711 			    " protected", m));
1712 			vm_page_undirty(m);
1713 			vm_page_deactivate_noreuse(m);
1714 			vm_page_sunbusy(m);
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * adjust pip.  NOTE: the original parent may still have its own
1720 	 * pip refs on the object.
1721 	 */
1722 	if (object != NULL) {
1723 		vm_object_pip_wakeupn(object, bp->b_npages);
1724 		VM_OBJECT_WUNLOCK(object);
1725 	}
1726 
1727 	/*
1728 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1729 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1730 	 * trigger a KASSERT in relpbuf().
1731 	 */
1732 	if (bp->b_vp) {
1733 		    bp->b_vp = NULL;
1734 		    bp->b_bufobj = NULL;
1735 	}
1736 	/*
1737 	 * release the physical I/O buffer
1738 	 */
1739 	if (bp->b_flags & B_ASYNC) {
1740 		mtx_lock(&swbuf_mtx);
1741 		if (++nsw_wcount_async == 1)
1742 			wakeup(&nsw_wcount_async);
1743 		mtx_unlock(&swbuf_mtx);
1744 	}
1745 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1746 }
1747 
1748 int
1749 swap_pager_nswapdev(void)
1750 {
1751 
1752 	return (nswapdev);
1753 }
1754 
1755 static void
1756 swp_pager_force_dirty(vm_page_t m)
1757 {
1758 
1759 	vm_page_dirty(m);
1760 	swap_pager_unswapped(m);
1761 	vm_page_launder(m);
1762 }
1763 
1764 /*
1765  *	swap_pager_swapoff_object:
1766  *
1767  *	Page in all of the pages that have been paged out for an object
1768  *	to a swap device.
1769  */
1770 static void
1771 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1772 {
1773 	struct swblk *sb;
1774 	vm_page_t m;
1775 	vm_pindex_t pi;
1776 	daddr_t blk;
1777 	int i, nv, rahead, rv;
1778 
1779 	KASSERT(object->type == OBJT_SWAP,
1780 	    ("%s: Object not swappable", __func__));
1781 
1782 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1783 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1784 		if ((object->flags & OBJ_DEAD) != 0) {
1785 			/*
1786 			 * Make sure that pending writes finish before
1787 			 * returning.
1788 			 */
1789 			vm_object_pip_wait(object, "swpoff");
1790 			swp_pager_meta_free_all(object);
1791 			break;
1792 		}
1793 		for (i = 0; i < SWAP_META_PAGES; i++) {
1794 			/*
1795 			 * Count the number of contiguous valid blocks.
1796 			 */
1797 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1798 				blk = sb->d[i + nv];
1799 				if (!swp_pager_isondev(blk, sp) ||
1800 				    blk == SWAPBLK_NONE)
1801 					break;
1802 			}
1803 			if (nv == 0)
1804 				continue;
1805 
1806 			/*
1807 			 * Look for a page corresponding to the first
1808 			 * valid block and ensure that any pending paging
1809 			 * operations on it are complete.  If the page is valid,
1810 			 * mark it dirty and free the swap block.  Try to batch
1811 			 * this operation since it may cause sp to be freed,
1812 			 * meaning that we must restart the scan.  Avoid busying
1813 			 * valid pages since we may block forever on kernel
1814 			 * stack pages.
1815 			 */
1816 			m = vm_page_lookup(object, sb->p + i);
1817 			if (m == NULL) {
1818 				m = vm_page_alloc(object, sb->p + i,
1819 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1820 				if (m == NULL)
1821 					break;
1822 			} else {
1823 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1824 					m->oflags |= VPO_SWAPSLEEP;
1825 					VM_OBJECT_SLEEP(object, &object->handle,
1826 					    PSWP, "swpoff", 0);
1827 					break;
1828 				}
1829 				if (vm_page_all_valid(m)) {
1830 					do {
1831 						swp_pager_force_dirty(m);
1832 					} while (--nv > 0 &&
1833 					    (m = vm_page_next(m)) != NULL &&
1834 					    vm_page_all_valid(m) &&
1835 					    (m->oflags & VPO_SWAPINPROG) == 0);
1836 					break;
1837 				}
1838 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1839 					break;
1840 			}
1841 
1842 			vm_object_pip_add(object, 1);
1843 			rahead = SWAP_META_PAGES;
1844 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1845 			    &rahead);
1846 			if (rv != VM_PAGER_OK)
1847 				panic("%s: read from swap failed: %d",
1848 				    __func__, rv);
1849 			vm_object_pip_wakeupn(object, 1);
1850 			VM_OBJECT_WLOCK(object);
1851 			vm_page_xunbusy(m);
1852 
1853 			/*
1854 			 * The object lock was dropped so we must restart the
1855 			 * scan of this swap block.  Pages paged in during this
1856 			 * iteration will be marked dirty in a future iteration.
1857 			 */
1858 			break;
1859 		}
1860 		if (i == SWAP_META_PAGES)
1861 			pi = sb->p + SWAP_META_PAGES;
1862 	}
1863 }
1864 
1865 /*
1866  *	swap_pager_swapoff:
1867  *
1868  *	Page in all of the pages that have been paged out to the
1869  *	given device.  The corresponding blocks in the bitmap must be
1870  *	marked as allocated and the device must be flagged SW_CLOSING.
1871  *	There may be no processes swapped out to the device.
1872  *
1873  *	This routine may block.
1874  */
1875 static void
1876 swap_pager_swapoff(struct swdevt *sp)
1877 {
1878 	vm_object_t object;
1879 	int retries;
1880 
1881 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1882 
1883 	retries = 0;
1884 full_rescan:
1885 	mtx_lock(&vm_object_list_mtx);
1886 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1887 		if (object->type != OBJT_SWAP)
1888 			continue;
1889 		mtx_unlock(&vm_object_list_mtx);
1890 		/* Depends on type-stability. */
1891 		VM_OBJECT_WLOCK(object);
1892 
1893 		/*
1894 		 * Dead objects are eventually terminated on their own.
1895 		 */
1896 		if ((object->flags & OBJ_DEAD) != 0)
1897 			goto next_obj;
1898 
1899 		/*
1900 		 * Sync with fences placed after pctrie
1901 		 * initialization.  We must not access pctrie below
1902 		 * unless we checked that our object is swap and not
1903 		 * dead.
1904 		 */
1905 		atomic_thread_fence_acq();
1906 		if (object->type != OBJT_SWAP)
1907 			goto next_obj;
1908 
1909 		swap_pager_swapoff_object(sp, object);
1910 next_obj:
1911 		VM_OBJECT_WUNLOCK(object);
1912 		mtx_lock(&vm_object_list_mtx);
1913 	}
1914 	mtx_unlock(&vm_object_list_mtx);
1915 
1916 	if (sp->sw_used) {
1917 		/*
1918 		 * Objects may be locked or paging to the device being
1919 		 * removed, so we will miss their pages and need to
1920 		 * make another pass.  We have marked this device as
1921 		 * SW_CLOSING, so the activity should finish soon.
1922 		 */
1923 		retries++;
1924 		if (retries > 100) {
1925 			panic("swapoff: failed to locate %d swap blocks",
1926 			    sp->sw_used);
1927 		}
1928 		pause("swpoff", hz / 20);
1929 		goto full_rescan;
1930 	}
1931 	EVENTHANDLER_INVOKE(swapoff, sp);
1932 }
1933 
1934 /************************************************************************
1935  *				SWAP META DATA 				*
1936  ************************************************************************
1937  *
1938  *	These routines manipulate the swap metadata stored in the
1939  *	OBJT_SWAP object.
1940  *
1941  *	Swap metadata is implemented with a global hash and not directly
1942  *	linked into the object.  Instead the object simply contains
1943  *	appropriate tracking counters.
1944  */
1945 
1946 /*
1947  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1948  */
1949 static bool
1950 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1951 {
1952 	int i;
1953 
1954 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1955 	for (i = start; i < limit; i++) {
1956 		if (sb->d[i] != SWAPBLK_NONE)
1957 			return (false);
1958 	}
1959 	return (true);
1960 }
1961 
1962 /*
1963  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1964  *
1965  *  Nothing is done if the block is still in use.
1966  */
1967 static void
1968 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1969 {
1970 
1971 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1972 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1973 		uma_zfree(swblk_zone, sb);
1974 	}
1975 }
1976 
1977 /*
1978  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1979  *
1980  *	We first convert the object to a swap object if it is a default
1981  *	object.
1982  *
1983  *	The specified swapblk is added to the object's swap metadata.  If
1984  *	the swapblk is not valid, it is freed instead.  Any previously
1985  *	assigned swapblk is returned.
1986  */
1987 static daddr_t
1988 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1989 {
1990 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1991 	struct swblk *sb, *sb1;
1992 	vm_pindex_t modpi, rdpi;
1993 	daddr_t prev_swapblk;
1994 	int error, i;
1995 
1996 	VM_OBJECT_ASSERT_WLOCKED(object);
1997 
1998 	/*
1999 	 * Convert default object to swap object if necessary
2000 	 */
2001 	if (object->type != OBJT_SWAP) {
2002 		pctrie_init(&object->un_pager.swp.swp_blks);
2003 
2004 		/*
2005 		 * Ensure that swap_pager_swapoff()'s iteration over
2006 		 * object_list does not see a garbage pctrie.
2007 		 */
2008 		atomic_thread_fence_rel();
2009 
2010 		object->type = OBJT_SWAP;
2011 		object->un_pager.swp.writemappings = 0;
2012 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2013 		    object->handle == NULL,
2014 		    ("default pager %p with handle %p",
2015 		    object, object->handle));
2016 	}
2017 
2018 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2019 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2020 	if (sb == NULL) {
2021 		if (swapblk == SWAPBLK_NONE)
2022 			return (SWAPBLK_NONE);
2023 		for (;;) {
2024 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2025 			    pageproc ? M_USE_RESERVE : 0));
2026 			if (sb != NULL) {
2027 				sb->p = rdpi;
2028 				for (i = 0; i < SWAP_META_PAGES; i++)
2029 					sb->d[i] = SWAPBLK_NONE;
2030 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2031 				    1, 0))
2032 					printf("swblk zone ok\n");
2033 				break;
2034 			}
2035 			VM_OBJECT_WUNLOCK(object);
2036 			if (uma_zone_exhausted(swblk_zone)) {
2037 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2038 				    0, 1))
2039 					printf("swap blk zone exhausted, "
2040 					    "increase kern.maxswzone\n");
2041 				vm_pageout_oom(VM_OOM_SWAPZ);
2042 				pause("swzonxb", 10);
2043 			} else
2044 				uma_zwait(swblk_zone);
2045 			VM_OBJECT_WLOCK(object);
2046 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2047 			    rdpi);
2048 			if (sb != NULL)
2049 				/*
2050 				 * Somebody swapped out a nearby page,
2051 				 * allocating swblk at the rdpi index,
2052 				 * while we dropped the object lock.
2053 				 */
2054 				goto allocated;
2055 		}
2056 		for (;;) {
2057 			error = SWAP_PCTRIE_INSERT(
2058 			    &object->un_pager.swp.swp_blks, sb);
2059 			if (error == 0) {
2060 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2061 				    1, 0))
2062 					printf("swpctrie zone ok\n");
2063 				break;
2064 			}
2065 			VM_OBJECT_WUNLOCK(object);
2066 			if (uma_zone_exhausted(swpctrie_zone)) {
2067 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2068 				    0, 1))
2069 					printf("swap pctrie zone exhausted, "
2070 					    "increase kern.maxswzone\n");
2071 				vm_pageout_oom(VM_OOM_SWAPZ);
2072 				pause("swzonxp", 10);
2073 			} else
2074 				uma_zwait(swpctrie_zone);
2075 			VM_OBJECT_WLOCK(object);
2076 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2077 			    rdpi);
2078 			if (sb1 != NULL) {
2079 				uma_zfree(swblk_zone, sb);
2080 				sb = sb1;
2081 				goto allocated;
2082 			}
2083 		}
2084 	}
2085 allocated:
2086 	MPASS(sb->p == rdpi);
2087 
2088 	modpi = pindex % SWAP_META_PAGES;
2089 	/* Return prior contents of metadata. */
2090 	prev_swapblk = sb->d[modpi];
2091 	/* Enter block into metadata. */
2092 	sb->d[modpi] = swapblk;
2093 
2094 	/*
2095 	 * Free the swblk if we end up with the empty page run.
2096 	 */
2097 	if (swapblk == SWAPBLK_NONE)
2098 		swp_pager_free_empty_swblk(object, sb);
2099 	return (prev_swapblk);
2100 }
2101 
2102 /*
2103  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2104  * metadata, or transfer it into dstobject.
2105  *
2106  *	This routine will free swap metadata structures as they are cleaned
2107  *	out.
2108  */
2109 static void
2110 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2111     vm_pindex_t pindex, vm_pindex_t count)
2112 {
2113 	struct swblk *sb;
2114 	daddr_t n_free, s_free;
2115 	vm_pindex_t offset, last;
2116 	int i, limit, start;
2117 
2118 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2119 	if (srcobject->type != OBJT_SWAP || count == 0)
2120 		return;
2121 
2122 	swp_pager_init_freerange(&s_free, &n_free);
2123 	offset = pindex;
2124 	last = pindex + count;
2125 	for (;;) {
2126 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2127 		    rounddown(pindex, SWAP_META_PAGES));
2128 		if (sb == NULL || sb->p >= last)
2129 			break;
2130 		start = pindex > sb->p ? pindex - sb->p : 0;
2131 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2132 		    SWAP_META_PAGES;
2133 		for (i = start; i < limit; i++) {
2134 			if (sb->d[i] == SWAPBLK_NONE)
2135 				continue;
2136 			if (dstobject == NULL ||
2137 			    !swp_pager_xfer_source(srcobject, dstobject,
2138 			    sb->p + i - offset, sb->d[i])) {
2139 				swp_pager_update_freerange(&s_free, &n_free,
2140 				    sb->d[i]);
2141 			}
2142 			sb->d[i] = SWAPBLK_NONE;
2143 		}
2144 		pindex = sb->p + SWAP_META_PAGES;
2145 		if (swp_pager_swblk_empty(sb, 0, start) &&
2146 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2147 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2148 			    sb->p);
2149 			uma_zfree(swblk_zone, sb);
2150 		}
2151 	}
2152 	swp_pager_freeswapspace(s_free, n_free);
2153 }
2154 
2155 /*
2156  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2157  *
2158  *	The requested range of blocks is freed, with any associated swap
2159  *	returned to the swap bitmap.
2160  *
2161  *	This routine will free swap metadata structures as they are cleaned
2162  *	out.  This routine does *NOT* operate on swap metadata associated
2163  *	with resident pages.
2164  */
2165 static void
2166 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2167 {
2168 	swp_pager_meta_transfer(object, NULL, pindex, count);
2169 }
2170 
2171 /*
2172  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2173  *
2174  *	This routine locates and destroys all swap metadata associated with
2175  *	an object.
2176  */
2177 static void
2178 swp_pager_meta_free_all(vm_object_t object)
2179 {
2180 	struct swblk *sb;
2181 	daddr_t n_free, s_free;
2182 	vm_pindex_t pindex;
2183 	int i;
2184 
2185 	VM_OBJECT_ASSERT_WLOCKED(object);
2186 	if (object->type != OBJT_SWAP)
2187 		return;
2188 
2189 	swp_pager_init_freerange(&s_free, &n_free);
2190 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2191 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2192 		pindex = sb->p + SWAP_META_PAGES;
2193 		for (i = 0; i < SWAP_META_PAGES; i++) {
2194 			if (sb->d[i] == SWAPBLK_NONE)
2195 				continue;
2196 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2197 		}
2198 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2199 		uma_zfree(swblk_zone, sb);
2200 	}
2201 	swp_pager_freeswapspace(s_free, n_free);
2202 }
2203 
2204 /*
2205  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2206  *
2207  *	This routine is capable of looking up, or removing swapblk
2208  *	assignments in the swap meta data.  It returns the swapblk being
2209  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2210  *
2211  *	When acting on a busy resident page and paging is in progress, we
2212  *	have to wait until paging is complete but otherwise can act on the
2213  *	busy page.
2214  */
2215 static daddr_t
2216 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2217 {
2218 	struct swblk *sb;
2219 
2220 	VM_OBJECT_ASSERT_LOCKED(object);
2221 
2222 	/*
2223 	 * The meta data only exists if the object is OBJT_SWAP
2224 	 * and even then might not be allocated yet.
2225 	 */
2226 	KASSERT(object->type == OBJT_SWAP,
2227 	    ("Lookup object not swappable"));
2228 
2229 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2230 	    rounddown(pindex, SWAP_META_PAGES));
2231 	if (sb == NULL)
2232 		return (SWAPBLK_NONE);
2233 	return (sb->d[pindex % SWAP_META_PAGES]);
2234 }
2235 
2236 /*
2237  * Returns the least page index which is greater than or equal to the
2238  * parameter pindex and for which there is a swap block allocated.
2239  * Returns object's size if the object's type is not swap or if there
2240  * are no allocated swap blocks for the object after the requested
2241  * pindex.
2242  */
2243 vm_pindex_t
2244 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2245 {
2246 	struct swblk *sb;
2247 	int i;
2248 
2249 	VM_OBJECT_ASSERT_LOCKED(object);
2250 	if (object->type != OBJT_SWAP)
2251 		return (object->size);
2252 
2253 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2254 	    rounddown(pindex, SWAP_META_PAGES));
2255 	if (sb == NULL)
2256 		return (object->size);
2257 	if (sb->p < pindex) {
2258 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2259 			if (sb->d[i] != SWAPBLK_NONE)
2260 				return (sb->p + i);
2261 		}
2262 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2263 		    roundup(pindex, SWAP_META_PAGES));
2264 		if (sb == NULL)
2265 			return (object->size);
2266 	}
2267 	for (i = 0; i < SWAP_META_PAGES; i++) {
2268 		if (sb->d[i] != SWAPBLK_NONE)
2269 			return (sb->p + i);
2270 	}
2271 
2272 	/*
2273 	 * We get here if a swblk is present in the trie but it
2274 	 * doesn't map any blocks.
2275 	 */
2276 	MPASS(0);
2277 	return (object->size);
2278 }
2279 
2280 /*
2281  * System call swapon(name) enables swapping on device name,
2282  * which must be in the swdevsw.  Return EBUSY
2283  * if already swapping on this device.
2284  */
2285 #ifndef _SYS_SYSPROTO_H_
2286 struct swapon_args {
2287 	char *name;
2288 };
2289 #endif
2290 
2291 /*
2292  * MPSAFE
2293  */
2294 /* ARGSUSED */
2295 int
2296 sys_swapon(struct thread *td, struct swapon_args *uap)
2297 {
2298 	struct vattr attr;
2299 	struct vnode *vp;
2300 	struct nameidata nd;
2301 	int error;
2302 
2303 	error = priv_check(td, PRIV_SWAPON);
2304 	if (error)
2305 		return (error);
2306 
2307 	sx_xlock(&swdev_syscall_lock);
2308 
2309 	/*
2310 	 * Swap metadata may not fit in the KVM if we have physical
2311 	 * memory of >1GB.
2312 	 */
2313 	if (swblk_zone == NULL) {
2314 		error = ENOMEM;
2315 		goto done;
2316 	}
2317 
2318 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2319 	    uap->name, td);
2320 	error = namei(&nd);
2321 	if (error)
2322 		goto done;
2323 
2324 	NDFREE(&nd, NDF_ONLY_PNBUF);
2325 	vp = nd.ni_vp;
2326 
2327 	if (vn_isdisk_error(vp, &error)) {
2328 		error = swapongeom(vp);
2329 	} else if (vp->v_type == VREG &&
2330 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2331 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2332 		/*
2333 		 * Allow direct swapping to NFS regular files in the same
2334 		 * way that nfs_mountroot() sets up diskless swapping.
2335 		 */
2336 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2337 	}
2338 
2339 	if (error)
2340 		vrele(vp);
2341 done:
2342 	sx_xunlock(&swdev_syscall_lock);
2343 	return (error);
2344 }
2345 
2346 /*
2347  * Check that the total amount of swap currently configured does not
2348  * exceed half the theoretical maximum.  If it does, print a warning
2349  * message.
2350  */
2351 static void
2352 swapon_check_swzone(void)
2353 {
2354 
2355 	/* recommend using no more than half that amount */
2356 	if (swap_total > swap_maxpages / 2) {
2357 		printf("warning: total configured swap (%lu pages) "
2358 		    "exceeds maximum recommended amount (%lu pages).\n",
2359 		    swap_total, swap_maxpages / 2);
2360 		printf("warning: increase kern.maxswzone "
2361 		    "or reduce amount of swap.\n");
2362 	}
2363 }
2364 
2365 static void
2366 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2367     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2368 {
2369 	struct swdevt *sp, *tsp;
2370 	daddr_t dvbase;
2371 
2372 	/*
2373 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2374 	 * First chop nblks off to page-align it, then convert.
2375 	 *
2376 	 * sw->sw_nblks is in page-sized chunks now too.
2377 	 */
2378 	nblks &= ~(ctodb(1) - 1);
2379 	nblks = dbtoc(nblks);
2380 
2381 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2382 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2383 	sp->sw_vp = vp;
2384 	sp->sw_id = id;
2385 	sp->sw_dev = dev;
2386 	sp->sw_nblks = nblks;
2387 	sp->sw_used = 0;
2388 	sp->sw_strategy = strategy;
2389 	sp->sw_close = close;
2390 	sp->sw_flags = flags;
2391 
2392 	/*
2393 	 * Do not free the first blocks in order to avoid overwriting
2394 	 * any bsd label at the front of the partition
2395 	 */
2396 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2397 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2398 
2399 	dvbase = 0;
2400 	mtx_lock(&sw_dev_mtx);
2401 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2402 		if (tsp->sw_end >= dvbase) {
2403 			/*
2404 			 * We put one uncovered page between the devices
2405 			 * in order to definitively prevent any cross-device
2406 			 * I/O requests
2407 			 */
2408 			dvbase = tsp->sw_end + 1;
2409 		}
2410 	}
2411 	sp->sw_first = dvbase;
2412 	sp->sw_end = dvbase + nblks;
2413 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2414 	nswapdev++;
2415 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2416 	swap_total += nblks;
2417 	swapon_check_swzone();
2418 	swp_sizecheck();
2419 	mtx_unlock(&sw_dev_mtx);
2420 	EVENTHANDLER_INVOKE(swapon, sp);
2421 }
2422 
2423 /*
2424  * SYSCALL: swapoff(devname)
2425  *
2426  * Disable swapping on the given device.
2427  *
2428  * XXX: Badly designed system call: it should use a device index
2429  * rather than filename as specification.  We keep sw_vp around
2430  * only to make this work.
2431  */
2432 #ifndef _SYS_SYSPROTO_H_
2433 struct swapoff_args {
2434 	char *name;
2435 };
2436 #endif
2437 
2438 /*
2439  * MPSAFE
2440  */
2441 /* ARGSUSED */
2442 int
2443 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2444 {
2445 	struct vnode *vp;
2446 	struct nameidata nd;
2447 	struct swdevt *sp;
2448 	int error;
2449 
2450 	error = priv_check(td, PRIV_SWAPOFF);
2451 	if (error)
2452 		return (error);
2453 
2454 	sx_xlock(&swdev_syscall_lock);
2455 
2456 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2457 	    td);
2458 	error = namei(&nd);
2459 	if (error)
2460 		goto done;
2461 	NDFREE(&nd, NDF_ONLY_PNBUF);
2462 	vp = nd.ni_vp;
2463 
2464 	mtx_lock(&sw_dev_mtx);
2465 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2466 		if (sp->sw_vp == vp)
2467 			break;
2468 	}
2469 	mtx_unlock(&sw_dev_mtx);
2470 	if (sp == NULL) {
2471 		error = EINVAL;
2472 		goto done;
2473 	}
2474 	error = swapoff_one(sp, td->td_ucred);
2475 done:
2476 	sx_xunlock(&swdev_syscall_lock);
2477 	return (error);
2478 }
2479 
2480 static int
2481 swapoff_one(struct swdevt *sp, struct ucred *cred)
2482 {
2483 	u_long nblks;
2484 #ifdef MAC
2485 	int error;
2486 #endif
2487 
2488 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2489 #ifdef MAC
2490 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2491 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2492 	(void) VOP_UNLOCK(sp->sw_vp);
2493 	if (error != 0)
2494 		return (error);
2495 #endif
2496 	nblks = sp->sw_nblks;
2497 
2498 	/*
2499 	 * We can turn off this swap device safely only if the
2500 	 * available virtual memory in the system will fit the amount
2501 	 * of data we will have to page back in, plus an epsilon so
2502 	 * the system doesn't become critically low on swap space.
2503 	 */
2504 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2505 		return (ENOMEM);
2506 
2507 	/*
2508 	 * Prevent further allocations on this device.
2509 	 */
2510 	mtx_lock(&sw_dev_mtx);
2511 	sp->sw_flags |= SW_CLOSING;
2512 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2513 	swap_total -= nblks;
2514 	mtx_unlock(&sw_dev_mtx);
2515 
2516 	/*
2517 	 * Page in the contents of the device and close it.
2518 	 */
2519 	swap_pager_swapoff(sp);
2520 
2521 	sp->sw_close(curthread, sp);
2522 	mtx_lock(&sw_dev_mtx);
2523 	sp->sw_id = NULL;
2524 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2525 	nswapdev--;
2526 	if (nswapdev == 0) {
2527 		swap_pager_full = 2;
2528 		swap_pager_almost_full = 1;
2529 	}
2530 	if (swdevhd == sp)
2531 		swdevhd = NULL;
2532 	mtx_unlock(&sw_dev_mtx);
2533 	blist_destroy(sp->sw_blist);
2534 	free(sp, M_VMPGDATA);
2535 	return (0);
2536 }
2537 
2538 void
2539 swapoff_all(void)
2540 {
2541 	struct swdevt *sp, *spt;
2542 	const char *devname;
2543 	int error;
2544 
2545 	sx_xlock(&swdev_syscall_lock);
2546 
2547 	mtx_lock(&sw_dev_mtx);
2548 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2549 		mtx_unlock(&sw_dev_mtx);
2550 		if (vn_isdisk(sp->sw_vp))
2551 			devname = devtoname(sp->sw_vp->v_rdev);
2552 		else
2553 			devname = "[file]";
2554 		error = swapoff_one(sp, thread0.td_ucred);
2555 		if (error != 0) {
2556 			printf("Cannot remove swap device %s (error=%d), "
2557 			    "skipping.\n", devname, error);
2558 		} else if (bootverbose) {
2559 			printf("Swap device %s removed.\n", devname);
2560 		}
2561 		mtx_lock(&sw_dev_mtx);
2562 	}
2563 	mtx_unlock(&sw_dev_mtx);
2564 
2565 	sx_xunlock(&swdev_syscall_lock);
2566 }
2567 
2568 void
2569 swap_pager_status(int *total, int *used)
2570 {
2571 
2572 	*total = swap_total;
2573 	*used = swap_total - swap_pager_avail -
2574 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2575 }
2576 
2577 int
2578 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2579 {
2580 	struct swdevt *sp;
2581 	const char *tmp_devname;
2582 	int error, n;
2583 
2584 	n = 0;
2585 	error = ENOENT;
2586 	mtx_lock(&sw_dev_mtx);
2587 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2588 		if (n != name) {
2589 			n++;
2590 			continue;
2591 		}
2592 		xs->xsw_version = XSWDEV_VERSION;
2593 		xs->xsw_dev = sp->sw_dev;
2594 		xs->xsw_flags = sp->sw_flags;
2595 		xs->xsw_nblks = sp->sw_nblks;
2596 		xs->xsw_used = sp->sw_used;
2597 		if (devname != NULL) {
2598 			if (vn_isdisk(sp->sw_vp))
2599 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2600 			else
2601 				tmp_devname = "[file]";
2602 			strncpy(devname, tmp_devname, len);
2603 		}
2604 		error = 0;
2605 		break;
2606 	}
2607 	mtx_unlock(&sw_dev_mtx);
2608 	return (error);
2609 }
2610 
2611 #if defined(COMPAT_FREEBSD11)
2612 #define XSWDEV_VERSION_11	1
2613 struct xswdev11 {
2614 	u_int	xsw_version;
2615 	uint32_t xsw_dev;
2616 	int	xsw_flags;
2617 	int	xsw_nblks;
2618 	int     xsw_used;
2619 };
2620 #endif
2621 
2622 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2623 struct xswdev32 {
2624 	u_int	xsw_version;
2625 	u_int	xsw_dev1, xsw_dev2;
2626 	int	xsw_flags;
2627 	int	xsw_nblks;
2628 	int     xsw_used;
2629 };
2630 #endif
2631 
2632 static int
2633 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2634 {
2635 	struct xswdev xs;
2636 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2637 	struct xswdev32 xs32;
2638 #endif
2639 #if defined(COMPAT_FREEBSD11)
2640 	struct xswdev11 xs11;
2641 #endif
2642 	int error;
2643 
2644 	if (arg2 != 1)			/* name length */
2645 		return (EINVAL);
2646 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2647 	if (error != 0)
2648 		return (error);
2649 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2650 	if (req->oldlen == sizeof(xs32)) {
2651 		xs32.xsw_version = XSWDEV_VERSION;
2652 		xs32.xsw_dev1 = xs.xsw_dev;
2653 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2654 		xs32.xsw_flags = xs.xsw_flags;
2655 		xs32.xsw_nblks = xs.xsw_nblks;
2656 		xs32.xsw_used = xs.xsw_used;
2657 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2658 		return (error);
2659 	}
2660 #endif
2661 #if defined(COMPAT_FREEBSD11)
2662 	if (req->oldlen == sizeof(xs11)) {
2663 		xs11.xsw_version = XSWDEV_VERSION_11;
2664 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2665 		xs11.xsw_flags = xs.xsw_flags;
2666 		xs11.xsw_nblks = xs.xsw_nblks;
2667 		xs11.xsw_used = xs.xsw_used;
2668 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2669 		return (error);
2670 	}
2671 #endif
2672 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2673 	return (error);
2674 }
2675 
2676 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2677     "Number of swap devices");
2678 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2679     sysctl_vm_swap_info,
2680     "Swap statistics by device");
2681 
2682 /*
2683  * Count the approximate swap usage in pages for a vmspace.  The
2684  * shadowed or not yet copied on write swap blocks are not accounted.
2685  * The map must be locked.
2686  */
2687 long
2688 vmspace_swap_count(struct vmspace *vmspace)
2689 {
2690 	vm_map_t map;
2691 	vm_map_entry_t cur;
2692 	vm_object_t object;
2693 	struct swblk *sb;
2694 	vm_pindex_t e, pi;
2695 	long count;
2696 	int i;
2697 
2698 	map = &vmspace->vm_map;
2699 	count = 0;
2700 
2701 	VM_MAP_ENTRY_FOREACH(cur, map) {
2702 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2703 			continue;
2704 		object = cur->object.vm_object;
2705 		if (object == NULL || object->type != OBJT_SWAP)
2706 			continue;
2707 		VM_OBJECT_RLOCK(object);
2708 		if (object->type != OBJT_SWAP)
2709 			goto unlock;
2710 		pi = OFF_TO_IDX(cur->offset);
2711 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2712 		for (;; pi = sb->p + SWAP_META_PAGES) {
2713 			sb = SWAP_PCTRIE_LOOKUP_GE(
2714 			    &object->un_pager.swp.swp_blks, pi);
2715 			if (sb == NULL || sb->p >= e)
2716 				break;
2717 			for (i = 0; i < SWAP_META_PAGES; i++) {
2718 				if (sb->p + i < e &&
2719 				    sb->d[i] != SWAPBLK_NONE)
2720 					count++;
2721 			}
2722 		}
2723 unlock:
2724 		VM_OBJECT_RUNLOCK(object);
2725 	}
2726 	return (count);
2727 }
2728 
2729 /*
2730  * GEOM backend
2731  *
2732  * Swapping onto disk devices.
2733  *
2734  */
2735 
2736 static g_orphan_t swapgeom_orphan;
2737 
2738 static struct g_class g_swap_class = {
2739 	.name = "SWAP",
2740 	.version = G_VERSION,
2741 	.orphan = swapgeom_orphan,
2742 };
2743 
2744 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2745 
2746 static void
2747 swapgeom_close_ev(void *arg, int flags)
2748 {
2749 	struct g_consumer *cp;
2750 
2751 	cp = arg;
2752 	g_access(cp, -1, -1, 0);
2753 	g_detach(cp);
2754 	g_destroy_consumer(cp);
2755 }
2756 
2757 /*
2758  * Add a reference to the g_consumer for an inflight transaction.
2759  */
2760 static void
2761 swapgeom_acquire(struct g_consumer *cp)
2762 {
2763 
2764 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2765 	cp->index++;
2766 }
2767 
2768 /*
2769  * Remove a reference from the g_consumer.  Post a close event if all
2770  * references go away, since the function might be called from the
2771  * biodone context.
2772  */
2773 static void
2774 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2775 {
2776 
2777 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2778 	cp->index--;
2779 	if (cp->index == 0) {
2780 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2781 			sp->sw_id = NULL;
2782 	}
2783 }
2784 
2785 static void
2786 swapgeom_done(struct bio *bp2)
2787 {
2788 	struct swdevt *sp;
2789 	struct buf *bp;
2790 	struct g_consumer *cp;
2791 
2792 	bp = bp2->bio_caller2;
2793 	cp = bp2->bio_from;
2794 	bp->b_ioflags = bp2->bio_flags;
2795 	if (bp2->bio_error)
2796 		bp->b_ioflags |= BIO_ERROR;
2797 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2798 	bp->b_error = bp2->bio_error;
2799 	bp->b_caller1 = NULL;
2800 	bufdone(bp);
2801 	sp = bp2->bio_caller1;
2802 	mtx_lock(&sw_dev_mtx);
2803 	swapgeom_release(cp, sp);
2804 	mtx_unlock(&sw_dev_mtx);
2805 	g_destroy_bio(bp2);
2806 }
2807 
2808 static void
2809 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2810 {
2811 	struct bio *bio;
2812 	struct g_consumer *cp;
2813 
2814 	mtx_lock(&sw_dev_mtx);
2815 	cp = sp->sw_id;
2816 	if (cp == NULL) {
2817 		mtx_unlock(&sw_dev_mtx);
2818 		bp->b_error = ENXIO;
2819 		bp->b_ioflags |= BIO_ERROR;
2820 		bufdone(bp);
2821 		return;
2822 	}
2823 	swapgeom_acquire(cp);
2824 	mtx_unlock(&sw_dev_mtx);
2825 	if (bp->b_iocmd == BIO_WRITE)
2826 		bio = g_new_bio();
2827 	else
2828 		bio = g_alloc_bio();
2829 	if (bio == NULL) {
2830 		mtx_lock(&sw_dev_mtx);
2831 		swapgeom_release(cp, sp);
2832 		mtx_unlock(&sw_dev_mtx);
2833 		bp->b_error = ENOMEM;
2834 		bp->b_ioflags |= BIO_ERROR;
2835 		printf("swap_pager: cannot allocate bio\n");
2836 		bufdone(bp);
2837 		return;
2838 	}
2839 
2840 	bp->b_caller1 = bio;
2841 	bio->bio_caller1 = sp;
2842 	bio->bio_caller2 = bp;
2843 	bio->bio_cmd = bp->b_iocmd;
2844 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2845 	bio->bio_length = bp->b_bcount;
2846 	bio->bio_done = swapgeom_done;
2847 	if (!buf_mapped(bp)) {
2848 		bio->bio_ma = bp->b_pages;
2849 		bio->bio_data = unmapped_buf;
2850 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2851 		bio->bio_ma_n = bp->b_npages;
2852 		bio->bio_flags |= BIO_UNMAPPED;
2853 	} else {
2854 		bio->bio_data = bp->b_data;
2855 		bio->bio_ma = NULL;
2856 	}
2857 	g_io_request(bio, cp);
2858 	return;
2859 }
2860 
2861 static void
2862 swapgeom_orphan(struct g_consumer *cp)
2863 {
2864 	struct swdevt *sp;
2865 	int destroy;
2866 
2867 	mtx_lock(&sw_dev_mtx);
2868 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2869 		if (sp->sw_id == cp) {
2870 			sp->sw_flags |= SW_CLOSING;
2871 			break;
2872 		}
2873 	}
2874 	/*
2875 	 * Drop reference we were created with. Do directly since we're in a
2876 	 * special context where we don't have to queue the call to
2877 	 * swapgeom_close_ev().
2878 	 */
2879 	cp->index--;
2880 	destroy = ((sp != NULL) && (cp->index == 0));
2881 	if (destroy)
2882 		sp->sw_id = NULL;
2883 	mtx_unlock(&sw_dev_mtx);
2884 	if (destroy)
2885 		swapgeom_close_ev(cp, 0);
2886 }
2887 
2888 static void
2889 swapgeom_close(struct thread *td, struct swdevt *sw)
2890 {
2891 	struct g_consumer *cp;
2892 
2893 	mtx_lock(&sw_dev_mtx);
2894 	cp = sw->sw_id;
2895 	sw->sw_id = NULL;
2896 	mtx_unlock(&sw_dev_mtx);
2897 
2898 	/*
2899 	 * swapgeom_close() may be called from the biodone context,
2900 	 * where we cannot perform topology changes.  Delegate the
2901 	 * work to the events thread.
2902 	 */
2903 	if (cp != NULL)
2904 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2905 }
2906 
2907 static int
2908 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2909 {
2910 	struct g_provider *pp;
2911 	struct g_consumer *cp;
2912 	static struct g_geom *gp;
2913 	struct swdevt *sp;
2914 	u_long nblks;
2915 	int error;
2916 
2917 	pp = g_dev_getprovider(dev);
2918 	if (pp == NULL)
2919 		return (ENODEV);
2920 	mtx_lock(&sw_dev_mtx);
2921 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2922 		cp = sp->sw_id;
2923 		if (cp != NULL && cp->provider == pp) {
2924 			mtx_unlock(&sw_dev_mtx);
2925 			return (EBUSY);
2926 		}
2927 	}
2928 	mtx_unlock(&sw_dev_mtx);
2929 	if (gp == NULL)
2930 		gp = g_new_geomf(&g_swap_class, "swap");
2931 	cp = g_new_consumer(gp);
2932 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2933 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2934 	g_attach(cp, pp);
2935 	/*
2936 	 * XXX: Every time you think you can improve the margin for
2937 	 * footshooting, somebody depends on the ability to do so:
2938 	 * savecore(8) wants to write to our swapdev so we cannot
2939 	 * set an exclusive count :-(
2940 	 */
2941 	error = g_access(cp, 1, 1, 0);
2942 	if (error != 0) {
2943 		g_detach(cp);
2944 		g_destroy_consumer(cp);
2945 		return (error);
2946 	}
2947 	nblks = pp->mediasize / DEV_BSIZE;
2948 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2949 	    swapgeom_close, dev2udev(dev),
2950 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2951 	return (0);
2952 }
2953 
2954 static int
2955 swapongeom(struct vnode *vp)
2956 {
2957 	int error;
2958 
2959 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2960 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2961 		error = ENOENT;
2962 	} else {
2963 		g_topology_lock();
2964 		error = swapongeom_locked(vp->v_rdev, vp);
2965 		g_topology_unlock();
2966 	}
2967 	VOP_UNLOCK(vp);
2968 	return (error);
2969 }
2970 
2971 /*
2972  * VNODE backend
2973  *
2974  * This is used mainly for network filesystem (read: probably only tested
2975  * with NFS) swapfiles.
2976  *
2977  */
2978 
2979 static void
2980 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2981 {
2982 	struct vnode *vp2;
2983 
2984 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2985 
2986 	vp2 = sp->sw_id;
2987 	vhold(vp2);
2988 	if (bp->b_iocmd == BIO_WRITE) {
2989 		if (bp->b_bufobj)
2990 			bufobj_wdrop(bp->b_bufobj);
2991 		bufobj_wref(&vp2->v_bufobj);
2992 	}
2993 	if (bp->b_bufobj != &vp2->v_bufobj)
2994 		bp->b_bufobj = &vp2->v_bufobj;
2995 	bp->b_vp = vp2;
2996 	bp->b_iooffset = dbtob(bp->b_blkno);
2997 	bstrategy(bp);
2998 	return;
2999 }
3000 
3001 static void
3002 swapdev_close(struct thread *td, struct swdevt *sp)
3003 {
3004 
3005 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3006 	vrele(sp->sw_vp);
3007 }
3008 
3009 static int
3010 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3011 {
3012 	struct swdevt *sp;
3013 	int error;
3014 
3015 	if (nblks == 0)
3016 		return (ENXIO);
3017 	mtx_lock(&sw_dev_mtx);
3018 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3019 		if (sp->sw_id == vp) {
3020 			mtx_unlock(&sw_dev_mtx);
3021 			return (EBUSY);
3022 		}
3023 	}
3024 	mtx_unlock(&sw_dev_mtx);
3025 
3026 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3027 #ifdef MAC
3028 	error = mac_system_check_swapon(td->td_ucred, vp);
3029 	if (error == 0)
3030 #endif
3031 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3032 	(void) VOP_UNLOCK(vp);
3033 	if (error)
3034 		return (error);
3035 
3036 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3037 	    NODEV, 0);
3038 	return (0);
3039 }
3040 
3041 static int
3042 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3043 {
3044 	int error, new, n;
3045 
3046 	new = nsw_wcount_async_max;
3047 	error = sysctl_handle_int(oidp, &new, 0, req);
3048 	if (error != 0 || req->newptr == NULL)
3049 		return (error);
3050 
3051 	if (new > nswbuf / 2 || new < 1)
3052 		return (EINVAL);
3053 
3054 	mtx_lock(&swbuf_mtx);
3055 	while (nsw_wcount_async_max != new) {
3056 		/*
3057 		 * Adjust difference.  If the current async count is too low,
3058 		 * we will need to sqeeze our update slowly in.  Sleep with a
3059 		 * higher priority than getpbuf() to finish faster.
3060 		 */
3061 		n = new - nsw_wcount_async_max;
3062 		if (nsw_wcount_async + n >= 0) {
3063 			nsw_wcount_async += n;
3064 			nsw_wcount_async_max += n;
3065 			wakeup(&nsw_wcount_async);
3066 		} else {
3067 			nsw_wcount_async_max -= nsw_wcount_async;
3068 			nsw_wcount_async = 0;
3069 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3070 			    "swpsysctl", 0);
3071 		}
3072 	}
3073 	mtx_unlock(&swbuf_mtx);
3074 
3075 	return (0);
3076 }
3077 
3078 static void
3079 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3080     vm_offset_t end)
3081 {
3082 
3083 	VM_OBJECT_WLOCK(object);
3084 	KASSERT((object->flags & OBJ_ANON) == 0,
3085 	    ("Splittable object with writecount"));
3086 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3087 	VM_OBJECT_WUNLOCK(object);
3088 }
3089 
3090 static void
3091 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3092     vm_offset_t end)
3093 {
3094 
3095 	VM_OBJECT_WLOCK(object);
3096 	KASSERT((object->flags & OBJ_ANON) == 0,
3097 	    ("Splittable object with writecount"));
3098 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3099 	VM_OBJECT_WUNLOCK(object);
3100 }
3101