xref: /freebsd/sys/vm/swap_pager.c (revision f374ba41)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/limits.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/priv.h>
93 #include <sys/proc.h>
94 #include <sys/racct.h>
95 #include <sys/resource.h>
96 #include <sys/resourcevar.h>
97 #include <sys/rwlock.h>
98 #include <sys/sbuf.h>
99 #include <sys/sysctl.h>
100 #include <sys/sysproto.h>
101 #include <sys/systm.h>
102 #include <sys/sx.h>
103 #include <sys/unistd.h>
104 #include <sys/user.h>
105 #include <sys/vmmeter.h>
106 #include <sys/vnode.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #include <vm/vm.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/vm_param.h>
119 #include <vm/swap_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 
123 #include <geom/geom.h>
124 
125 /*
126  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
127  * The 64-page limit is due to the radix code (kern/subr_blist.c).
128  */
129 #ifndef MAX_PAGEOUT_CLUSTER
130 #define	MAX_PAGEOUT_CLUSTER	32
131 #endif
132 
133 #if !defined(SWB_NPAGES)
134 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
135 #endif
136 
137 #define	SWAP_META_PAGES		PCTRIE_COUNT
138 
139 /*
140  * A swblk structure maps each page index within a
141  * SWAP_META_PAGES-aligned and sized range to the address of an
142  * on-disk swap block (or SWAPBLK_NONE). The collection of these
143  * mappings for an entire vm object is implemented as a pc-trie.
144  */
145 struct swblk {
146 	vm_pindex_t	p;
147 	daddr_t		d[SWAP_META_PAGES];
148 };
149 
150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
151 static struct mtx sw_dev_mtx;
152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
153 static struct swdevt *swdevhd;	/* Allocate from here next */
154 static int nswapdev;		/* Number of swap devices */
155 int swap_pager_avail;
156 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
157 
158 static __exclusive_cache_line u_long swap_reserved;
159 static u_long swap_total;
160 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
161 
162 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
163     "VM swap stats");
164 
165 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_reserved, 0, sysctl_page_shift, "QU",
167     "Amount of swap storage needed to back all allocated anonymous memory.");
168 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
169     &swap_total, 0, sysctl_page_shift, "QU",
170     "Total amount of available swap storage.");
171 
172 int vm_overcommit __read_mostly = 0;
173 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0,
174     "Configure virtual memory overcommit behavior. See tuning(7) "
175     "for details.");
176 static unsigned long swzone;
177 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
178     "Actual size of swap metadata zone");
179 static unsigned long swap_maxpages;
180 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
181     "Maximum amount of swap supported");
182 
183 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
184 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
185     CTLFLAG_RD, &swap_free_deferred,
186     "Number of pages that deferred freeing swap space");
187 
188 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
190     CTLFLAG_RD, &swap_free_completed,
191     "Number of deferred frees completed");
192 
193 static int
194 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
195 {
196 	uint64_t newval;
197 	u_long value = *(u_long *)arg1;
198 
199 	newval = ((uint64_t)value) << PAGE_SHIFT;
200 	return (sysctl_handle_64(oidp, &newval, 0, req));
201 }
202 
203 static bool
204 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
205 {
206 	struct uidinfo *uip;
207 	u_long prev;
208 
209 	uip = cred->cr_ruidinfo;
210 
211 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
212 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
213 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
214 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
215 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
216 		KASSERT(prev >= pincr,
217 		    ("negative vmsize for uid %d\n", uip->ui_uid));
218 		return (false);
219 	}
220 	return (true);
221 }
222 
223 static void
224 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
225 {
226 	struct uidinfo *uip;
227 #ifdef INVARIANTS
228 	u_long prev;
229 #endif
230 
231 	uip = cred->cr_ruidinfo;
232 
233 #ifdef INVARIANTS
234 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
235 	KASSERT(prev >= pdecr,
236 	    ("negative vmsize for uid %d\n", uip->ui_uid));
237 #else
238 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241 
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245 	struct uidinfo *uip;
246 
247 	uip = cred->cr_ruidinfo;
248 	atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250 
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254 
255 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257 
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261 	u_long r, s, prev, pincr;
262 #ifdef RACCT
263 	int error;
264 #endif
265 	int oc;
266 	static int curfail;
267 	static struct timeval lastfail;
268 
269 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
270 	    __func__, (uintmax_t)incr));
271 
272 #ifdef RACCT
273 	if (RACCT_ENABLED()) {
274 		PROC_LOCK(curproc);
275 		error = racct_add(curproc, RACCT_SWAP, incr);
276 		PROC_UNLOCK(curproc);
277 		if (error != 0)
278 			return (false);
279 	}
280 #endif
281 
282 	pincr = atop(incr);
283 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
284 	r = prev + pincr;
285 	s = swap_total;
286 	oc = atomic_load_int(&vm_overcommit);
287 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289 		    vm_wire_count();
290 	}
291 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294 		KASSERT(prev >= pincr,
295 		    ("swap_reserved < incr on overcommit fail"));
296 		goto out_error;
297 	}
298 
299 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
300 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
301 		KASSERT(prev >= pincr,
302 		    ("swap_reserved < incr on overcommit fail"));
303 		goto out_error;
304 	}
305 
306 	return (true);
307 
308 out_error:
309 	if (ppsratecheck(&lastfail, &curfail, 1)) {
310 		printf("uid %d, pid %d: swap reservation "
311 		    "for %jd bytes failed\n",
312 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
313 	}
314 #ifdef RACCT
315 	if (RACCT_ENABLED()) {
316 		PROC_LOCK(curproc);
317 		racct_sub(curproc, RACCT_SWAP, incr);
318 		PROC_UNLOCK(curproc);
319 	}
320 #endif
321 
322 	return (false);
323 }
324 
325 void
326 swap_reserve_force(vm_ooffset_t incr)
327 {
328 	u_long pincr;
329 
330 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
331 	    __func__, (uintmax_t)incr));
332 
333 #ifdef RACCT
334 	if (RACCT_ENABLED()) {
335 		PROC_LOCK(curproc);
336 		racct_add_force(curproc, RACCT_SWAP, incr);
337 		PROC_UNLOCK(curproc);
338 	}
339 #endif
340 	pincr = atop(incr);
341 	atomic_add_long(&swap_reserved, pincr);
342 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
343 }
344 
345 void
346 swap_release(vm_ooffset_t decr)
347 {
348 	struct ucred *cred;
349 
350 	PROC_LOCK(curproc);
351 	cred = curproc->p_ucred;
352 	swap_release_by_cred(decr, cred);
353 	PROC_UNLOCK(curproc);
354 }
355 
356 void
357 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
358 {
359 	u_long pdecr;
360 #ifdef INVARIANTS
361 	u_long prev;
362 #endif
363 
364 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK",
365 	    __func__, (uintmax_t)decr));
366 
367 	pdecr = atop(decr);
368 #ifdef INVARIANTS
369 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
370 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
371 #else
372 	atomic_subtract_long(&swap_reserved, pdecr);
373 #endif
374 
375 	swap_release_by_cred_rlimit(pdecr, cred);
376 #ifdef RACCT
377 	if (racct_enable)
378 		racct_sub_cred(cred, RACCT_SWAP, decr);
379 #endif
380 }
381 
382 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
383 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
384 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
385 static int nsw_wcount_async;	/* limit async write buffers */
386 static int nsw_wcount_async_max;/* assigned maximum			*/
387 int nsw_cluster_max; 		/* maximum VOP I/O allowed		*/
388 
389 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
390 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
391     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
392     "Maximum running async swap ops");
393 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
394 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
395     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
396     "Swap Fragmentation Info");
397 
398 static struct sx sw_alloc_sx;
399 
400 /*
401  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
402  * of searching a named list by hashing it just a little.
403  */
404 
405 #define NOBJLISTS		8
406 
407 #define NOBJLIST(handle)	\
408 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
409 
410 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
411 static uma_zone_t swwbuf_zone;
412 static uma_zone_t swrbuf_zone;
413 static uma_zone_t swblk_zone;
414 static uma_zone_t swpctrie_zone;
415 
416 /*
417  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
418  * calls hooked from other parts of the VM system and do not appear here.
419  * (see vm/swap_pager.h).
420  */
421 static vm_object_t
422 		swap_pager_alloc(void *handle, vm_ooffset_t size,
423 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
424 static void	swap_pager_dealloc(vm_object_t object);
425 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
426     int *);
427 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
428     int *, pgo_getpages_iodone_t, void *);
429 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
430 static boolean_t
431 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
432 static void	swap_pager_init(void);
433 static void	swap_pager_unswapped(vm_page_t);
434 static void	swap_pager_swapoff(struct swdevt *sp);
435 static void	swap_pager_update_writecount(vm_object_t object,
436     vm_offset_t start, vm_offset_t end);
437 static void	swap_pager_release_writecount(vm_object_t object,
438     vm_offset_t start, vm_offset_t end);
439 static void	swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start,
440     vm_size_t size);
441 
442 const struct pagerops swappagerops = {
443 	.pgo_kvme_type = KVME_TYPE_SWAP,
444 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
445 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
446 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
447 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
448 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
449 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
450 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
451 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
452 	.pgo_update_writecount = swap_pager_update_writecount,
453 	.pgo_release_writecount = swap_pager_release_writecount,
454 	.pgo_freespace = swap_pager_freespace_pgo,
455 };
456 
457 /*
458  * swap_*() routines are externally accessible.  swp_*() routines are
459  * internal.
460  */
461 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
462 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
463 
464 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
465     "Maximum size of a swap block in pages");
466 
467 static void	swp_sizecheck(void);
468 static void	swp_pager_async_iodone(struct buf *bp);
469 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
470 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
471 static int	swapongeom(struct vnode *);
472 static int	swaponvp(struct thread *, struct vnode *, u_long);
473 static int	swapoff_one(struct swdevt *sp, struct ucred *cred,
474 		    u_int flags);
475 
476 /*
477  * Swap bitmap functions
478  */
479 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
480 static daddr_t	swp_pager_getswapspace(int *npages);
481 
482 /*
483  * Metadata functions
484  */
485 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
486 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t,
487     vm_size_t *);
488 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
489     vm_pindex_t pindex, vm_pindex_t count, vm_size_t *freed);
490 static void swp_pager_meta_free_all(vm_object_t);
491 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
492 
493 static void
494 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
495 {
496 
497 	*start = SWAPBLK_NONE;
498 	*num = 0;
499 }
500 
501 static void
502 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
503 {
504 
505 	if (*start + *num == addr) {
506 		(*num)++;
507 	} else {
508 		swp_pager_freeswapspace(*start, *num);
509 		*start = addr;
510 		*num = 1;
511 	}
512 }
513 
514 static void *
515 swblk_trie_alloc(struct pctrie *ptree)
516 {
517 
518 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
519 	    M_USE_RESERVE : 0)));
520 }
521 
522 static void
523 swblk_trie_free(struct pctrie *ptree, void *node)
524 {
525 
526 	uma_zfree(swpctrie_zone, node);
527 }
528 
529 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
530 
531 /*
532  * SWP_SIZECHECK() -	update swap_pager_full indication
533  *
534  *	update the swap_pager_almost_full indication and warn when we are
535  *	about to run out of swap space, using lowat/hiwat hysteresis.
536  *
537  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
538  *
539  *	No restrictions on call
540  *	This routine may not block.
541  */
542 static void
543 swp_sizecheck(void)
544 {
545 
546 	if (swap_pager_avail < nswap_lowat) {
547 		if (swap_pager_almost_full == 0) {
548 			printf("swap_pager: out of swap space\n");
549 			swap_pager_almost_full = 1;
550 		}
551 	} else {
552 		swap_pager_full = 0;
553 		if (swap_pager_avail > nswap_hiwat)
554 			swap_pager_almost_full = 0;
555 	}
556 }
557 
558 /*
559  * SWAP_PAGER_INIT() -	initialize the swap pager!
560  *
561  *	Expected to be started from system init.  NOTE:  This code is run
562  *	before much else so be careful what you depend on.  Most of the VM
563  *	system has yet to be initialized at this point.
564  */
565 static void
566 swap_pager_init(void)
567 {
568 	/*
569 	 * Initialize object lists
570 	 */
571 	int i;
572 
573 	for (i = 0; i < NOBJLISTS; ++i)
574 		TAILQ_INIT(&swap_pager_object_list[i]);
575 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
576 	sx_init(&sw_alloc_sx, "swspsx");
577 	sx_init(&swdev_syscall_lock, "swsysc");
578 
579 	/*
580 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
581 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
582 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
583 	 * constrained by the swap device interleave stripe size.
584 	 *
585 	 * Initialized early so that GEOM_ELI can see it.
586 	 */
587 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
588 }
589 
590 /*
591  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
592  *
593  *	Expected to be started from pageout process once, prior to entering
594  *	its main loop.
595  */
596 void
597 swap_pager_swap_init(void)
598 {
599 	unsigned long n, n2;
600 
601 	/*
602 	 * Number of in-transit swap bp operations.  Don't
603 	 * exhaust the pbufs completely.  Make sure we
604 	 * initialize workable values (0 will work for hysteresis
605 	 * but it isn't very efficient).
606 	 *
607 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
608 	 * designed to prevent other I/O from having high latencies due to
609 	 * our pageout I/O.  The value 4 works well for one or two active swap
610 	 * devices but is probably a little low if you have more.  Even so,
611 	 * a higher value would probably generate only a limited improvement
612 	 * with three or four active swap devices since the system does not
613 	 * typically have to pageout at extreme bandwidths.   We will want
614 	 * at least 2 per swap devices, and 4 is a pretty good value if you
615 	 * have one NFS swap device due to the command/ack latency over NFS.
616 	 * So it all works out pretty well.
617 	 *
618 	 * nsw_cluster_max is initialized in swap_pager_init().
619 	 */
620 
621 	nsw_wcount_async = 4;
622 	nsw_wcount_async_max = nsw_wcount_async;
623 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
624 
625 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
626 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
627 
628 	/*
629 	 * Initialize our zone, taking the user's requested size or
630 	 * estimating the number we need based on the number of pages
631 	 * in the system.
632 	 */
633 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
634 	    vm_cnt.v_page_count / 2;
635 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
636 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
637 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
638 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
639 	n2 = n;
640 	do {
641 		if (uma_zone_reserve_kva(swblk_zone, n))
642 			break;
643 		/*
644 		 * if the allocation failed, try a zone two thirds the
645 		 * size of the previous attempt.
646 		 */
647 		n -= ((n + 2) / 3);
648 	} while (n > 0);
649 
650 	/*
651 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
652 	 * requested size.  Account for the difference when
653 	 * calculating swap_maxpages.
654 	 */
655 	n = uma_zone_get_max(swblk_zone);
656 
657 	if (n < n2)
658 		printf("Swap blk zone entries changed from %lu to %lu.\n",
659 		    n2, n);
660 	/* absolute maximum we can handle assuming 100% efficiency */
661 	swap_maxpages = n * SWAP_META_PAGES;
662 	swzone = n * sizeof(struct swblk);
663 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
664 		printf("Cannot reserve swap pctrie zone, "
665 		    "reduce kern.maxswzone.\n");
666 }
667 
668 bool
669 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
670     vm_ooffset_t size, vm_ooffset_t offset)
671 {
672 	if (cred != NULL) {
673 		if (!swap_reserve_by_cred(size, cred))
674 			return (false);
675 		crhold(cred);
676 	}
677 
678 	object->un_pager.swp.writemappings = 0;
679 	object->handle = handle;
680 	if (cred != NULL) {
681 		object->cred = cred;
682 		object->charge = size;
683 	}
684 	return (true);
685 }
686 
687 static vm_object_t
688 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
689     vm_ooffset_t size, vm_ooffset_t offset)
690 {
691 	vm_object_t object;
692 
693 	/*
694 	 * The un_pager.swp.swp_blks trie is initialized by
695 	 * vm_object_allocate() to ensure the correct order of
696 	 * visibility to other threads.
697 	 */
698 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
699 	    PAGE_MASK + size));
700 
701 	if (!swap_pager_init_object(object, handle, cred, size, offset)) {
702 		vm_object_deallocate(object);
703 		return (NULL);
704 	}
705 	return (object);
706 }
707 
708 /*
709  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
710  *			its metadata structures.
711  *
712  *	This routine is called from the mmap and fork code to create a new
713  *	OBJT_SWAP object.
714  *
715  *	This routine must ensure that no live duplicate is created for
716  *	the named object request, which is protected against by
717  *	holding the sw_alloc_sx lock in case handle != NULL.
718  */
719 static vm_object_t
720 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
721     vm_ooffset_t offset, struct ucred *cred)
722 {
723 	vm_object_t object;
724 
725 	if (handle != NULL) {
726 		/*
727 		 * Reference existing named region or allocate new one.  There
728 		 * should not be a race here against swp_pager_meta_build()
729 		 * as called from vm_page_remove() in regards to the lookup
730 		 * of the handle.
731 		 */
732 		sx_xlock(&sw_alloc_sx);
733 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
734 		if (object == NULL) {
735 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
736 			    size, offset);
737 			if (object != NULL) {
738 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
739 				    object, pager_object_list);
740 			}
741 		}
742 		sx_xunlock(&sw_alloc_sx);
743 	} else {
744 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
745 		    size, offset);
746 	}
747 	return (object);
748 }
749 
750 /*
751  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
752  *
753  *	The swap backing for the object is destroyed.  The code is
754  *	designed such that we can reinstantiate it later, but this
755  *	routine is typically called only when the entire object is
756  *	about to be destroyed.
757  *
758  *	The object must be locked.
759  */
760 static void
761 swap_pager_dealloc(vm_object_t object)
762 {
763 
764 	VM_OBJECT_ASSERT_WLOCKED(object);
765 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
766 
767 	/*
768 	 * Remove from list right away so lookups will fail if we block for
769 	 * pageout completion.
770 	 */
771 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
772 		VM_OBJECT_WUNLOCK(object);
773 		sx_xlock(&sw_alloc_sx);
774 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
775 		    pager_object_list);
776 		sx_xunlock(&sw_alloc_sx);
777 		VM_OBJECT_WLOCK(object);
778 	}
779 
780 	vm_object_pip_wait(object, "swpdea");
781 
782 	/*
783 	 * Free all remaining metadata.  We only bother to free it from
784 	 * the swap meta data.  We do not attempt to free swapblk's still
785 	 * associated with vm_page_t's for this object.  We do not care
786 	 * if paging is still in progress on some objects.
787 	 */
788 	swp_pager_meta_free_all(object);
789 	object->handle = NULL;
790 	object->type = OBJT_DEAD;
791 
792 	/*
793 	 * Release the allocation charge.
794 	 */
795 	if (object->cred != NULL) {
796 		swap_release_by_cred(object->charge, object->cred);
797 		object->charge = 0;
798 		crfree(object->cred);
799 		object->cred = NULL;
800 	}
801 
802 	/*
803 	 * Hide the object from swap_pager_swapoff().
804 	 */
805 	vm_object_clear_flag(object, OBJ_SWAP);
806 }
807 
808 /************************************************************************
809  *			SWAP PAGER BITMAP ROUTINES			*
810  ************************************************************************/
811 
812 /*
813  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
814  *
815  *	Allocate swap for up to the requested number of pages.  The
816  *	starting swap block number (a page index) is returned or
817  *	SWAPBLK_NONE if the allocation failed.
818  *
819  *	Also has the side effect of advising that somebody made a mistake
820  *	when they configured swap and didn't configure enough.
821  *
822  *	This routine may not sleep.
823  *
824  *	We allocate in round-robin fashion from the configured devices.
825  */
826 static daddr_t
827 swp_pager_getswapspace(int *io_npages)
828 {
829 	daddr_t blk;
830 	struct swdevt *sp;
831 	int mpages, npages;
832 
833 	KASSERT(*io_npages >= 1,
834 	    ("%s: npages not positive", __func__));
835 	blk = SWAPBLK_NONE;
836 	mpages = *io_npages;
837 	npages = imin(BLIST_MAX_ALLOC, mpages);
838 	mtx_lock(&sw_dev_mtx);
839 	sp = swdevhd;
840 	while (!TAILQ_EMPTY(&swtailq)) {
841 		if (sp == NULL)
842 			sp = TAILQ_FIRST(&swtailq);
843 		if ((sp->sw_flags & SW_CLOSING) == 0)
844 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
845 		if (blk != SWAPBLK_NONE)
846 			break;
847 		sp = TAILQ_NEXT(sp, sw_list);
848 		if (swdevhd == sp) {
849 			if (npages == 1)
850 				break;
851 			mpages = npages - 1;
852 			npages >>= 1;
853 		}
854 	}
855 	if (blk != SWAPBLK_NONE) {
856 		*io_npages = npages;
857 		blk += sp->sw_first;
858 		sp->sw_used += npages;
859 		swap_pager_avail -= npages;
860 		swp_sizecheck();
861 		swdevhd = TAILQ_NEXT(sp, sw_list);
862 	} else {
863 		if (swap_pager_full != 2) {
864 			printf("swp_pager_getswapspace(%d): failed\n",
865 			    *io_npages);
866 			swap_pager_full = 2;
867 			swap_pager_almost_full = 1;
868 		}
869 		swdevhd = NULL;
870 	}
871 	mtx_unlock(&sw_dev_mtx);
872 	return (blk);
873 }
874 
875 static bool
876 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
877 {
878 
879 	return (blk >= sp->sw_first && blk < sp->sw_end);
880 }
881 
882 static void
883 swp_pager_strategy(struct buf *bp)
884 {
885 	struct swdevt *sp;
886 
887 	mtx_lock(&sw_dev_mtx);
888 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
889 		if (swp_pager_isondev(bp->b_blkno, sp)) {
890 			mtx_unlock(&sw_dev_mtx);
891 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
892 			    unmapped_buf_allowed) {
893 				bp->b_data = unmapped_buf;
894 				bp->b_offset = 0;
895 			} else {
896 				pmap_qenter((vm_offset_t)bp->b_data,
897 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
898 			}
899 			sp->sw_strategy(bp, sp);
900 			return;
901 		}
902 	}
903 	panic("Swapdev not found");
904 }
905 
906 /*
907  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
908  *
909  *	This routine returns the specified swap blocks back to the bitmap.
910  *
911  *	This routine may not sleep.
912  */
913 static void
914 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
915 {
916 	struct swdevt *sp;
917 
918 	if (npages == 0)
919 		return;
920 	mtx_lock(&sw_dev_mtx);
921 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
922 		if (swp_pager_isondev(blk, sp)) {
923 			sp->sw_used -= npages;
924 			/*
925 			 * If we are attempting to stop swapping on
926 			 * this device, we don't want to mark any
927 			 * blocks free lest they be reused.
928 			 */
929 			if ((sp->sw_flags & SW_CLOSING) == 0) {
930 				blist_free(sp->sw_blist, blk - sp->sw_first,
931 				    npages);
932 				swap_pager_avail += npages;
933 				swp_sizecheck();
934 			}
935 			mtx_unlock(&sw_dev_mtx);
936 			return;
937 		}
938 	}
939 	panic("Swapdev not found");
940 }
941 
942 /*
943  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
944  */
945 static int
946 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
947 {
948 	struct sbuf sbuf;
949 	struct swdevt *sp;
950 	const char *devname;
951 	int error;
952 
953 	error = sysctl_wire_old_buffer(req, 0);
954 	if (error != 0)
955 		return (error);
956 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
957 	mtx_lock(&sw_dev_mtx);
958 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
959 		if (vn_isdisk(sp->sw_vp))
960 			devname = devtoname(sp->sw_vp->v_rdev);
961 		else
962 			devname = "[file]";
963 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
964 		blist_stats(sp->sw_blist, &sbuf);
965 	}
966 	mtx_unlock(&sw_dev_mtx);
967 	error = sbuf_finish(&sbuf);
968 	sbuf_delete(&sbuf);
969 	return (error);
970 }
971 
972 /*
973  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
974  *				range within an object.
975  *
976  *	This routine removes swapblk assignments from swap metadata.
977  *
978  *	The external callers of this routine typically have already destroyed
979  *	or renamed vm_page_t's associated with this range in the object so
980  *	we should be ok.
981  *
982  *	The object must be locked.
983  */
984 void
985 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size,
986     vm_size_t *freed)
987 {
988 	MPASS((object->flags & OBJ_SWAP) != 0);
989 
990 	swp_pager_meta_free(object, start, size, freed);
991 }
992 
993 static void
994 swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size)
995 {
996 	MPASS((object->flags & OBJ_SWAP) != 0);
997 
998 	swp_pager_meta_free(object, start, size, NULL);
999 }
1000 
1001 /*
1002  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
1003  *
1004  *	Assigns swap blocks to the specified range within the object.  The
1005  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
1006  *
1007  *	Returns 0 on success, -1 on failure.
1008  */
1009 int
1010 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
1011 {
1012 	daddr_t addr, blk, n_free, s_free;
1013 	vm_pindex_t i, j;
1014 	int n;
1015 
1016 	swp_pager_init_freerange(&s_free, &n_free);
1017 	VM_OBJECT_WLOCK(object);
1018 	for (i = 0; i < size; i += n) {
1019 		n = MIN(size - i, INT_MAX);
1020 		blk = swp_pager_getswapspace(&n);
1021 		if (blk == SWAPBLK_NONE) {
1022 			swp_pager_meta_free(object, start, i, NULL);
1023 			VM_OBJECT_WUNLOCK(object);
1024 			return (-1);
1025 		}
1026 		for (j = 0; j < n; ++j) {
1027 			addr = swp_pager_meta_build(object,
1028 			    start + i + j, blk + j);
1029 			if (addr != SWAPBLK_NONE)
1030 				swp_pager_update_freerange(&s_free, &n_free,
1031 				    addr);
1032 		}
1033 	}
1034 	swp_pager_freeswapspace(s_free, n_free);
1035 	VM_OBJECT_WUNLOCK(object);
1036 	return (0);
1037 }
1038 
1039 static bool
1040 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1041     vm_pindex_t pindex, daddr_t addr)
1042 {
1043 	daddr_t dstaddr __diagused;
1044 
1045 	KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1046 	    ("%s: srcobject not swappable", __func__));
1047 	KASSERT((dstobject->flags & OBJ_SWAP) != 0,
1048 	    ("%s: dstobject not swappable", __func__));
1049 
1050 	if (swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1051 		/* Caller should destroy the source block. */
1052 		return (false);
1053 	}
1054 
1055 	/*
1056 	 * Destination has no swapblk and is not resident, transfer source.
1057 	 * swp_pager_meta_build() can sleep.
1058 	 */
1059 	VM_OBJECT_WUNLOCK(srcobject);
1060 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1061 	KASSERT(dstaddr == SWAPBLK_NONE,
1062 	    ("Unexpected destination swapblk"));
1063 	VM_OBJECT_WLOCK(srcobject);
1064 
1065 	return (true);
1066 }
1067 
1068 /*
1069  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1070  *			and destroy the source.
1071  *
1072  *	Copy any valid swapblks from the source to the destination.  In
1073  *	cases where both the source and destination have a valid swapblk,
1074  *	we keep the destination's.
1075  *
1076  *	This routine is allowed to sleep.  It may sleep allocating metadata
1077  *	indirectly through swp_pager_meta_build().
1078  *
1079  *	The source object contains no vm_page_t's (which is just as well)
1080  *
1081  *	The source and destination objects must be locked.
1082  *	Both object locks may temporarily be released.
1083  */
1084 void
1085 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1086     vm_pindex_t offset, int destroysource)
1087 {
1088 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1089 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1090 
1091 	/*
1092 	 * If destroysource is set, we remove the source object from the
1093 	 * swap_pager internal queue now.
1094 	 */
1095 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1096 	    srcobject->handle != NULL) {
1097 		VM_OBJECT_WUNLOCK(srcobject);
1098 		VM_OBJECT_WUNLOCK(dstobject);
1099 		sx_xlock(&sw_alloc_sx);
1100 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1101 		    pager_object_list);
1102 		sx_xunlock(&sw_alloc_sx);
1103 		VM_OBJECT_WLOCK(dstobject);
1104 		VM_OBJECT_WLOCK(srcobject);
1105 	}
1106 
1107 	/*
1108 	 * Transfer source to destination.
1109 	 */
1110 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size,
1111 	    NULL);
1112 
1113 	/*
1114 	 * Free left over swap blocks in source.
1115 	 */
1116 	if (destroysource)
1117 		swp_pager_meta_free_all(srcobject);
1118 }
1119 
1120 /*
1121  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1122  *				the requested page.
1123  *
1124  *	We determine whether good backing store exists for the requested
1125  *	page and return TRUE if it does, FALSE if it doesn't.
1126  *
1127  *	If TRUE, we also try to determine how much valid, contiguous backing
1128  *	store exists before and after the requested page.
1129  */
1130 static boolean_t
1131 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1132     int *after)
1133 {
1134 	daddr_t blk, blk0;
1135 	int i;
1136 
1137 	VM_OBJECT_ASSERT_LOCKED(object);
1138 	KASSERT((object->flags & OBJ_SWAP) != 0,
1139 	    ("%s: object not swappable", __func__));
1140 
1141 	/*
1142 	 * do we have good backing store at the requested index ?
1143 	 */
1144 	blk0 = swp_pager_meta_lookup(object, pindex);
1145 	if (blk0 == SWAPBLK_NONE) {
1146 		if (before)
1147 			*before = 0;
1148 		if (after)
1149 			*after = 0;
1150 		return (FALSE);
1151 	}
1152 
1153 	/*
1154 	 * find backwards-looking contiguous good backing store
1155 	 */
1156 	if (before != NULL) {
1157 		for (i = 1; i < SWB_NPAGES; i++) {
1158 			if (i > pindex)
1159 				break;
1160 			blk = swp_pager_meta_lookup(object, pindex - i);
1161 			if (blk != blk0 - i)
1162 				break;
1163 		}
1164 		*before = i - 1;
1165 	}
1166 
1167 	/*
1168 	 * find forward-looking contiguous good backing store
1169 	 */
1170 	if (after != NULL) {
1171 		for (i = 1; i < SWB_NPAGES; i++) {
1172 			blk = swp_pager_meta_lookup(object, pindex + i);
1173 			if (blk != blk0 + i)
1174 				break;
1175 		}
1176 		*after = i - 1;
1177 	}
1178 	return (TRUE);
1179 }
1180 
1181 /*
1182  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1183  *
1184  *	This removes any associated swap backing store, whether valid or
1185  *	not, from the page.
1186  *
1187  *	This routine is typically called when a page is made dirty, at
1188  *	which point any associated swap can be freed.  MADV_FREE also
1189  *	calls us in a special-case situation
1190  *
1191  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1192  *	should make the page dirty before calling this routine.  This routine
1193  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1194  *	depends on it.
1195  *
1196  *	This routine may not sleep.
1197  *
1198  *	The object containing the page may be locked.
1199  */
1200 static void
1201 swap_pager_unswapped(vm_page_t m)
1202 {
1203 	struct swblk *sb;
1204 	vm_object_t obj;
1205 
1206 	/*
1207 	 * Handle enqueing deferred frees first.  If we do not have the
1208 	 * object lock we wait for the page daemon to clear the space.
1209 	 */
1210 	obj = m->object;
1211 	if (!VM_OBJECT_WOWNED(obj)) {
1212 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1213 		/*
1214 		 * The caller is responsible for synchronization but we
1215 		 * will harmlessly handle races.  This is typically provided
1216 		 * by only calling unswapped() when a page transitions from
1217 		 * clean to dirty.
1218 		 */
1219 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1220 		    PGA_SWAP_SPACE) {
1221 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1222 			counter_u64_add(swap_free_deferred, 1);
1223 		}
1224 		return;
1225 	}
1226 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1227 		counter_u64_add(swap_free_completed, 1);
1228 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1229 
1230 	/*
1231 	 * The meta data only exists if the object is OBJT_SWAP
1232 	 * and even then might not be allocated yet.
1233 	 */
1234 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1235 	    ("Free object not swappable"));
1236 
1237 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1238 	    rounddown(m->pindex, SWAP_META_PAGES));
1239 	if (sb == NULL)
1240 		return;
1241 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1242 		return;
1243 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1244 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1245 	swp_pager_free_empty_swblk(m->object, sb);
1246 }
1247 
1248 /*
1249  * swap_pager_getpages() - bring pages in from swap
1250  *
1251  *	Attempt to page in the pages in array "ma" of length "count".  The
1252  *	caller may optionally specify that additional pages preceding and
1253  *	succeeding the specified range be paged in.  The number of such pages
1254  *	is returned in the "rbehind" and "rahead" parameters, and they will
1255  *	be in the inactive queue upon return.
1256  *
1257  *	The pages in "ma" must be busied and will remain busied upon return.
1258  */
1259 static int
1260 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1261     int *rbehind, int *rahead)
1262 {
1263 	struct buf *bp;
1264 	vm_page_t bm, mpred, msucc, p;
1265 	vm_pindex_t pindex;
1266 	daddr_t blk;
1267 	int i, maxahead, maxbehind, reqcount;
1268 
1269 	VM_OBJECT_ASSERT_WLOCKED(object);
1270 	reqcount = count;
1271 
1272 	KASSERT((object->flags & OBJ_SWAP) != 0,
1273 	    ("%s: object not swappable", __func__));
1274 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1275 		VM_OBJECT_WUNLOCK(object);
1276 		return (VM_PAGER_FAIL);
1277 	}
1278 
1279 	KASSERT(reqcount - 1 <= maxahead,
1280 	    ("page count %d extends beyond swap block", reqcount));
1281 
1282 	/*
1283 	 * Do not transfer any pages other than those that are xbusied
1284 	 * when running during a split or collapse operation.  This
1285 	 * prevents clustering from re-creating pages which are being
1286 	 * moved into another object.
1287 	 */
1288 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1289 		maxahead = reqcount - 1;
1290 		maxbehind = 0;
1291 	}
1292 
1293 	/*
1294 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1295 	 */
1296 	if (rahead != NULL) {
1297 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1298 		pindex = ma[reqcount - 1]->pindex;
1299 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1300 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1301 			*rahead = msucc->pindex - pindex - 1;
1302 	}
1303 	if (rbehind != NULL) {
1304 		*rbehind = imin(*rbehind, maxbehind);
1305 		pindex = ma[0]->pindex;
1306 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1307 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1308 			*rbehind = pindex - mpred->pindex - 1;
1309 	}
1310 
1311 	bm = ma[0];
1312 	for (i = 0; i < count; i++)
1313 		ma[i]->oflags |= VPO_SWAPINPROG;
1314 
1315 	/*
1316 	 * Allocate readahead and readbehind pages.
1317 	 */
1318 	if (rbehind != NULL) {
1319 		for (i = 1; i <= *rbehind; i++) {
1320 			p = vm_page_alloc(object, ma[0]->pindex - i,
1321 			    VM_ALLOC_NORMAL);
1322 			if (p == NULL)
1323 				break;
1324 			p->oflags |= VPO_SWAPINPROG;
1325 			bm = p;
1326 		}
1327 		*rbehind = i - 1;
1328 	}
1329 	if (rahead != NULL) {
1330 		for (i = 0; i < *rahead; i++) {
1331 			p = vm_page_alloc(object,
1332 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1333 			if (p == NULL)
1334 				break;
1335 			p->oflags |= VPO_SWAPINPROG;
1336 		}
1337 		*rahead = i;
1338 	}
1339 	if (rbehind != NULL)
1340 		count += *rbehind;
1341 	if (rahead != NULL)
1342 		count += *rahead;
1343 
1344 	vm_object_pip_add(object, count);
1345 
1346 	pindex = bm->pindex;
1347 	blk = swp_pager_meta_lookup(object, pindex);
1348 	KASSERT(blk != SWAPBLK_NONE,
1349 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1350 
1351 	VM_OBJECT_WUNLOCK(object);
1352 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1353 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1354 	/* Pages cannot leave the object while busy. */
1355 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1356 		MPASS(p->pindex == bm->pindex + i);
1357 		bp->b_pages[i] = p;
1358 	}
1359 
1360 	bp->b_flags |= B_PAGING;
1361 	bp->b_iocmd = BIO_READ;
1362 	bp->b_iodone = swp_pager_async_iodone;
1363 	bp->b_rcred = crhold(thread0.td_ucred);
1364 	bp->b_wcred = crhold(thread0.td_ucred);
1365 	bp->b_blkno = blk;
1366 	bp->b_bcount = PAGE_SIZE * count;
1367 	bp->b_bufsize = PAGE_SIZE * count;
1368 	bp->b_npages = count;
1369 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1370 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1371 
1372 	VM_CNT_INC(v_swapin);
1373 	VM_CNT_ADD(v_swappgsin, count);
1374 
1375 	/*
1376 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1377 	 * this point because we automatically release it on completion.
1378 	 * Instead, we look at the one page we are interested in which we
1379 	 * still hold a lock on even through the I/O completion.
1380 	 *
1381 	 * The other pages in our ma[] array are also released on completion,
1382 	 * so we cannot assume they are valid anymore either.
1383 	 *
1384 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1385 	 */
1386 	BUF_KERNPROC(bp);
1387 	swp_pager_strategy(bp);
1388 
1389 	/*
1390 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1391 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1392 	 * is set in the metadata for each page in the request.
1393 	 */
1394 	VM_OBJECT_WLOCK(object);
1395 	/* This could be implemented more efficiently with aflags */
1396 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1397 		ma[0]->oflags |= VPO_SWAPSLEEP;
1398 		VM_CNT_INC(v_intrans);
1399 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1400 		    "swread", hz * 20)) {
1401 			printf(
1402 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1403 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1404 		}
1405 	}
1406 	VM_OBJECT_WUNLOCK(object);
1407 
1408 	/*
1409 	 * If we had an unrecoverable read error pages will not be valid.
1410 	 */
1411 	for (i = 0; i < reqcount; i++)
1412 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1413 			return (VM_PAGER_ERROR);
1414 
1415 	return (VM_PAGER_OK);
1416 
1417 	/*
1418 	 * A final note: in a low swap situation, we cannot deallocate swap
1419 	 * and mark a page dirty here because the caller is likely to mark
1420 	 * the page clean when we return, causing the page to possibly revert
1421 	 * to all-zero's later.
1422 	 */
1423 }
1424 
1425 static int
1426 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1427     int *rbehind, int *rahead)
1428 {
1429 
1430 	VM_OBJECT_WLOCK(object);
1431 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1432 }
1433 
1434 /*
1435  * 	swap_pager_getpages_async():
1436  *
1437  *	Right now this is emulation of asynchronous operation on top of
1438  *	swap_pager_getpages().
1439  */
1440 static int
1441 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1442     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1443 {
1444 	int r, error;
1445 
1446 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1447 	switch (r) {
1448 	case VM_PAGER_OK:
1449 		error = 0;
1450 		break;
1451 	case VM_PAGER_ERROR:
1452 		error = EIO;
1453 		break;
1454 	case VM_PAGER_FAIL:
1455 		error = EINVAL;
1456 		break;
1457 	default:
1458 		panic("unhandled swap_pager_getpages() error %d", r);
1459 	}
1460 	(iodone)(arg, ma, count, error);
1461 
1462 	return (r);
1463 }
1464 
1465 /*
1466  *	swap_pager_putpages:
1467  *
1468  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1469  *
1470  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1471  *	vm_page reservation system coupled with properly written VFS devices
1472  *	should ensure that no low-memory deadlock occurs.  This is an area
1473  *	which needs work.
1474  *
1475  *	The parent has N vm_object_pip_add() references prior to
1476  *	calling us and will remove references for rtvals[] that are
1477  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1478  *	completion.
1479  *
1480  *	The parent has soft-busy'd the pages it passes us and will unbusy
1481  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1482  *	We need to unbusy the rest on I/O completion.
1483  */
1484 static void
1485 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1486     int flags, int *rtvals)
1487 {
1488 	struct buf *bp;
1489 	daddr_t addr, blk, n_free, s_free;
1490 	vm_page_t mreq;
1491 	int i, j, n;
1492 	bool async;
1493 
1494 	KASSERT(count == 0 || ma[0]->object == object,
1495 	    ("%s: object mismatch %p/%p",
1496 	    __func__, object, ma[0]->object));
1497 
1498 	VM_OBJECT_WUNLOCK(object);
1499 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1500 	swp_pager_init_freerange(&s_free, &n_free);
1501 
1502 	/*
1503 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1504 	 * The page is left dirty until the pageout operation completes
1505 	 * successfully.
1506 	 */
1507 	for (i = 0; i < count; i += n) {
1508 		/* Maximum I/O size is limited by maximum swap block size. */
1509 		n = min(count - i, nsw_cluster_max);
1510 
1511 		if (async) {
1512 			mtx_lock(&swbuf_mtx);
1513 			while (nsw_wcount_async == 0)
1514 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1515 				    "swbufa", 0);
1516 			nsw_wcount_async--;
1517 			mtx_unlock(&swbuf_mtx);
1518 		}
1519 
1520 		/* Get a block of swap of size up to size n. */
1521 		blk = swp_pager_getswapspace(&n);
1522 		if (blk == SWAPBLK_NONE) {
1523 			mtx_lock(&swbuf_mtx);
1524 			if (++nsw_wcount_async == 1)
1525 				wakeup(&nsw_wcount_async);
1526 			mtx_unlock(&swbuf_mtx);
1527 			for (j = 0; j < n; ++j)
1528 				rtvals[i + j] = VM_PAGER_FAIL;
1529 			continue;
1530 		}
1531 		VM_OBJECT_WLOCK(object);
1532 		for (j = 0; j < n; ++j) {
1533 			mreq = ma[i + j];
1534 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1535 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1536 			    blk + j);
1537 			if (addr != SWAPBLK_NONE)
1538 				swp_pager_update_freerange(&s_free, &n_free,
1539 				    addr);
1540 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1541 			mreq->oflags |= VPO_SWAPINPROG;
1542 		}
1543 		VM_OBJECT_WUNLOCK(object);
1544 
1545 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1546 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1547 		if (async)
1548 			bp->b_flags |= B_ASYNC;
1549 		bp->b_flags |= B_PAGING;
1550 		bp->b_iocmd = BIO_WRITE;
1551 
1552 		bp->b_rcred = crhold(thread0.td_ucred);
1553 		bp->b_wcred = crhold(thread0.td_ucred);
1554 		bp->b_bcount = PAGE_SIZE * n;
1555 		bp->b_bufsize = PAGE_SIZE * n;
1556 		bp->b_blkno = blk;
1557 		for (j = 0; j < n; j++)
1558 			bp->b_pages[j] = ma[i + j];
1559 		bp->b_npages = n;
1560 
1561 		/*
1562 		 * Must set dirty range for NFS to work.
1563 		 */
1564 		bp->b_dirtyoff = 0;
1565 		bp->b_dirtyend = bp->b_bcount;
1566 
1567 		VM_CNT_INC(v_swapout);
1568 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1569 
1570 		/*
1571 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1572 		 * can call the async completion routine at the end of a
1573 		 * synchronous I/O operation.  Otherwise, our caller would
1574 		 * perform duplicate unbusy and wakeup operations on the page
1575 		 * and object, respectively.
1576 		 */
1577 		for (j = 0; j < n; j++)
1578 			rtvals[i + j] = VM_PAGER_PEND;
1579 
1580 		/*
1581 		 * asynchronous
1582 		 *
1583 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1584 		 */
1585 		if (async) {
1586 			bp->b_iodone = swp_pager_async_iodone;
1587 			BUF_KERNPROC(bp);
1588 			swp_pager_strategy(bp);
1589 			continue;
1590 		}
1591 
1592 		/*
1593 		 * synchronous
1594 		 *
1595 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1596 		 */
1597 		bp->b_iodone = bdone;
1598 		swp_pager_strategy(bp);
1599 
1600 		/*
1601 		 * Wait for the sync I/O to complete.
1602 		 */
1603 		bwait(bp, PVM, "swwrt");
1604 
1605 		/*
1606 		 * Now that we are through with the bp, we can call the
1607 		 * normal async completion, which frees everything up.
1608 		 */
1609 		swp_pager_async_iodone(bp);
1610 	}
1611 	swp_pager_freeswapspace(s_free, n_free);
1612 	VM_OBJECT_WLOCK(object);
1613 }
1614 
1615 /*
1616  *	swp_pager_async_iodone:
1617  *
1618  *	Completion routine for asynchronous reads and writes from/to swap.
1619  *	Also called manually by synchronous code to finish up a bp.
1620  *
1621  *	This routine may not sleep.
1622  */
1623 static void
1624 swp_pager_async_iodone(struct buf *bp)
1625 {
1626 	int i;
1627 	vm_object_t object = NULL;
1628 
1629 	/*
1630 	 * Report error - unless we ran out of memory, in which case
1631 	 * we've already logged it in swapgeom_strategy().
1632 	 */
1633 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1634 		printf(
1635 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1636 			"size %ld, error %d\n",
1637 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1638 		    (long)bp->b_blkno,
1639 		    (long)bp->b_bcount,
1640 		    bp->b_error
1641 		);
1642 	}
1643 
1644 	/*
1645 	 * remove the mapping for kernel virtual
1646 	 */
1647 	if (buf_mapped(bp))
1648 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1649 	else
1650 		bp->b_data = bp->b_kvabase;
1651 
1652 	if (bp->b_npages) {
1653 		object = bp->b_pages[0]->object;
1654 		VM_OBJECT_WLOCK(object);
1655 	}
1656 
1657 	/*
1658 	 * cleanup pages.  If an error occurs writing to swap, we are in
1659 	 * very serious trouble.  If it happens to be a disk error, though,
1660 	 * we may be able to recover by reassigning the swap later on.  So
1661 	 * in this case we remove the m->swapblk assignment for the page
1662 	 * but do not free it in the rlist.  The errornous block(s) are thus
1663 	 * never reallocated as swap.  Redirty the page and continue.
1664 	 */
1665 	for (i = 0; i < bp->b_npages; ++i) {
1666 		vm_page_t m = bp->b_pages[i];
1667 
1668 		m->oflags &= ~VPO_SWAPINPROG;
1669 		if (m->oflags & VPO_SWAPSLEEP) {
1670 			m->oflags &= ~VPO_SWAPSLEEP;
1671 			wakeup(&object->handle);
1672 		}
1673 
1674 		/* We always have space after I/O, successful or not. */
1675 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1676 
1677 		if (bp->b_ioflags & BIO_ERROR) {
1678 			/*
1679 			 * If an error occurs I'd love to throw the swapblk
1680 			 * away without freeing it back to swapspace, so it
1681 			 * can never be used again.  But I can't from an
1682 			 * interrupt.
1683 			 */
1684 			if (bp->b_iocmd == BIO_READ) {
1685 				/*
1686 				 * NOTE: for reads, m->dirty will probably
1687 				 * be overridden by the original caller of
1688 				 * getpages so don't play cute tricks here.
1689 				 */
1690 				vm_page_invalid(m);
1691 			} else {
1692 				/*
1693 				 * If a write error occurs, reactivate page
1694 				 * so it doesn't clog the inactive list,
1695 				 * then finish the I/O.
1696 				 */
1697 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1698 
1699 				/* PQ_UNSWAPPABLE? */
1700 				vm_page_activate(m);
1701 				vm_page_sunbusy(m);
1702 			}
1703 		} else if (bp->b_iocmd == BIO_READ) {
1704 			/*
1705 			 * NOTE: for reads, m->dirty will probably be
1706 			 * overridden by the original caller of getpages so
1707 			 * we cannot set them in order to free the underlying
1708 			 * swap in a low-swap situation.  I don't think we'd
1709 			 * want to do that anyway, but it was an optimization
1710 			 * that existed in the old swapper for a time before
1711 			 * it got ripped out due to precisely this problem.
1712 			 */
1713 			KASSERT(!pmap_page_is_mapped(m),
1714 			    ("swp_pager_async_iodone: page %p is mapped", m));
1715 			KASSERT(m->dirty == 0,
1716 			    ("swp_pager_async_iodone: page %p is dirty", m));
1717 
1718 			vm_page_valid(m);
1719 			if (i < bp->b_pgbefore ||
1720 			    i >= bp->b_npages - bp->b_pgafter)
1721 				vm_page_readahead_finish(m);
1722 		} else {
1723 			/*
1724 			 * For write success, clear the dirty
1725 			 * status, then finish the I/O ( which decrements the
1726 			 * busy count and possibly wakes waiter's up ).
1727 			 * A page is only written to swap after a period of
1728 			 * inactivity.  Therefore, we do not expect it to be
1729 			 * reused.
1730 			 */
1731 			KASSERT(!pmap_page_is_write_mapped(m),
1732 			    ("swp_pager_async_iodone: page %p is not write"
1733 			    " protected", m));
1734 			vm_page_undirty(m);
1735 			vm_page_deactivate_noreuse(m);
1736 			vm_page_sunbusy(m);
1737 		}
1738 	}
1739 
1740 	/*
1741 	 * adjust pip.  NOTE: the original parent may still have its own
1742 	 * pip refs on the object.
1743 	 */
1744 	if (object != NULL) {
1745 		vm_object_pip_wakeupn(object, bp->b_npages);
1746 		VM_OBJECT_WUNLOCK(object);
1747 	}
1748 
1749 	/*
1750 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1751 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1752 	 * trigger a KASSERT in relpbuf().
1753 	 */
1754 	if (bp->b_vp) {
1755 		    bp->b_vp = NULL;
1756 		    bp->b_bufobj = NULL;
1757 	}
1758 	/*
1759 	 * release the physical I/O buffer
1760 	 */
1761 	if (bp->b_flags & B_ASYNC) {
1762 		mtx_lock(&swbuf_mtx);
1763 		if (++nsw_wcount_async == 1)
1764 			wakeup(&nsw_wcount_async);
1765 		mtx_unlock(&swbuf_mtx);
1766 	}
1767 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1768 }
1769 
1770 int
1771 swap_pager_nswapdev(void)
1772 {
1773 
1774 	return (nswapdev);
1775 }
1776 
1777 static void
1778 swp_pager_force_dirty(vm_page_t m)
1779 {
1780 
1781 	vm_page_dirty(m);
1782 	swap_pager_unswapped(m);
1783 	vm_page_launder(m);
1784 }
1785 
1786 u_long
1787 swap_pager_swapped_pages(vm_object_t object)
1788 {
1789 	struct swblk *sb;
1790 	vm_pindex_t pi;
1791 	u_long res;
1792 	int i;
1793 
1794 	VM_OBJECT_ASSERT_LOCKED(object);
1795 
1796 	if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
1797 		return (0);
1798 
1799 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1800 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1801 	    pi = sb->p + SWAP_META_PAGES) {
1802 		for (i = 0; i < SWAP_META_PAGES; i++) {
1803 			if (sb->d[i] != SWAPBLK_NONE)
1804 				res++;
1805 		}
1806 	}
1807 	return (res);
1808 }
1809 
1810 /*
1811  *	swap_pager_swapoff_object:
1812  *
1813  *	Page in all of the pages that have been paged out for an object
1814  *	to a swap device.
1815  */
1816 static void
1817 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1818 {
1819 	struct swblk *sb;
1820 	vm_page_t m;
1821 	vm_pindex_t pi;
1822 	daddr_t blk;
1823 	int i, nv, rahead, rv;
1824 
1825 	KASSERT((object->flags & OBJ_SWAP) != 0,
1826 	    ("%s: Object not swappable", __func__));
1827 
1828 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1829 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1830 		if ((object->flags & OBJ_DEAD) != 0) {
1831 			/*
1832 			 * Make sure that pending writes finish before
1833 			 * returning.
1834 			 */
1835 			vm_object_pip_wait(object, "swpoff");
1836 			swp_pager_meta_free_all(object);
1837 			break;
1838 		}
1839 		for (i = 0; i < SWAP_META_PAGES; i++) {
1840 			/*
1841 			 * Count the number of contiguous valid blocks.
1842 			 */
1843 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1844 				blk = sb->d[i + nv];
1845 				if (!swp_pager_isondev(blk, sp) ||
1846 				    blk == SWAPBLK_NONE)
1847 					break;
1848 			}
1849 			if (nv == 0)
1850 				continue;
1851 
1852 			/*
1853 			 * Look for a page corresponding to the first
1854 			 * valid block and ensure that any pending paging
1855 			 * operations on it are complete.  If the page is valid,
1856 			 * mark it dirty and free the swap block.  Try to batch
1857 			 * this operation since it may cause sp to be freed,
1858 			 * meaning that we must restart the scan.  Avoid busying
1859 			 * valid pages since we may block forever on kernel
1860 			 * stack pages.
1861 			 */
1862 			m = vm_page_lookup(object, sb->p + i);
1863 			if (m == NULL) {
1864 				m = vm_page_alloc(object, sb->p + i,
1865 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1866 				if (m == NULL)
1867 					break;
1868 			} else {
1869 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1870 					m->oflags |= VPO_SWAPSLEEP;
1871 					VM_OBJECT_SLEEP(object, &object->handle,
1872 					    PSWP, "swpoff", 0);
1873 					break;
1874 				}
1875 				if (vm_page_all_valid(m)) {
1876 					do {
1877 						swp_pager_force_dirty(m);
1878 					} while (--nv > 0 &&
1879 					    (m = vm_page_next(m)) != NULL &&
1880 					    vm_page_all_valid(m) &&
1881 					    (m->oflags & VPO_SWAPINPROG) == 0);
1882 					break;
1883 				}
1884 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1885 					break;
1886 			}
1887 
1888 			vm_object_pip_add(object, 1);
1889 			rahead = SWAP_META_PAGES;
1890 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1891 			    &rahead);
1892 			if (rv != VM_PAGER_OK)
1893 				panic("%s: read from swap failed: %d",
1894 				    __func__, rv);
1895 			vm_object_pip_wakeupn(object, 1);
1896 			VM_OBJECT_WLOCK(object);
1897 			vm_page_xunbusy(m);
1898 
1899 			/*
1900 			 * The object lock was dropped so we must restart the
1901 			 * scan of this swap block.  Pages paged in during this
1902 			 * iteration will be marked dirty in a future iteration.
1903 			 */
1904 			break;
1905 		}
1906 		if (i == SWAP_META_PAGES)
1907 			pi = sb->p + SWAP_META_PAGES;
1908 	}
1909 }
1910 
1911 /*
1912  *	swap_pager_swapoff:
1913  *
1914  *	Page in all of the pages that have been paged out to the
1915  *	given device.  The corresponding blocks in the bitmap must be
1916  *	marked as allocated and the device must be flagged SW_CLOSING.
1917  *	There may be no processes swapped out to the device.
1918  *
1919  *	This routine may block.
1920  */
1921 static void
1922 swap_pager_swapoff(struct swdevt *sp)
1923 {
1924 	vm_object_t object;
1925 	int retries;
1926 
1927 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1928 
1929 	retries = 0;
1930 full_rescan:
1931 	mtx_lock(&vm_object_list_mtx);
1932 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1933 		if ((object->flags & OBJ_SWAP) == 0)
1934 			continue;
1935 		mtx_unlock(&vm_object_list_mtx);
1936 		/* Depends on type-stability. */
1937 		VM_OBJECT_WLOCK(object);
1938 
1939 		/*
1940 		 * Dead objects are eventually terminated on their own.
1941 		 */
1942 		if ((object->flags & OBJ_DEAD) != 0)
1943 			goto next_obj;
1944 
1945 		/*
1946 		 * Sync with fences placed after pctrie
1947 		 * initialization.  We must not access pctrie below
1948 		 * unless we checked that our object is swap and not
1949 		 * dead.
1950 		 */
1951 		atomic_thread_fence_acq();
1952 		if ((object->flags & OBJ_SWAP) == 0)
1953 			goto next_obj;
1954 
1955 		swap_pager_swapoff_object(sp, object);
1956 next_obj:
1957 		VM_OBJECT_WUNLOCK(object);
1958 		mtx_lock(&vm_object_list_mtx);
1959 	}
1960 	mtx_unlock(&vm_object_list_mtx);
1961 
1962 	if (sp->sw_used) {
1963 		/*
1964 		 * Objects may be locked or paging to the device being
1965 		 * removed, so we will miss their pages and need to
1966 		 * make another pass.  We have marked this device as
1967 		 * SW_CLOSING, so the activity should finish soon.
1968 		 */
1969 		retries++;
1970 		if (retries > 100) {
1971 			panic("swapoff: failed to locate %d swap blocks",
1972 			    sp->sw_used);
1973 		}
1974 		pause("swpoff", hz / 20);
1975 		goto full_rescan;
1976 	}
1977 	EVENTHANDLER_INVOKE(swapoff, sp);
1978 }
1979 
1980 /************************************************************************
1981  *				SWAP META DATA 				*
1982  ************************************************************************
1983  *
1984  *	These routines manipulate the swap metadata stored in the
1985  *	OBJT_SWAP object.
1986  *
1987  *	Swap metadata is implemented with a global hash and not directly
1988  *	linked into the object.  Instead the object simply contains
1989  *	appropriate tracking counters.
1990  */
1991 
1992 /*
1993  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1994  */
1995 static bool
1996 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1997 {
1998 	int i;
1999 
2000 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2001 	for (i = start; i < limit; i++) {
2002 		if (sb->d[i] != SWAPBLK_NONE)
2003 			return (false);
2004 	}
2005 	return (true);
2006 }
2007 
2008 /*
2009  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2010  *
2011  *  Nothing is done if the block is still in use.
2012  */
2013 static void
2014 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2015 {
2016 
2017 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2018 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2019 		uma_zfree(swblk_zone, sb);
2020 	}
2021 }
2022 
2023 /*
2024  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2025  *
2026  *	The specified swapblk is added to the object's swap metadata.  If
2027  *	the swapblk is not valid, it is freed instead.  Any previously
2028  *	assigned swapblk is returned.
2029  */
2030 static daddr_t
2031 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2032 {
2033 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2034 	struct swblk *sb, *sb1;
2035 	vm_pindex_t modpi, rdpi;
2036 	daddr_t prev_swapblk;
2037 	int error, i;
2038 
2039 	VM_OBJECT_ASSERT_WLOCKED(object);
2040 
2041 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2042 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2043 	if (sb == NULL) {
2044 		if (swapblk == SWAPBLK_NONE)
2045 			return (SWAPBLK_NONE);
2046 		for (;;) {
2047 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2048 			    pageproc ? M_USE_RESERVE : 0));
2049 			if (sb != NULL) {
2050 				sb->p = rdpi;
2051 				for (i = 0; i < SWAP_META_PAGES; i++)
2052 					sb->d[i] = SWAPBLK_NONE;
2053 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2054 				    1, 0))
2055 					printf("swblk zone ok\n");
2056 				break;
2057 			}
2058 			VM_OBJECT_WUNLOCK(object);
2059 			if (uma_zone_exhausted(swblk_zone)) {
2060 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2061 				    0, 1))
2062 					printf("swap blk zone exhausted, "
2063 					    "increase kern.maxswzone\n");
2064 				vm_pageout_oom(VM_OOM_SWAPZ);
2065 				pause("swzonxb", 10);
2066 			} else
2067 				uma_zwait(swblk_zone);
2068 			VM_OBJECT_WLOCK(object);
2069 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2070 			    rdpi);
2071 			if (sb != NULL)
2072 				/*
2073 				 * Somebody swapped out a nearby page,
2074 				 * allocating swblk at the rdpi index,
2075 				 * while we dropped the object lock.
2076 				 */
2077 				goto allocated;
2078 		}
2079 		for (;;) {
2080 			error = SWAP_PCTRIE_INSERT(
2081 			    &object->un_pager.swp.swp_blks, sb);
2082 			if (error == 0) {
2083 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2084 				    1, 0))
2085 					printf("swpctrie zone ok\n");
2086 				break;
2087 			}
2088 			VM_OBJECT_WUNLOCK(object);
2089 			if (uma_zone_exhausted(swpctrie_zone)) {
2090 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2091 				    0, 1))
2092 					printf("swap pctrie zone exhausted, "
2093 					    "increase kern.maxswzone\n");
2094 				vm_pageout_oom(VM_OOM_SWAPZ);
2095 				pause("swzonxp", 10);
2096 			} else
2097 				uma_zwait(swpctrie_zone);
2098 			VM_OBJECT_WLOCK(object);
2099 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2100 			    rdpi);
2101 			if (sb1 != NULL) {
2102 				uma_zfree(swblk_zone, sb);
2103 				sb = sb1;
2104 				goto allocated;
2105 			}
2106 		}
2107 	}
2108 allocated:
2109 	MPASS(sb->p == rdpi);
2110 
2111 	modpi = pindex % SWAP_META_PAGES;
2112 	/* Return prior contents of metadata. */
2113 	prev_swapblk = sb->d[modpi];
2114 	/* Enter block into metadata. */
2115 	sb->d[modpi] = swapblk;
2116 
2117 	/*
2118 	 * Free the swblk if we end up with the empty page run.
2119 	 */
2120 	if (swapblk == SWAPBLK_NONE)
2121 		swp_pager_free_empty_swblk(object, sb);
2122 	return (prev_swapblk);
2123 }
2124 
2125 /*
2126  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2127  * metadata, or transfer it into dstobject.
2128  *
2129  *	This routine will free swap metadata structures as they are cleaned
2130  *	out.
2131  */
2132 static void
2133 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2134     vm_pindex_t pindex, vm_pindex_t count, vm_size_t *moved)
2135 {
2136 	struct swblk *sb;
2137 	vm_page_t m;
2138 	daddr_t n_free, s_free;
2139 	vm_pindex_t offset, last;
2140 	vm_size_t mc;
2141 	int i, limit, start;
2142 
2143 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2144 	MPASS(moved == NULL || dstobject == NULL);
2145 
2146 	mc = 0;
2147 	m = NULL;
2148 	if (count == 0 || pctrie_is_empty(&srcobject->un_pager.swp.swp_blks))
2149 		goto out;
2150 
2151 	swp_pager_init_freerange(&s_free, &n_free);
2152 	offset = pindex;
2153 	last = pindex + count;
2154 	for (;;) {
2155 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2156 		    rounddown(pindex, SWAP_META_PAGES));
2157 		if (sb == NULL || sb->p >= last)
2158 			break;
2159 		start = pindex > sb->p ? pindex - sb->p : 0;
2160 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2161 		    SWAP_META_PAGES;
2162 		for (i = start; i < limit; i++) {
2163 			if (sb->d[i] == SWAPBLK_NONE)
2164 				continue;
2165 			if (dstobject == NULL ||
2166 			    !swp_pager_xfer_source(srcobject, dstobject,
2167 			    sb->p + i - offset, sb->d[i])) {
2168 				swp_pager_update_freerange(&s_free, &n_free,
2169 				    sb->d[i]);
2170 			}
2171 			if (moved != NULL) {
2172 				if (m != NULL && m->pindex != pindex + i - 1)
2173 					m = NULL;
2174 				m = m != NULL ? vm_page_next(m) :
2175 				    vm_page_lookup(srcobject, pindex + i);
2176 				if (m == NULL || vm_page_none_valid(m))
2177 					mc++;
2178 			}
2179 			sb->d[i] = SWAPBLK_NONE;
2180 		}
2181 		pindex = sb->p + SWAP_META_PAGES;
2182 		if (swp_pager_swblk_empty(sb, 0, start) &&
2183 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2184 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2185 			    sb->p);
2186 			uma_zfree(swblk_zone, sb);
2187 		}
2188 	}
2189 	swp_pager_freeswapspace(s_free, n_free);
2190 out:
2191 	if (moved != NULL)
2192 		*moved = mc;
2193 }
2194 
2195 /*
2196  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2197  *
2198  *	The requested range of blocks is freed, with any associated swap
2199  *	returned to the swap bitmap.
2200  *
2201  *	This routine will free swap metadata structures as they are cleaned
2202  *	out.  This routine does *NOT* operate on swap metadata associated
2203  *	with resident pages.
2204  */
2205 static void
2206 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count,
2207     vm_size_t *freed)
2208 {
2209 	swp_pager_meta_transfer(object, NULL, pindex, count, freed);
2210 }
2211 
2212 /*
2213  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2214  *
2215  *	This routine locates and destroys all swap metadata associated with
2216  *	an object.
2217  */
2218 static void
2219 swp_pager_meta_free_all(vm_object_t object)
2220 {
2221 	struct swblk *sb;
2222 	daddr_t n_free, s_free;
2223 	vm_pindex_t pindex;
2224 	int i;
2225 
2226 	VM_OBJECT_ASSERT_WLOCKED(object);
2227 
2228 	if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
2229 		return;
2230 
2231 	swp_pager_init_freerange(&s_free, &n_free);
2232 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2233 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2234 		pindex = sb->p + SWAP_META_PAGES;
2235 		for (i = 0; i < SWAP_META_PAGES; i++) {
2236 			if (sb->d[i] == SWAPBLK_NONE)
2237 				continue;
2238 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2239 		}
2240 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2241 		uma_zfree(swblk_zone, sb);
2242 	}
2243 	swp_pager_freeswapspace(s_free, n_free);
2244 }
2245 
2246 /*
2247  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2248  *
2249  *	This routine is capable of looking up, or removing swapblk
2250  *	assignments in the swap meta data.  It returns the swapblk being
2251  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2252  *
2253  *	When acting on a busy resident page and paging is in progress, we
2254  *	have to wait until paging is complete but otherwise can act on the
2255  *	busy page.
2256  */
2257 static daddr_t
2258 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2259 {
2260 	struct swblk *sb;
2261 
2262 	VM_OBJECT_ASSERT_LOCKED(object);
2263 
2264 	/*
2265 	 * The meta data only exists if the object is OBJT_SWAP
2266 	 * and even then might not be allocated yet.
2267 	 */
2268 	KASSERT((object->flags & OBJ_SWAP) != 0,
2269 	    ("Lookup object not swappable"));
2270 
2271 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2272 	    rounddown(pindex, SWAP_META_PAGES));
2273 	if (sb == NULL)
2274 		return (SWAPBLK_NONE);
2275 	return (sb->d[pindex % SWAP_META_PAGES]);
2276 }
2277 
2278 /*
2279  * Returns the least page index which is greater than or equal to the
2280  * parameter pindex and for which there is a swap block allocated.
2281  * Returns object's size if the object's type is not swap or if there
2282  * are no allocated swap blocks for the object after the requested
2283  * pindex.
2284  */
2285 vm_pindex_t
2286 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2287 {
2288 	struct swblk *sb;
2289 	int i;
2290 
2291 	VM_OBJECT_ASSERT_LOCKED(object);
2292 	MPASS((object->flags & OBJ_SWAP) != 0);
2293 
2294 	if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
2295 		return (object->size);
2296 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2297 	    rounddown(pindex, SWAP_META_PAGES));
2298 	if (sb == NULL)
2299 		return (object->size);
2300 	if (sb->p < pindex) {
2301 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2302 			if (sb->d[i] != SWAPBLK_NONE)
2303 				return (sb->p + i);
2304 		}
2305 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2306 		    roundup(pindex, SWAP_META_PAGES));
2307 		if (sb == NULL)
2308 			return (object->size);
2309 	}
2310 	for (i = 0; i < SWAP_META_PAGES; i++) {
2311 		if (sb->d[i] != SWAPBLK_NONE)
2312 			return (sb->p + i);
2313 	}
2314 
2315 	/*
2316 	 * We get here if a swblk is present in the trie but it
2317 	 * doesn't map any blocks.
2318 	 */
2319 	MPASS(0);
2320 	return (object->size);
2321 }
2322 
2323 /*
2324  * System call swapon(name) enables swapping on device name,
2325  * which must be in the swdevsw.  Return EBUSY
2326  * if already swapping on this device.
2327  */
2328 #ifndef _SYS_SYSPROTO_H_
2329 struct swapon_args {
2330 	char *name;
2331 };
2332 #endif
2333 
2334 int
2335 sys_swapon(struct thread *td, struct swapon_args *uap)
2336 {
2337 	struct vattr attr;
2338 	struct vnode *vp;
2339 	struct nameidata nd;
2340 	int error;
2341 
2342 	error = priv_check(td, PRIV_SWAPON);
2343 	if (error)
2344 		return (error);
2345 
2346 	sx_xlock(&swdev_syscall_lock);
2347 
2348 	/*
2349 	 * Swap metadata may not fit in the KVM if we have physical
2350 	 * memory of >1GB.
2351 	 */
2352 	if (swblk_zone == NULL) {
2353 		error = ENOMEM;
2354 		goto done;
2355 	}
2356 
2357 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
2358 	    UIO_USERSPACE, uap->name);
2359 	error = namei(&nd);
2360 	if (error)
2361 		goto done;
2362 
2363 	NDFREE_PNBUF(&nd);
2364 	vp = nd.ni_vp;
2365 
2366 	if (vn_isdisk_error(vp, &error)) {
2367 		error = swapongeom(vp);
2368 	} else if (vp->v_type == VREG &&
2369 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2370 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2371 		/*
2372 		 * Allow direct swapping to NFS regular files in the same
2373 		 * way that nfs_mountroot() sets up diskless swapping.
2374 		 */
2375 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2376 	}
2377 
2378 	if (error != 0)
2379 		vput(vp);
2380 	else
2381 		VOP_UNLOCK(vp);
2382 done:
2383 	sx_xunlock(&swdev_syscall_lock);
2384 	return (error);
2385 }
2386 
2387 /*
2388  * Check that the total amount of swap currently configured does not
2389  * exceed half the theoretical maximum.  If it does, print a warning
2390  * message.
2391  */
2392 static void
2393 swapon_check_swzone(void)
2394 {
2395 
2396 	/* recommend using no more than half that amount */
2397 	if (swap_total > swap_maxpages / 2) {
2398 		printf("warning: total configured swap (%lu pages) "
2399 		    "exceeds maximum recommended amount (%lu pages).\n",
2400 		    swap_total, swap_maxpages / 2);
2401 		printf("warning: increase kern.maxswzone "
2402 		    "or reduce amount of swap.\n");
2403 	}
2404 }
2405 
2406 static void
2407 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2408     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2409 {
2410 	struct swdevt *sp, *tsp;
2411 	daddr_t dvbase;
2412 
2413 	/*
2414 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2415 	 * First chop nblks off to page-align it, then convert.
2416 	 *
2417 	 * sw->sw_nblks is in page-sized chunks now too.
2418 	 */
2419 	nblks &= ~(ctodb(1) - 1);
2420 	nblks = dbtoc(nblks);
2421 
2422 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2423 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2424 	sp->sw_vp = vp;
2425 	sp->sw_id = id;
2426 	sp->sw_dev = dev;
2427 	sp->sw_nblks = nblks;
2428 	sp->sw_used = 0;
2429 	sp->sw_strategy = strategy;
2430 	sp->sw_close = close;
2431 	sp->sw_flags = flags;
2432 
2433 	/*
2434 	 * Do not free the first blocks in order to avoid overwriting
2435 	 * any bsd label at the front of the partition
2436 	 */
2437 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2438 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2439 
2440 	dvbase = 0;
2441 	mtx_lock(&sw_dev_mtx);
2442 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2443 		if (tsp->sw_end >= dvbase) {
2444 			/*
2445 			 * We put one uncovered page between the devices
2446 			 * in order to definitively prevent any cross-device
2447 			 * I/O requests
2448 			 */
2449 			dvbase = tsp->sw_end + 1;
2450 		}
2451 	}
2452 	sp->sw_first = dvbase;
2453 	sp->sw_end = dvbase + nblks;
2454 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2455 	nswapdev++;
2456 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2457 	swap_total += nblks;
2458 	swapon_check_swzone();
2459 	swp_sizecheck();
2460 	mtx_unlock(&sw_dev_mtx);
2461 	EVENTHANDLER_INVOKE(swapon, sp);
2462 }
2463 
2464 /*
2465  * SYSCALL: swapoff(devname)
2466  *
2467  * Disable swapping on the given device.
2468  *
2469  * XXX: Badly designed system call: it should use a device index
2470  * rather than filename as specification.  We keep sw_vp around
2471  * only to make this work.
2472  */
2473 static int
2474 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg,
2475     u_int flags)
2476 {
2477 	struct vnode *vp;
2478 	struct nameidata nd;
2479 	struct swdevt *sp;
2480 	int error;
2481 
2482 	error = priv_check(td, PRIV_SWAPOFF);
2483 	if (error != 0)
2484 		return (error);
2485 	if ((flags & ~(SWAPOFF_FORCE)) != 0)
2486 		return (EINVAL);
2487 
2488 	sx_xlock(&swdev_syscall_lock);
2489 
2490 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name);
2491 	error = namei(&nd);
2492 	if (error)
2493 		goto done;
2494 	NDFREE_PNBUF(&nd);
2495 	vp = nd.ni_vp;
2496 
2497 	mtx_lock(&sw_dev_mtx);
2498 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2499 		if (sp->sw_vp == vp)
2500 			break;
2501 	}
2502 	mtx_unlock(&sw_dev_mtx);
2503 	if (sp == NULL) {
2504 		error = EINVAL;
2505 		goto done;
2506 	}
2507 	error = swapoff_one(sp, td->td_ucred, flags);
2508 done:
2509 	sx_xunlock(&swdev_syscall_lock);
2510 	return (error);
2511 }
2512 
2513 
2514 #ifdef COMPAT_FREEBSD13
2515 int
2516 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap)
2517 {
2518 	return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0));
2519 }
2520 #endif
2521 
2522 int
2523 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2524 {
2525 	return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags));
2526 }
2527 
2528 static int
2529 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags)
2530 {
2531 	u_long nblks;
2532 #ifdef MAC
2533 	int error;
2534 #endif
2535 
2536 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2537 #ifdef MAC
2538 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2539 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2540 	(void) VOP_UNLOCK(sp->sw_vp);
2541 	if (error != 0)
2542 		return (error);
2543 #endif
2544 	nblks = sp->sw_nblks;
2545 
2546 	/*
2547 	 * We can turn off this swap device safely only if the
2548 	 * available virtual memory in the system will fit the amount
2549 	 * of data we will have to page back in, plus an epsilon so
2550 	 * the system doesn't become critically low on swap space.
2551 	 * The vm_free_count() part does not account e.g. for clean
2552 	 * pages that can be immediately reclaimed without paging, so
2553 	 * this is a very rough estimation.
2554 	 *
2555 	 * On the other hand, not turning swap off on swapoff_all()
2556 	 * means that we can lose swap data when filesystems go away,
2557 	 * which is arguably worse.
2558 	 */
2559 	if ((flags & SWAPOFF_FORCE) == 0 &&
2560 	    vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2561 		return (ENOMEM);
2562 
2563 	/*
2564 	 * Prevent further allocations on this device.
2565 	 */
2566 	mtx_lock(&sw_dev_mtx);
2567 	sp->sw_flags |= SW_CLOSING;
2568 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2569 	swap_total -= nblks;
2570 	mtx_unlock(&sw_dev_mtx);
2571 
2572 	/*
2573 	 * Page in the contents of the device and close it.
2574 	 */
2575 	swap_pager_swapoff(sp);
2576 
2577 	sp->sw_close(curthread, sp);
2578 	mtx_lock(&sw_dev_mtx);
2579 	sp->sw_id = NULL;
2580 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2581 	nswapdev--;
2582 	if (nswapdev == 0) {
2583 		swap_pager_full = 2;
2584 		swap_pager_almost_full = 1;
2585 	}
2586 	if (swdevhd == sp)
2587 		swdevhd = NULL;
2588 	mtx_unlock(&sw_dev_mtx);
2589 	blist_destroy(sp->sw_blist);
2590 	free(sp, M_VMPGDATA);
2591 	return (0);
2592 }
2593 
2594 void
2595 swapoff_all(void)
2596 {
2597 	struct swdevt *sp, *spt;
2598 	const char *devname;
2599 	int error;
2600 
2601 	sx_xlock(&swdev_syscall_lock);
2602 
2603 	mtx_lock(&sw_dev_mtx);
2604 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2605 		mtx_unlock(&sw_dev_mtx);
2606 		if (vn_isdisk(sp->sw_vp))
2607 			devname = devtoname(sp->sw_vp->v_rdev);
2608 		else
2609 			devname = "[file]";
2610 		error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE);
2611 		if (error != 0) {
2612 			printf("Cannot remove swap device %s (error=%d), "
2613 			    "skipping.\n", devname, error);
2614 		} else if (bootverbose) {
2615 			printf("Swap device %s removed.\n", devname);
2616 		}
2617 		mtx_lock(&sw_dev_mtx);
2618 	}
2619 	mtx_unlock(&sw_dev_mtx);
2620 
2621 	sx_xunlock(&swdev_syscall_lock);
2622 }
2623 
2624 void
2625 swap_pager_status(int *total, int *used)
2626 {
2627 
2628 	*total = swap_total;
2629 	*used = swap_total - swap_pager_avail -
2630 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2631 }
2632 
2633 int
2634 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2635 {
2636 	struct swdevt *sp;
2637 	const char *tmp_devname;
2638 	int error, n;
2639 
2640 	n = 0;
2641 	error = ENOENT;
2642 	mtx_lock(&sw_dev_mtx);
2643 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2644 		if (n != name) {
2645 			n++;
2646 			continue;
2647 		}
2648 		xs->xsw_version = XSWDEV_VERSION;
2649 		xs->xsw_dev = sp->sw_dev;
2650 		xs->xsw_flags = sp->sw_flags;
2651 		xs->xsw_nblks = sp->sw_nblks;
2652 		xs->xsw_used = sp->sw_used;
2653 		if (devname != NULL) {
2654 			if (vn_isdisk(sp->sw_vp))
2655 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2656 			else
2657 				tmp_devname = "[file]";
2658 			strncpy(devname, tmp_devname, len);
2659 		}
2660 		error = 0;
2661 		break;
2662 	}
2663 	mtx_unlock(&sw_dev_mtx);
2664 	return (error);
2665 }
2666 
2667 #if defined(COMPAT_FREEBSD11)
2668 #define XSWDEV_VERSION_11	1
2669 struct xswdev11 {
2670 	u_int	xsw_version;
2671 	uint32_t xsw_dev;
2672 	int	xsw_flags;
2673 	int	xsw_nblks;
2674 	int     xsw_used;
2675 };
2676 #endif
2677 
2678 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2679 struct xswdev32 {
2680 	u_int	xsw_version;
2681 	u_int	xsw_dev1, xsw_dev2;
2682 	int	xsw_flags;
2683 	int	xsw_nblks;
2684 	int     xsw_used;
2685 };
2686 #endif
2687 
2688 static int
2689 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2690 {
2691 	struct xswdev xs;
2692 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2693 	struct xswdev32 xs32;
2694 #endif
2695 #if defined(COMPAT_FREEBSD11)
2696 	struct xswdev11 xs11;
2697 #endif
2698 	int error;
2699 
2700 	if (arg2 != 1)			/* name length */
2701 		return (EINVAL);
2702 
2703 	memset(&xs, 0, sizeof(xs));
2704 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2705 	if (error != 0)
2706 		return (error);
2707 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2708 	if (req->oldlen == sizeof(xs32)) {
2709 		memset(&xs32, 0, sizeof(xs32));
2710 		xs32.xsw_version = XSWDEV_VERSION;
2711 		xs32.xsw_dev1 = xs.xsw_dev;
2712 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2713 		xs32.xsw_flags = xs.xsw_flags;
2714 		xs32.xsw_nblks = xs.xsw_nblks;
2715 		xs32.xsw_used = xs.xsw_used;
2716 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2717 		return (error);
2718 	}
2719 #endif
2720 #if defined(COMPAT_FREEBSD11)
2721 	if (req->oldlen == sizeof(xs11)) {
2722 		memset(&xs11, 0, sizeof(xs11));
2723 		xs11.xsw_version = XSWDEV_VERSION_11;
2724 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2725 		xs11.xsw_flags = xs.xsw_flags;
2726 		xs11.xsw_nblks = xs.xsw_nblks;
2727 		xs11.xsw_used = xs.xsw_used;
2728 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2729 		return (error);
2730 	}
2731 #endif
2732 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2733 	return (error);
2734 }
2735 
2736 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2737     "Number of swap devices");
2738 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2739     sysctl_vm_swap_info,
2740     "Swap statistics by device");
2741 
2742 /*
2743  * Count the approximate swap usage in pages for a vmspace.  The
2744  * shadowed or not yet copied on write swap blocks are not accounted.
2745  * The map must be locked.
2746  */
2747 long
2748 vmspace_swap_count(struct vmspace *vmspace)
2749 {
2750 	vm_map_t map;
2751 	vm_map_entry_t cur;
2752 	vm_object_t object;
2753 	struct swblk *sb;
2754 	vm_pindex_t e, pi;
2755 	long count;
2756 	int i;
2757 
2758 	map = &vmspace->vm_map;
2759 	count = 0;
2760 
2761 	VM_MAP_ENTRY_FOREACH(cur, map) {
2762 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2763 			continue;
2764 		object = cur->object.vm_object;
2765 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2766 			continue;
2767 		VM_OBJECT_RLOCK(object);
2768 		if ((object->flags & OBJ_SWAP) == 0)
2769 			goto unlock;
2770 		pi = OFF_TO_IDX(cur->offset);
2771 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2772 		for (;; pi = sb->p + SWAP_META_PAGES) {
2773 			sb = SWAP_PCTRIE_LOOKUP_GE(
2774 			    &object->un_pager.swp.swp_blks, pi);
2775 			if (sb == NULL || sb->p >= e)
2776 				break;
2777 			for (i = 0; i < SWAP_META_PAGES; i++) {
2778 				if (sb->p + i < e &&
2779 				    sb->d[i] != SWAPBLK_NONE)
2780 					count++;
2781 			}
2782 		}
2783 unlock:
2784 		VM_OBJECT_RUNLOCK(object);
2785 	}
2786 	return (count);
2787 }
2788 
2789 /*
2790  * GEOM backend
2791  *
2792  * Swapping onto disk devices.
2793  *
2794  */
2795 
2796 static g_orphan_t swapgeom_orphan;
2797 
2798 static struct g_class g_swap_class = {
2799 	.name = "SWAP",
2800 	.version = G_VERSION,
2801 	.orphan = swapgeom_orphan,
2802 };
2803 
2804 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2805 
2806 static void
2807 swapgeom_close_ev(void *arg, int flags)
2808 {
2809 	struct g_consumer *cp;
2810 
2811 	cp = arg;
2812 	g_access(cp, -1, -1, 0);
2813 	g_detach(cp);
2814 	g_destroy_consumer(cp);
2815 }
2816 
2817 /*
2818  * Add a reference to the g_consumer for an inflight transaction.
2819  */
2820 static void
2821 swapgeom_acquire(struct g_consumer *cp)
2822 {
2823 
2824 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2825 	cp->index++;
2826 }
2827 
2828 /*
2829  * Remove a reference from the g_consumer.  Post a close event if all
2830  * references go away, since the function might be called from the
2831  * biodone context.
2832  */
2833 static void
2834 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2835 {
2836 
2837 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2838 	cp->index--;
2839 	if (cp->index == 0) {
2840 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2841 			sp->sw_id = NULL;
2842 	}
2843 }
2844 
2845 static void
2846 swapgeom_done(struct bio *bp2)
2847 {
2848 	struct swdevt *sp;
2849 	struct buf *bp;
2850 	struct g_consumer *cp;
2851 
2852 	bp = bp2->bio_caller2;
2853 	cp = bp2->bio_from;
2854 	bp->b_ioflags = bp2->bio_flags;
2855 	if (bp2->bio_error)
2856 		bp->b_ioflags |= BIO_ERROR;
2857 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2858 	bp->b_error = bp2->bio_error;
2859 	bp->b_caller1 = NULL;
2860 	bufdone(bp);
2861 	sp = bp2->bio_caller1;
2862 	mtx_lock(&sw_dev_mtx);
2863 	swapgeom_release(cp, sp);
2864 	mtx_unlock(&sw_dev_mtx);
2865 	g_destroy_bio(bp2);
2866 }
2867 
2868 static void
2869 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2870 {
2871 	struct bio *bio;
2872 	struct g_consumer *cp;
2873 
2874 	mtx_lock(&sw_dev_mtx);
2875 	cp = sp->sw_id;
2876 	if (cp == NULL) {
2877 		mtx_unlock(&sw_dev_mtx);
2878 		bp->b_error = ENXIO;
2879 		bp->b_ioflags |= BIO_ERROR;
2880 		bufdone(bp);
2881 		return;
2882 	}
2883 	swapgeom_acquire(cp);
2884 	mtx_unlock(&sw_dev_mtx);
2885 	if (bp->b_iocmd == BIO_WRITE)
2886 		bio = g_new_bio();
2887 	else
2888 		bio = g_alloc_bio();
2889 	if (bio == NULL) {
2890 		mtx_lock(&sw_dev_mtx);
2891 		swapgeom_release(cp, sp);
2892 		mtx_unlock(&sw_dev_mtx);
2893 		bp->b_error = ENOMEM;
2894 		bp->b_ioflags |= BIO_ERROR;
2895 		printf("swap_pager: cannot allocate bio\n");
2896 		bufdone(bp);
2897 		return;
2898 	}
2899 
2900 	bp->b_caller1 = bio;
2901 	bio->bio_caller1 = sp;
2902 	bio->bio_caller2 = bp;
2903 	bio->bio_cmd = bp->b_iocmd;
2904 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2905 	bio->bio_length = bp->b_bcount;
2906 	bio->bio_done = swapgeom_done;
2907 	bio->bio_flags |= BIO_SWAP;
2908 	if (!buf_mapped(bp)) {
2909 		bio->bio_ma = bp->b_pages;
2910 		bio->bio_data = unmapped_buf;
2911 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2912 		bio->bio_ma_n = bp->b_npages;
2913 		bio->bio_flags |= BIO_UNMAPPED;
2914 	} else {
2915 		bio->bio_data = bp->b_data;
2916 		bio->bio_ma = NULL;
2917 	}
2918 	g_io_request(bio, cp);
2919 	return;
2920 }
2921 
2922 static void
2923 swapgeom_orphan(struct g_consumer *cp)
2924 {
2925 	struct swdevt *sp;
2926 	int destroy;
2927 
2928 	mtx_lock(&sw_dev_mtx);
2929 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2930 		if (sp->sw_id == cp) {
2931 			sp->sw_flags |= SW_CLOSING;
2932 			break;
2933 		}
2934 	}
2935 	/*
2936 	 * Drop reference we were created with. Do directly since we're in a
2937 	 * special context where we don't have to queue the call to
2938 	 * swapgeom_close_ev().
2939 	 */
2940 	cp->index--;
2941 	destroy = ((sp != NULL) && (cp->index == 0));
2942 	if (destroy)
2943 		sp->sw_id = NULL;
2944 	mtx_unlock(&sw_dev_mtx);
2945 	if (destroy)
2946 		swapgeom_close_ev(cp, 0);
2947 }
2948 
2949 static void
2950 swapgeom_close(struct thread *td, struct swdevt *sw)
2951 {
2952 	struct g_consumer *cp;
2953 
2954 	mtx_lock(&sw_dev_mtx);
2955 	cp = sw->sw_id;
2956 	sw->sw_id = NULL;
2957 	mtx_unlock(&sw_dev_mtx);
2958 
2959 	/*
2960 	 * swapgeom_close() may be called from the biodone context,
2961 	 * where we cannot perform topology changes.  Delegate the
2962 	 * work to the events thread.
2963 	 */
2964 	if (cp != NULL)
2965 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2966 }
2967 
2968 static int
2969 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2970 {
2971 	struct g_provider *pp;
2972 	struct g_consumer *cp;
2973 	static struct g_geom *gp;
2974 	struct swdevt *sp;
2975 	u_long nblks;
2976 	int error;
2977 
2978 	pp = g_dev_getprovider(dev);
2979 	if (pp == NULL)
2980 		return (ENODEV);
2981 	mtx_lock(&sw_dev_mtx);
2982 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2983 		cp = sp->sw_id;
2984 		if (cp != NULL && cp->provider == pp) {
2985 			mtx_unlock(&sw_dev_mtx);
2986 			return (EBUSY);
2987 		}
2988 	}
2989 	mtx_unlock(&sw_dev_mtx);
2990 	if (gp == NULL)
2991 		gp = g_new_geomf(&g_swap_class, "swap");
2992 	cp = g_new_consumer(gp);
2993 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2994 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2995 	g_attach(cp, pp);
2996 	/*
2997 	 * XXX: Every time you think you can improve the margin for
2998 	 * footshooting, somebody depends on the ability to do so:
2999 	 * savecore(8) wants to write to our swapdev so we cannot
3000 	 * set an exclusive count :-(
3001 	 */
3002 	error = g_access(cp, 1, 1, 0);
3003 	if (error != 0) {
3004 		g_detach(cp);
3005 		g_destroy_consumer(cp);
3006 		return (error);
3007 	}
3008 	nblks = pp->mediasize / DEV_BSIZE;
3009 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
3010 	    swapgeom_close, dev2udev(dev),
3011 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3012 	return (0);
3013 }
3014 
3015 static int
3016 swapongeom(struct vnode *vp)
3017 {
3018 	int error;
3019 
3020 	ASSERT_VOP_ELOCKED(vp, "swapongeom");
3021 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3022 		error = ENOENT;
3023 	} else {
3024 		g_topology_lock();
3025 		error = swapongeom_locked(vp->v_rdev, vp);
3026 		g_topology_unlock();
3027 	}
3028 	return (error);
3029 }
3030 
3031 /*
3032  * VNODE backend
3033  *
3034  * This is used mainly for network filesystem (read: probably only tested
3035  * with NFS) swapfiles.
3036  *
3037  */
3038 
3039 static void
3040 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3041 {
3042 	struct vnode *vp2;
3043 
3044 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3045 
3046 	vp2 = sp->sw_id;
3047 	vhold(vp2);
3048 	if (bp->b_iocmd == BIO_WRITE) {
3049 		vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3050 		if (bp->b_bufobj)
3051 			bufobj_wdrop(bp->b_bufobj);
3052 		bufobj_wref(&vp2->v_bufobj);
3053 	} else {
3054 		vn_lock(vp2, LK_SHARED | LK_RETRY);
3055 	}
3056 	if (bp->b_bufobj != &vp2->v_bufobj)
3057 		bp->b_bufobj = &vp2->v_bufobj;
3058 	bp->b_vp = vp2;
3059 	bp->b_iooffset = dbtob(bp->b_blkno);
3060 	bstrategy(bp);
3061 	VOP_UNLOCK(vp2);
3062 }
3063 
3064 static void
3065 swapdev_close(struct thread *td, struct swdevt *sp)
3066 {
3067 	struct vnode *vp;
3068 
3069 	vp = sp->sw_vp;
3070 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3071 	VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3072 	vput(vp);
3073 }
3074 
3075 static int
3076 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3077 {
3078 	struct swdevt *sp;
3079 	int error;
3080 
3081 	ASSERT_VOP_ELOCKED(vp, "swaponvp");
3082 	if (nblks == 0)
3083 		return (ENXIO);
3084 	mtx_lock(&sw_dev_mtx);
3085 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3086 		if (sp->sw_id == vp) {
3087 			mtx_unlock(&sw_dev_mtx);
3088 			return (EBUSY);
3089 		}
3090 	}
3091 	mtx_unlock(&sw_dev_mtx);
3092 
3093 #ifdef MAC
3094 	error = mac_system_check_swapon(td->td_ucred, vp);
3095 	if (error == 0)
3096 #endif
3097 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3098 	if (error != 0)
3099 		return (error);
3100 
3101 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3102 	    NODEV, 0);
3103 	return (0);
3104 }
3105 
3106 static int
3107 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3108 {
3109 	int error, new, n;
3110 
3111 	new = nsw_wcount_async_max;
3112 	error = sysctl_handle_int(oidp, &new, 0, req);
3113 	if (error != 0 || req->newptr == NULL)
3114 		return (error);
3115 
3116 	if (new > nswbuf / 2 || new < 1)
3117 		return (EINVAL);
3118 
3119 	mtx_lock(&swbuf_mtx);
3120 	while (nsw_wcount_async_max != new) {
3121 		/*
3122 		 * Adjust difference.  If the current async count is too low,
3123 		 * we will need to sqeeze our update slowly in.  Sleep with a
3124 		 * higher priority than getpbuf() to finish faster.
3125 		 */
3126 		n = new - nsw_wcount_async_max;
3127 		if (nsw_wcount_async + n >= 0) {
3128 			nsw_wcount_async += n;
3129 			nsw_wcount_async_max += n;
3130 			wakeup(&nsw_wcount_async);
3131 		} else {
3132 			nsw_wcount_async_max -= nsw_wcount_async;
3133 			nsw_wcount_async = 0;
3134 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3135 			    "swpsysctl", 0);
3136 		}
3137 	}
3138 	mtx_unlock(&swbuf_mtx);
3139 
3140 	return (0);
3141 }
3142 
3143 static void
3144 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3145     vm_offset_t end)
3146 {
3147 
3148 	VM_OBJECT_WLOCK(object);
3149 	KASSERT((object->flags & OBJ_ANON) == 0,
3150 	    ("Splittable object with writecount"));
3151 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3152 	VM_OBJECT_WUNLOCK(object);
3153 }
3154 
3155 static void
3156 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3157     vm_offset_t end)
3158 {
3159 
3160 	VM_OBJECT_WLOCK(object);
3161 	KASSERT((object->flags & OBJ_ANON) == 0,
3162 	    ("Splittable object with writecount"));
3163 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3164 	VM_OBJECT_WUNLOCK(object);
3165 }
3166