xref: /freebsd/sys/vm/vm_fault.c (revision d93a896e)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107 
108 #define PFBAK 4
109 #define PFFOR 4
110 
111 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113 
114 #define	VM_FAULT_DONTNEED_MIN	1048576
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	int map_generation;
126 	bool lookup_still_valid;
127 	struct vnode *vp;
128 };
129 
130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
131 	    int ahead);
132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133 	    int backward, int forward);
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_xunbusy(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = false;
153 	}
154 }
155 
156 static void
157 unlock_vp(struct faultstate *fs)
158 {
159 
160 	if (fs->vp != NULL) {
161 		vput(fs->vp);
162 		fs->vp = NULL;
163 	}
164 }
165 
166 static void
167 unlock_and_deallocate(struct faultstate *fs)
168 {
169 
170 	vm_object_pip_wakeup(fs->object);
171 	VM_OBJECT_WUNLOCK(fs->object);
172 	if (fs->object != fs->first_object) {
173 		VM_OBJECT_WLOCK(fs->first_object);
174 		vm_page_lock(fs->first_m);
175 		vm_page_free(fs->first_m);
176 		vm_page_unlock(fs->first_m);
177 		vm_object_pip_wakeup(fs->first_object);
178 		VM_OBJECT_WUNLOCK(fs->first_object);
179 		fs->first_m = NULL;
180 	}
181 	vm_object_deallocate(fs->first_object);
182 	unlock_map(fs);
183 	unlock_vp(fs);
184 }
185 
186 static void
187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188     vm_prot_t fault_type, int fault_flags, bool set_wd)
189 {
190 	bool need_dirty;
191 
192 	if (((prot & VM_PROT_WRITE) == 0 &&
193 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
194 	    (m->oflags & VPO_UNMANAGED) != 0)
195 		return;
196 
197 	VM_OBJECT_ASSERT_LOCKED(m->object);
198 
199 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
201 	    (fault_flags & VM_FAULT_DIRTY) != 0;
202 
203 	if (set_wd)
204 		vm_object_set_writeable_dirty(m->object);
205 	else
206 		/*
207 		 * If two callers of vm_fault_dirty() with set_wd ==
208 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209 		 * flag set, other with flag clear, race, it is
210 		 * possible for the no-NOSYNC thread to see m->dirty
211 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212 		 * around manipulation of VPO_NOSYNC and
213 		 * vm_page_dirty() call, to avoid the race and keep
214 		 * m->oflags consistent.
215 		 */
216 		vm_page_lock(m);
217 
218 	/*
219 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220 	 * if the page is already dirty to prevent data written with
221 	 * the expectation of being synced from not being synced.
222 	 * Likewise if this entry does not request NOSYNC then make
223 	 * sure the page isn't marked NOSYNC.  Applications sharing
224 	 * data should use the same flags to avoid ping ponging.
225 	 */
226 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227 		if (m->dirty == 0) {
228 			m->oflags |= VPO_NOSYNC;
229 		}
230 	} else {
231 		m->oflags &= ~VPO_NOSYNC;
232 	}
233 
234 	/*
235 	 * If the fault is a write, we know that this page is being
236 	 * written NOW so dirty it explicitly to save on
237 	 * pmap_is_modified() calls later.
238 	 *
239 	 * Also tell the backing pager, if any, that it should remove
240 	 * any swap backing since the page is now dirty.
241 	 */
242 	if (need_dirty)
243 		vm_page_dirty(m);
244 	if (!set_wd)
245 		vm_page_unlock(m);
246 	if (need_dirty)
247 		vm_pager_page_unswapped(m);
248 }
249 
250 static void
251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252 {
253 
254 	if (m_hold != NULL) {
255 		*m_hold = m;
256 		vm_page_lock(m);
257 		vm_page_hold(m);
258 		vm_page_unlock(m);
259 	}
260 }
261 
262 /*
263  * Unlocks fs.first_object and fs.map on success.
264  */
265 static int
266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268 {
269 	vm_page_t m, m_map;
270 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
271 	vm_page_t m_super;
272 	int flags;
273 #endif
274 	int psind, rv;
275 
276 	MPASS(fs->vp == NULL);
277 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
278 	/* A busy page can be mapped for read|execute access. */
279 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
280 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
281 		return (KERN_FAILURE);
282 	m_map = m;
283 	psind = 0;
284 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
285 	if ((m->flags & PG_FICTITIOUS) == 0 &&
286 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
287 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
288 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
289 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
290 	    (pagesizes[m_super->psind] - 1)) &&
291 	    pmap_ps_enabled(fs->map->pmap)) {
292 		flags = PS_ALL_VALID;
293 		if ((prot & VM_PROT_WRITE) != 0) {
294 			/*
295 			 * Create a superpage mapping allowing write access
296 			 * only if none of the constituent pages are busy and
297 			 * all of them are already dirty (except possibly for
298 			 * the page that was faulted on).
299 			 */
300 			flags |= PS_NONE_BUSY;
301 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
302 				flags |= PS_ALL_DIRTY;
303 		}
304 		if (vm_page_ps_test(m_super, flags, m)) {
305 			m_map = m_super;
306 			psind = m_super->psind;
307 			vaddr = rounddown2(vaddr, pagesizes[psind]);
308 			/* Preset the modified bit for dirty superpages. */
309 			if ((flags & PS_ALL_DIRTY) != 0)
310 				fault_type |= VM_PROT_WRITE;
311 		}
312 	}
313 #endif
314 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
315 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
316 	if (rv != KERN_SUCCESS)
317 		return (rv);
318 	vm_fault_fill_hold(m_hold, m);
319 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
320 	VM_OBJECT_RUNLOCK(fs->first_object);
321 	if (psind == 0 && !wired)
322 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
323 	vm_map_lookup_done(fs->map, fs->entry);
324 	curthread->td_ru.ru_minflt++;
325 	return (KERN_SUCCESS);
326 }
327 
328 static void
329 vm_fault_restore_map_lock(struct faultstate *fs)
330 {
331 
332 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
333 	MPASS(fs->first_object->paging_in_progress > 0);
334 
335 	if (!vm_map_trylock_read(fs->map)) {
336 		VM_OBJECT_WUNLOCK(fs->first_object);
337 		vm_map_lock_read(fs->map);
338 		VM_OBJECT_WLOCK(fs->first_object);
339 	}
340 	fs->lookup_still_valid = true;
341 }
342 
343 static void
344 vm_fault_populate_check_page(vm_page_t m)
345 {
346 
347 	/*
348 	 * Check each page to ensure that the pager is obeying the
349 	 * interface: the page must be installed in the object, fully
350 	 * valid, and exclusively busied.
351 	 */
352 	MPASS(m != NULL);
353 	MPASS(m->valid == VM_PAGE_BITS_ALL);
354 	MPASS(vm_page_xbusied(m));
355 }
356 
357 static void
358 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
359     vm_pindex_t last)
360 {
361 	vm_page_t m;
362 	vm_pindex_t pidx;
363 
364 	VM_OBJECT_ASSERT_WLOCKED(object);
365 	MPASS(first <= last);
366 	for (pidx = first, m = vm_page_lookup(object, pidx);
367 	    pidx <= last; pidx++, m = vm_page_next(m)) {
368 		vm_fault_populate_check_page(m);
369 		vm_page_lock(m);
370 		vm_page_deactivate(m);
371 		vm_page_unlock(m);
372 		vm_page_xunbusy(m);
373 	}
374 }
375 
376 static int
377 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
378     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
379 {
380 	vm_page_t m;
381 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
382 	int rv;
383 
384 	MPASS(fs->object == fs->first_object);
385 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
386 	MPASS(fs->first_object->paging_in_progress > 0);
387 	MPASS(fs->first_object->backing_object == NULL);
388 	MPASS(fs->lookup_still_valid);
389 
390 	pager_first = OFF_TO_IDX(fs->entry->offset);
391 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
392 	unlock_map(fs);
393 	unlock_vp(fs);
394 
395 	/*
396 	 * Call the pager (driver) populate() method.
397 	 *
398 	 * There is no guarantee that the method will be called again
399 	 * if the current fault is for read, and a future fault is
400 	 * for write.  Report the entry's maximum allowed protection
401 	 * to the driver.
402 	 */
403 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
404 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
405 
406 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
407 	if (rv == VM_PAGER_BAD) {
408 		/*
409 		 * VM_PAGER_BAD is the backdoor for a pager to request
410 		 * normal fault handling.
411 		 */
412 		vm_fault_restore_map_lock(fs);
413 		if (fs->map->timestamp != fs->map_generation)
414 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
415 		return (KERN_NOT_RECEIVER);
416 	}
417 	if (rv != VM_PAGER_OK)
418 		return (KERN_FAILURE); /* AKA SIGSEGV */
419 
420 	/* Ensure that the driver is obeying the interface. */
421 	MPASS(pager_first <= pager_last);
422 	MPASS(fs->first_pindex <= pager_last);
423 	MPASS(fs->first_pindex >= pager_first);
424 	MPASS(pager_last < fs->first_object->size);
425 
426 	vm_fault_restore_map_lock(fs);
427 	if (fs->map->timestamp != fs->map_generation) {
428 		vm_fault_populate_cleanup(fs->first_object, pager_first,
429 		    pager_last);
430 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
431 	}
432 
433 	/*
434 	 * The map is unchanged after our last unlock.  Process the fault.
435 	 *
436 	 * The range [pager_first, pager_last] that is given to the
437 	 * pager is only a hint.  The pager may populate any range
438 	 * within the object that includes the requested page index.
439 	 * In case the pager expanded the range, clip it to fit into
440 	 * the map entry.
441 	 */
442 	map_first = OFF_TO_IDX(fs->entry->offset);
443 	if (map_first > pager_first) {
444 		vm_fault_populate_cleanup(fs->first_object, pager_first,
445 		    map_first - 1);
446 		pager_first = map_first;
447 	}
448 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
449 	if (map_last < pager_last) {
450 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
451 		    pager_last);
452 		pager_last = map_last;
453 	}
454 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
455 	    pidx <= pager_last; pidx++, m = vm_page_next(m)) {
456 		vm_fault_populate_check_page(m);
457 		vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
458 		    true);
459 		VM_OBJECT_WUNLOCK(fs->first_object);
460 		pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
461 		    fs->entry->offset, m, prot, fault_type | (wired ?
462 		    PMAP_ENTER_WIRED : 0), 0);
463 		VM_OBJECT_WLOCK(fs->first_object);
464 		if (pidx == fs->first_pindex)
465 			vm_fault_fill_hold(m_hold, m);
466 		vm_page_lock(m);
467 		if ((fault_flags & VM_FAULT_WIRE) != 0) {
468 			KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
469 			vm_page_wire(m);
470 		} else {
471 			vm_page_activate(m);
472 		}
473 		vm_page_unlock(m);
474 		vm_page_xunbusy(m);
475 	}
476 	curthread->td_ru.ru_majflt++;
477 	return (KERN_SUCCESS);
478 }
479 
480 /*
481  *	vm_fault:
482  *
483  *	Handle a page fault occurring at the given address,
484  *	requiring the given permissions, in the map specified.
485  *	If successful, the page is inserted into the
486  *	associated physical map.
487  *
488  *	NOTE: the given address should be truncated to the
489  *	proper page address.
490  *
491  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
492  *	a standard error specifying why the fault is fatal is returned.
493  *
494  *	The map in question must be referenced, and remains so.
495  *	Caller may hold no locks.
496  */
497 int
498 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
499     int fault_flags)
500 {
501 	struct thread *td;
502 	int result;
503 
504 	td = curthread;
505 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
506 		return (KERN_PROTECTION_FAILURE);
507 #ifdef KTRACE
508 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
509 		ktrfault(vaddr, fault_type);
510 #endif
511 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
512 	    NULL);
513 #ifdef KTRACE
514 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
515 		ktrfaultend(result);
516 #endif
517 	return (result);
518 }
519 
520 int
521 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
522     int fault_flags, vm_page_t *m_hold)
523 {
524 	struct faultstate fs;
525 	struct vnode *vp;
526 	vm_object_t next_object, retry_object;
527 	vm_offset_t e_end, e_start;
528 	vm_pindex_t retry_pindex;
529 	vm_prot_t prot, retry_prot;
530 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
531 	int locked, nera, result, rv;
532 	u_char behavior;
533 	boolean_t wired;	/* Passed by reference. */
534 	bool dead, hardfault, is_first_object_locked;
535 
536 	VM_CNT_INC(v_vm_faults);
537 	fs.vp = NULL;
538 	faultcount = 0;
539 	nera = -1;
540 	hardfault = false;
541 
542 RetryFault:;
543 
544 	/*
545 	 * Find the backing store object and offset into it to begin the
546 	 * search.
547 	 */
548 	fs.map = map;
549 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
550 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
551 	    &fs.first_pindex, &prot, &wired);
552 	if (result != KERN_SUCCESS) {
553 		unlock_vp(&fs);
554 		return (result);
555 	}
556 
557 	fs.map_generation = fs.map->timestamp;
558 
559 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
560 		panic("%s: fault on nofault entry, addr: %#lx",
561 		    __func__, (u_long)vaddr);
562 	}
563 
564 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
565 	    fs.entry->wiring_thread != curthread) {
566 		vm_map_unlock_read(fs.map);
567 		vm_map_lock(fs.map);
568 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
569 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
570 			unlock_vp(&fs);
571 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
572 			vm_map_unlock_and_wait(fs.map, 0);
573 		} else
574 			vm_map_unlock(fs.map);
575 		goto RetryFault;
576 	}
577 
578 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
579 
580 	if (wired)
581 		fault_type = prot | (fault_type & VM_PROT_COPY);
582 	else
583 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
584 		    ("!wired && VM_FAULT_WIRE"));
585 
586 	/*
587 	 * Try to avoid lock contention on the top-level object through
588 	 * special-case handling of some types of page faults, specifically,
589 	 * those that are both (1) mapping an existing page from the top-
590 	 * level object and (2) not having to mark that object as containing
591 	 * dirty pages.  Under these conditions, a read lock on the top-level
592 	 * object suffices, allowing multiple page faults of a similar type to
593 	 * run in parallel on the same top-level object.
594 	 */
595 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
596 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
597 	    /* avoid calling vm_object_set_writeable_dirty() */
598 	    ((prot & VM_PROT_WRITE) == 0 ||
599 	    (fs.first_object->type != OBJT_VNODE &&
600 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
601 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
602 		VM_OBJECT_RLOCK(fs.first_object);
603 		if ((prot & VM_PROT_WRITE) == 0 ||
604 		    (fs.first_object->type != OBJT_VNODE &&
605 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
606 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
607 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
608 			    fault_flags, wired, m_hold);
609 			if (rv == KERN_SUCCESS)
610 				return (rv);
611 		}
612 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
613 			VM_OBJECT_RUNLOCK(fs.first_object);
614 			VM_OBJECT_WLOCK(fs.first_object);
615 		}
616 	} else {
617 		VM_OBJECT_WLOCK(fs.first_object);
618 	}
619 
620 	/*
621 	 * Make a reference to this object to prevent its disposal while we
622 	 * are messing with it.  Once we have the reference, the map is free
623 	 * to be diddled.  Since objects reference their shadows (and copies),
624 	 * they will stay around as well.
625 	 *
626 	 * Bump the paging-in-progress count to prevent size changes (e.g.
627 	 * truncation operations) during I/O.
628 	 */
629 	vm_object_reference_locked(fs.first_object);
630 	vm_object_pip_add(fs.first_object, 1);
631 
632 	fs.lookup_still_valid = true;
633 
634 	fs.first_m = NULL;
635 
636 	/*
637 	 * Search for the page at object/offset.
638 	 */
639 	fs.object = fs.first_object;
640 	fs.pindex = fs.first_pindex;
641 	while (TRUE) {
642 		/*
643 		 * If the object is marked for imminent termination,
644 		 * we retry here, since the collapse pass has raced
645 		 * with us.  Otherwise, if we see terminally dead
646 		 * object, return fail.
647 		 */
648 		if ((fs.object->flags & OBJ_DEAD) != 0) {
649 			dead = fs.object->type == OBJT_DEAD;
650 			unlock_and_deallocate(&fs);
651 			if (dead)
652 				return (KERN_PROTECTION_FAILURE);
653 			pause("vmf_de", 1);
654 			goto RetryFault;
655 		}
656 
657 		/*
658 		 * See if page is resident
659 		 */
660 		fs.m = vm_page_lookup(fs.object, fs.pindex);
661 		if (fs.m != NULL) {
662 			/*
663 			 * Wait/Retry if the page is busy.  We have to do this
664 			 * if the page is either exclusive or shared busy
665 			 * because the vm_pager may be using read busy for
666 			 * pageouts (and even pageins if it is the vnode
667 			 * pager), and we could end up trying to pagein and
668 			 * pageout the same page simultaneously.
669 			 *
670 			 * We can theoretically allow the busy case on a read
671 			 * fault if the page is marked valid, but since such
672 			 * pages are typically already pmap'd, putting that
673 			 * special case in might be more effort then it is
674 			 * worth.  We cannot under any circumstances mess
675 			 * around with a shared busied page except, perhaps,
676 			 * to pmap it.
677 			 */
678 			if (vm_page_busied(fs.m)) {
679 				/*
680 				 * Reference the page before unlocking and
681 				 * sleeping so that the page daemon is less
682 				 * likely to reclaim it.
683 				 */
684 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
685 				if (fs.object != fs.first_object) {
686 					if (!VM_OBJECT_TRYWLOCK(
687 					    fs.first_object)) {
688 						VM_OBJECT_WUNLOCK(fs.object);
689 						VM_OBJECT_WLOCK(fs.first_object);
690 						VM_OBJECT_WLOCK(fs.object);
691 					}
692 					vm_page_lock(fs.first_m);
693 					vm_page_free(fs.first_m);
694 					vm_page_unlock(fs.first_m);
695 					vm_object_pip_wakeup(fs.first_object);
696 					VM_OBJECT_WUNLOCK(fs.first_object);
697 					fs.first_m = NULL;
698 				}
699 				unlock_map(&fs);
700 				if (fs.m == vm_page_lookup(fs.object,
701 				    fs.pindex)) {
702 					vm_page_sleep_if_busy(fs.m, "vmpfw");
703 				}
704 				vm_object_pip_wakeup(fs.object);
705 				VM_OBJECT_WUNLOCK(fs.object);
706 				VM_CNT_INC(v_intrans);
707 				vm_object_deallocate(fs.first_object);
708 				goto RetryFault;
709 			}
710 			vm_page_lock(fs.m);
711 			vm_page_remque(fs.m);
712 			vm_page_unlock(fs.m);
713 
714 			/*
715 			 * Mark page busy for other processes, and the
716 			 * pagedaemon.  If it still isn't completely valid
717 			 * (readable), jump to readrest, else break-out ( we
718 			 * found the page ).
719 			 */
720 			vm_page_xbusy(fs.m);
721 			if (fs.m->valid != VM_PAGE_BITS_ALL)
722 				goto readrest;
723 			break;
724 		}
725 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
726 
727 		/*
728 		 * Page is not resident.  If the pager might contain the page
729 		 * or this is the beginning of the search, allocate a new
730 		 * page.  (Default objects are zero-fill, so there is no real
731 		 * pager for them.)
732 		 */
733 		if (fs.object->type != OBJT_DEFAULT ||
734 		    fs.object == fs.first_object) {
735 			if (fs.pindex >= fs.object->size) {
736 				unlock_and_deallocate(&fs);
737 				return (KERN_PROTECTION_FAILURE);
738 			}
739 
740 			if (fs.object == fs.first_object &&
741 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
742 			    fs.first_object->shadow_count == 0) {
743 				rv = vm_fault_populate(&fs, vaddr, prot,
744 				    fault_type, fault_flags, wired, m_hold);
745 				switch (rv) {
746 				case KERN_SUCCESS:
747 				case KERN_FAILURE:
748 					unlock_and_deallocate(&fs);
749 					return (rv);
750 				case KERN_RESOURCE_SHORTAGE:
751 					unlock_and_deallocate(&fs);
752 					goto RetryFault;
753 				case KERN_NOT_RECEIVER:
754 					/*
755 					 * Pager's populate() method
756 					 * returned VM_PAGER_BAD.
757 					 */
758 					break;
759 				default:
760 					panic("inconsistent return codes");
761 				}
762 			}
763 
764 			/*
765 			 * Allocate a new page for this object/offset pair.
766 			 *
767 			 * Unlocked read of the p_flag is harmless. At
768 			 * worst, the P_KILLED might be not observed
769 			 * there, and allocation can fail, causing
770 			 * restart and new reading of the p_flag.
771 			 */
772 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
773 #if VM_NRESERVLEVEL > 0
774 				vm_object_color(fs.object, atop(vaddr) -
775 				    fs.pindex);
776 #endif
777 				alloc_req = P_KILLED(curproc) ?
778 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
779 				if (fs.object->type != OBJT_VNODE &&
780 				    fs.object->backing_object == NULL)
781 					alloc_req |= VM_ALLOC_ZERO;
782 				fs.m = vm_page_alloc(fs.object, fs.pindex,
783 				    alloc_req);
784 			}
785 			if (fs.m == NULL) {
786 				unlock_and_deallocate(&fs);
787 				VM_WAITPFAULT;
788 				goto RetryFault;
789 			}
790 		}
791 
792 readrest:
793 		/*
794 		 * At this point, we have either allocated a new page or found
795 		 * an existing page that is only partially valid.
796 		 *
797 		 * We hold a reference on the current object and the page is
798 		 * exclusive busied.
799 		 */
800 
801 		/*
802 		 * If the pager for the current object might have the page,
803 		 * then determine the number of additional pages to read and
804 		 * potentially reprioritize previously read pages for earlier
805 		 * reclamation.  These operations should only be performed
806 		 * once per page fault.  Even if the current pager doesn't
807 		 * have the page, the number of additional pages to read will
808 		 * apply to subsequent objects in the shadow chain.
809 		 */
810 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
811 		    !P_KILLED(curproc)) {
812 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
813 			era = fs.entry->read_ahead;
814 			behavior = vm_map_entry_behavior(fs.entry);
815 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
816 				nera = 0;
817 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
818 				nera = VM_FAULT_READ_AHEAD_MAX;
819 				if (vaddr == fs.entry->next_read)
820 					vm_fault_dontneed(&fs, vaddr, nera);
821 			} else if (vaddr == fs.entry->next_read) {
822 				/*
823 				 * This is a sequential fault.  Arithmetically
824 				 * increase the requested number of pages in
825 				 * the read-ahead window.  The requested
826 				 * number of pages is "# of sequential faults
827 				 * x (read ahead min + 1) + read ahead min"
828 				 */
829 				nera = VM_FAULT_READ_AHEAD_MIN;
830 				if (era > 0) {
831 					nera += era + 1;
832 					if (nera > VM_FAULT_READ_AHEAD_MAX)
833 						nera = VM_FAULT_READ_AHEAD_MAX;
834 				}
835 				if (era == VM_FAULT_READ_AHEAD_MAX)
836 					vm_fault_dontneed(&fs, vaddr, nera);
837 			} else {
838 				/*
839 				 * This is a non-sequential fault.
840 				 */
841 				nera = 0;
842 			}
843 			if (era != nera) {
844 				/*
845 				 * A read lock on the map suffices to update
846 				 * the read ahead count safely.
847 				 */
848 				fs.entry->read_ahead = nera;
849 			}
850 
851 			/*
852 			 * Prepare for unlocking the map.  Save the map
853 			 * entry's start and end addresses, which are used to
854 			 * optimize the size of the pager operation below.
855 			 * Even if the map entry's addresses change after
856 			 * unlocking the map, using the saved addresses is
857 			 * safe.
858 			 */
859 			e_start = fs.entry->start;
860 			e_end = fs.entry->end;
861 		}
862 
863 		/*
864 		 * Call the pager to retrieve the page if there is a chance
865 		 * that the pager has it, and potentially retrieve additional
866 		 * pages at the same time.
867 		 */
868 		if (fs.object->type != OBJT_DEFAULT) {
869 			/*
870 			 * Release the map lock before locking the vnode or
871 			 * sleeping in the pager.  (If the current object has
872 			 * a shadow, then an earlier iteration of this loop
873 			 * may have already unlocked the map.)
874 			 */
875 			unlock_map(&fs);
876 
877 			if (fs.object->type == OBJT_VNODE &&
878 			    (vp = fs.object->handle) != fs.vp) {
879 				/*
880 				 * Perform an unlock in case the desired vnode
881 				 * changed while the map was unlocked during a
882 				 * retry.
883 				 */
884 				unlock_vp(&fs);
885 
886 				locked = VOP_ISLOCKED(vp);
887 				if (locked != LK_EXCLUSIVE)
888 					locked = LK_SHARED;
889 
890 				/*
891 				 * We must not sleep acquiring the vnode lock
892 				 * while we have the page exclusive busied or
893 				 * the object's paging-in-progress count
894 				 * incremented.  Otherwise, we could deadlock.
895 				 */
896 				error = vget(vp, locked | LK_CANRECURSE |
897 				    LK_NOWAIT, curthread);
898 				if (error != 0) {
899 					vhold(vp);
900 					release_page(&fs);
901 					unlock_and_deallocate(&fs);
902 					error = vget(vp, locked | LK_RETRY |
903 					    LK_CANRECURSE, curthread);
904 					vdrop(vp);
905 					fs.vp = vp;
906 					KASSERT(error == 0,
907 					    ("vm_fault: vget failed"));
908 					goto RetryFault;
909 				}
910 				fs.vp = vp;
911 			}
912 			KASSERT(fs.vp == NULL || !fs.map->system_map,
913 			    ("vm_fault: vnode-backed object mapped by system map"));
914 
915 			/*
916 			 * Page in the requested page and hint the pager,
917 			 * that it may bring up surrounding pages.
918 			 */
919 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
920 			    P_KILLED(curproc)) {
921 				behind = 0;
922 				ahead = 0;
923 			} else {
924 				/* Is this a sequential fault? */
925 				if (nera > 0) {
926 					behind = 0;
927 					ahead = nera;
928 				} else {
929 					/*
930 					 * Request a cluster of pages that is
931 					 * aligned to a VM_FAULT_READ_DEFAULT
932 					 * page offset boundary within the
933 					 * object.  Alignment to a page offset
934 					 * boundary is more likely to coincide
935 					 * with the underlying file system
936 					 * block than alignment to a virtual
937 					 * address boundary.
938 					 */
939 					cluster_offset = fs.pindex %
940 					    VM_FAULT_READ_DEFAULT;
941 					behind = ulmin(cluster_offset,
942 					    atop(vaddr - e_start));
943 					ahead = VM_FAULT_READ_DEFAULT - 1 -
944 					    cluster_offset;
945 				}
946 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
947 			}
948 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
949 			    &behind, &ahead);
950 			if (rv == VM_PAGER_OK) {
951 				faultcount = behind + 1 + ahead;
952 				hardfault = true;
953 				break; /* break to PAGE HAS BEEN FOUND */
954 			}
955 			if (rv == VM_PAGER_ERROR)
956 				printf("vm_fault: pager read error, pid %d (%s)\n",
957 				    curproc->p_pid, curproc->p_comm);
958 
959 			/*
960 			 * If an I/O error occurred or the requested page was
961 			 * outside the range of the pager, clean up and return
962 			 * an error.
963 			 */
964 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
965 				vm_page_lock(fs.m);
966 				if (fs.m->wire_count == 0)
967 					vm_page_free(fs.m);
968 				else
969 					vm_page_xunbusy_maybelocked(fs.m);
970 				vm_page_unlock(fs.m);
971 				fs.m = NULL;
972 				unlock_and_deallocate(&fs);
973 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
974 				    KERN_PROTECTION_FAILURE);
975 			}
976 
977 			/*
978 			 * The requested page does not exist at this object/
979 			 * offset.  Remove the invalid page from the object,
980 			 * waking up anyone waiting for it, and continue on to
981 			 * the next object.  However, if this is the top-level
982 			 * object, we must leave the busy page in place to
983 			 * prevent another process from rushing past us, and
984 			 * inserting the page in that object at the same time
985 			 * that we are.
986 			 */
987 			if (fs.object != fs.first_object) {
988 				vm_page_lock(fs.m);
989 				if (fs.m->wire_count == 0)
990 					vm_page_free(fs.m);
991 				else
992 					vm_page_xunbusy_maybelocked(fs.m);
993 				vm_page_unlock(fs.m);
994 				fs.m = NULL;
995 			}
996 		}
997 
998 		/*
999 		 * We get here if the object has default pager (or unwiring)
1000 		 * or the pager doesn't have the page.
1001 		 */
1002 		if (fs.object == fs.first_object)
1003 			fs.first_m = fs.m;
1004 
1005 		/*
1006 		 * Move on to the next object.  Lock the next object before
1007 		 * unlocking the current one.
1008 		 */
1009 		next_object = fs.object->backing_object;
1010 		if (next_object == NULL) {
1011 			/*
1012 			 * If there's no object left, fill the page in the top
1013 			 * object with zeros.
1014 			 */
1015 			if (fs.object != fs.first_object) {
1016 				vm_object_pip_wakeup(fs.object);
1017 				VM_OBJECT_WUNLOCK(fs.object);
1018 
1019 				fs.object = fs.first_object;
1020 				fs.pindex = fs.first_pindex;
1021 				fs.m = fs.first_m;
1022 				VM_OBJECT_WLOCK(fs.object);
1023 			}
1024 			fs.first_m = NULL;
1025 
1026 			/*
1027 			 * Zero the page if necessary and mark it valid.
1028 			 */
1029 			if ((fs.m->flags & PG_ZERO) == 0) {
1030 				pmap_zero_page(fs.m);
1031 			} else {
1032 				VM_CNT_INC(v_ozfod);
1033 			}
1034 			VM_CNT_INC(v_zfod);
1035 			fs.m->valid = VM_PAGE_BITS_ALL;
1036 			/* Don't try to prefault neighboring pages. */
1037 			faultcount = 1;
1038 			break;	/* break to PAGE HAS BEEN FOUND */
1039 		} else {
1040 			KASSERT(fs.object != next_object,
1041 			    ("object loop %p", next_object));
1042 			VM_OBJECT_WLOCK(next_object);
1043 			vm_object_pip_add(next_object, 1);
1044 			if (fs.object != fs.first_object)
1045 				vm_object_pip_wakeup(fs.object);
1046 			fs.pindex +=
1047 			    OFF_TO_IDX(fs.object->backing_object_offset);
1048 			VM_OBJECT_WUNLOCK(fs.object);
1049 			fs.object = next_object;
1050 		}
1051 	}
1052 
1053 	vm_page_assert_xbusied(fs.m);
1054 
1055 	/*
1056 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1057 	 * is held.]
1058 	 */
1059 
1060 	/*
1061 	 * If the page is being written, but isn't already owned by the
1062 	 * top-level object, we have to copy it into a new page owned by the
1063 	 * top-level object.
1064 	 */
1065 	if (fs.object != fs.first_object) {
1066 		/*
1067 		 * We only really need to copy if we want to write it.
1068 		 */
1069 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1070 			/*
1071 			 * This allows pages to be virtually copied from a
1072 			 * backing_object into the first_object, where the
1073 			 * backing object has no other refs to it, and cannot
1074 			 * gain any more refs.  Instead of a bcopy, we just
1075 			 * move the page from the backing object to the
1076 			 * first object.  Note that we must mark the page
1077 			 * dirty in the first object so that it will go out
1078 			 * to swap when needed.
1079 			 */
1080 			is_first_object_locked = false;
1081 			if (
1082 				/*
1083 				 * Only one shadow object
1084 				 */
1085 				(fs.object->shadow_count == 1) &&
1086 				/*
1087 				 * No COW refs, except us
1088 				 */
1089 				(fs.object->ref_count == 1) &&
1090 				/*
1091 				 * No one else can look this object up
1092 				 */
1093 				(fs.object->handle == NULL) &&
1094 				/*
1095 				 * No other ways to look the object up
1096 				 */
1097 				((fs.object->type == OBJT_DEFAULT) ||
1098 				 (fs.object->type == OBJT_SWAP)) &&
1099 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1100 				/*
1101 				 * We don't chase down the shadow chain
1102 				 */
1103 			    fs.object == fs.first_object->backing_object) {
1104 				vm_page_lock(fs.m);
1105 				vm_page_remove(fs.m);
1106 				vm_page_unlock(fs.m);
1107 				vm_page_lock(fs.first_m);
1108 				vm_page_replace_checked(fs.m, fs.first_object,
1109 				    fs.first_pindex, fs.first_m);
1110 				vm_page_free(fs.first_m);
1111 				vm_page_unlock(fs.first_m);
1112 				vm_page_dirty(fs.m);
1113 #if VM_NRESERVLEVEL > 0
1114 				/*
1115 				 * Rename the reservation.
1116 				 */
1117 				vm_reserv_rename(fs.m, fs.first_object,
1118 				    fs.object, OFF_TO_IDX(
1119 				    fs.first_object->backing_object_offset));
1120 #endif
1121 				/*
1122 				 * Removing the page from the backing object
1123 				 * unbusied it.
1124 				 */
1125 				vm_page_xbusy(fs.m);
1126 				fs.first_m = fs.m;
1127 				fs.m = NULL;
1128 				VM_CNT_INC(v_cow_optim);
1129 			} else {
1130 				/*
1131 				 * Oh, well, lets copy it.
1132 				 */
1133 				pmap_copy_page(fs.m, fs.first_m);
1134 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1135 				if (wired && (fault_flags &
1136 				    VM_FAULT_WIRE) == 0) {
1137 					vm_page_lock(fs.first_m);
1138 					vm_page_wire(fs.first_m);
1139 					vm_page_unlock(fs.first_m);
1140 
1141 					vm_page_lock(fs.m);
1142 					vm_page_unwire(fs.m, PQ_INACTIVE);
1143 					vm_page_unlock(fs.m);
1144 				}
1145 				/*
1146 				 * We no longer need the old page or object.
1147 				 */
1148 				release_page(&fs);
1149 			}
1150 			/*
1151 			 * fs.object != fs.first_object due to above
1152 			 * conditional
1153 			 */
1154 			vm_object_pip_wakeup(fs.object);
1155 			VM_OBJECT_WUNLOCK(fs.object);
1156 			/*
1157 			 * Only use the new page below...
1158 			 */
1159 			fs.object = fs.first_object;
1160 			fs.pindex = fs.first_pindex;
1161 			fs.m = fs.first_m;
1162 			if (!is_first_object_locked)
1163 				VM_OBJECT_WLOCK(fs.object);
1164 			VM_CNT_INC(v_cow_faults);
1165 			curthread->td_cow++;
1166 		} else {
1167 			prot &= ~VM_PROT_WRITE;
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * We must verify that the maps have not changed since our last
1173 	 * lookup.
1174 	 */
1175 	if (!fs.lookup_still_valid) {
1176 		if (!vm_map_trylock_read(fs.map)) {
1177 			release_page(&fs);
1178 			unlock_and_deallocate(&fs);
1179 			goto RetryFault;
1180 		}
1181 		fs.lookup_still_valid = true;
1182 		if (fs.map->timestamp != fs.map_generation) {
1183 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1184 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1185 
1186 			/*
1187 			 * If we don't need the page any longer, put it on the inactive
1188 			 * list (the easiest thing to do here).  If no one needs it,
1189 			 * pageout will grab it eventually.
1190 			 */
1191 			if (result != KERN_SUCCESS) {
1192 				release_page(&fs);
1193 				unlock_and_deallocate(&fs);
1194 
1195 				/*
1196 				 * If retry of map lookup would have blocked then
1197 				 * retry fault from start.
1198 				 */
1199 				if (result == KERN_FAILURE)
1200 					goto RetryFault;
1201 				return (result);
1202 			}
1203 			if ((retry_object != fs.first_object) ||
1204 			    (retry_pindex != fs.first_pindex)) {
1205 				release_page(&fs);
1206 				unlock_and_deallocate(&fs);
1207 				goto RetryFault;
1208 			}
1209 
1210 			/*
1211 			 * Check whether the protection has changed or the object has
1212 			 * been copied while we left the map unlocked. Changing from
1213 			 * read to write permission is OK - we leave the page
1214 			 * write-protected, and catch the write fault. Changing from
1215 			 * write to read permission means that we can't mark the page
1216 			 * write-enabled after all.
1217 			 */
1218 			prot &= retry_prot;
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * If the page was filled by a pager, save the virtual address that
1224 	 * should be faulted on next under a sequential access pattern to the
1225 	 * map entry.  A read lock on the map suffices to update this address
1226 	 * safely.
1227 	 */
1228 	if (hardfault)
1229 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1230 
1231 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1232 	vm_page_assert_xbusied(fs.m);
1233 
1234 	/*
1235 	 * Page must be completely valid or it is not fit to
1236 	 * map into user space.  vm_pager_get_pages() ensures this.
1237 	 */
1238 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1239 	    ("vm_fault: page %p partially invalid", fs.m));
1240 	VM_OBJECT_WUNLOCK(fs.object);
1241 
1242 	/*
1243 	 * Put this page into the physical map.  We had to do the unlock above
1244 	 * because pmap_enter() may sleep.  We don't put the page
1245 	 * back on the active queue until later so that the pageout daemon
1246 	 * won't find it (yet).
1247 	 */
1248 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1249 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1250 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1251 	    wired == 0)
1252 		vm_fault_prefault(&fs, vaddr,
1253 		    faultcount > 0 ? behind : PFBAK,
1254 		    faultcount > 0 ? ahead : PFFOR);
1255 	VM_OBJECT_WLOCK(fs.object);
1256 	vm_page_lock(fs.m);
1257 
1258 	/*
1259 	 * If the page is not wired down, then put it where the pageout daemon
1260 	 * can find it.
1261 	 */
1262 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1263 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1264 		vm_page_wire(fs.m);
1265 	} else
1266 		vm_page_activate(fs.m);
1267 	if (m_hold != NULL) {
1268 		*m_hold = fs.m;
1269 		vm_page_hold(fs.m);
1270 	}
1271 	vm_page_unlock(fs.m);
1272 	vm_page_xunbusy(fs.m);
1273 
1274 	/*
1275 	 * Unlock everything, and return
1276 	 */
1277 	unlock_and_deallocate(&fs);
1278 	if (hardfault) {
1279 		VM_CNT_INC(v_io_faults);
1280 		curthread->td_ru.ru_majflt++;
1281 #ifdef RACCT
1282 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1283 			PROC_LOCK(curproc);
1284 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1285 				racct_add_force(curproc, RACCT_WRITEBPS,
1286 				    PAGE_SIZE + behind * PAGE_SIZE);
1287 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1288 			} else {
1289 				racct_add_force(curproc, RACCT_READBPS,
1290 				    PAGE_SIZE + ahead * PAGE_SIZE);
1291 				racct_add_force(curproc, RACCT_READIOPS, 1);
1292 			}
1293 			PROC_UNLOCK(curproc);
1294 		}
1295 #endif
1296 	} else
1297 		curthread->td_ru.ru_minflt++;
1298 
1299 	return (KERN_SUCCESS);
1300 }
1301 
1302 /*
1303  * Speed up the reclamation of pages that precede the faulting pindex within
1304  * the first object of the shadow chain.  Essentially, perform the equivalent
1305  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1306  * the faulting pindex by the cluster size when the pages read by vm_fault()
1307  * cross a cluster-size boundary.  The cluster size is the greater of the
1308  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1309  *
1310  * When "fs->first_object" is a shadow object, the pages in the backing object
1311  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1312  * function must only be concerned with pages in the first object.
1313  */
1314 static void
1315 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1316 {
1317 	vm_map_entry_t entry;
1318 	vm_object_t first_object, object;
1319 	vm_offset_t end, start;
1320 	vm_page_t m, m_next;
1321 	vm_pindex_t pend, pstart;
1322 	vm_size_t size;
1323 
1324 	object = fs->object;
1325 	VM_OBJECT_ASSERT_WLOCKED(object);
1326 	first_object = fs->first_object;
1327 	if (first_object != object) {
1328 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1329 			VM_OBJECT_WUNLOCK(object);
1330 			VM_OBJECT_WLOCK(first_object);
1331 			VM_OBJECT_WLOCK(object);
1332 		}
1333 	}
1334 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1335 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1336 		size = VM_FAULT_DONTNEED_MIN;
1337 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1338 			size = pagesizes[1];
1339 		end = rounddown2(vaddr, size);
1340 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1341 		    (entry = fs->entry)->start < end) {
1342 			if (end - entry->start < size)
1343 				start = entry->start;
1344 			else
1345 				start = end - size;
1346 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1347 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1348 			    entry->start);
1349 			m_next = vm_page_find_least(first_object, pstart);
1350 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1351 			    entry->start);
1352 			while ((m = m_next) != NULL && m->pindex < pend) {
1353 				m_next = TAILQ_NEXT(m, listq);
1354 				if (m->valid != VM_PAGE_BITS_ALL ||
1355 				    vm_page_busied(m))
1356 					continue;
1357 
1358 				/*
1359 				 * Don't clear PGA_REFERENCED, since it would
1360 				 * likely represent a reference by a different
1361 				 * process.
1362 				 *
1363 				 * Typically, at this point, prefetched pages
1364 				 * are still in the inactive queue.  Only
1365 				 * pages that triggered page faults are in the
1366 				 * active queue.
1367 				 */
1368 				vm_page_lock(m);
1369 				vm_page_deactivate(m);
1370 				vm_page_unlock(m);
1371 			}
1372 		}
1373 	}
1374 	if (first_object != object)
1375 		VM_OBJECT_WUNLOCK(first_object);
1376 }
1377 
1378 /*
1379  * vm_fault_prefault provides a quick way of clustering
1380  * pagefaults into a processes address space.  It is a "cousin"
1381  * of vm_map_pmap_enter, except it runs at page fault time instead
1382  * of mmap time.
1383  */
1384 static void
1385 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1386     int backward, int forward)
1387 {
1388 	pmap_t pmap;
1389 	vm_map_entry_t entry;
1390 	vm_object_t backing_object, lobject;
1391 	vm_offset_t addr, starta;
1392 	vm_pindex_t pindex;
1393 	vm_page_t m;
1394 	int i;
1395 
1396 	pmap = fs->map->pmap;
1397 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1398 		return;
1399 
1400 	entry = fs->entry;
1401 
1402 	if (addra < backward * PAGE_SIZE) {
1403 		starta = entry->start;
1404 	} else {
1405 		starta = addra - backward * PAGE_SIZE;
1406 		if (starta < entry->start)
1407 			starta = entry->start;
1408 	}
1409 
1410 	/*
1411 	 * Generate the sequence of virtual addresses that are candidates for
1412 	 * prefaulting in an outward spiral from the faulting virtual address,
1413 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1414 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1415 	 * If the candidate address doesn't have a backing physical page, then
1416 	 * the loop immediately terminates.
1417 	 */
1418 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1419 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1420 		    PAGE_SIZE);
1421 		if (addr > addra + forward * PAGE_SIZE)
1422 			addr = 0;
1423 
1424 		if (addr < starta || addr >= entry->end)
1425 			continue;
1426 
1427 		if (!pmap_is_prefaultable(pmap, addr))
1428 			continue;
1429 
1430 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1431 		lobject = entry->object.vm_object;
1432 		VM_OBJECT_RLOCK(lobject);
1433 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1434 		    lobject->type == OBJT_DEFAULT &&
1435 		    (backing_object = lobject->backing_object) != NULL) {
1436 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1437 			    0, ("vm_fault_prefault: unaligned object offset"));
1438 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1439 			VM_OBJECT_RLOCK(backing_object);
1440 			VM_OBJECT_RUNLOCK(lobject);
1441 			lobject = backing_object;
1442 		}
1443 		if (m == NULL) {
1444 			VM_OBJECT_RUNLOCK(lobject);
1445 			break;
1446 		}
1447 		if (m->valid == VM_PAGE_BITS_ALL &&
1448 		    (m->flags & PG_FICTITIOUS) == 0)
1449 			pmap_enter_quick(pmap, addr, m, entry->protection);
1450 		VM_OBJECT_RUNLOCK(lobject);
1451 	}
1452 }
1453 
1454 /*
1455  * Hold each of the physical pages that are mapped by the specified range of
1456  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1457  * and allow the specified types of access, "prot".  If all of the implied
1458  * pages are successfully held, then the number of held pages is returned
1459  * together with pointers to those pages in the array "ma".  However, if any
1460  * of the pages cannot be held, -1 is returned.
1461  */
1462 int
1463 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1464     vm_prot_t prot, vm_page_t *ma, int max_count)
1465 {
1466 	vm_offset_t end, va;
1467 	vm_page_t *mp;
1468 	int count;
1469 	boolean_t pmap_failed;
1470 
1471 	if (len == 0)
1472 		return (0);
1473 	end = round_page(addr + len);
1474 	addr = trunc_page(addr);
1475 
1476 	/*
1477 	 * Check for illegal addresses.
1478 	 */
1479 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1480 		return (-1);
1481 
1482 	if (atop(end - addr) > max_count)
1483 		panic("vm_fault_quick_hold_pages: count > max_count");
1484 	count = atop(end - addr);
1485 
1486 	/*
1487 	 * Most likely, the physical pages are resident in the pmap, so it is
1488 	 * faster to try pmap_extract_and_hold() first.
1489 	 */
1490 	pmap_failed = FALSE;
1491 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1492 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1493 		if (*mp == NULL)
1494 			pmap_failed = TRUE;
1495 		else if ((prot & VM_PROT_WRITE) != 0 &&
1496 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1497 			/*
1498 			 * Explicitly dirty the physical page.  Otherwise, the
1499 			 * caller's changes may go unnoticed because they are
1500 			 * performed through an unmanaged mapping or by a DMA
1501 			 * operation.
1502 			 *
1503 			 * The object lock is not held here.
1504 			 * See vm_page_clear_dirty_mask().
1505 			 */
1506 			vm_page_dirty(*mp);
1507 		}
1508 	}
1509 	if (pmap_failed) {
1510 		/*
1511 		 * One or more pages could not be held by the pmap.  Either no
1512 		 * page was mapped at the specified virtual address or that
1513 		 * mapping had insufficient permissions.  Attempt to fault in
1514 		 * and hold these pages.
1515 		 */
1516 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1517 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1518 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1519 				goto error;
1520 	}
1521 	return (count);
1522 error:
1523 	for (mp = ma; mp < ma + count; mp++)
1524 		if (*mp != NULL) {
1525 			vm_page_lock(*mp);
1526 			vm_page_unhold(*mp);
1527 			vm_page_unlock(*mp);
1528 		}
1529 	return (-1);
1530 }
1531 
1532 /*
1533  *	Routine:
1534  *		vm_fault_copy_entry
1535  *	Function:
1536  *		Create new shadow object backing dst_entry with private copy of
1537  *		all underlying pages. When src_entry is equal to dst_entry,
1538  *		function implements COW for wired-down map entry. Otherwise,
1539  *		it forks wired entry into dst_map.
1540  *
1541  *	In/out conditions:
1542  *		The source and destination maps must be locked for write.
1543  *		The source map entry must be wired down (or be a sharing map
1544  *		entry corresponding to a main map entry that is wired down).
1545  */
1546 void
1547 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1548     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1549     vm_ooffset_t *fork_charge)
1550 {
1551 	vm_object_t backing_object, dst_object, object, src_object;
1552 	vm_pindex_t dst_pindex, pindex, src_pindex;
1553 	vm_prot_t access, prot;
1554 	vm_offset_t vaddr;
1555 	vm_page_t dst_m;
1556 	vm_page_t src_m;
1557 	boolean_t upgrade;
1558 
1559 #ifdef	lint
1560 	src_map++;
1561 #endif	/* lint */
1562 
1563 	upgrade = src_entry == dst_entry;
1564 	access = prot = dst_entry->protection;
1565 
1566 	src_object = src_entry->object.vm_object;
1567 	src_pindex = OFF_TO_IDX(src_entry->offset);
1568 
1569 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1570 		dst_object = src_object;
1571 		vm_object_reference(dst_object);
1572 	} else {
1573 		/*
1574 		 * Create the top-level object for the destination entry. (Doesn't
1575 		 * actually shadow anything - we copy the pages directly.)
1576 		 */
1577 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1578 		    atop(dst_entry->end - dst_entry->start));
1579 #if VM_NRESERVLEVEL > 0
1580 		dst_object->flags |= OBJ_COLORED;
1581 		dst_object->pg_color = atop(dst_entry->start);
1582 #endif
1583 	}
1584 
1585 	VM_OBJECT_WLOCK(dst_object);
1586 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1587 	    ("vm_fault_copy_entry: vm_object not NULL"));
1588 	if (src_object != dst_object) {
1589 		dst_entry->object.vm_object = dst_object;
1590 		dst_entry->offset = 0;
1591 		dst_object->charge = dst_entry->end - dst_entry->start;
1592 	}
1593 	if (fork_charge != NULL) {
1594 		KASSERT(dst_entry->cred == NULL,
1595 		    ("vm_fault_copy_entry: leaked swp charge"));
1596 		dst_object->cred = curthread->td_ucred;
1597 		crhold(dst_object->cred);
1598 		*fork_charge += dst_object->charge;
1599 	} else if (dst_object->cred == NULL) {
1600 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1601 		    dst_entry));
1602 		dst_object->cred = dst_entry->cred;
1603 		dst_entry->cred = NULL;
1604 	}
1605 
1606 	/*
1607 	 * If not an upgrade, then enter the mappings in the pmap as
1608 	 * read and/or execute accesses.  Otherwise, enter them as
1609 	 * write accesses.
1610 	 *
1611 	 * A writeable large page mapping is only created if all of
1612 	 * the constituent small page mappings are modified. Marking
1613 	 * PTEs as modified on inception allows promotion to happen
1614 	 * without taking potentially large number of soft faults.
1615 	 */
1616 	if (!upgrade)
1617 		access &= ~VM_PROT_WRITE;
1618 
1619 	/*
1620 	 * Loop through all of the virtual pages within the entry's
1621 	 * range, copying each page from the source object to the
1622 	 * destination object.  Since the source is wired, those pages
1623 	 * must exist.  In contrast, the destination is pageable.
1624 	 * Since the destination object does share any backing storage
1625 	 * with the source object, all of its pages must be dirtied,
1626 	 * regardless of whether they can be written.
1627 	 */
1628 	for (vaddr = dst_entry->start, dst_pindex = 0;
1629 	    vaddr < dst_entry->end;
1630 	    vaddr += PAGE_SIZE, dst_pindex++) {
1631 again:
1632 		/*
1633 		 * Find the page in the source object, and copy it in.
1634 		 * Because the source is wired down, the page will be
1635 		 * in memory.
1636 		 */
1637 		if (src_object != dst_object)
1638 			VM_OBJECT_RLOCK(src_object);
1639 		object = src_object;
1640 		pindex = src_pindex + dst_pindex;
1641 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1642 		    (backing_object = object->backing_object) != NULL) {
1643 			/*
1644 			 * Unless the source mapping is read-only or
1645 			 * it is presently being upgraded from
1646 			 * read-only, the first object in the shadow
1647 			 * chain should provide all of the pages.  In
1648 			 * other words, this loop body should never be
1649 			 * executed when the source mapping is already
1650 			 * read/write.
1651 			 */
1652 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1653 			    upgrade,
1654 			    ("vm_fault_copy_entry: main object missing page"));
1655 
1656 			VM_OBJECT_RLOCK(backing_object);
1657 			pindex += OFF_TO_IDX(object->backing_object_offset);
1658 			if (object != dst_object)
1659 				VM_OBJECT_RUNLOCK(object);
1660 			object = backing_object;
1661 		}
1662 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1663 
1664 		if (object != dst_object) {
1665 			/*
1666 			 * Allocate a page in the destination object.
1667 			 */
1668 			dst_m = vm_page_alloc(dst_object, (src_object ==
1669 			    dst_object ? src_pindex : 0) + dst_pindex,
1670 			    VM_ALLOC_NORMAL);
1671 			if (dst_m == NULL) {
1672 				VM_OBJECT_WUNLOCK(dst_object);
1673 				VM_OBJECT_RUNLOCK(object);
1674 				VM_WAIT;
1675 				VM_OBJECT_WLOCK(dst_object);
1676 				goto again;
1677 			}
1678 			pmap_copy_page(src_m, dst_m);
1679 			VM_OBJECT_RUNLOCK(object);
1680 			dst_m->valid = VM_PAGE_BITS_ALL;
1681 			dst_m->dirty = VM_PAGE_BITS_ALL;
1682 		} else {
1683 			dst_m = src_m;
1684 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1685 				goto again;
1686 			vm_page_xbusy(dst_m);
1687 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1688 			    ("invalid dst page %p", dst_m));
1689 		}
1690 		VM_OBJECT_WUNLOCK(dst_object);
1691 
1692 		/*
1693 		 * Enter it in the pmap. If a wired, copy-on-write
1694 		 * mapping is being replaced by a write-enabled
1695 		 * mapping, then wire that new mapping.
1696 		 */
1697 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1698 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1699 
1700 		/*
1701 		 * Mark it no longer busy, and put it on the active list.
1702 		 */
1703 		VM_OBJECT_WLOCK(dst_object);
1704 
1705 		if (upgrade) {
1706 			if (src_m != dst_m) {
1707 				vm_page_lock(src_m);
1708 				vm_page_unwire(src_m, PQ_INACTIVE);
1709 				vm_page_unlock(src_m);
1710 				vm_page_lock(dst_m);
1711 				vm_page_wire(dst_m);
1712 				vm_page_unlock(dst_m);
1713 			} else {
1714 				KASSERT(dst_m->wire_count > 0,
1715 				    ("dst_m %p is not wired", dst_m));
1716 			}
1717 		} else {
1718 			vm_page_lock(dst_m);
1719 			vm_page_activate(dst_m);
1720 			vm_page_unlock(dst_m);
1721 		}
1722 		vm_page_xunbusy(dst_m);
1723 	}
1724 	VM_OBJECT_WUNLOCK(dst_object);
1725 	if (upgrade) {
1726 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1727 		vm_object_deallocate(src_object);
1728 	}
1729 }
1730 
1731 /*
1732  * Block entry into the machine-independent layer's page fault handler by
1733  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1734  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1735  * spurious page faults.
1736  */
1737 int
1738 vm_fault_disable_pagefaults(void)
1739 {
1740 
1741 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1742 }
1743 
1744 void
1745 vm_fault_enable_pagefaults(int save)
1746 {
1747 
1748 	curthread_pflags_restore(save);
1749 }
1750