xref: /freebsd/sys/vm/vm_map.c (revision 41840d75)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	uma_prealloc(kmapentzone, MAX_KMAPENT);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 }
204 
205 static void
206 vmspace_zfini(void *mem, int size)
207 {
208 	struct vmspace *vm;
209 
210 	vm = (struct vmspace *)mem;
211 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212 }
213 
214 static int
215 vmspace_zinit(void *mem, int size, int flags)
216 {
217 	struct vmspace *vm;
218 
219 	vm = (struct vmspace *)mem;
220 
221 	vm->vm_map.pmap = NULL;
222 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223 	return (0);
224 }
225 
226 static void
227 vm_map_zfini(void *mem, int size)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	mtx_destroy(&map->system_mtx);
233 	sx_destroy(&map->lock);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	memset(map, 0, sizeof(*map));
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  */
277 struct vmspace *
278 vmspace_alloc(min, max)
279 	vm_offset_t min, max;
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 void
303 vm_init2(void)
304 {
305 	uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count,
306 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
307 	     maxproc * 2 + maxfiles);
308 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
309 #ifdef INVARIANTS
310 	    vmspace_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 }
316 
317 static void
318 vmspace_container_reset(struct proc *p)
319 {
320 
321 #ifdef RACCT
322 	PROC_LOCK(p);
323 	racct_set(p, RACCT_DATA, 0);
324 	racct_set(p, RACCT_STACK, 0);
325 	racct_set(p, RACCT_RSS, 0);
326 	racct_set(p, RACCT_MEMLOCK, 0);
327 	racct_set(p, RACCT_VMEM, 0);
328 	PROC_UNLOCK(p);
329 #endif
330 }
331 
332 static inline void
333 vmspace_dofree(struct vmspace *vm)
334 {
335 
336 	CTR1(KTR_VM, "vmspace_free: %p", vm);
337 
338 	/*
339 	 * Make sure any SysV shm is freed, it might not have been in
340 	 * exit1().
341 	 */
342 	shmexit(vm);
343 
344 	/*
345 	 * Lock the map, to wait out all other references to it.
346 	 * Delete all of the mappings and pages they hold, then call
347 	 * the pmap module to reclaim anything left.
348 	 */
349 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
350 	    vm->vm_map.max_offset);
351 
352 	pmap_release(vmspace_pmap(vm));
353 	vm->vm_map.pmap = NULL;
354 	uma_zfree(vmspace_zone, vm);
355 }
356 
357 void
358 vmspace_free(struct vmspace *vm)
359 {
360 
361 	if (vm->vm_refcnt == 0)
362 		panic("vmspace_free: attempt to free already freed vmspace");
363 
364 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
365 		vmspace_dofree(vm);
366 }
367 
368 void
369 vmspace_exitfree(struct proc *p)
370 {
371 	struct vmspace *vm;
372 
373 	PROC_VMSPACE_LOCK(p);
374 	vm = p->p_vmspace;
375 	p->p_vmspace = NULL;
376 	PROC_VMSPACE_UNLOCK(p);
377 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
378 	vmspace_free(vm);
379 }
380 
381 void
382 vmspace_exit(struct thread *td)
383 {
384 	int refcnt;
385 	struct vmspace *vm;
386 	struct proc *p;
387 
388 	/*
389 	 * Release user portion of address space.
390 	 * This releases references to vnodes,
391 	 * which could cause I/O if the file has been unlinked.
392 	 * Need to do this early enough that we can still sleep.
393 	 *
394 	 * The last exiting process to reach this point releases as
395 	 * much of the environment as it can. vmspace_dofree() is the
396 	 * slower fallback in case another process had a temporary
397 	 * reference to the vmspace.
398 	 */
399 
400 	p = td->td_proc;
401 	vm = p->p_vmspace;
402 	atomic_add_int(&vmspace0.vm_refcnt, 1);
403 	do {
404 		refcnt = vm->vm_refcnt;
405 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
406 			/* Switch now since other proc might free vmspace */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = &vmspace0;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
413 	if (refcnt == 1) {
414 		if (p->p_vmspace != vm) {
415 			/* vmspace not yet freed, switch back */
416 			PROC_VMSPACE_LOCK(p);
417 			p->p_vmspace = vm;
418 			PROC_VMSPACE_UNLOCK(p);
419 			pmap_activate(td);
420 		}
421 		pmap_remove_pages(vmspace_pmap(vm));
422 		/* Switch now since this proc will free vmspace */
423 		PROC_VMSPACE_LOCK(p);
424 		p->p_vmspace = &vmspace0;
425 		PROC_VMSPACE_UNLOCK(p);
426 		pmap_activate(td);
427 		vmspace_dofree(vm);
428 	}
429 	vmspace_container_reset(p);
430 }
431 
432 /* Acquire reference to vmspace owned by another process. */
433 
434 struct vmspace *
435 vmspace_acquire_ref(struct proc *p)
436 {
437 	struct vmspace *vm;
438 	int refcnt;
439 
440 	PROC_VMSPACE_LOCK(p);
441 	vm = p->p_vmspace;
442 	if (vm == NULL) {
443 		PROC_VMSPACE_UNLOCK(p);
444 		return (NULL);
445 	}
446 	do {
447 		refcnt = vm->vm_refcnt;
448 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
449 			PROC_VMSPACE_UNLOCK(p);
450 			return (NULL);
451 		}
452 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
453 	if (vm != p->p_vmspace) {
454 		PROC_VMSPACE_UNLOCK(p);
455 		vmspace_free(vm);
456 		return (NULL);
457 	}
458 	PROC_VMSPACE_UNLOCK(p);
459 	return (vm);
460 }
461 
462 void
463 _vm_map_lock(vm_map_t map, const char *file, int line)
464 {
465 
466 	if (map->system_map)
467 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
468 	else
469 		sx_xlock_(&map->lock, file, line);
470 	map->timestamp++;
471 }
472 
473 static void
474 vm_map_process_deferred(void)
475 {
476 	struct thread *td;
477 	vm_map_entry_t entry, next;
478 	vm_object_t object;
479 
480 	td = curthread;
481 	entry = td->td_map_def_user;
482 	td->td_map_def_user = NULL;
483 	while (entry != NULL) {
484 		next = entry->next;
485 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
486 			/*
487 			 * Decrement the object's writemappings and
488 			 * possibly the vnode's v_writecount.
489 			 */
490 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
491 			    ("Submap with writecount"));
492 			object = entry->object.vm_object;
493 			KASSERT(object != NULL, ("No object for writecount"));
494 			vnode_pager_release_writecount(object, entry->start,
495 			    entry->end);
496 		}
497 		vm_map_entry_deallocate(entry, FALSE);
498 		entry = next;
499 	}
500 }
501 
502 void
503 _vm_map_unlock(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_xunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 void
515 _vm_map_lock_read(vm_map_t map, const char *file, int line)
516 {
517 
518 	if (map->system_map)
519 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
520 	else
521 		sx_slock_(&map->lock, file, line);
522 }
523 
524 void
525 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
526 {
527 
528 	if (map->system_map)
529 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
530 	else {
531 		sx_sunlock_(&map->lock, file, line);
532 		vm_map_process_deferred();
533 	}
534 }
535 
536 int
537 _vm_map_trylock(vm_map_t map, const char *file, int line)
538 {
539 	int error;
540 
541 	error = map->system_map ?
542 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
543 	    !sx_try_xlock_(&map->lock, file, line);
544 	if (error == 0)
545 		map->timestamp++;
546 	return (error == 0);
547 }
548 
549 int
550 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
551 {
552 	int error;
553 
554 	error = map->system_map ?
555 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
556 	    !sx_try_slock_(&map->lock, file, line);
557 	return (error == 0);
558 }
559 
560 /*
561  *	_vm_map_lock_upgrade:	[ internal use only ]
562  *
563  *	Tries to upgrade a read (shared) lock on the specified map to a write
564  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
565  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
566  *	returned without a read or write lock held.
567  *
568  *	Requires that the map be read locked.
569  */
570 int
571 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
572 {
573 	unsigned int last_timestamp;
574 
575 	if (map->system_map) {
576 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
577 	} else {
578 		if (!sx_try_upgrade_(&map->lock, file, line)) {
579 			last_timestamp = map->timestamp;
580 			sx_sunlock_(&map->lock, file, line);
581 			vm_map_process_deferred();
582 			/*
583 			 * If the map's timestamp does not change while the
584 			 * map is unlocked, then the upgrade succeeds.
585 			 */
586 			sx_xlock_(&map->lock, file, line);
587 			if (last_timestamp != map->timestamp) {
588 				sx_xunlock_(&map->lock, file, line);
589 				return (1);
590 			}
591 		}
592 	}
593 	map->timestamp++;
594 	return (0);
595 }
596 
597 void
598 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
599 {
600 
601 	if (map->system_map) {
602 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
603 	} else
604 		sx_downgrade_(&map->lock, file, line);
605 }
606 
607 /*
608  *	vm_map_locked:
609  *
610  *	Returns a non-zero value if the caller holds a write (exclusive) lock
611  *	on the specified map and the value "0" otherwise.
612  */
613 int
614 vm_map_locked(vm_map_t map)
615 {
616 
617 	if (map->system_map)
618 		return (mtx_owned(&map->system_mtx));
619 	else
620 		return (sx_xlocked(&map->lock));
621 }
622 
623 #ifdef INVARIANTS
624 static void
625 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
626 {
627 
628 	if (map->system_map)
629 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
630 	else
631 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
632 }
633 
634 #define	VM_MAP_ASSERT_LOCKED(map) \
635     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
636 #else
637 #define	VM_MAP_ASSERT_LOCKED(map)
638 #endif
639 
640 /*
641  *	_vm_map_unlock_and_wait:
642  *
643  *	Atomically releases the lock on the specified map and puts the calling
644  *	thread to sleep.  The calling thread will remain asleep until either
645  *	vm_map_wakeup() is performed on the map or the specified timeout is
646  *	exceeded.
647  *
648  *	WARNING!  This function does not perform deferred deallocations of
649  *	objects and map	entries.  Therefore, the calling thread is expected to
650  *	reacquire the map lock after reawakening and later perform an ordinary
651  *	unlock operation, such as vm_map_unlock(), before completing its
652  *	operation on the map.
653  */
654 int
655 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
656 {
657 
658 	mtx_lock(&map_sleep_mtx);
659 	if (map->system_map)
660 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
661 	else
662 		sx_xunlock_(&map->lock, file, line);
663 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
664 	    timo));
665 }
666 
667 /*
668  *	vm_map_wakeup:
669  *
670  *	Awaken any threads that have slept on the map using
671  *	vm_map_unlock_and_wait().
672  */
673 void
674 vm_map_wakeup(vm_map_t map)
675 {
676 
677 	/*
678 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
679 	 * from being performed (and lost) between the map unlock
680 	 * and the msleep() in _vm_map_unlock_and_wait().
681 	 */
682 	mtx_lock(&map_sleep_mtx);
683 	mtx_unlock(&map_sleep_mtx);
684 	wakeup(&map->root);
685 }
686 
687 void
688 vm_map_busy(vm_map_t map)
689 {
690 
691 	VM_MAP_ASSERT_LOCKED(map);
692 	map->busy++;
693 }
694 
695 void
696 vm_map_unbusy(vm_map_t map)
697 {
698 
699 	VM_MAP_ASSERT_LOCKED(map);
700 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
701 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
702 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
703 		wakeup(&map->busy);
704 	}
705 }
706 
707 void
708 vm_map_wait_busy(vm_map_t map)
709 {
710 
711 	VM_MAP_ASSERT_LOCKED(map);
712 	while (map->busy) {
713 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
714 		if (map->system_map)
715 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
716 		else
717 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
718 	}
719 	map->timestamp++;
720 }
721 
722 long
723 vmspace_resident_count(struct vmspace *vmspace)
724 {
725 	return pmap_resident_count(vmspace_pmap(vmspace));
726 }
727 
728 /*
729  *	vm_map_create:
730  *
731  *	Creates and returns a new empty VM map with
732  *	the given physical map structure, and having
733  *	the given lower and upper address bounds.
734  */
735 vm_map_t
736 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
737 {
738 	vm_map_t result;
739 
740 	result = uma_zalloc(mapzone, M_WAITOK);
741 	CTR1(KTR_VM, "vm_map_create: %p", result);
742 	_vm_map_init(result, pmap, min, max);
743 	return (result);
744 }
745 
746 /*
747  * Initialize an existing vm_map structure
748  * such as that in the vmspace structure.
749  */
750 static void
751 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
752 {
753 
754 	map->header.next = map->header.prev = &map->header;
755 	map->needs_wakeup = FALSE;
756 	map->system_map = 0;
757 	map->pmap = pmap;
758 	map->min_offset = min;
759 	map->max_offset = max;
760 	map->flags = 0;
761 	map->root = NULL;
762 	map->timestamp = 0;
763 	map->busy = 0;
764 }
765 
766 void
767 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
768 {
769 
770 	_vm_map_init(map, pmap, min, max);
771 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
772 	sx_init(&map->lock, "user map");
773 }
774 
775 /*
776  *	vm_map_entry_dispose:	[ internal use only ]
777  *
778  *	Inverse of vm_map_entry_create.
779  */
780 static void
781 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
782 {
783 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
784 }
785 
786 /*
787  *	vm_map_entry_create:	[ internal use only ]
788  *
789  *	Allocates a VM map entry for insertion.
790  *	No entry fields are filled in.
791  */
792 static vm_map_entry_t
793 vm_map_entry_create(vm_map_t map)
794 {
795 	vm_map_entry_t new_entry;
796 
797 	if (map->system_map)
798 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
799 	else
800 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
801 	if (new_entry == NULL)
802 		panic("vm_map_entry_create: kernel resources exhausted");
803 	return (new_entry);
804 }
805 
806 /*
807  *	vm_map_entry_set_behavior:
808  *
809  *	Set the expected access behavior, either normal, random, or
810  *	sequential.
811  */
812 static inline void
813 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
814 {
815 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
816 	    (behavior & MAP_ENTRY_BEHAV_MASK);
817 }
818 
819 /*
820  *	vm_map_entry_set_max_free:
821  *
822  *	Set the max_free field in a vm_map_entry.
823  */
824 static inline void
825 vm_map_entry_set_max_free(vm_map_entry_t entry)
826 {
827 
828 	entry->max_free = entry->adj_free;
829 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
830 		entry->max_free = entry->left->max_free;
831 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
832 		entry->max_free = entry->right->max_free;
833 }
834 
835 /*
836  *	vm_map_entry_splay:
837  *
838  *	The Sleator and Tarjan top-down splay algorithm with the
839  *	following variation.  Max_free must be computed bottom-up, so
840  *	on the downward pass, maintain the left and right spines in
841  *	reverse order.  Then, make a second pass up each side to fix
842  *	the pointers and compute max_free.  The time bound is O(log n)
843  *	amortized.
844  *
845  *	The new root is the vm_map_entry containing "addr", or else an
846  *	adjacent entry (lower or higher) if addr is not in the tree.
847  *
848  *	The map must be locked, and leaves it so.
849  *
850  *	Returns: the new root.
851  */
852 static vm_map_entry_t
853 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
854 {
855 	vm_map_entry_t llist, rlist;
856 	vm_map_entry_t ltree, rtree;
857 	vm_map_entry_t y;
858 
859 	/* Special case of empty tree. */
860 	if (root == NULL)
861 		return (root);
862 
863 	/*
864 	 * Pass One: Splay down the tree until we find addr or a NULL
865 	 * pointer where addr would go.  llist and rlist are the two
866 	 * sides in reverse order (bottom-up), with llist linked by
867 	 * the right pointer and rlist linked by the left pointer in
868 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
869 	 * the two spines.
870 	 */
871 	llist = NULL;
872 	rlist = NULL;
873 	for (;;) {
874 		/* root is never NULL in here. */
875 		if (addr < root->start) {
876 			y = root->left;
877 			if (y == NULL)
878 				break;
879 			if (addr < y->start && y->left != NULL) {
880 				/* Rotate right and put y on rlist. */
881 				root->left = y->right;
882 				y->right = root;
883 				vm_map_entry_set_max_free(root);
884 				root = y->left;
885 				y->left = rlist;
886 				rlist = y;
887 			} else {
888 				/* Put root on rlist. */
889 				root->left = rlist;
890 				rlist = root;
891 				root = y;
892 			}
893 		} else if (addr >= root->end) {
894 			y = root->right;
895 			if (y == NULL)
896 				break;
897 			if (addr >= y->end && y->right != NULL) {
898 				/* Rotate left and put y on llist. */
899 				root->right = y->left;
900 				y->left = root;
901 				vm_map_entry_set_max_free(root);
902 				root = y->right;
903 				y->right = llist;
904 				llist = y;
905 			} else {
906 				/* Put root on llist. */
907 				root->right = llist;
908 				llist = root;
909 				root = y;
910 			}
911 		} else
912 			break;
913 	}
914 
915 	/*
916 	 * Pass Two: Walk back up the two spines, flip the pointers
917 	 * and set max_free.  The subtrees of the root go at the
918 	 * bottom of llist and rlist.
919 	 */
920 	ltree = root->left;
921 	while (llist != NULL) {
922 		y = llist->right;
923 		llist->right = ltree;
924 		vm_map_entry_set_max_free(llist);
925 		ltree = llist;
926 		llist = y;
927 	}
928 	rtree = root->right;
929 	while (rlist != NULL) {
930 		y = rlist->left;
931 		rlist->left = rtree;
932 		vm_map_entry_set_max_free(rlist);
933 		rtree = rlist;
934 		rlist = y;
935 	}
936 
937 	/*
938 	 * Final assembly: add ltree and rtree as subtrees of root.
939 	 */
940 	root->left = ltree;
941 	root->right = rtree;
942 	vm_map_entry_set_max_free(root);
943 
944 	return (root);
945 }
946 
947 /*
948  *	vm_map_entry_{un,}link:
949  *
950  *	Insert/remove entries from maps.
951  */
952 static void
953 vm_map_entry_link(vm_map_t map,
954 		  vm_map_entry_t after_where,
955 		  vm_map_entry_t entry)
956 {
957 
958 	CTR4(KTR_VM,
959 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
960 	    map->nentries, entry, after_where);
961 	VM_MAP_ASSERT_LOCKED(map);
962 	map->nentries++;
963 	entry->prev = after_where;
964 	entry->next = after_where->next;
965 	entry->next->prev = entry;
966 	after_where->next = entry;
967 
968 	if (after_where != &map->header) {
969 		if (after_where != map->root)
970 			vm_map_entry_splay(after_where->start, map->root);
971 		entry->right = after_where->right;
972 		entry->left = after_where;
973 		after_where->right = NULL;
974 		after_where->adj_free = entry->start - after_where->end;
975 		vm_map_entry_set_max_free(after_where);
976 	} else {
977 		entry->right = map->root;
978 		entry->left = NULL;
979 	}
980 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
981 	    entry->next->start) - entry->end;
982 	vm_map_entry_set_max_free(entry);
983 	map->root = entry;
984 }
985 
986 static void
987 vm_map_entry_unlink(vm_map_t map,
988 		    vm_map_entry_t entry)
989 {
990 	vm_map_entry_t next, prev, root;
991 
992 	VM_MAP_ASSERT_LOCKED(map);
993 	if (entry != map->root)
994 		vm_map_entry_splay(entry->start, map->root);
995 	if (entry->left == NULL)
996 		root = entry->right;
997 	else {
998 		root = vm_map_entry_splay(entry->start, entry->left);
999 		root->right = entry->right;
1000 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1001 		    entry->next->start) - root->end;
1002 		vm_map_entry_set_max_free(root);
1003 	}
1004 	map->root = root;
1005 
1006 	prev = entry->prev;
1007 	next = entry->next;
1008 	next->prev = prev;
1009 	prev->next = next;
1010 	map->nentries--;
1011 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1012 	    map->nentries, entry);
1013 }
1014 
1015 /*
1016  *	vm_map_entry_resize_free:
1017  *
1018  *	Recompute the amount of free space following a vm_map_entry
1019  *	and propagate that value up the tree.  Call this function after
1020  *	resizing a map entry in-place, that is, without a call to
1021  *	vm_map_entry_link() or _unlink().
1022  *
1023  *	The map must be locked, and leaves it so.
1024  */
1025 static void
1026 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1027 {
1028 
1029 	/*
1030 	 * Using splay trees without parent pointers, propagating
1031 	 * max_free up the tree is done by moving the entry to the
1032 	 * root and making the change there.
1033 	 */
1034 	if (entry != map->root)
1035 		map->root = vm_map_entry_splay(entry->start, map->root);
1036 
1037 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1038 	    entry->next->start) - entry->end;
1039 	vm_map_entry_set_max_free(entry);
1040 }
1041 
1042 /*
1043  *	vm_map_lookup_entry:	[ internal use only ]
1044  *
1045  *	Finds the map entry containing (or
1046  *	immediately preceding) the specified address
1047  *	in the given map; the entry is returned
1048  *	in the "entry" parameter.  The boolean
1049  *	result indicates whether the address is
1050  *	actually contained in the map.
1051  */
1052 boolean_t
1053 vm_map_lookup_entry(
1054 	vm_map_t map,
1055 	vm_offset_t address,
1056 	vm_map_entry_t *entry)	/* OUT */
1057 {
1058 	vm_map_entry_t cur;
1059 	boolean_t locked;
1060 
1061 	/*
1062 	 * If the map is empty, then the map entry immediately preceding
1063 	 * "address" is the map's header.
1064 	 */
1065 	cur = map->root;
1066 	if (cur == NULL)
1067 		*entry = &map->header;
1068 	else if (address >= cur->start && cur->end > address) {
1069 		*entry = cur;
1070 		return (TRUE);
1071 	} else if ((locked = vm_map_locked(map)) ||
1072 	    sx_try_upgrade(&map->lock)) {
1073 		/*
1074 		 * Splay requires a write lock on the map.  However, it only
1075 		 * restructures the binary search tree; it does not otherwise
1076 		 * change the map.  Thus, the map's timestamp need not change
1077 		 * on a temporary upgrade.
1078 		 */
1079 		map->root = cur = vm_map_entry_splay(address, cur);
1080 		if (!locked)
1081 			sx_downgrade(&map->lock);
1082 
1083 		/*
1084 		 * If "address" is contained within a map entry, the new root
1085 		 * is that map entry.  Otherwise, the new root is a map entry
1086 		 * immediately before or after "address".
1087 		 */
1088 		if (address >= cur->start) {
1089 			*entry = cur;
1090 			if (cur->end > address)
1091 				return (TRUE);
1092 		} else
1093 			*entry = cur->prev;
1094 	} else
1095 		/*
1096 		 * Since the map is only locked for read access, perform a
1097 		 * standard binary search tree lookup for "address".
1098 		 */
1099 		for (;;) {
1100 			if (address < cur->start) {
1101 				if (cur->left == NULL) {
1102 					*entry = cur->prev;
1103 					break;
1104 				}
1105 				cur = cur->left;
1106 			} else if (cur->end > address) {
1107 				*entry = cur;
1108 				return (TRUE);
1109 			} else {
1110 				if (cur->right == NULL) {
1111 					*entry = cur;
1112 					break;
1113 				}
1114 				cur = cur->right;
1115 			}
1116 		}
1117 	return (FALSE);
1118 }
1119 
1120 /*
1121  *	vm_map_insert:
1122  *
1123  *	Inserts the given whole VM object into the target
1124  *	map at the specified address range.  The object's
1125  *	size should match that of the address range.
1126  *
1127  *	Requires that the map be locked, and leaves it so.
1128  *
1129  *	If object is non-NULL, ref count must be bumped by caller
1130  *	prior to making call to account for the new entry.
1131  */
1132 int
1133 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1134 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1135 	      int cow)
1136 {
1137 	vm_map_entry_t new_entry;
1138 	vm_map_entry_t prev_entry;
1139 	vm_map_entry_t temp_entry;
1140 	vm_eflags_t protoeflags;
1141 	struct ucred *cred;
1142 	vm_inherit_t inheritance;
1143 	boolean_t charge_prev_obj;
1144 
1145 	VM_MAP_ASSERT_LOCKED(map);
1146 
1147 	/*
1148 	 * Check that the start and end points are not bogus.
1149 	 */
1150 	if ((start < map->min_offset) || (end > map->max_offset) ||
1151 	    (start >= end))
1152 		return (KERN_INVALID_ADDRESS);
1153 
1154 	/*
1155 	 * Find the entry prior to the proposed starting address; if it's part
1156 	 * of an existing entry, this range is bogus.
1157 	 */
1158 	if (vm_map_lookup_entry(map, start, &temp_entry))
1159 		return (KERN_NO_SPACE);
1160 
1161 	prev_entry = temp_entry;
1162 
1163 	/*
1164 	 * Assert that the next entry doesn't overlap the end point.
1165 	 */
1166 	if ((prev_entry->next != &map->header) &&
1167 	    (prev_entry->next->start < end))
1168 		return (KERN_NO_SPACE);
1169 
1170 	protoeflags = 0;
1171 	charge_prev_obj = FALSE;
1172 
1173 	if (cow & MAP_COPY_ON_WRITE)
1174 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1175 
1176 	if (cow & MAP_NOFAULT) {
1177 		protoeflags |= MAP_ENTRY_NOFAULT;
1178 
1179 		KASSERT(object == NULL,
1180 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1181 	}
1182 	if (cow & MAP_DISABLE_SYNCER)
1183 		protoeflags |= MAP_ENTRY_NOSYNC;
1184 	if (cow & MAP_DISABLE_COREDUMP)
1185 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1186 	if (cow & MAP_VN_WRITECOUNT)
1187 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1188 	if (cow & MAP_INHERIT_SHARE)
1189 		inheritance = VM_INHERIT_SHARE;
1190 	else
1191 		inheritance = VM_INHERIT_DEFAULT;
1192 
1193 	cred = NULL;
1194 	KASSERT((object != kmem_object && object != kernel_object) ||
1195 	    ((object == kmem_object || object == kernel_object) &&
1196 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1197 	    ("kmem or kernel object and cow"));
1198 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1199 		goto charged;
1200 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1201 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1202 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1203 			return (KERN_RESOURCE_SHORTAGE);
1204 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1205 		    object->cred == NULL,
1206 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1207 		cred = curthread->td_ucred;
1208 		crhold(cred);
1209 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1210 			charge_prev_obj = TRUE;
1211 	}
1212 
1213 charged:
1214 	/* Expand the kernel pmap, if necessary. */
1215 	if (map == kernel_map && end > kernel_vm_end)
1216 		pmap_growkernel(end);
1217 	if (object != NULL) {
1218 		/*
1219 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1220 		 * is trivially proven to be the only mapping for any
1221 		 * of the object's pages.  (Object granularity
1222 		 * reference counting is insufficient to recognize
1223 		 * aliases with precision.)
1224 		 */
1225 		VM_OBJECT_WLOCK(object);
1226 		if (object->ref_count > 1 || object->shadow_count != 0)
1227 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1228 		VM_OBJECT_WUNLOCK(object);
1229 	}
1230 	else if ((prev_entry != &map->header) &&
1231 		 (prev_entry->eflags == protoeflags) &&
1232 		 (prev_entry->end == start) &&
1233 		 (prev_entry->wired_count == 0) &&
1234 		 (prev_entry->cred == cred ||
1235 		  (prev_entry->object.vm_object != NULL &&
1236 		   (prev_entry->object.vm_object->cred == cred))) &&
1237 		   vm_object_coalesce(prev_entry->object.vm_object,
1238 		       prev_entry->offset,
1239 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1240 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1241 		/*
1242 		 * We were able to extend the object.  Determine if we
1243 		 * can extend the previous map entry to include the
1244 		 * new range as well.
1245 		 */
1246 		if ((prev_entry->inheritance == inheritance) &&
1247 		    (prev_entry->protection == prot) &&
1248 		    (prev_entry->max_protection == max)) {
1249 			map->size += (end - prev_entry->end);
1250 			prev_entry->end = end;
1251 			vm_map_entry_resize_free(map, prev_entry);
1252 			vm_map_simplify_entry(map, prev_entry);
1253 			if (cred != NULL)
1254 				crfree(cred);
1255 			return (KERN_SUCCESS);
1256 		}
1257 
1258 		/*
1259 		 * If we can extend the object but cannot extend the
1260 		 * map entry, we have to create a new map entry.  We
1261 		 * must bump the ref count on the extended object to
1262 		 * account for it.  object may be NULL.
1263 		 */
1264 		object = prev_entry->object.vm_object;
1265 		offset = prev_entry->offset +
1266 			(prev_entry->end - prev_entry->start);
1267 		vm_object_reference(object);
1268 		if (cred != NULL && object != NULL && object->cred != NULL &&
1269 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1270 			/* Object already accounts for this uid. */
1271 			crfree(cred);
1272 			cred = NULL;
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1278 	 * in things like the buffer map where we manage kva but do not manage
1279 	 * backing objects.
1280 	 */
1281 
1282 	/*
1283 	 * Create a new entry
1284 	 */
1285 	new_entry = vm_map_entry_create(map);
1286 	new_entry->start = start;
1287 	new_entry->end = end;
1288 	new_entry->cred = NULL;
1289 
1290 	new_entry->eflags = protoeflags;
1291 	new_entry->object.vm_object = object;
1292 	new_entry->offset = offset;
1293 	new_entry->avail_ssize = 0;
1294 
1295 	new_entry->inheritance = inheritance;
1296 	new_entry->protection = prot;
1297 	new_entry->max_protection = max;
1298 	new_entry->wired_count = 0;
1299 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1300 	new_entry->next_read = OFF_TO_IDX(offset);
1301 
1302 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1303 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1304 	new_entry->cred = cred;
1305 
1306 	/*
1307 	 * Insert the new entry into the list
1308 	 */
1309 	vm_map_entry_link(map, prev_entry, new_entry);
1310 	map->size += new_entry->end - new_entry->start;
1311 
1312 	/*
1313 	 * It may be possible to merge the new entry with the next and/or
1314 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1315 	 * panic can result from merging such entries.
1316 	 */
1317 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1318 		vm_map_simplify_entry(map, new_entry);
1319 
1320 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1321 		vm_map_pmap_enter(map, start, prot,
1322 				    object, OFF_TO_IDX(offset), end - start,
1323 				    cow & MAP_PREFAULT_PARTIAL);
1324 	}
1325 
1326 	return (KERN_SUCCESS);
1327 }
1328 
1329 /*
1330  *	vm_map_findspace:
1331  *
1332  *	Find the first fit (lowest VM address) for "length" free bytes
1333  *	beginning at address >= start in the given map.
1334  *
1335  *	In a vm_map_entry, "adj_free" is the amount of free space
1336  *	adjacent (higher address) to this entry, and "max_free" is the
1337  *	maximum amount of contiguous free space in its subtree.  This
1338  *	allows finding a free region in one path down the tree, so
1339  *	O(log n) amortized with splay trees.
1340  *
1341  *	The map must be locked, and leaves it so.
1342  *
1343  *	Returns: 0 on success, and starting address in *addr,
1344  *		 1 if insufficient space.
1345  */
1346 int
1347 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1348     vm_offset_t *addr)	/* OUT */
1349 {
1350 	vm_map_entry_t entry;
1351 	vm_offset_t st;
1352 
1353 	/*
1354 	 * Request must fit within min/max VM address and must avoid
1355 	 * address wrap.
1356 	 */
1357 	if (start < map->min_offset)
1358 		start = map->min_offset;
1359 	if (start + length > map->max_offset || start + length < start)
1360 		return (1);
1361 
1362 	/* Empty tree means wide open address space. */
1363 	if (map->root == NULL) {
1364 		*addr = start;
1365 		return (0);
1366 	}
1367 
1368 	/*
1369 	 * After splay, if start comes before root node, then there
1370 	 * must be a gap from start to the root.
1371 	 */
1372 	map->root = vm_map_entry_splay(start, map->root);
1373 	if (start + length <= map->root->start) {
1374 		*addr = start;
1375 		return (0);
1376 	}
1377 
1378 	/*
1379 	 * Root is the last node that might begin its gap before
1380 	 * start, and this is the last comparison where address
1381 	 * wrap might be a problem.
1382 	 */
1383 	st = (start > map->root->end) ? start : map->root->end;
1384 	if (length <= map->root->end + map->root->adj_free - st) {
1385 		*addr = st;
1386 		return (0);
1387 	}
1388 
1389 	/* With max_free, can immediately tell if no solution. */
1390 	entry = map->root->right;
1391 	if (entry == NULL || length > entry->max_free)
1392 		return (1);
1393 
1394 	/*
1395 	 * Search the right subtree in the order: left subtree, root,
1396 	 * right subtree (first fit).  The previous splay implies that
1397 	 * all regions in the right subtree have addresses > start.
1398 	 */
1399 	while (entry != NULL) {
1400 		if (entry->left != NULL && entry->left->max_free >= length)
1401 			entry = entry->left;
1402 		else if (entry->adj_free >= length) {
1403 			*addr = entry->end;
1404 			return (0);
1405 		} else
1406 			entry = entry->right;
1407 	}
1408 
1409 	/* Can't get here, so panic if we do. */
1410 	panic("vm_map_findspace: max_free corrupt");
1411 }
1412 
1413 int
1414 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1415     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1416     vm_prot_t max, int cow)
1417 {
1418 	vm_offset_t end;
1419 	int result;
1420 
1421 	end = start + length;
1422 	vm_map_lock(map);
1423 	VM_MAP_RANGE_CHECK(map, start, end);
1424 	(void) vm_map_delete(map, start, end);
1425 	result = vm_map_insert(map, object, offset, start, end, prot,
1426 	    max, cow);
1427 	vm_map_unlock(map);
1428 	return (result);
1429 }
1430 
1431 /*
1432  *	vm_map_find finds an unallocated region in the target address
1433  *	map with the given length.  The search is defined to be
1434  *	first-fit from the specified address; the region found is
1435  *	returned in the same parameter.
1436  *
1437  *	If object is non-NULL, ref count must be bumped by caller
1438  *	prior to making call to account for the new entry.
1439  */
1440 int
1441 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1442 	    vm_offset_t *addr,	/* IN/OUT */
1443 	    vm_size_t length, int find_space, vm_prot_t prot,
1444 	    vm_prot_t max, int cow)
1445 {
1446 	vm_offset_t start, initial_addr;
1447 	int result;
1448 
1449 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1450 	    (object->flags & OBJ_COLORED) == 0))
1451 			find_space = VMFS_ANY_SPACE;
1452 	initial_addr = *addr;
1453 again:
1454 	start = initial_addr;
1455 	vm_map_lock(map);
1456 	do {
1457 		if (find_space != VMFS_NO_SPACE) {
1458 			if (vm_map_findspace(map, start, length, addr)) {
1459 				vm_map_unlock(map);
1460 				if (find_space == VMFS_OPTIMAL_SPACE) {
1461 					find_space = VMFS_ANY_SPACE;
1462 					goto again;
1463 				}
1464 				return (KERN_NO_SPACE);
1465 			}
1466 			switch (find_space) {
1467 			case VMFS_ALIGNED_SPACE:
1468 			case VMFS_OPTIMAL_SPACE:
1469 				pmap_align_superpage(object, offset, addr,
1470 				    length);
1471 				break;
1472 #ifdef VMFS_TLB_ALIGNED_SPACE
1473 			case VMFS_TLB_ALIGNED_SPACE:
1474 				pmap_align_tlb(addr);
1475 				break;
1476 #endif
1477 			default:
1478 				break;
1479 			}
1480 
1481 			start = *addr;
1482 		}
1483 		result = vm_map_insert(map, object, offset, start, start +
1484 		    length, prot, max, cow);
1485 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE ||
1486 #ifdef VMFS_TLB_ALIGNED_SPACE
1487 	    find_space == VMFS_TLB_ALIGNED_SPACE ||
1488 #endif
1489 	    find_space == VMFS_OPTIMAL_SPACE));
1490 	vm_map_unlock(map);
1491 	return (result);
1492 }
1493 
1494 /*
1495  *	vm_map_simplify_entry:
1496  *
1497  *	Simplify the given map entry by merging with either neighbor.  This
1498  *	routine also has the ability to merge with both neighbors.
1499  *
1500  *	The map must be locked.
1501  *
1502  *	This routine guarentees that the passed entry remains valid (though
1503  *	possibly extended).  When merging, this routine may delete one or
1504  *	both neighbors.
1505  */
1506 void
1507 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1508 {
1509 	vm_map_entry_t next, prev;
1510 	vm_size_t prevsize, esize;
1511 
1512 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1513 		return;
1514 
1515 	prev = entry->prev;
1516 	if (prev != &map->header) {
1517 		prevsize = prev->end - prev->start;
1518 		if ( (prev->end == entry->start) &&
1519 		     (prev->object.vm_object == entry->object.vm_object) &&
1520 		     (!prev->object.vm_object ||
1521 			(prev->offset + prevsize == entry->offset)) &&
1522 		     (prev->eflags == entry->eflags) &&
1523 		     (prev->protection == entry->protection) &&
1524 		     (prev->max_protection == entry->max_protection) &&
1525 		     (prev->inheritance == entry->inheritance) &&
1526 		     (prev->wired_count == entry->wired_count) &&
1527 		     (prev->cred == entry->cred)) {
1528 			vm_map_entry_unlink(map, prev);
1529 			entry->start = prev->start;
1530 			entry->offset = prev->offset;
1531 			if (entry->prev != &map->header)
1532 				vm_map_entry_resize_free(map, entry->prev);
1533 
1534 			/*
1535 			 * If the backing object is a vnode object,
1536 			 * vm_object_deallocate() calls vrele().
1537 			 * However, vrele() does not lock the vnode
1538 			 * because the vnode has additional
1539 			 * references.  Thus, the map lock can be kept
1540 			 * without causing a lock-order reversal with
1541 			 * the vnode lock.
1542 			 *
1543 			 * Since we count the number of virtual page
1544 			 * mappings in object->un_pager.vnp.writemappings,
1545 			 * the writemappings value should not be adjusted
1546 			 * when the entry is disposed of.
1547 			 */
1548 			if (prev->object.vm_object)
1549 				vm_object_deallocate(prev->object.vm_object);
1550 			if (prev->cred != NULL)
1551 				crfree(prev->cred);
1552 			vm_map_entry_dispose(map, prev);
1553 		}
1554 	}
1555 
1556 	next = entry->next;
1557 	if (next != &map->header) {
1558 		esize = entry->end - entry->start;
1559 		if ((entry->end == next->start) &&
1560 		    (next->object.vm_object == entry->object.vm_object) &&
1561 		     (!entry->object.vm_object ||
1562 			(entry->offset + esize == next->offset)) &&
1563 		    (next->eflags == entry->eflags) &&
1564 		    (next->protection == entry->protection) &&
1565 		    (next->max_protection == entry->max_protection) &&
1566 		    (next->inheritance == entry->inheritance) &&
1567 		    (next->wired_count == entry->wired_count) &&
1568 		    (next->cred == entry->cred)) {
1569 			vm_map_entry_unlink(map, next);
1570 			entry->end = next->end;
1571 			vm_map_entry_resize_free(map, entry);
1572 
1573 			/*
1574 			 * See comment above.
1575 			 */
1576 			if (next->object.vm_object)
1577 				vm_object_deallocate(next->object.vm_object);
1578 			if (next->cred != NULL)
1579 				crfree(next->cred);
1580 			vm_map_entry_dispose(map, next);
1581 		}
1582 	}
1583 }
1584 /*
1585  *	vm_map_clip_start:	[ internal use only ]
1586  *
1587  *	Asserts that the given entry begins at or after
1588  *	the specified address; if necessary,
1589  *	it splits the entry into two.
1590  */
1591 #define vm_map_clip_start(map, entry, startaddr) \
1592 { \
1593 	if (startaddr > entry->start) \
1594 		_vm_map_clip_start(map, entry, startaddr); \
1595 }
1596 
1597 /*
1598  *	This routine is called only when it is known that
1599  *	the entry must be split.
1600  */
1601 static void
1602 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1603 {
1604 	vm_map_entry_t new_entry;
1605 
1606 	VM_MAP_ASSERT_LOCKED(map);
1607 
1608 	/*
1609 	 * Split off the front portion -- note that we must insert the new
1610 	 * entry BEFORE this one, so that this entry has the specified
1611 	 * starting address.
1612 	 */
1613 	vm_map_simplify_entry(map, entry);
1614 
1615 	/*
1616 	 * If there is no object backing this entry, we might as well create
1617 	 * one now.  If we defer it, an object can get created after the map
1618 	 * is clipped, and individual objects will be created for the split-up
1619 	 * map.  This is a bit of a hack, but is also about the best place to
1620 	 * put this improvement.
1621 	 */
1622 	if (entry->object.vm_object == NULL && !map->system_map) {
1623 		vm_object_t object;
1624 		object = vm_object_allocate(OBJT_DEFAULT,
1625 				atop(entry->end - entry->start));
1626 		entry->object.vm_object = object;
1627 		entry->offset = 0;
1628 		if (entry->cred != NULL) {
1629 			object->cred = entry->cred;
1630 			object->charge = entry->end - entry->start;
1631 			entry->cred = NULL;
1632 		}
1633 	} else if (entry->object.vm_object != NULL &&
1634 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1635 		   entry->cred != NULL) {
1636 		VM_OBJECT_WLOCK(entry->object.vm_object);
1637 		KASSERT(entry->object.vm_object->cred == NULL,
1638 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1639 		entry->object.vm_object->cred = entry->cred;
1640 		entry->object.vm_object->charge = entry->end - entry->start;
1641 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1642 		entry->cred = NULL;
1643 	}
1644 
1645 	new_entry = vm_map_entry_create(map);
1646 	*new_entry = *entry;
1647 
1648 	new_entry->end = start;
1649 	entry->offset += (start - entry->start);
1650 	entry->start = start;
1651 	if (new_entry->cred != NULL)
1652 		crhold(entry->cred);
1653 
1654 	vm_map_entry_link(map, entry->prev, new_entry);
1655 
1656 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1657 		vm_object_reference(new_entry->object.vm_object);
1658 		/*
1659 		 * The object->un_pager.vnp.writemappings for the
1660 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1661 		 * kept as is here.  The virtual pages are
1662 		 * re-distributed among the clipped entries, so the sum is
1663 		 * left the same.
1664 		 */
1665 	}
1666 }
1667 
1668 /*
1669  *	vm_map_clip_end:	[ internal use only ]
1670  *
1671  *	Asserts that the given entry ends at or before
1672  *	the specified address; if necessary,
1673  *	it splits the entry into two.
1674  */
1675 #define vm_map_clip_end(map, entry, endaddr) \
1676 { \
1677 	if ((endaddr) < (entry->end)) \
1678 		_vm_map_clip_end((map), (entry), (endaddr)); \
1679 }
1680 
1681 /*
1682  *	This routine is called only when it is known that
1683  *	the entry must be split.
1684  */
1685 static void
1686 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1687 {
1688 	vm_map_entry_t new_entry;
1689 
1690 	VM_MAP_ASSERT_LOCKED(map);
1691 
1692 	/*
1693 	 * If there is no object backing this entry, we might as well create
1694 	 * one now.  If we defer it, an object can get created after the map
1695 	 * is clipped, and individual objects will be created for the split-up
1696 	 * map.  This is a bit of a hack, but is also about the best place to
1697 	 * put this improvement.
1698 	 */
1699 	if (entry->object.vm_object == NULL && !map->system_map) {
1700 		vm_object_t object;
1701 		object = vm_object_allocate(OBJT_DEFAULT,
1702 				atop(entry->end - entry->start));
1703 		entry->object.vm_object = object;
1704 		entry->offset = 0;
1705 		if (entry->cred != NULL) {
1706 			object->cred = entry->cred;
1707 			object->charge = entry->end - entry->start;
1708 			entry->cred = NULL;
1709 		}
1710 	} else if (entry->object.vm_object != NULL &&
1711 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1712 		   entry->cred != NULL) {
1713 		VM_OBJECT_WLOCK(entry->object.vm_object);
1714 		KASSERT(entry->object.vm_object->cred == NULL,
1715 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1716 		entry->object.vm_object->cred = entry->cred;
1717 		entry->object.vm_object->charge = entry->end - entry->start;
1718 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1719 		entry->cred = NULL;
1720 	}
1721 
1722 	/*
1723 	 * Create a new entry and insert it AFTER the specified entry
1724 	 */
1725 	new_entry = vm_map_entry_create(map);
1726 	*new_entry = *entry;
1727 
1728 	new_entry->start = entry->end = end;
1729 	new_entry->offset += (end - entry->start);
1730 	if (new_entry->cred != NULL)
1731 		crhold(entry->cred);
1732 
1733 	vm_map_entry_link(map, entry, new_entry);
1734 
1735 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1736 		vm_object_reference(new_entry->object.vm_object);
1737 	}
1738 }
1739 
1740 /*
1741  *	vm_map_submap:		[ kernel use only ]
1742  *
1743  *	Mark the given range as handled by a subordinate map.
1744  *
1745  *	This range must have been created with vm_map_find,
1746  *	and no other operations may have been performed on this
1747  *	range prior to calling vm_map_submap.
1748  *
1749  *	Only a limited number of operations can be performed
1750  *	within this rage after calling vm_map_submap:
1751  *		vm_fault
1752  *	[Don't try vm_map_copy!]
1753  *
1754  *	To remove a submapping, one must first remove the
1755  *	range from the superior map, and then destroy the
1756  *	submap (if desired).  [Better yet, don't try it.]
1757  */
1758 int
1759 vm_map_submap(
1760 	vm_map_t map,
1761 	vm_offset_t start,
1762 	vm_offset_t end,
1763 	vm_map_t submap)
1764 {
1765 	vm_map_entry_t entry;
1766 	int result = KERN_INVALID_ARGUMENT;
1767 
1768 	vm_map_lock(map);
1769 
1770 	VM_MAP_RANGE_CHECK(map, start, end);
1771 
1772 	if (vm_map_lookup_entry(map, start, &entry)) {
1773 		vm_map_clip_start(map, entry, start);
1774 	} else
1775 		entry = entry->next;
1776 
1777 	vm_map_clip_end(map, entry, end);
1778 
1779 	if ((entry->start == start) && (entry->end == end) &&
1780 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1781 	    (entry->object.vm_object == NULL)) {
1782 		entry->object.sub_map = submap;
1783 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1784 		result = KERN_SUCCESS;
1785 	}
1786 	vm_map_unlock(map);
1787 
1788 	return (result);
1789 }
1790 
1791 /*
1792  * The maximum number of pages to map
1793  */
1794 #define	MAX_INIT_PT	96
1795 
1796 /*
1797  *	vm_map_pmap_enter:
1798  *
1799  *	Preload read-only mappings for the specified object's resident pages
1800  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1801  *	the resident pages within the address range [addr, addr + ulmin(size,
1802  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1803  *	the specified address range are mapped.  This eliminates many soft
1804  *	faults on process startup and immediately after an mmap(2).  Because
1805  *	these are speculative mappings, cached pages are not reactivated and
1806  *	mapped.
1807  */
1808 void
1809 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1810     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1811 {
1812 	vm_offset_t start;
1813 	vm_page_t p, p_start;
1814 	vm_pindex_t psize, tmpidx;
1815 
1816 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1817 		return;
1818 	VM_OBJECT_RLOCK(object);
1819 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1820 		VM_OBJECT_RUNLOCK(object);
1821 		VM_OBJECT_WLOCK(object);
1822 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1823 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1824 			    size);
1825 			VM_OBJECT_WUNLOCK(object);
1826 			return;
1827 		}
1828 		VM_OBJECT_LOCK_DOWNGRADE(object);
1829 	}
1830 
1831 	psize = atop(size);
1832 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1833 		psize = MAX_INIT_PT;
1834 	if (psize + pindex > object->size) {
1835 		if (object->size < pindex) {
1836 			VM_OBJECT_RUNLOCK(object);
1837 			return;
1838 		}
1839 		psize = object->size - pindex;
1840 	}
1841 
1842 	start = 0;
1843 	p_start = NULL;
1844 
1845 	p = vm_page_find_least(object, pindex);
1846 	/*
1847 	 * Assert: the variable p is either (1) the page with the
1848 	 * least pindex greater than or equal to the parameter pindex
1849 	 * or (2) NULL.
1850 	 */
1851 	for (;
1852 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1853 	     p = TAILQ_NEXT(p, listq)) {
1854 		/*
1855 		 * don't allow an madvise to blow away our really
1856 		 * free pages allocating pv entries.
1857 		 */
1858 		if ((flags & MAP_PREFAULT_MADVISE) &&
1859 		    cnt.v_free_count < cnt.v_free_reserved) {
1860 			psize = tmpidx;
1861 			break;
1862 		}
1863 		if (p->valid == VM_PAGE_BITS_ALL) {
1864 			if (p_start == NULL) {
1865 				start = addr + ptoa(tmpidx);
1866 				p_start = p;
1867 			}
1868 		} else if (p_start != NULL) {
1869 			pmap_enter_object(map->pmap, start, addr +
1870 			    ptoa(tmpidx), p_start, prot);
1871 			p_start = NULL;
1872 		}
1873 	}
1874 	if (p_start != NULL)
1875 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1876 		    p_start, prot);
1877 	VM_OBJECT_RUNLOCK(object);
1878 }
1879 
1880 /*
1881  *	vm_map_protect:
1882  *
1883  *	Sets the protection of the specified address
1884  *	region in the target map.  If "set_max" is
1885  *	specified, the maximum protection is to be set;
1886  *	otherwise, only the current protection is affected.
1887  */
1888 int
1889 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1890 	       vm_prot_t new_prot, boolean_t set_max)
1891 {
1892 	vm_map_entry_t current, entry;
1893 	vm_object_t obj;
1894 	struct ucred *cred;
1895 	vm_prot_t old_prot;
1896 
1897 	vm_map_lock(map);
1898 
1899 	VM_MAP_RANGE_CHECK(map, start, end);
1900 
1901 	if (vm_map_lookup_entry(map, start, &entry)) {
1902 		vm_map_clip_start(map, entry, start);
1903 	} else {
1904 		entry = entry->next;
1905 	}
1906 
1907 	/*
1908 	 * Make a first pass to check for protection violations.
1909 	 */
1910 	current = entry;
1911 	while ((current != &map->header) && (current->start < end)) {
1912 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1913 			vm_map_unlock(map);
1914 			return (KERN_INVALID_ARGUMENT);
1915 		}
1916 		if ((new_prot & current->max_protection) != new_prot) {
1917 			vm_map_unlock(map);
1918 			return (KERN_PROTECTION_FAILURE);
1919 		}
1920 		current = current->next;
1921 	}
1922 
1923 
1924 	/*
1925 	 * Do an accounting pass for private read-only mappings that
1926 	 * now will do cow due to allowed write (e.g. debugger sets
1927 	 * breakpoint on text segment)
1928 	 */
1929 	for (current = entry; (current != &map->header) &&
1930 	     (current->start < end); current = current->next) {
1931 
1932 		vm_map_clip_end(map, current, end);
1933 
1934 		if (set_max ||
1935 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1936 		    ENTRY_CHARGED(current)) {
1937 			continue;
1938 		}
1939 
1940 		cred = curthread->td_ucred;
1941 		obj = current->object.vm_object;
1942 
1943 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1944 			if (!swap_reserve(current->end - current->start)) {
1945 				vm_map_unlock(map);
1946 				return (KERN_RESOURCE_SHORTAGE);
1947 			}
1948 			crhold(cred);
1949 			current->cred = cred;
1950 			continue;
1951 		}
1952 
1953 		VM_OBJECT_WLOCK(obj);
1954 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1955 			VM_OBJECT_WUNLOCK(obj);
1956 			continue;
1957 		}
1958 
1959 		/*
1960 		 * Charge for the whole object allocation now, since
1961 		 * we cannot distinguish between non-charged and
1962 		 * charged clipped mapping of the same object later.
1963 		 */
1964 		KASSERT(obj->charge == 0,
1965 		    ("vm_map_protect: object %p overcharged\n", obj));
1966 		if (!swap_reserve(ptoa(obj->size))) {
1967 			VM_OBJECT_WUNLOCK(obj);
1968 			vm_map_unlock(map);
1969 			return (KERN_RESOURCE_SHORTAGE);
1970 		}
1971 
1972 		crhold(cred);
1973 		obj->cred = cred;
1974 		obj->charge = ptoa(obj->size);
1975 		VM_OBJECT_WUNLOCK(obj);
1976 	}
1977 
1978 	/*
1979 	 * Go back and fix up protections. [Note that clipping is not
1980 	 * necessary the second time.]
1981 	 */
1982 	current = entry;
1983 	while ((current != &map->header) && (current->start < end)) {
1984 		old_prot = current->protection;
1985 
1986 		if (set_max)
1987 			current->protection =
1988 			    (current->max_protection = new_prot) &
1989 			    old_prot;
1990 		else
1991 			current->protection = new_prot;
1992 
1993 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1994 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1995 		    (current->protection & VM_PROT_WRITE) != 0 &&
1996 		    (old_prot & VM_PROT_WRITE) == 0) {
1997 			vm_fault_copy_entry(map, map, current, current, NULL);
1998 		}
1999 
2000 		/*
2001 		 * When restricting access, update the physical map.  Worry
2002 		 * about copy-on-write here.
2003 		 */
2004 		if ((old_prot & ~current->protection) != 0) {
2005 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2006 							VM_PROT_ALL)
2007 			pmap_protect(map->pmap, current->start,
2008 			    current->end,
2009 			    current->protection & MASK(current));
2010 #undef	MASK
2011 		}
2012 		vm_map_simplify_entry(map, current);
2013 		current = current->next;
2014 	}
2015 	vm_map_unlock(map);
2016 	return (KERN_SUCCESS);
2017 }
2018 
2019 /*
2020  *	vm_map_madvise:
2021  *
2022  *	This routine traverses a processes map handling the madvise
2023  *	system call.  Advisories are classified as either those effecting
2024  *	the vm_map_entry structure, or those effecting the underlying
2025  *	objects.
2026  */
2027 int
2028 vm_map_madvise(
2029 	vm_map_t map,
2030 	vm_offset_t start,
2031 	vm_offset_t end,
2032 	int behav)
2033 {
2034 	vm_map_entry_t current, entry;
2035 	int modify_map = 0;
2036 
2037 	/*
2038 	 * Some madvise calls directly modify the vm_map_entry, in which case
2039 	 * we need to use an exclusive lock on the map and we need to perform
2040 	 * various clipping operations.  Otherwise we only need a read-lock
2041 	 * on the map.
2042 	 */
2043 	switch(behav) {
2044 	case MADV_NORMAL:
2045 	case MADV_SEQUENTIAL:
2046 	case MADV_RANDOM:
2047 	case MADV_NOSYNC:
2048 	case MADV_AUTOSYNC:
2049 	case MADV_NOCORE:
2050 	case MADV_CORE:
2051 		modify_map = 1;
2052 		vm_map_lock(map);
2053 		break;
2054 	case MADV_WILLNEED:
2055 	case MADV_DONTNEED:
2056 	case MADV_FREE:
2057 		vm_map_lock_read(map);
2058 		break;
2059 	default:
2060 		return (KERN_INVALID_ARGUMENT);
2061 	}
2062 
2063 	/*
2064 	 * Locate starting entry and clip if necessary.
2065 	 */
2066 	VM_MAP_RANGE_CHECK(map, start, end);
2067 
2068 	if (vm_map_lookup_entry(map, start, &entry)) {
2069 		if (modify_map)
2070 			vm_map_clip_start(map, entry, start);
2071 	} else {
2072 		entry = entry->next;
2073 	}
2074 
2075 	if (modify_map) {
2076 		/*
2077 		 * madvise behaviors that are implemented in the vm_map_entry.
2078 		 *
2079 		 * We clip the vm_map_entry so that behavioral changes are
2080 		 * limited to the specified address range.
2081 		 */
2082 		for (current = entry;
2083 		     (current != &map->header) && (current->start < end);
2084 		     current = current->next
2085 		) {
2086 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2087 				continue;
2088 
2089 			vm_map_clip_end(map, current, end);
2090 
2091 			switch (behav) {
2092 			case MADV_NORMAL:
2093 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2094 				break;
2095 			case MADV_SEQUENTIAL:
2096 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2097 				break;
2098 			case MADV_RANDOM:
2099 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2100 				break;
2101 			case MADV_NOSYNC:
2102 				current->eflags |= MAP_ENTRY_NOSYNC;
2103 				break;
2104 			case MADV_AUTOSYNC:
2105 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2106 				break;
2107 			case MADV_NOCORE:
2108 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2109 				break;
2110 			case MADV_CORE:
2111 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2112 				break;
2113 			default:
2114 				break;
2115 			}
2116 			vm_map_simplify_entry(map, current);
2117 		}
2118 		vm_map_unlock(map);
2119 	} else {
2120 		vm_pindex_t pstart, pend;
2121 
2122 		/*
2123 		 * madvise behaviors that are implemented in the underlying
2124 		 * vm_object.
2125 		 *
2126 		 * Since we don't clip the vm_map_entry, we have to clip
2127 		 * the vm_object pindex and count.
2128 		 */
2129 		for (current = entry;
2130 		     (current != &map->header) && (current->start < end);
2131 		     current = current->next
2132 		) {
2133 			vm_offset_t useStart;
2134 
2135 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2136 				continue;
2137 
2138 			pstart = OFF_TO_IDX(current->offset);
2139 			pend = pstart + atop(current->end - current->start);
2140 			useStart = current->start;
2141 
2142 			if (current->start < start) {
2143 				pstart += atop(start - current->start);
2144 				useStart = start;
2145 			}
2146 			if (current->end > end)
2147 				pend -= atop(current->end - end);
2148 
2149 			if (pstart >= pend)
2150 				continue;
2151 
2152 			vm_object_madvise(current->object.vm_object, pstart,
2153 			    pend, behav);
2154 			if (behav == MADV_WILLNEED) {
2155 				vm_map_pmap_enter(map,
2156 				    useStart,
2157 				    current->protection,
2158 				    current->object.vm_object,
2159 				    pstart,
2160 				    ptoa(pend - pstart),
2161 				    MAP_PREFAULT_MADVISE
2162 				);
2163 			}
2164 		}
2165 		vm_map_unlock_read(map);
2166 	}
2167 	return (0);
2168 }
2169 
2170 
2171 /*
2172  *	vm_map_inherit:
2173  *
2174  *	Sets the inheritance of the specified address
2175  *	range in the target map.  Inheritance
2176  *	affects how the map will be shared with
2177  *	child maps at the time of vmspace_fork.
2178  */
2179 int
2180 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2181 	       vm_inherit_t new_inheritance)
2182 {
2183 	vm_map_entry_t entry;
2184 	vm_map_entry_t temp_entry;
2185 
2186 	switch (new_inheritance) {
2187 	case VM_INHERIT_NONE:
2188 	case VM_INHERIT_COPY:
2189 	case VM_INHERIT_SHARE:
2190 		break;
2191 	default:
2192 		return (KERN_INVALID_ARGUMENT);
2193 	}
2194 	vm_map_lock(map);
2195 	VM_MAP_RANGE_CHECK(map, start, end);
2196 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2197 		entry = temp_entry;
2198 		vm_map_clip_start(map, entry, start);
2199 	} else
2200 		entry = temp_entry->next;
2201 	while ((entry != &map->header) && (entry->start < end)) {
2202 		vm_map_clip_end(map, entry, end);
2203 		entry->inheritance = new_inheritance;
2204 		vm_map_simplify_entry(map, entry);
2205 		entry = entry->next;
2206 	}
2207 	vm_map_unlock(map);
2208 	return (KERN_SUCCESS);
2209 }
2210 
2211 /*
2212  *	vm_map_unwire:
2213  *
2214  *	Implements both kernel and user unwiring.
2215  */
2216 int
2217 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2218     int flags)
2219 {
2220 	vm_map_entry_t entry, first_entry, tmp_entry;
2221 	vm_offset_t saved_start;
2222 	unsigned int last_timestamp;
2223 	int rv;
2224 	boolean_t need_wakeup, result, user_unwire;
2225 
2226 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2227 	vm_map_lock(map);
2228 	VM_MAP_RANGE_CHECK(map, start, end);
2229 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2230 		if (flags & VM_MAP_WIRE_HOLESOK)
2231 			first_entry = first_entry->next;
2232 		else {
2233 			vm_map_unlock(map);
2234 			return (KERN_INVALID_ADDRESS);
2235 		}
2236 	}
2237 	last_timestamp = map->timestamp;
2238 	entry = first_entry;
2239 	while (entry != &map->header && entry->start < end) {
2240 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2241 			/*
2242 			 * We have not yet clipped the entry.
2243 			 */
2244 			saved_start = (start >= entry->start) ? start :
2245 			    entry->start;
2246 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2247 			if (vm_map_unlock_and_wait(map, 0)) {
2248 				/*
2249 				 * Allow interruption of user unwiring?
2250 				 */
2251 			}
2252 			vm_map_lock(map);
2253 			if (last_timestamp+1 != map->timestamp) {
2254 				/*
2255 				 * Look again for the entry because the map was
2256 				 * modified while it was unlocked.
2257 				 * Specifically, the entry may have been
2258 				 * clipped, merged, or deleted.
2259 				 */
2260 				if (!vm_map_lookup_entry(map, saved_start,
2261 				    &tmp_entry)) {
2262 					if (flags & VM_MAP_WIRE_HOLESOK)
2263 						tmp_entry = tmp_entry->next;
2264 					else {
2265 						if (saved_start == start) {
2266 							/*
2267 							 * First_entry has been deleted.
2268 							 */
2269 							vm_map_unlock(map);
2270 							return (KERN_INVALID_ADDRESS);
2271 						}
2272 						end = saved_start;
2273 						rv = KERN_INVALID_ADDRESS;
2274 						goto done;
2275 					}
2276 				}
2277 				if (entry == first_entry)
2278 					first_entry = tmp_entry;
2279 				else
2280 					first_entry = NULL;
2281 				entry = tmp_entry;
2282 			}
2283 			last_timestamp = map->timestamp;
2284 			continue;
2285 		}
2286 		vm_map_clip_start(map, entry, start);
2287 		vm_map_clip_end(map, entry, end);
2288 		/*
2289 		 * Mark the entry in case the map lock is released.  (See
2290 		 * above.)
2291 		 */
2292 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2293 		entry->wiring_thread = curthread;
2294 		/*
2295 		 * Check the map for holes in the specified region.
2296 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2297 		 */
2298 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2299 		    (entry->end < end && (entry->next == &map->header ||
2300 		    entry->next->start > entry->end))) {
2301 			end = entry->end;
2302 			rv = KERN_INVALID_ADDRESS;
2303 			goto done;
2304 		}
2305 		/*
2306 		 * If system unwiring, require that the entry is system wired.
2307 		 */
2308 		if (!user_unwire &&
2309 		    vm_map_entry_system_wired_count(entry) == 0) {
2310 			end = entry->end;
2311 			rv = KERN_INVALID_ARGUMENT;
2312 			goto done;
2313 		}
2314 		entry = entry->next;
2315 	}
2316 	rv = KERN_SUCCESS;
2317 done:
2318 	need_wakeup = FALSE;
2319 	if (first_entry == NULL) {
2320 		result = vm_map_lookup_entry(map, start, &first_entry);
2321 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2322 			first_entry = first_entry->next;
2323 		else
2324 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2325 	}
2326 	for (entry = first_entry; entry != &map->header && entry->start < end;
2327 	    entry = entry->next) {
2328 		/*
2329 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2330 		 * space in the unwired region could have been mapped
2331 		 * while the map lock was dropped for draining
2332 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2333 		 * could be simultaneously wiring this new mapping
2334 		 * entry.  Detect these cases and skip any entries
2335 		 * marked as in transition by us.
2336 		 */
2337 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2338 		    entry->wiring_thread != curthread) {
2339 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2340 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2341 			continue;
2342 		}
2343 
2344 		if (rv == KERN_SUCCESS && (!user_unwire ||
2345 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2346 			if (user_unwire)
2347 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2348 			entry->wired_count--;
2349 			if (entry->wired_count == 0) {
2350 				/*
2351 				 * Retain the map lock.
2352 				 */
2353 				vm_fault_unwire(map, entry->start, entry->end,
2354 				    entry->object.vm_object != NULL &&
2355 				    (entry->object.vm_object->flags &
2356 				    OBJ_FICTITIOUS) != 0);
2357 			}
2358 		}
2359 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2360 		    ("vm_map_unwire: in-transition flag missing"));
2361 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2362 		entry->wiring_thread = NULL;
2363 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2364 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2365 			need_wakeup = TRUE;
2366 		}
2367 		vm_map_simplify_entry(map, entry);
2368 	}
2369 	vm_map_unlock(map);
2370 	if (need_wakeup)
2371 		vm_map_wakeup(map);
2372 	return (rv);
2373 }
2374 
2375 /*
2376  *	vm_map_wire:
2377  *
2378  *	Implements both kernel and user wiring.
2379  */
2380 int
2381 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2382     int flags)
2383 {
2384 	vm_map_entry_t entry, first_entry, tmp_entry;
2385 	vm_offset_t saved_end, saved_start;
2386 	unsigned int last_timestamp;
2387 	int rv;
2388 	boolean_t fictitious, need_wakeup, result, user_wire;
2389 	vm_prot_t prot;
2390 
2391 	prot = 0;
2392 	if (flags & VM_MAP_WIRE_WRITE)
2393 		prot |= VM_PROT_WRITE;
2394 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2395 	vm_map_lock(map);
2396 	VM_MAP_RANGE_CHECK(map, start, end);
2397 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2398 		if (flags & VM_MAP_WIRE_HOLESOK)
2399 			first_entry = first_entry->next;
2400 		else {
2401 			vm_map_unlock(map);
2402 			return (KERN_INVALID_ADDRESS);
2403 		}
2404 	}
2405 	last_timestamp = map->timestamp;
2406 	entry = first_entry;
2407 	while (entry != &map->header && entry->start < end) {
2408 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2409 			/*
2410 			 * We have not yet clipped the entry.
2411 			 */
2412 			saved_start = (start >= entry->start) ? start :
2413 			    entry->start;
2414 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2415 			if (vm_map_unlock_and_wait(map, 0)) {
2416 				/*
2417 				 * Allow interruption of user wiring?
2418 				 */
2419 			}
2420 			vm_map_lock(map);
2421 			if (last_timestamp + 1 != map->timestamp) {
2422 				/*
2423 				 * Look again for the entry because the map was
2424 				 * modified while it was unlocked.
2425 				 * Specifically, the entry may have been
2426 				 * clipped, merged, or deleted.
2427 				 */
2428 				if (!vm_map_lookup_entry(map, saved_start,
2429 				    &tmp_entry)) {
2430 					if (flags & VM_MAP_WIRE_HOLESOK)
2431 						tmp_entry = tmp_entry->next;
2432 					else {
2433 						if (saved_start == start) {
2434 							/*
2435 							 * first_entry has been deleted.
2436 							 */
2437 							vm_map_unlock(map);
2438 							return (KERN_INVALID_ADDRESS);
2439 						}
2440 						end = saved_start;
2441 						rv = KERN_INVALID_ADDRESS;
2442 						goto done;
2443 					}
2444 				}
2445 				if (entry == first_entry)
2446 					first_entry = tmp_entry;
2447 				else
2448 					first_entry = NULL;
2449 				entry = tmp_entry;
2450 			}
2451 			last_timestamp = map->timestamp;
2452 			continue;
2453 		}
2454 		vm_map_clip_start(map, entry, start);
2455 		vm_map_clip_end(map, entry, end);
2456 		/*
2457 		 * Mark the entry in case the map lock is released.  (See
2458 		 * above.)
2459 		 */
2460 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2461 		entry->wiring_thread = curthread;
2462 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2463 		    || (entry->protection & prot) != prot) {
2464 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2465 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2466 				end = entry->end;
2467 				rv = KERN_INVALID_ADDRESS;
2468 				goto done;
2469 			}
2470 			goto next_entry;
2471 		}
2472 		if (entry->wired_count == 0) {
2473 			entry->wired_count++;
2474 			saved_start = entry->start;
2475 			saved_end = entry->end;
2476 			fictitious = entry->object.vm_object != NULL &&
2477 			    (entry->object.vm_object->flags &
2478 			    OBJ_FICTITIOUS) != 0;
2479 			/*
2480 			 * Release the map lock, relying on the in-transition
2481 			 * mark.  Mark the map busy for fork.
2482 			 */
2483 			vm_map_busy(map);
2484 			vm_map_unlock(map);
2485 			rv = vm_fault_wire(map, saved_start, saved_end,
2486 			    fictitious);
2487 			vm_map_lock(map);
2488 			vm_map_unbusy(map);
2489 			if (last_timestamp + 1 != map->timestamp) {
2490 				/*
2491 				 * Look again for the entry because the map was
2492 				 * modified while it was unlocked.  The entry
2493 				 * may have been clipped, but NOT merged or
2494 				 * deleted.
2495 				 */
2496 				result = vm_map_lookup_entry(map, saved_start,
2497 				    &tmp_entry);
2498 				KASSERT(result, ("vm_map_wire: lookup failed"));
2499 				if (entry == first_entry)
2500 					first_entry = tmp_entry;
2501 				else
2502 					first_entry = NULL;
2503 				entry = tmp_entry;
2504 				while (entry->end < saved_end) {
2505 					if (rv != KERN_SUCCESS) {
2506 						KASSERT(entry->wired_count == 1,
2507 						    ("vm_map_wire: bad count"));
2508 						entry->wired_count = -1;
2509 					}
2510 					entry = entry->next;
2511 				}
2512 			}
2513 			last_timestamp = map->timestamp;
2514 			if (rv != KERN_SUCCESS) {
2515 				KASSERT(entry->wired_count == 1,
2516 				    ("vm_map_wire: bad count"));
2517 				/*
2518 				 * Assign an out-of-range value to represent
2519 				 * the failure to wire this entry.
2520 				 */
2521 				entry->wired_count = -1;
2522 				end = entry->end;
2523 				goto done;
2524 			}
2525 		} else if (!user_wire ||
2526 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2527 			entry->wired_count++;
2528 		}
2529 		/*
2530 		 * Check the map for holes in the specified region.
2531 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2532 		 */
2533 	next_entry:
2534 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2535 		    (entry->end < end && (entry->next == &map->header ||
2536 		    entry->next->start > entry->end))) {
2537 			end = entry->end;
2538 			rv = KERN_INVALID_ADDRESS;
2539 			goto done;
2540 		}
2541 		entry = entry->next;
2542 	}
2543 	rv = KERN_SUCCESS;
2544 done:
2545 	need_wakeup = FALSE;
2546 	if (first_entry == NULL) {
2547 		result = vm_map_lookup_entry(map, start, &first_entry);
2548 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2549 			first_entry = first_entry->next;
2550 		else
2551 			KASSERT(result, ("vm_map_wire: lookup failed"));
2552 	}
2553 	for (entry = first_entry; entry != &map->header && entry->start < end;
2554 	    entry = entry->next) {
2555 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2556 			goto next_entry_done;
2557 
2558 		/*
2559 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2560 		 * space in the unwired region could have been mapped
2561 		 * while the map lock was dropped for faulting in the
2562 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2563 		 * Moreover, another thread could be simultaneously
2564 		 * wiring this new mapping entry.  Detect these cases
2565 		 * and skip any entries marked as in transition by us.
2566 		 */
2567 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2568 		    entry->wiring_thread != curthread) {
2569 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2570 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2571 			continue;
2572 		}
2573 
2574 		if (rv == KERN_SUCCESS) {
2575 			if (user_wire)
2576 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2577 		} else if (entry->wired_count == -1) {
2578 			/*
2579 			 * Wiring failed on this entry.  Thus, unwiring is
2580 			 * unnecessary.
2581 			 */
2582 			entry->wired_count = 0;
2583 		} else {
2584 			if (!user_wire ||
2585 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2586 				entry->wired_count--;
2587 			if (entry->wired_count == 0) {
2588 				/*
2589 				 * Retain the map lock.
2590 				 */
2591 				vm_fault_unwire(map, entry->start, entry->end,
2592 				    entry->object.vm_object != NULL &&
2593 				    (entry->object.vm_object->flags &
2594 				    OBJ_FICTITIOUS) != 0);
2595 			}
2596 		}
2597 	next_entry_done:
2598 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2599 		    ("vm_map_wire: in-transition flag missing %p", entry));
2600 		KASSERT(entry->wiring_thread == curthread,
2601 		    ("vm_map_wire: alien wire %p", entry));
2602 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2603 		    MAP_ENTRY_WIRE_SKIPPED);
2604 		entry->wiring_thread = NULL;
2605 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2606 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2607 			need_wakeup = TRUE;
2608 		}
2609 		vm_map_simplify_entry(map, entry);
2610 	}
2611 	vm_map_unlock(map);
2612 	if (need_wakeup)
2613 		vm_map_wakeup(map);
2614 	return (rv);
2615 }
2616 
2617 /*
2618  * vm_map_sync
2619  *
2620  * Push any dirty cached pages in the address range to their pager.
2621  * If syncio is TRUE, dirty pages are written synchronously.
2622  * If invalidate is TRUE, any cached pages are freed as well.
2623  *
2624  * If the size of the region from start to end is zero, we are
2625  * supposed to flush all modified pages within the region containing
2626  * start.  Unfortunately, a region can be split or coalesced with
2627  * neighboring regions, making it difficult to determine what the
2628  * original region was.  Therefore, we approximate this requirement by
2629  * flushing the current region containing start.
2630  *
2631  * Returns an error if any part of the specified range is not mapped.
2632  */
2633 int
2634 vm_map_sync(
2635 	vm_map_t map,
2636 	vm_offset_t start,
2637 	vm_offset_t end,
2638 	boolean_t syncio,
2639 	boolean_t invalidate)
2640 {
2641 	vm_map_entry_t current;
2642 	vm_map_entry_t entry;
2643 	vm_size_t size;
2644 	vm_object_t object;
2645 	vm_ooffset_t offset;
2646 	unsigned int last_timestamp;
2647 	boolean_t failed;
2648 
2649 	vm_map_lock_read(map);
2650 	VM_MAP_RANGE_CHECK(map, start, end);
2651 	if (!vm_map_lookup_entry(map, start, &entry)) {
2652 		vm_map_unlock_read(map);
2653 		return (KERN_INVALID_ADDRESS);
2654 	} else if (start == end) {
2655 		start = entry->start;
2656 		end = entry->end;
2657 	}
2658 	/*
2659 	 * Make a first pass to check for user-wired memory and holes.
2660 	 */
2661 	for (current = entry; current != &map->header && current->start < end;
2662 	    current = current->next) {
2663 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2664 			vm_map_unlock_read(map);
2665 			return (KERN_INVALID_ARGUMENT);
2666 		}
2667 		if (end > current->end &&
2668 		    (current->next == &map->header ||
2669 			current->end != current->next->start)) {
2670 			vm_map_unlock_read(map);
2671 			return (KERN_INVALID_ADDRESS);
2672 		}
2673 	}
2674 
2675 	if (invalidate)
2676 		pmap_remove(map->pmap, start, end);
2677 	failed = FALSE;
2678 
2679 	/*
2680 	 * Make a second pass, cleaning/uncaching pages from the indicated
2681 	 * objects as we go.
2682 	 */
2683 	for (current = entry; current != &map->header && current->start < end;) {
2684 		offset = current->offset + (start - current->start);
2685 		size = (end <= current->end ? end : current->end) - start;
2686 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2687 			vm_map_t smap;
2688 			vm_map_entry_t tentry;
2689 			vm_size_t tsize;
2690 
2691 			smap = current->object.sub_map;
2692 			vm_map_lock_read(smap);
2693 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2694 			tsize = tentry->end - offset;
2695 			if (tsize < size)
2696 				size = tsize;
2697 			object = tentry->object.vm_object;
2698 			offset = tentry->offset + (offset - tentry->start);
2699 			vm_map_unlock_read(smap);
2700 		} else {
2701 			object = current->object.vm_object;
2702 		}
2703 		vm_object_reference(object);
2704 		last_timestamp = map->timestamp;
2705 		vm_map_unlock_read(map);
2706 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2707 			failed = TRUE;
2708 		start += size;
2709 		vm_object_deallocate(object);
2710 		vm_map_lock_read(map);
2711 		if (last_timestamp == map->timestamp ||
2712 		    !vm_map_lookup_entry(map, start, &current))
2713 			current = current->next;
2714 	}
2715 
2716 	vm_map_unlock_read(map);
2717 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2718 }
2719 
2720 /*
2721  *	vm_map_entry_unwire:	[ internal use only ]
2722  *
2723  *	Make the region specified by this entry pageable.
2724  *
2725  *	The map in question should be locked.
2726  *	[This is the reason for this routine's existence.]
2727  */
2728 static void
2729 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2730 {
2731 	vm_fault_unwire(map, entry->start, entry->end,
2732 	    entry->object.vm_object != NULL &&
2733 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2734 	entry->wired_count = 0;
2735 }
2736 
2737 static void
2738 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2739 {
2740 
2741 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2742 		vm_object_deallocate(entry->object.vm_object);
2743 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2744 }
2745 
2746 /*
2747  *	vm_map_entry_delete:	[ internal use only ]
2748  *
2749  *	Deallocate the given entry from the target map.
2750  */
2751 static void
2752 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2753 {
2754 	vm_object_t object;
2755 	vm_pindex_t offidxstart, offidxend, count, size1;
2756 	vm_ooffset_t size;
2757 
2758 	vm_map_entry_unlink(map, entry);
2759 	object = entry->object.vm_object;
2760 	size = entry->end - entry->start;
2761 	map->size -= size;
2762 
2763 	if (entry->cred != NULL) {
2764 		swap_release_by_cred(size, entry->cred);
2765 		crfree(entry->cred);
2766 	}
2767 
2768 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2769 	    (object != NULL)) {
2770 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2771 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2772 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2773 		count = OFF_TO_IDX(size);
2774 		offidxstart = OFF_TO_IDX(entry->offset);
2775 		offidxend = offidxstart + count;
2776 		VM_OBJECT_WLOCK(object);
2777 		if (object->ref_count != 1 &&
2778 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2779 		    object == kernel_object || object == kmem_object)) {
2780 			vm_object_collapse(object);
2781 
2782 			/*
2783 			 * The option OBJPR_NOTMAPPED can be passed here
2784 			 * because vm_map_delete() already performed
2785 			 * pmap_remove() on the only mapping to this range
2786 			 * of pages.
2787 			 */
2788 			vm_object_page_remove(object, offidxstart, offidxend,
2789 			    OBJPR_NOTMAPPED);
2790 			if (object->type == OBJT_SWAP)
2791 				swap_pager_freespace(object, offidxstart, count);
2792 			if (offidxend >= object->size &&
2793 			    offidxstart < object->size) {
2794 				size1 = object->size;
2795 				object->size = offidxstart;
2796 				if (object->cred != NULL) {
2797 					size1 -= object->size;
2798 					KASSERT(object->charge >= ptoa(size1),
2799 					    ("vm_map_entry_delete: object->charge < 0"));
2800 					swap_release_by_cred(ptoa(size1), object->cred);
2801 					object->charge -= ptoa(size1);
2802 				}
2803 			}
2804 		}
2805 		VM_OBJECT_WUNLOCK(object);
2806 	} else
2807 		entry->object.vm_object = NULL;
2808 	if (map->system_map)
2809 		vm_map_entry_deallocate(entry, TRUE);
2810 	else {
2811 		entry->next = curthread->td_map_def_user;
2812 		curthread->td_map_def_user = entry;
2813 	}
2814 }
2815 
2816 /*
2817  *	vm_map_delete:	[ internal use only ]
2818  *
2819  *	Deallocates the given address range from the target
2820  *	map.
2821  */
2822 int
2823 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2824 {
2825 	vm_map_entry_t entry;
2826 	vm_map_entry_t first_entry;
2827 
2828 	VM_MAP_ASSERT_LOCKED(map);
2829 
2830 	/*
2831 	 * Find the start of the region, and clip it
2832 	 */
2833 	if (!vm_map_lookup_entry(map, start, &first_entry))
2834 		entry = first_entry->next;
2835 	else {
2836 		entry = first_entry;
2837 		vm_map_clip_start(map, entry, start);
2838 	}
2839 
2840 	/*
2841 	 * Step through all entries in this region
2842 	 */
2843 	while ((entry != &map->header) && (entry->start < end)) {
2844 		vm_map_entry_t next;
2845 
2846 		/*
2847 		 * Wait for wiring or unwiring of an entry to complete.
2848 		 * Also wait for any system wirings to disappear on
2849 		 * user maps.
2850 		 */
2851 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2852 		    (vm_map_pmap(map) != kernel_pmap &&
2853 		    vm_map_entry_system_wired_count(entry) != 0)) {
2854 			unsigned int last_timestamp;
2855 			vm_offset_t saved_start;
2856 			vm_map_entry_t tmp_entry;
2857 
2858 			saved_start = entry->start;
2859 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2860 			last_timestamp = map->timestamp;
2861 			(void) vm_map_unlock_and_wait(map, 0);
2862 			vm_map_lock(map);
2863 			if (last_timestamp + 1 != map->timestamp) {
2864 				/*
2865 				 * Look again for the entry because the map was
2866 				 * modified while it was unlocked.
2867 				 * Specifically, the entry may have been
2868 				 * clipped, merged, or deleted.
2869 				 */
2870 				if (!vm_map_lookup_entry(map, saved_start,
2871 							 &tmp_entry))
2872 					entry = tmp_entry->next;
2873 				else {
2874 					entry = tmp_entry;
2875 					vm_map_clip_start(map, entry,
2876 							  saved_start);
2877 				}
2878 			}
2879 			continue;
2880 		}
2881 		vm_map_clip_end(map, entry, end);
2882 
2883 		next = entry->next;
2884 
2885 		/*
2886 		 * Unwire before removing addresses from the pmap; otherwise,
2887 		 * unwiring will put the entries back in the pmap.
2888 		 */
2889 		if (entry->wired_count != 0) {
2890 			vm_map_entry_unwire(map, entry);
2891 		}
2892 
2893 		pmap_remove(map->pmap, entry->start, entry->end);
2894 
2895 		/*
2896 		 * Delete the entry only after removing all pmap
2897 		 * entries pointing to its pages.  (Otherwise, its
2898 		 * page frames may be reallocated, and any modify bits
2899 		 * will be set in the wrong object!)
2900 		 */
2901 		vm_map_entry_delete(map, entry);
2902 		entry = next;
2903 	}
2904 	return (KERN_SUCCESS);
2905 }
2906 
2907 /*
2908  *	vm_map_remove:
2909  *
2910  *	Remove the given address range from the target map.
2911  *	This is the exported form of vm_map_delete.
2912  */
2913 int
2914 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2915 {
2916 	int result;
2917 
2918 	vm_map_lock(map);
2919 	VM_MAP_RANGE_CHECK(map, start, end);
2920 	result = vm_map_delete(map, start, end);
2921 	vm_map_unlock(map);
2922 	return (result);
2923 }
2924 
2925 /*
2926  *	vm_map_check_protection:
2927  *
2928  *	Assert that the target map allows the specified privilege on the
2929  *	entire address region given.  The entire region must be allocated.
2930  *
2931  *	WARNING!  This code does not and should not check whether the
2932  *	contents of the region is accessible.  For example a smaller file
2933  *	might be mapped into a larger address space.
2934  *
2935  *	NOTE!  This code is also called by munmap().
2936  *
2937  *	The map must be locked.  A read lock is sufficient.
2938  */
2939 boolean_t
2940 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2941 			vm_prot_t protection)
2942 {
2943 	vm_map_entry_t entry;
2944 	vm_map_entry_t tmp_entry;
2945 
2946 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2947 		return (FALSE);
2948 	entry = tmp_entry;
2949 
2950 	while (start < end) {
2951 		if (entry == &map->header)
2952 			return (FALSE);
2953 		/*
2954 		 * No holes allowed!
2955 		 */
2956 		if (start < entry->start)
2957 			return (FALSE);
2958 		/*
2959 		 * Check protection associated with entry.
2960 		 */
2961 		if ((entry->protection & protection) != protection)
2962 			return (FALSE);
2963 		/* go to next entry */
2964 		start = entry->end;
2965 		entry = entry->next;
2966 	}
2967 	return (TRUE);
2968 }
2969 
2970 /*
2971  *	vm_map_copy_entry:
2972  *
2973  *	Copies the contents of the source entry to the destination
2974  *	entry.  The entries *must* be aligned properly.
2975  */
2976 static void
2977 vm_map_copy_entry(
2978 	vm_map_t src_map,
2979 	vm_map_t dst_map,
2980 	vm_map_entry_t src_entry,
2981 	vm_map_entry_t dst_entry,
2982 	vm_ooffset_t *fork_charge)
2983 {
2984 	vm_object_t src_object;
2985 	vm_map_entry_t fake_entry;
2986 	vm_offset_t size;
2987 	struct ucred *cred;
2988 	int charged;
2989 
2990 	VM_MAP_ASSERT_LOCKED(dst_map);
2991 
2992 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2993 		return;
2994 
2995 	if (src_entry->wired_count == 0) {
2996 
2997 		/*
2998 		 * If the source entry is marked needs_copy, it is already
2999 		 * write-protected.
3000 		 */
3001 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3002 			pmap_protect(src_map->pmap,
3003 			    src_entry->start,
3004 			    src_entry->end,
3005 			    src_entry->protection & ~VM_PROT_WRITE);
3006 		}
3007 
3008 		/*
3009 		 * Make a copy of the object.
3010 		 */
3011 		size = src_entry->end - src_entry->start;
3012 		if ((src_object = src_entry->object.vm_object) != NULL) {
3013 			VM_OBJECT_WLOCK(src_object);
3014 			charged = ENTRY_CHARGED(src_entry);
3015 			if ((src_object->handle == NULL) &&
3016 				(src_object->type == OBJT_DEFAULT ||
3017 				 src_object->type == OBJT_SWAP)) {
3018 				vm_object_collapse(src_object);
3019 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3020 					vm_object_split(src_entry);
3021 					src_object = src_entry->object.vm_object;
3022 				}
3023 			}
3024 			vm_object_reference_locked(src_object);
3025 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3026 			if (src_entry->cred != NULL &&
3027 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3028 				KASSERT(src_object->cred == NULL,
3029 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3030 				     src_object));
3031 				src_object->cred = src_entry->cred;
3032 				src_object->charge = size;
3033 			}
3034 			VM_OBJECT_WUNLOCK(src_object);
3035 			dst_entry->object.vm_object = src_object;
3036 			if (charged) {
3037 				cred = curthread->td_ucred;
3038 				crhold(cred);
3039 				dst_entry->cred = cred;
3040 				*fork_charge += size;
3041 				if (!(src_entry->eflags &
3042 				      MAP_ENTRY_NEEDS_COPY)) {
3043 					crhold(cred);
3044 					src_entry->cred = cred;
3045 					*fork_charge += size;
3046 				}
3047 			}
3048 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3049 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3050 			dst_entry->offset = src_entry->offset;
3051 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3052 				/*
3053 				 * MAP_ENTRY_VN_WRITECNT cannot
3054 				 * indicate write reference from
3055 				 * src_entry, since the entry is
3056 				 * marked as needs copy.  Allocate a
3057 				 * fake entry that is used to
3058 				 * decrement object->un_pager.vnp.writecount
3059 				 * at the appropriate time.  Attach
3060 				 * fake_entry to the deferred list.
3061 				 */
3062 				fake_entry = vm_map_entry_create(dst_map);
3063 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3064 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3065 				vm_object_reference(src_object);
3066 				fake_entry->object.vm_object = src_object;
3067 				fake_entry->start = src_entry->start;
3068 				fake_entry->end = src_entry->end;
3069 				fake_entry->next = curthread->td_map_def_user;
3070 				curthread->td_map_def_user = fake_entry;
3071 			}
3072 		} else {
3073 			dst_entry->object.vm_object = NULL;
3074 			dst_entry->offset = 0;
3075 			if (src_entry->cred != NULL) {
3076 				dst_entry->cred = curthread->td_ucred;
3077 				crhold(dst_entry->cred);
3078 				*fork_charge += size;
3079 			}
3080 		}
3081 
3082 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3083 		    dst_entry->end - dst_entry->start, src_entry->start);
3084 	} else {
3085 		/*
3086 		 * Of course, wired down pages can't be set copy-on-write.
3087 		 * Cause wired pages to be copied into the new map by
3088 		 * simulating faults (the new pages are pageable)
3089 		 */
3090 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3091 		    fork_charge);
3092 	}
3093 }
3094 
3095 /*
3096  * vmspace_map_entry_forked:
3097  * Update the newly-forked vmspace each time a map entry is inherited
3098  * or copied.  The values for vm_dsize and vm_tsize are approximate
3099  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3100  */
3101 static void
3102 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3103     vm_map_entry_t entry)
3104 {
3105 	vm_size_t entrysize;
3106 	vm_offset_t newend;
3107 
3108 	entrysize = entry->end - entry->start;
3109 	vm2->vm_map.size += entrysize;
3110 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3111 		vm2->vm_ssize += btoc(entrysize);
3112 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3113 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3114 		newend = MIN(entry->end,
3115 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3116 		vm2->vm_dsize += btoc(newend - entry->start);
3117 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3118 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3119 		newend = MIN(entry->end,
3120 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3121 		vm2->vm_tsize += btoc(newend - entry->start);
3122 	}
3123 }
3124 
3125 /*
3126  * vmspace_fork:
3127  * Create a new process vmspace structure and vm_map
3128  * based on those of an existing process.  The new map
3129  * is based on the old map, according to the inheritance
3130  * values on the regions in that map.
3131  *
3132  * XXX It might be worth coalescing the entries added to the new vmspace.
3133  *
3134  * The source map must not be locked.
3135  */
3136 struct vmspace *
3137 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3138 {
3139 	struct vmspace *vm2;
3140 	vm_map_t new_map, old_map;
3141 	vm_map_entry_t new_entry, old_entry;
3142 	vm_object_t object;
3143 	int locked;
3144 
3145 	old_map = &vm1->vm_map;
3146 	/* Copy immutable fields of vm1 to vm2. */
3147 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3148 	if (vm2 == NULL)
3149 		return (NULL);
3150 	vm2->vm_taddr = vm1->vm_taddr;
3151 	vm2->vm_daddr = vm1->vm_daddr;
3152 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3153 	vm_map_lock(old_map);
3154 	if (old_map->busy)
3155 		vm_map_wait_busy(old_map);
3156 	new_map = &vm2->vm_map;
3157 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3158 	KASSERT(locked, ("vmspace_fork: lock failed"));
3159 
3160 	old_entry = old_map->header.next;
3161 
3162 	while (old_entry != &old_map->header) {
3163 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3164 			panic("vm_map_fork: encountered a submap");
3165 
3166 		switch (old_entry->inheritance) {
3167 		case VM_INHERIT_NONE:
3168 			break;
3169 
3170 		case VM_INHERIT_SHARE:
3171 			/*
3172 			 * Clone the entry, creating the shared object if necessary.
3173 			 */
3174 			object = old_entry->object.vm_object;
3175 			if (object == NULL) {
3176 				object = vm_object_allocate(OBJT_DEFAULT,
3177 					atop(old_entry->end - old_entry->start));
3178 				old_entry->object.vm_object = object;
3179 				old_entry->offset = 0;
3180 				if (old_entry->cred != NULL) {
3181 					object->cred = old_entry->cred;
3182 					object->charge = old_entry->end -
3183 					    old_entry->start;
3184 					old_entry->cred = NULL;
3185 				}
3186 			}
3187 
3188 			/*
3189 			 * Add the reference before calling vm_object_shadow
3190 			 * to insure that a shadow object is created.
3191 			 */
3192 			vm_object_reference(object);
3193 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3194 				vm_object_shadow(&old_entry->object.vm_object,
3195 				    &old_entry->offset,
3196 				    old_entry->end - old_entry->start);
3197 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3198 				/* Transfer the second reference too. */
3199 				vm_object_reference(
3200 				    old_entry->object.vm_object);
3201 
3202 				/*
3203 				 * As in vm_map_simplify_entry(), the
3204 				 * vnode lock will not be acquired in
3205 				 * this call to vm_object_deallocate().
3206 				 */
3207 				vm_object_deallocate(object);
3208 				object = old_entry->object.vm_object;
3209 			}
3210 			VM_OBJECT_WLOCK(object);
3211 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3212 			if (old_entry->cred != NULL) {
3213 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3214 				object->cred = old_entry->cred;
3215 				object->charge = old_entry->end - old_entry->start;
3216 				old_entry->cred = NULL;
3217 			}
3218 
3219 			/*
3220 			 * Assert the correct state of the vnode
3221 			 * v_writecount while the object is locked, to
3222 			 * not relock it later for the assertion
3223 			 * correctness.
3224 			 */
3225 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3226 			    object->type == OBJT_VNODE) {
3227 				KASSERT(((struct vnode *)object->handle)->
3228 				    v_writecount > 0,
3229 				    ("vmspace_fork: v_writecount %p", object));
3230 				KASSERT(object->un_pager.vnp.writemappings > 0,
3231 				    ("vmspace_fork: vnp.writecount %p",
3232 				    object));
3233 			}
3234 			VM_OBJECT_WUNLOCK(object);
3235 
3236 			/*
3237 			 * Clone the entry, referencing the shared object.
3238 			 */
3239 			new_entry = vm_map_entry_create(new_map);
3240 			*new_entry = *old_entry;
3241 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3242 			    MAP_ENTRY_IN_TRANSITION);
3243 			new_entry->wiring_thread = NULL;
3244 			new_entry->wired_count = 0;
3245 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3246 				vnode_pager_update_writecount(object,
3247 				    new_entry->start, new_entry->end);
3248 			}
3249 
3250 			/*
3251 			 * Insert the entry into the new map -- we know we're
3252 			 * inserting at the end of the new map.
3253 			 */
3254 			vm_map_entry_link(new_map, new_map->header.prev,
3255 			    new_entry);
3256 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3257 
3258 			/*
3259 			 * Update the physical map
3260 			 */
3261 			pmap_copy(new_map->pmap, old_map->pmap,
3262 			    new_entry->start,
3263 			    (old_entry->end - old_entry->start),
3264 			    old_entry->start);
3265 			break;
3266 
3267 		case VM_INHERIT_COPY:
3268 			/*
3269 			 * Clone the entry and link into the map.
3270 			 */
3271 			new_entry = vm_map_entry_create(new_map);
3272 			*new_entry = *old_entry;
3273 			/*
3274 			 * Copied entry is COW over the old object.
3275 			 */
3276 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3277 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3278 			new_entry->wiring_thread = NULL;
3279 			new_entry->wired_count = 0;
3280 			new_entry->object.vm_object = NULL;
3281 			new_entry->cred = NULL;
3282 			vm_map_entry_link(new_map, new_map->header.prev,
3283 			    new_entry);
3284 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3285 			vm_map_copy_entry(old_map, new_map, old_entry,
3286 			    new_entry, fork_charge);
3287 			break;
3288 		}
3289 		old_entry = old_entry->next;
3290 	}
3291 	/*
3292 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3293 	 * map entries, which cannot be done until both old_map and
3294 	 * new_map locks are released.
3295 	 */
3296 	sx_xunlock(&old_map->lock);
3297 	sx_xunlock(&new_map->lock);
3298 	vm_map_process_deferred();
3299 
3300 	return (vm2);
3301 }
3302 
3303 int
3304 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3305     vm_prot_t prot, vm_prot_t max, int cow)
3306 {
3307 	vm_map_entry_t new_entry, prev_entry;
3308 	vm_offset_t bot, top;
3309 	vm_size_t growsize, init_ssize;
3310 	int orient, rv;
3311 	rlim_t lmemlim, vmemlim;
3312 
3313 	/*
3314 	 * The stack orientation is piggybacked with the cow argument.
3315 	 * Extract it into orient and mask the cow argument so that we
3316 	 * don't pass it around further.
3317 	 * NOTE: We explicitly allow bi-directional stacks.
3318 	 */
3319 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3320 	cow &= ~orient;
3321 	KASSERT(orient != 0, ("No stack grow direction"));
3322 
3323 	if (addrbos < vm_map_min(map) ||
3324 	    addrbos > vm_map_max(map) ||
3325 	    addrbos + max_ssize < addrbos)
3326 		return (KERN_NO_SPACE);
3327 
3328 	growsize = sgrowsiz;
3329 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3330 
3331 	PROC_LOCK(curproc);
3332 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3333 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3334 	PROC_UNLOCK(curproc);
3335 
3336 	vm_map_lock(map);
3337 
3338 	/* If addr is already mapped, no go */
3339 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3340 		vm_map_unlock(map);
3341 		return (KERN_NO_SPACE);
3342 	}
3343 
3344 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3345 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3346 			vm_map_unlock(map);
3347 			return (KERN_NO_SPACE);
3348 		}
3349 	}
3350 
3351 	/* If we would blow our VMEM resource limit, no go */
3352 	if (map->size + init_ssize > vmemlim) {
3353 		vm_map_unlock(map);
3354 		return (KERN_NO_SPACE);
3355 	}
3356 
3357 	/*
3358 	 * If we can't accomodate max_ssize in the current mapping, no go.
3359 	 * However, we need to be aware that subsequent user mappings might
3360 	 * map into the space we have reserved for stack, and currently this
3361 	 * space is not protected.
3362 	 *
3363 	 * Hopefully we will at least detect this condition when we try to
3364 	 * grow the stack.
3365 	 */
3366 	if ((prev_entry->next != &map->header) &&
3367 	    (prev_entry->next->start < addrbos + max_ssize)) {
3368 		vm_map_unlock(map);
3369 		return (KERN_NO_SPACE);
3370 	}
3371 
3372 	/*
3373 	 * We initially map a stack of only init_ssize.  We will grow as
3374 	 * needed later.  Depending on the orientation of the stack (i.e.
3375 	 * the grow direction) we either map at the top of the range, the
3376 	 * bottom of the range or in the middle.
3377 	 *
3378 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3379 	 * and cow to be 0.  Possibly we should eliminate these as input
3380 	 * parameters, and just pass these values here in the insert call.
3381 	 */
3382 	if (orient == MAP_STACK_GROWS_DOWN)
3383 		bot = addrbos + max_ssize - init_ssize;
3384 	else if (orient == MAP_STACK_GROWS_UP)
3385 		bot = addrbos;
3386 	else
3387 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3388 	top = bot + init_ssize;
3389 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3390 
3391 	/* Now set the avail_ssize amount. */
3392 	if (rv == KERN_SUCCESS) {
3393 		if (prev_entry != &map->header)
3394 			vm_map_clip_end(map, prev_entry, bot);
3395 		new_entry = prev_entry->next;
3396 		if (new_entry->end != top || new_entry->start != bot)
3397 			panic("Bad entry start/end for new stack entry");
3398 
3399 		new_entry->avail_ssize = max_ssize - init_ssize;
3400 		if (orient & MAP_STACK_GROWS_DOWN)
3401 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3402 		if (orient & MAP_STACK_GROWS_UP)
3403 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3404 	}
3405 
3406 	vm_map_unlock(map);
3407 	return (rv);
3408 }
3409 
3410 static int stack_guard_page = 0;
3411 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3412 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3413     &stack_guard_page, 0,
3414     "Insert stack guard page ahead of the growable segments.");
3415 
3416 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3417  * desired address is already mapped, or if we successfully grow
3418  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3419  * stack range (this is strange, but preserves compatibility with
3420  * the grow function in vm_machdep.c).
3421  */
3422 int
3423 vm_map_growstack(struct proc *p, vm_offset_t addr)
3424 {
3425 	vm_map_entry_t next_entry, prev_entry;
3426 	vm_map_entry_t new_entry, stack_entry;
3427 	struct vmspace *vm = p->p_vmspace;
3428 	vm_map_t map = &vm->vm_map;
3429 	vm_offset_t end;
3430 	vm_size_t growsize;
3431 	size_t grow_amount, max_grow;
3432 	rlim_t lmemlim, stacklim, vmemlim;
3433 	int is_procstack, rv;
3434 	struct ucred *cred;
3435 #ifdef notyet
3436 	uint64_t limit;
3437 #endif
3438 #ifdef RACCT
3439 	int error;
3440 #endif
3441 
3442 Retry:
3443 	PROC_LOCK(p);
3444 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3445 	stacklim = lim_cur(p, RLIMIT_STACK);
3446 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3447 	PROC_UNLOCK(p);
3448 
3449 	vm_map_lock_read(map);
3450 
3451 	/* If addr is already in the entry range, no need to grow.*/
3452 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3453 		vm_map_unlock_read(map);
3454 		return (KERN_SUCCESS);
3455 	}
3456 
3457 	next_entry = prev_entry->next;
3458 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3459 		/*
3460 		 * This entry does not grow upwards. Since the address lies
3461 		 * beyond this entry, the next entry (if one exists) has to
3462 		 * be a downward growable entry. The entry list header is
3463 		 * never a growable entry, so it suffices to check the flags.
3464 		 */
3465 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3466 			vm_map_unlock_read(map);
3467 			return (KERN_SUCCESS);
3468 		}
3469 		stack_entry = next_entry;
3470 	} else {
3471 		/*
3472 		 * This entry grows upward. If the next entry does not at
3473 		 * least grow downwards, this is the entry we need to grow.
3474 		 * otherwise we have two possible choices and we have to
3475 		 * select one.
3476 		 */
3477 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3478 			/*
3479 			 * We have two choices; grow the entry closest to
3480 			 * the address to minimize the amount of growth.
3481 			 */
3482 			if (addr - prev_entry->end <= next_entry->start - addr)
3483 				stack_entry = prev_entry;
3484 			else
3485 				stack_entry = next_entry;
3486 		} else
3487 			stack_entry = prev_entry;
3488 	}
3489 
3490 	if (stack_entry == next_entry) {
3491 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3492 		KASSERT(addr < stack_entry->start, ("foo"));
3493 		end = (prev_entry != &map->header) ? prev_entry->end :
3494 		    stack_entry->start - stack_entry->avail_ssize;
3495 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3496 		max_grow = stack_entry->start - end;
3497 	} else {
3498 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3499 		KASSERT(addr >= stack_entry->end, ("foo"));
3500 		end = (next_entry != &map->header) ? next_entry->start :
3501 		    stack_entry->end + stack_entry->avail_ssize;
3502 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3503 		max_grow = end - stack_entry->end;
3504 	}
3505 
3506 	if (grow_amount > stack_entry->avail_ssize) {
3507 		vm_map_unlock_read(map);
3508 		return (KERN_NO_SPACE);
3509 	}
3510 
3511 	/*
3512 	 * If there is no longer enough space between the entries nogo, and
3513 	 * adjust the available space.  Note: this  should only happen if the
3514 	 * user has mapped into the stack area after the stack was created,
3515 	 * and is probably an error.
3516 	 *
3517 	 * This also effectively destroys any guard page the user might have
3518 	 * intended by limiting the stack size.
3519 	 */
3520 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3521 		if (vm_map_lock_upgrade(map))
3522 			goto Retry;
3523 
3524 		stack_entry->avail_ssize = max_grow;
3525 
3526 		vm_map_unlock(map);
3527 		return (KERN_NO_SPACE);
3528 	}
3529 
3530 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3531 
3532 	/*
3533 	 * If this is the main process stack, see if we're over the stack
3534 	 * limit.
3535 	 */
3536 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3537 		vm_map_unlock_read(map);
3538 		return (KERN_NO_SPACE);
3539 	}
3540 #ifdef RACCT
3541 	PROC_LOCK(p);
3542 	if (is_procstack &&
3543 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3544 		PROC_UNLOCK(p);
3545 		vm_map_unlock_read(map);
3546 		return (KERN_NO_SPACE);
3547 	}
3548 	PROC_UNLOCK(p);
3549 #endif
3550 
3551 	/* Round up the grow amount modulo sgrowsiz */
3552 	growsize = sgrowsiz;
3553 	grow_amount = roundup(grow_amount, growsize);
3554 	if (grow_amount > stack_entry->avail_ssize)
3555 		grow_amount = stack_entry->avail_ssize;
3556 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3557 		grow_amount = trunc_page((vm_size_t)stacklim) -
3558 		    ctob(vm->vm_ssize);
3559 	}
3560 #ifdef notyet
3561 	PROC_LOCK(p);
3562 	limit = racct_get_available(p, RACCT_STACK);
3563 	PROC_UNLOCK(p);
3564 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3565 		grow_amount = limit - ctob(vm->vm_ssize);
3566 #endif
3567 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3568 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3569 			vm_map_unlock_read(map);
3570 			rv = KERN_NO_SPACE;
3571 			goto out;
3572 		}
3573 #ifdef RACCT
3574 		PROC_LOCK(p);
3575 		if (racct_set(p, RACCT_MEMLOCK,
3576 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3577 			PROC_UNLOCK(p);
3578 			vm_map_unlock_read(map);
3579 			rv = KERN_NO_SPACE;
3580 			goto out;
3581 		}
3582 		PROC_UNLOCK(p);
3583 #endif
3584 	}
3585 	/* If we would blow our VMEM resource limit, no go */
3586 	if (map->size + grow_amount > vmemlim) {
3587 		vm_map_unlock_read(map);
3588 		rv = KERN_NO_SPACE;
3589 		goto out;
3590 	}
3591 #ifdef RACCT
3592 	PROC_LOCK(p);
3593 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3594 		PROC_UNLOCK(p);
3595 		vm_map_unlock_read(map);
3596 		rv = KERN_NO_SPACE;
3597 		goto out;
3598 	}
3599 	PROC_UNLOCK(p);
3600 #endif
3601 
3602 	if (vm_map_lock_upgrade(map))
3603 		goto Retry;
3604 
3605 	if (stack_entry == next_entry) {
3606 		/*
3607 		 * Growing downward.
3608 		 */
3609 		/* Get the preliminary new entry start value */
3610 		addr = stack_entry->start - grow_amount;
3611 
3612 		/*
3613 		 * If this puts us into the previous entry, cut back our
3614 		 * growth to the available space. Also, see the note above.
3615 		 */
3616 		if (addr < end) {
3617 			stack_entry->avail_ssize = max_grow;
3618 			addr = end;
3619 			if (stack_guard_page)
3620 				addr += PAGE_SIZE;
3621 		}
3622 
3623 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3624 		    next_entry->protection, next_entry->max_protection, 0);
3625 
3626 		/* Adjust the available stack space by the amount we grew. */
3627 		if (rv == KERN_SUCCESS) {
3628 			if (prev_entry != &map->header)
3629 				vm_map_clip_end(map, prev_entry, addr);
3630 			new_entry = prev_entry->next;
3631 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3632 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3633 			KASSERT(new_entry->start == addr, ("foo"));
3634 			grow_amount = new_entry->end - new_entry->start;
3635 			new_entry->avail_ssize = stack_entry->avail_ssize -
3636 			    grow_amount;
3637 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3638 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3639 		}
3640 	} else {
3641 		/*
3642 		 * Growing upward.
3643 		 */
3644 		addr = stack_entry->end + grow_amount;
3645 
3646 		/*
3647 		 * If this puts us into the next entry, cut back our growth
3648 		 * to the available space. Also, see the note above.
3649 		 */
3650 		if (addr > end) {
3651 			stack_entry->avail_ssize = end - stack_entry->end;
3652 			addr = end;
3653 			if (stack_guard_page)
3654 				addr -= PAGE_SIZE;
3655 		}
3656 
3657 		grow_amount = addr - stack_entry->end;
3658 		cred = stack_entry->cred;
3659 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3660 			cred = stack_entry->object.vm_object->cred;
3661 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3662 			rv = KERN_NO_SPACE;
3663 		/* Grow the underlying object if applicable. */
3664 		else if (stack_entry->object.vm_object == NULL ||
3665 			 vm_object_coalesce(stack_entry->object.vm_object,
3666 			 stack_entry->offset,
3667 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3668 			 (vm_size_t)grow_amount, cred != NULL)) {
3669 			map->size += (addr - stack_entry->end);
3670 			/* Update the current entry. */
3671 			stack_entry->end = addr;
3672 			stack_entry->avail_ssize -= grow_amount;
3673 			vm_map_entry_resize_free(map, stack_entry);
3674 			rv = KERN_SUCCESS;
3675 
3676 			if (next_entry != &map->header)
3677 				vm_map_clip_start(map, next_entry, addr);
3678 		} else
3679 			rv = KERN_FAILURE;
3680 	}
3681 
3682 	if (rv == KERN_SUCCESS && is_procstack)
3683 		vm->vm_ssize += btoc(grow_amount);
3684 
3685 	vm_map_unlock(map);
3686 
3687 	/*
3688 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3689 	 */
3690 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3691 		vm_map_wire(map,
3692 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3693 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3694 		    (p->p_flag & P_SYSTEM)
3695 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3696 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3697 	}
3698 
3699 out:
3700 #ifdef RACCT
3701 	if (rv != KERN_SUCCESS) {
3702 		PROC_LOCK(p);
3703 		error = racct_set(p, RACCT_VMEM, map->size);
3704 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3705 		if (!old_mlock) {
3706 			error = racct_set(p, RACCT_MEMLOCK,
3707 			    ptoa(pmap_wired_count(map->pmap)));
3708 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3709 		}
3710 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3711 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3712 		PROC_UNLOCK(p);
3713 	}
3714 #endif
3715 
3716 	return (rv);
3717 }
3718 
3719 /*
3720  * Unshare the specified VM space for exec.  If other processes are
3721  * mapped to it, then create a new one.  The new vmspace is null.
3722  */
3723 int
3724 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3725 {
3726 	struct vmspace *oldvmspace = p->p_vmspace;
3727 	struct vmspace *newvmspace;
3728 
3729 	newvmspace = vmspace_alloc(minuser, maxuser);
3730 	if (newvmspace == NULL)
3731 		return (ENOMEM);
3732 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3733 	/*
3734 	 * This code is written like this for prototype purposes.  The
3735 	 * goal is to avoid running down the vmspace here, but let the
3736 	 * other process's that are still using the vmspace to finally
3737 	 * run it down.  Even though there is little or no chance of blocking
3738 	 * here, it is a good idea to keep this form for future mods.
3739 	 */
3740 	PROC_VMSPACE_LOCK(p);
3741 	p->p_vmspace = newvmspace;
3742 	PROC_VMSPACE_UNLOCK(p);
3743 	if (p == curthread->td_proc)
3744 		pmap_activate(curthread);
3745 	vmspace_free(oldvmspace);
3746 	return (0);
3747 }
3748 
3749 /*
3750  * Unshare the specified VM space for forcing COW.  This
3751  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3752  */
3753 int
3754 vmspace_unshare(struct proc *p)
3755 {
3756 	struct vmspace *oldvmspace = p->p_vmspace;
3757 	struct vmspace *newvmspace;
3758 	vm_ooffset_t fork_charge;
3759 
3760 	if (oldvmspace->vm_refcnt == 1)
3761 		return (0);
3762 	fork_charge = 0;
3763 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3764 	if (newvmspace == NULL)
3765 		return (ENOMEM);
3766 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3767 		vmspace_free(newvmspace);
3768 		return (ENOMEM);
3769 	}
3770 	PROC_VMSPACE_LOCK(p);
3771 	p->p_vmspace = newvmspace;
3772 	PROC_VMSPACE_UNLOCK(p);
3773 	if (p == curthread->td_proc)
3774 		pmap_activate(curthread);
3775 	vmspace_free(oldvmspace);
3776 	return (0);
3777 }
3778 
3779 /*
3780  *	vm_map_lookup:
3781  *
3782  *	Finds the VM object, offset, and
3783  *	protection for a given virtual address in the
3784  *	specified map, assuming a page fault of the
3785  *	type specified.
3786  *
3787  *	Leaves the map in question locked for read; return
3788  *	values are guaranteed until a vm_map_lookup_done
3789  *	call is performed.  Note that the map argument
3790  *	is in/out; the returned map must be used in
3791  *	the call to vm_map_lookup_done.
3792  *
3793  *	A handle (out_entry) is returned for use in
3794  *	vm_map_lookup_done, to make that fast.
3795  *
3796  *	If a lookup is requested with "write protection"
3797  *	specified, the map may be changed to perform virtual
3798  *	copying operations, although the data referenced will
3799  *	remain the same.
3800  */
3801 int
3802 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3803 	      vm_offset_t vaddr,
3804 	      vm_prot_t fault_typea,
3805 	      vm_map_entry_t *out_entry,	/* OUT */
3806 	      vm_object_t *object,		/* OUT */
3807 	      vm_pindex_t *pindex,		/* OUT */
3808 	      vm_prot_t *out_prot,		/* OUT */
3809 	      boolean_t *wired)			/* OUT */
3810 {
3811 	vm_map_entry_t entry;
3812 	vm_map_t map = *var_map;
3813 	vm_prot_t prot;
3814 	vm_prot_t fault_type = fault_typea;
3815 	vm_object_t eobject;
3816 	vm_size_t size;
3817 	struct ucred *cred;
3818 
3819 RetryLookup:;
3820 
3821 	vm_map_lock_read(map);
3822 
3823 	/*
3824 	 * Lookup the faulting address.
3825 	 */
3826 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3827 		vm_map_unlock_read(map);
3828 		return (KERN_INVALID_ADDRESS);
3829 	}
3830 
3831 	entry = *out_entry;
3832 
3833 	/*
3834 	 * Handle submaps.
3835 	 */
3836 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3837 		vm_map_t old_map = map;
3838 
3839 		*var_map = map = entry->object.sub_map;
3840 		vm_map_unlock_read(old_map);
3841 		goto RetryLookup;
3842 	}
3843 
3844 	/*
3845 	 * Check whether this task is allowed to have this page.
3846 	 */
3847 	prot = entry->protection;
3848 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3849 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3850 		vm_map_unlock_read(map);
3851 		return (KERN_PROTECTION_FAILURE);
3852 	}
3853 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3854 	    (entry->eflags & MAP_ENTRY_COW) &&
3855 	    (fault_type & VM_PROT_WRITE)) {
3856 		vm_map_unlock_read(map);
3857 		return (KERN_PROTECTION_FAILURE);
3858 	}
3859 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3860 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3861 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3862 		vm_map_unlock_read(map);
3863 		return (KERN_PROTECTION_FAILURE);
3864 	}
3865 
3866 	/*
3867 	 * If this page is not pageable, we have to get it for all possible
3868 	 * accesses.
3869 	 */
3870 	*wired = (entry->wired_count != 0);
3871 	if (*wired)
3872 		fault_type = entry->protection;
3873 	size = entry->end - entry->start;
3874 	/*
3875 	 * If the entry was copy-on-write, we either ...
3876 	 */
3877 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3878 		/*
3879 		 * If we want to write the page, we may as well handle that
3880 		 * now since we've got the map locked.
3881 		 *
3882 		 * If we don't need to write the page, we just demote the
3883 		 * permissions allowed.
3884 		 */
3885 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3886 		    (fault_typea & VM_PROT_COPY) != 0) {
3887 			/*
3888 			 * Make a new object, and place it in the object
3889 			 * chain.  Note that no new references have appeared
3890 			 * -- one just moved from the map to the new
3891 			 * object.
3892 			 */
3893 			if (vm_map_lock_upgrade(map))
3894 				goto RetryLookup;
3895 
3896 			if (entry->cred == NULL) {
3897 				/*
3898 				 * The debugger owner is charged for
3899 				 * the memory.
3900 				 */
3901 				cred = curthread->td_ucred;
3902 				crhold(cred);
3903 				if (!swap_reserve_by_cred(size, cred)) {
3904 					crfree(cred);
3905 					vm_map_unlock(map);
3906 					return (KERN_RESOURCE_SHORTAGE);
3907 				}
3908 				entry->cred = cred;
3909 			}
3910 			vm_object_shadow(&entry->object.vm_object,
3911 			    &entry->offset, size);
3912 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3913 			eobject = entry->object.vm_object;
3914 			if (eobject->cred != NULL) {
3915 				/*
3916 				 * The object was not shadowed.
3917 				 */
3918 				swap_release_by_cred(size, entry->cred);
3919 				crfree(entry->cred);
3920 				entry->cred = NULL;
3921 			} else if (entry->cred != NULL) {
3922 				VM_OBJECT_WLOCK(eobject);
3923 				eobject->cred = entry->cred;
3924 				eobject->charge = size;
3925 				VM_OBJECT_WUNLOCK(eobject);
3926 				entry->cred = NULL;
3927 			}
3928 
3929 			vm_map_lock_downgrade(map);
3930 		} else {
3931 			/*
3932 			 * We're attempting to read a copy-on-write page --
3933 			 * don't allow writes.
3934 			 */
3935 			prot &= ~VM_PROT_WRITE;
3936 		}
3937 	}
3938 
3939 	/*
3940 	 * Create an object if necessary.
3941 	 */
3942 	if (entry->object.vm_object == NULL &&
3943 	    !map->system_map) {
3944 		if (vm_map_lock_upgrade(map))
3945 			goto RetryLookup;
3946 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3947 		    atop(size));
3948 		entry->offset = 0;
3949 		if (entry->cred != NULL) {
3950 			VM_OBJECT_WLOCK(entry->object.vm_object);
3951 			entry->object.vm_object->cred = entry->cred;
3952 			entry->object.vm_object->charge = size;
3953 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3954 			entry->cred = NULL;
3955 		}
3956 		vm_map_lock_downgrade(map);
3957 	}
3958 
3959 	/*
3960 	 * Return the object/offset from this entry.  If the entry was
3961 	 * copy-on-write or empty, it has been fixed up.
3962 	 */
3963 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3964 	*object = entry->object.vm_object;
3965 
3966 	*out_prot = prot;
3967 	return (KERN_SUCCESS);
3968 }
3969 
3970 /*
3971  *	vm_map_lookup_locked:
3972  *
3973  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3974  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3975  */
3976 int
3977 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3978 		     vm_offset_t vaddr,
3979 		     vm_prot_t fault_typea,
3980 		     vm_map_entry_t *out_entry,	/* OUT */
3981 		     vm_object_t *object,	/* OUT */
3982 		     vm_pindex_t *pindex,	/* OUT */
3983 		     vm_prot_t *out_prot,	/* OUT */
3984 		     boolean_t *wired)		/* OUT */
3985 {
3986 	vm_map_entry_t entry;
3987 	vm_map_t map = *var_map;
3988 	vm_prot_t prot;
3989 	vm_prot_t fault_type = fault_typea;
3990 
3991 	/*
3992 	 * Lookup the faulting address.
3993 	 */
3994 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3995 		return (KERN_INVALID_ADDRESS);
3996 
3997 	entry = *out_entry;
3998 
3999 	/*
4000 	 * Fail if the entry refers to a submap.
4001 	 */
4002 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4003 		return (KERN_FAILURE);
4004 
4005 	/*
4006 	 * Check whether this task is allowed to have this page.
4007 	 */
4008 	prot = entry->protection;
4009 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4010 	if ((fault_type & prot) != fault_type)
4011 		return (KERN_PROTECTION_FAILURE);
4012 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4013 	    (entry->eflags & MAP_ENTRY_COW) &&
4014 	    (fault_type & VM_PROT_WRITE))
4015 		return (KERN_PROTECTION_FAILURE);
4016 
4017 	/*
4018 	 * If this page is not pageable, we have to get it for all possible
4019 	 * accesses.
4020 	 */
4021 	*wired = (entry->wired_count != 0);
4022 	if (*wired)
4023 		fault_type = entry->protection;
4024 
4025 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4026 		/*
4027 		 * Fail if the entry was copy-on-write for a write fault.
4028 		 */
4029 		if (fault_type & VM_PROT_WRITE)
4030 			return (KERN_FAILURE);
4031 		/*
4032 		 * We're attempting to read a copy-on-write page --
4033 		 * don't allow writes.
4034 		 */
4035 		prot &= ~VM_PROT_WRITE;
4036 	}
4037 
4038 	/*
4039 	 * Fail if an object should be created.
4040 	 */
4041 	if (entry->object.vm_object == NULL && !map->system_map)
4042 		return (KERN_FAILURE);
4043 
4044 	/*
4045 	 * Return the object/offset from this entry.  If the entry was
4046 	 * copy-on-write or empty, it has been fixed up.
4047 	 */
4048 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4049 	*object = entry->object.vm_object;
4050 
4051 	*out_prot = prot;
4052 	return (KERN_SUCCESS);
4053 }
4054 
4055 /*
4056  *	vm_map_lookup_done:
4057  *
4058  *	Releases locks acquired by a vm_map_lookup
4059  *	(according to the handle returned by that lookup).
4060  */
4061 void
4062 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4063 {
4064 	/*
4065 	 * Unlock the main-level map
4066 	 */
4067 	vm_map_unlock_read(map);
4068 }
4069 
4070 #include "opt_ddb.h"
4071 #ifdef DDB
4072 #include <sys/kernel.h>
4073 
4074 #include <ddb/ddb.h>
4075 
4076 static void
4077 vm_map_print(vm_map_t map)
4078 {
4079 	vm_map_entry_t entry;
4080 
4081 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4082 	    (void *)map,
4083 	    (void *)map->pmap, map->nentries, map->timestamp);
4084 
4085 	db_indent += 2;
4086 	for (entry = map->header.next; entry != &map->header;
4087 	    entry = entry->next) {
4088 		db_iprintf("map entry %p: start=%p, end=%p\n",
4089 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4090 		{
4091 			static char *inheritance_name[4] =
4092 			{"share", "copy", "none", "donate_copy"};
4093 
4094 			db_iprintf(" prot=%x/%x/%s",
4095 			    entry->protection,
4096 			    entry->max_protection,
4097 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4098 			if (entry->wired_count != 0)
4099 				db_printf(", wired");
4100 		}
4101 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4102 			db_printf(", share=%p, offset=0x%jx\n",
4103 			    (void *)entry->object.sub_map,
4104 			    (uintmax_t)entry->offset);
4105 			if ((entry->prev == &map->header) ||
4106 			    (entry->prev->object.sub_map !=
4107 				entry->object.sub_map)) {
4108 				db_indent += 2;
4109 				vm_map_print((vm_map_t)entry->object.sub_map);
4110 				db_indent -= 2;
4111 			}
4112 		} else {
4113 			if (entry->cred != NULL)
4114 				db_printf(", ruid %d", entry->cred->cr_ruid);
4115 			db_printf(", object=%p, offset=0x%jx",
4116 			    (void *)entry->object.vm_object,
4117 			    (uintmax_t)entry->offset);
4118 			if (entry->object.vm_object && entry->object.vm_object->cred)
4119 				db_printf(", obj ruid %d charge %jx",
4120 				    entry->object.vm_object->cred->cr_ruid,
4121 				    (uintmax_t)entry->object.vm_object->charge);
4122 			if (entry->eflags & MAP_ENTRY_COW)
4123 				db_printf(", copy (%s)",
4124 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4125 			db_printf("\n");
4126 
4127 			if ((entry->prev == &map->header) ||
4128 			    (entry->prev->object.vm_object !=
4129 				entry->object.vm_object)) {
4130 				db_indent += 2;
4131 				vm_object_print((db_expr_t)(intptr_t)
4132 						entry->object.vm_object,
4133 						1, 0, (char *)0);
4134 				db_indent -= 2;
4135 			}
4136 		}
4137 	}
4138 	db_indent -= 2;
4139 }
4140 
4141 DB_SHOW_COMMAND(map, map)
4142 {
4143 
4144 	if (!have_addr) {
4145 		db_printf("usage: show map <addr>\n");
4146 		return;
4147 	}
4148 	vm_map_print((vm_map_t)addr);
4149 }
4150 
4151 DB_SHOW_COMMAND(procvm, procvm)
4152 {
4153 	struct proc *p;
4154 
4155 	if (have_addr) {
4156 		p = (struct proc *) addr;
4157 	} else {
4158 		p = curproc;
4159 	}
4160 
4161 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4162 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4163 	    (void *)vmspace_pmap(p->p_vmspace));
4164 
4165 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4166 }
4167 
4168 #endif /* DDB */
4169