xref: /freebsd/sys/vm/vm_object.c (revision acc1a9ef)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory object module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>		/* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101 
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105 
106 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107 		    int pagerflags, int flags, boolean_t *clearobjflags,
108 		    boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110 		    boolean_t *clearobjflags);
111 static void	vm_object_qcollapse(vm_object_t object);
112 static void	vm_object_vndeallocate(vm_object_t object);
113 
114 /*
115  *	Virtual memory objects maintain the actual data
116  *	associated with allocated virtual memory.  A given
117  *	page of memory exists within exactly one object.
118  *
119  *	An object is only deallocated when all "references"
120  *	are given up.  Only one "reference" to a given
121  *	region of an object should be writeable.
122  *
123  *	Associated with each object is a list of all resident
124  *	memory pages belonging to that object; this list is
125  *	maintained by the "vm_page" module, and locked by the object's
126  *	lock.
127  *
128  *	Each object also records a "pager" routine which is
129  *	used to retrieve (and store) pages to the proper backing
130  *	storage.  In addition, objects may be backed by other
131  *	objects from which they were virtual-copied.
132  *
133  *	The only items within the object structure which are
134  *	modified after time of creation are:
135  *		reference count		locked by object's lock
136  *		pager routine		locked by object's lock
137  *
138  */
139 
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;	/* lock for object list and count */
142 
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145 
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148 
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152 
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156 
157 static uma_zone_t obj_zone;
158 
159 static int vm_object_zinit(void *mem, int size, int flags);
160 
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163 
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167 	vm_object_t object;
168 
169 	object = (vm_object_t)mem;
170 	KASSERT(object->ref_count == 0,
171 	    ("object %p ref_count = %d", object, object->ref_count));
172 	KASSERT(TAILQ_EMPTY(&object->memq),
173 	    ("object %p has resident pages in its memq", object));
174 	KASSERT(vm_radix_is_empty(&object->rtree),
175 	    ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177 	KASSERT(LIST_EMPTY(&object->rvq),
178 	    ("object %p has reservations",
179 	    object));
180 #endif
181 	KASSERT(vm_object_cache_is_empty(object),
182 	    ("object %p has cached pages",
183 	    object));
184 	KASSERT(object->paging_in_progress == 0,
185 	    ("object %p paging_in_progress = %d",
186 	    object, object->paging_in_progress));
187 	KASSERT(object->resident_page_count == 0,
188 	    ("object %p resident_page_count = %d",
189 	    object, object->resident_page_count));
190 	KASSERT(object->shadow_count == 0,
191 	    ("object %p shadow_count = %d",
192 	    object, object->shadow_count));
193 	KASSERT(object->type == OBJT_DEAD,
194 	    ("object %p has non-dead type %d",
195 	    object, object->type));
196 }
197 #endif
198 
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202 	vm_object_t object;
203 
204 	object = (vm_object_t)mem;
205 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206 
207 	/* These are true for any object that has been freed */
208 	object->type = OBJT_DEAD;
209 	object->ref_count = 0;
210 	object->rtree.rt_root = 0;
211 	object->rtree.rt_flags = 0;
212 	object->paging_in_progress = 0;
213 	object->resident_page_count = 0;
214 	object->shadow_count = 0;
215 	object->cache.rt_root = 0;
216 	object->cache.rt_flags = 0;
217 
218 	mtx_lock(&vm_object_list_mtx);
219 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220 	mtx_unlock(&vm_object_list_mtx);
221 	return (0);
222 }
223 
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227 
228 	TAILQ_INIT(&object->memq);
229 	LIST_INIT(&object->shadow_head);
230 
231 	object->type = type;
232 	switch (type) {
233 	case OBJT_DEAD:
234 		panic("_vm_object_allocate: can't create OBJT_DEAD");
235 	case OBJT_DEFAULT:
236 	case OBJT_SWAP:
237 		object->flags = OBJ_ONEMAPPING;
238 		break;
239 	case OBJT_DEVICE:
240 	case OBJT_SG:
241 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242 		break;
243 	case OBJT_MGTDEVICE:
244 		object->flags = OBJ_FICTITIOUS;
245 		break;
246 	case OBJT_PHYS:
247 		object->flags = OBJ_UNMANAGED;
248 		break;
249 	case OBJT_VNODE:
250 		object->flags = 0;
251 		break;
252 	default:
253 		panic("_vm_object_allocate: type %d is undefined", type);
254 	}
255 	object->size = size;
256 	object->generation = 1;
257 	object->ref_count = 1;
258 	object->memattr = VM_MEMATTR_DEFAULT;
259 	object->cred = NULL;
260 	object->charge = 0;
261 	object->handle = NULL;
262 	object->backing_object = NULL;
263 	object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265 	LIST_INIT(&object->rvq);
266 #endif
267 	umtx_shm_object_init(object);
268 }
269 
270 /*
271  *	vm_object_init:
272  *
273  *	Initialize the VM objects module.
274  */
275 void
276 vm_object_init(void)
277 {
278 	TAILQ_INIT(&vm_object_list);
279 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280 
281 	rw_init(&kernel_object->lock, "kernel vm object");
282 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283 	    kernel_object);
284 #if VM_NRESERVLEVEL > 0
285 	kernel_object->flags |= OBJ_COLORED;
286 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288 
289 	rw_init(&kmem_object->lock, "kmem vm object");
290 	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291 	    kmem_object);
292 #if VM_NRESERVLEVEL > 0
293 	kmem_object->flags |= OBJ_COLORED;
294 	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296 
297 	/*
298 	 * The lock portion of struct vm_object must be type stable due
299 	 * to vm_pageout_fallback_object_lock locking a vm object
300 	 * without holding any references to it.
301 	 */
302 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303 #ifdef INVARIANTS
304 	    vm_object_zdtor,
305 #else
306 	    NULL,
307 #endif
308 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309 
310 	vm_radix_init();
311 }
312 
313 void
314 vm_object_clear_flag(vm_object_t object, u_short bits)
315 {
316 
317 	VM_OBJECT_ASSERT_WLOCKED(object);
318 	object->flags &= ~bits;
319 }
320 
321 /*
322  *	Sets the default memory attribute for the specified object.  Pages
323  *	that are allocated to this object are by default assigned this memory
324  *	attribute.
325  *
326  *	Presently, this function must be called before any pages are allocated
327  *	to the object.  In the future, this requirement may be relaxed for
328  *	"default" and "swap" objects.
329  */
330 int
331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332 {
333 
334 	VM_OBJECT_ASSERT_WLOCKED(object);
335 	switch (object->type) {
336 	case OBJT_DEFAULT:
337 	case OBJT_DEVICE:
338 	case OBJT_MGTDEVICE:
339 	case OBJT_PHYS:
340 	case OBJT_SG:
341 	case OBJT_SWAP:
342 	case OBJT_VNODE:
343 		if (!TAILQ_EMPTY(&object->memq))
344 			return (KERN_FAILURE);
345 		break;
346 	case OBJT_DEAD:
347 		return (KERN_INVALID_ARGUMENT);
348 	default:
349 		panic("vm_object_set_memattr: object %p is of undefined type",
350 		    object);
351 	}
352 	object->memattr = memattr;
353 	return (KERN_SUCCESS);
354 }
355 
356 void
357 vm_object_pip_add(vm_object_t object, short i)
358 {
359 
360 	VM_OBJECT_ASSERT_WLOCKED(object);
361 	object->paging_in_progress += i;
362 }
363 
364 void
365 vm_object_pip_subtract(vm_object_t object, short i)
366 {
367 
368 	VM_OBJECT_ASSERT_WLOCKED(object);
369 	object->paging_in_progress -= i;
370 }
371 
372 void
373 vm_object_pip_wakeup(vm_object_t object)
374 {
375 
376 	VM_OBJECT_ASSERT_WLOCKED(object);
377 	object->paging_in_progress--;
378 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379 		vm_object_clear_flag(object, OBJ_PIPWNT);
380 		wakeup(object);
381 	}
382 }
383 
384 void
385 vm_object_pip_wakeupn(vm_object_t object, short i)
386 {
387 
388 	VM_OBJECT_ASSERT_WLOCKED(object);
389 	if (i)
390 		object->paging_in_progress -= i;
391 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392 		vm_object_clear_flag(object, OBJ_PIPWNT);
393 		wakeup(object);
394 	}
395 }
396 
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400 
401 	VM_OBJECT_ASSERT_WLOCKED(object);
402 	while (object->paging_in_progress) {
403 		object->flags |= OBJ_PIPWNT;
404 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405 	}
406 }
407 
408 /*
409  *	vm_object_allocate:
410  *
411  *	Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416 	vm_object_t object;
417 
418 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419 	_vm_object_allocate(type, size, object);
420 	return (object);
421 }
422 
423 
424 /*
425  *	vm_object_reference:
426  *
427  *	Gets another reference to the given object.  Note: OBJ_DEAD
428  *	objects can be referenced during final cleaning.
429  */
430 void
431 vm_object_reference(vm_object_t object)
432 {
433 	if (object == NULL)
434 		return;
435 	VM_OBJECT_WLOCK(object);
436 	vm_object_reference_locked(object);
437 	VM_OBJECT_WUNLOCK(object);
438 }
439 
440 /*
441  *	vm_object_reference_locked:
442  *
443  *	Gets another reference to the given object.
444  *
445  *	The object must be locked.
446  */
447 void
448 vm_object_reference_locked(vm_object_t object)
449 {
450 	struct vnode *vp;
451 
452 	VM_OBJECT_ASSERT_WLOCKED(object);
453 	object->ref_count++;
454 	if (object->type == OBJT_VNODE) {
455 		vp = object->handle;
456 		vref(vp);
457 	}
458 }
459 
460 /*
461  * Handle deallocating an object of type OBJT_VNODE.
462  */
463 static void
464 vm_object_vndeallocate(vm_object_t object)
465 {
466 	struct vnode *vp = (struct vnode *) object->handle;
467 
468 	VM_OBJECT_ASSERT_WLOCKED(object);
469 	KASSERT(object->type == OBJT_VNODE,
470 	    ("vm_object_vndeallocate: not a vnode object"));
471 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472 #ifdef INVARIANTS
473 	if (object->ref_count == 0) {
474 		vprint("vm_object_vndeallocate", vp);
475 		panic("vm_object_vndeallocate: bad object reference count");
476 	}
477 #endif
478 
479 	if (object->ref_count == 1)
480 		umtx_shm_object_terminated(object);
481 
482 	/*
483 	 * The test for text of vp vnode does not need a bypass to
484 	 * reach right VV_TEXT there, since it is obtained from
485 	 * object->handle.
486 	 */
487 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
488 		object->ref_count--;
489 		VM_OBJECT_WUNLOCK(object);
490 		/* vrele may need the vnode lock. */
491 		vrele(vp);
492 	} else {
493 		vhold(vp);
494 		VM_OBJECT_WUNLOCK(object);
495 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
496 		vdrop(vp);
497 		VM_OBJECT_WLOCK(object);
498 		object->ref_count--;
499 		if (object->type == OBJT_DEAD) {
500 			VM_OBJECT_WUNLOCK(object);
501 			VOP_UNLOCK(vp, 0);
502 		} else {
503 			if (object->ref_count == 0)
504 				VOP_UNSET_TEXT(vp);
505 			VM_OBJECT_WUNLOCK(object);
506 			vput(vp);
507 		}
508 	}
509 }
510 
511 /*
512  *	vm_object_deallocate:
513  *
514  *	Release a reference to the specified object,
515  *	gained either through a vm_object_allocate
516  *	or a vm_object_reference call.  When all references
517  *	are gone, storage associated with this object
518  *	may be relinquished.
519  *
520  *	No object may be locked.
521  */
522 void
523 vm_object_deallocate(vm_object_t object)
524 {
525 	vm_object_t temp;
526 	struct vnode *vp;
527 
528 	while (object != NULL) {
529 		VM_OBJECT_WLOCK(object);
530 		if (object->type == OBJT_VNODE) {
531 			vm_object_vndeallocate(object);
532 			return;
533 		}
534 
535 		KASSERT(object->ref_count != 0,
536 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
537 
538 		/*
539 		 * If the reference count goes to 0 we start calling
540 		 * vm_object_terminate() on the object chain.
541 		 * A ref count of 1 may be a special case depending on the
542 		 * shadow count being 0 or 1.
543 		 */
544 		object->ref_count--;
545 		if (object->ref_count > 1) {
546 			VM_OBJECT_WUNLOCK(object);
547 			return;
548 		} else if (object->ref_count == 1) {
549 			if (object->type == OBJT_SWAP &&
550 			    (object->flags & OBJ_TMPFS) != 0) {
551 				vp = object->un_pager.swp.swp_tmpfs;
552 				vhold(vp);
553 				VM_OBJECT_WUNLOCK(object);
554 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
555 				VM_OBJECT_WLOCK(object);
556 				if (object->type == OBJT_DEAD ||
557 				    object->ref_count != 1) {
558 					VM_OBJECT_WUNLOCK(object);
559 					VOP_UNLOCK(vp, 0);
560 					vdrop(vp);
561 					return;
562 				}
563 				if ((object->flags & OBJ_TMPFS) != 0)
564 					VOP_UNSET_TEXT(vp);
565 				VOP_UNLOCK(vp, 0);
566 				vdrop(vp);
567 			}
568 			if (object->shadow_count == 0 &&
569 			    object->handle == NULL &&
570 			    (object->type == OBJT_DEFAULT ||
571 			    (object->type == OBJT_SWAP &&
572 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
573 				vm_object_set_flag(object, OBJ_ONEMAPPING);
574 			} else if ((object->shadow_count == 1) &&
575 			    (object->handle == NULL) &&
576 			    (object->type == OBJT_DEFAULT ||
577 			     object->type == OBJT_SWAP)) {
578 				vm_object_t robject;
579 
580 				robject = LIST_FIRST(&object->shadow_head);
581 				KASSERT(robject != NULL,
582 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
583 					 object->ref_count,
584 					 object->shadow_count));
585 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
586 				    ("shadowed tmpfs v_object %p", object));
587 				if (!VM_OBJECT_TRYWLOCK(robject)) {
588 					/*
589 					 * Avoid a potential deadlock.
590 					 */
591 					object->ref_count++;
592 					VM_OBJECT_WUNLOCK(object);
593 					/*
594 					 * More likely than not the thread
595 					 * holding robject's lock has lower
596 					 * priority than the current thread.
597 					 * Let the lower priority thread run.
598 					 */
599 					pause("vmo_de", 1);
600 					continue;
601 				}
602 				/*
603 				 * Collapse object into its shadow unless its
604 				 * shadow is dead.  In that case, object will
605 				 * be deallocated by the thread that is
606 				 * deallocating its shadow.
607 				 */
608 				if ((robject->flags & OBJ_DEAD) == 0 &&
609 				    (robject->handle == NULL) &&
610 				    (robject->type == OBJT_DEFAULT ||
611 				     robject->type == OBJT_SWAP)) {
612 
613 					robject->ref_count++;
614 retry:
615 					if (robject->paging_in_progress) {
616 						VM_OBJECT_WUNLOCK(object);
617 						vm_object_pip_wait(robject,
618 						    "objde1");
619 						temp = robject->backing_object;
620 						if (object == temp) {
621 							VM_OBJECT_WLOCK(object);
622 							goto retry;
623 						}
624 					} else if (object->paging_in_progress) {
625 						VM_OBJECT_WUNLOCK(robject);
626 						object->flags |= OBJ_PIPWNT;
627 						VM_OBJECT_SLEEP(object, object,
628 						    PDROP | PVM, "objde2", 0);
629 						VM_OBJECT_WLOCK(robject);
630 						temp = robject->backing_object;
631 						if (object == temp) {
632 							VM_OBJECT_WLOCK(object);
633 							goto retry;
634 						}
635 					} else
636 						VM_OBJECT_WUNLOCK(object);
637 
638 					if (robject->ref_count == 1) {
639 						robject->ref_count--;
640 						object = robject;
641 						goto doterm;
642 					}
643 					object = robject;
644 					vm_object_collapse(object);
645 					VM_OBJECT_WUNLOCK(object);
646 					continue;
647 				}
648 				VM_OBJECT_WUNLOCK(robject);
649 			}
650 			VM_OBJECT_WUNLOCK(object);
651 			return;
652 		}
653 doterm:
654 		umtx_shm_object_terminated(object);
655 		temp = object->backing_object;
656 		if (temp != NULL) {
657 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
658 			    ("shadowed tmpfs v_object 2 %p", object));
659 			VM_OBJECT_WLOCK(temp);
660 			LIST_REMOVE(object, shadow_list);
661 			temp->shadow_count--;
662 			VM_OBJECT_WUNLOCK(temp);
663 			object->backing_object = NULL;
664 		}
665 		/*
666 		 * Don't double-terminate, we could be in a termination
667 		 * recursion due to the terminate having to sync data
668 		 * to disk.
669 		 */
670 		if ((object->flags & OBJ_DEAD) == 0)
671 			vm_object_terminate(object);
672 		else
673 			VM_OBJECT_WUNLOCK(object);
674 		object = temp;
675 	}
676 }
677 
678 /*
679  *	vm_object_destroy removes the object from the global object list
680  *      and frees the space for the object.
681  */
682 void
683 vm_object_destroy(vm_object_t object)
684 {
685 
686 	/*
687 	 * Release the allocation charge.
688 	 */
689 	if (object->cred != NULL) {
690 		swap_release_by_cred(object->charge, object->cred);
691 		object->charge = 0;
692 		crfree(object->cred);
693 		object->cred = NULL;
694 	}
695 
696 	/*
697 	 * Free the space for the object.
698 	 */
699 	uma_zfree(obj_zone, object);
700 }
701 
702 /*
703  *	vm_object_terminate actually destroys the specified object, freeing
704  *	up all previously used resources.
705  *
706  *	The object must be locked.
707  *	This routine may block.
708  */
709 void
710 vm_object_terminate(vm_object_t object)
711 {
712 	vm_page_t p, p_next;
713 
714 	VM_OBJECT_ASSERT_WLOCKED(object);
715 
716 	/*
717 	 * Make sure no one uses us.
718 	 */
719 	vm_object_set_flag(object, OBJ_DEAD);
720 
721 	/*
722 	 * wait for the pageout daemon to be done with the object
723 	 */
724 	vm_object_pip_wait(object, "objtrm");
725 
726 	KASSERT(!object->paging_in_progress,
727 		("vm_object_terminate: pageout in progress"));
728 
729 	/*
730 	 * Clean and free the pages, as appropriate. All references to the
731 	 * object are gone, so we don't need to lock it.
732 	 */
733 	if (object->type == OBJT_VNODE) {
734 		struct vnode *vp = (struct vnode *)object->handle;
735 
736 		/*
737 		 * Clean pages and flush buffers.
738 		 */
739 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
740 		VM_OBJECT_WUNLOCK(object);
741 
742 		vinvalbuf(vp, V_SAVE, 0, 0);
743 
744 		VM_OBJECT_WLOCK(object);
745 	}
746 
747 	KASSERT(object->ref_count == 0,
748 		("vm_object_terminate: object with references, ref_count=%d",
749 		object->ref_count));
750 
751 	/*
752 	 * Free any remaining pageable pages.  This also removes them from the
753 	 * paging queues.  However, don't free wired pages, just remove them
754 	 * from the object.  Rather than incrementally removing each page from
755 	 * the object, the page and object are reset to any empty state.
756 	 */
757 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
758 		vm_page_assert_unbusied(p);
759 		vm_page_lock(p);
760 		/*
761 		 * Optimize the page's removal from the object by resetting
762 		 * its "object" field.  Specifically, if the page is not
763 		 * wired, then the effect of this assignment is that
764 		 * vm_page_free()'s call to vm_page_remove() will return
765 		 * immediately without modifying the page or the object.
766 		 */
767 		p->object = NULL;
768 		if (p->wire_count == 0) {
769 			vm_page_free(p);
770 			PCPU_INC(cnt.v_pfree);
771 		}
772 		vm_page_unlock(p);
773 	}
774 	/*
775 	 * If the object contained any pages, then reset it to an empty state.
776 	 * None of the object's fields, including "resident_page_count", were
777 	 * modified by the preceding loop.
778 	 */
779 	if (object->resident_page_count != 0) {
780 		vm_radix_reclaim_allnodes(&object->rtree);
781 		TAILQ_INIT(&object->memq);
782 		object->resident_page_count = 0;
783 		if (object->type == OBJT_VNODE)
784 			vdrop(object->handle);
785 	}
786 
787 #if VM_NRESERVLEVEL > 0
788 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
789 		vm_reserv_break_all(object);
790 #endif
791 	if (__predict_false(!vm_object_cache_is_empty(object)))
792 		vm_page_cache_free(object, 0, 0);
793 
794 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
795 	    object->type == OBJT_SWAP,
796 	    ("%s: non-swap obj %p has cred", __func__, object));
797 
798 	/*
799 	 * Let the pager know object is dead.
800 	 */
801 	vm_pager_deallocate(object);
802 	VM_OBJECT_WUNLOCK(object);
803 
804 	vm_object_destroy(object);
805 }
806 
807 /*
808  * Make the page read-only so that we can clear the object flags.  However, if
809  * this is a nosync mmap then the object is likely to stay dirty so do not
810  * mess with the page and do not clear the object flags.  Returns TRUE if the
811  * page should be flushed, and FALSE otherwise.
812  */
813 static boolean_t
814 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
815 {
816 
817 	/*
818 	 * If we have been asked to skip nosync pages and this is a
819 	 * nosync page, skip it.  Note that the object flags were not
820 	 * cleared in this case so we do not have to set them.
821 	 */
822 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
823 		*clearobjflags = FALSE;
824 		return (FALSE);
825 	} else {
826 		pmap_remove_write(p);
827 		return (p->dirty != 0);
828 	}
829 }
830 
831 /*
832  *	vm_object_page_clean
833  *
834  *	Clean all dirty pages in the specified range of object.  Leaves page
835  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
836  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
837  *	leaving the object dirty.
838  *
839  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
840  *	synchronous clustering mode implementation.
841  *
842  *	Odd semantics: if start == end, we clean everything.
843  *
844  *	The object must be locked.
845  *
846  *	Returns FALSE if some page from the range was not written, as
847  *	reported by the pager, and TRUE otherwise.
848  */
849 boolean_t
850 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
851     int flags)
852 {
853 	vm_page_t np, p;
854 	vm_pindex_t pi, tend, tstart;
855 	int curgeneration, n, pagerflags;
856 	boolean_t clearobjflags, eio, res;
857 
858 	VM_OBJECT_ASSERT_WLOCKED(object);
859 
860 	/*
861 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
862 	 * objects.  The check below prevents the function from
863 	 * operating on non-vnode objects.
864 	 */
865 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
866 	    object->resident_page_count == 0)
867 		return (TRUE);
868 
869 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
870 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
871 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
872 
873 	tstart = OFF_TO_IDX(start);
874 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
875 	clearobjflags = tstart == 0 && tend >= object->size;
876 	res = TRUE;
877 
878 rescan:
879 	curgeneration = object->generation;
880 
881 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
882 		pi = p->pindex;
883 		if (pi >= tend)
884 			break;
885 		np = TAILQ_NEXT(p, listq);
886 		if (p->valid == 0)
887 			continue;
888 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
889 			if (object->generation != curgeneration) {
890 				if ((flags & OBJPC_SYNC) != 0)
891 					goto rescan;
892 				else
893 					clearobjflags = FALSE;
894 			}
895 			np = vm_page_find_least(object, pi);
896 			continue;
897 		}
898 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
899 			continue;
900 
901 		n = vm_object_page_collect_flush(object, p, pagerflags,
902 		    flags, &clearobjflags, &eio);
903 		if (eio) {
904 			res = FALSE;
905 			clearobjflags = FALSE;
906 		}
907 		if (object->generation != curgeneration) {
908 			if ((flags & OBJPC_SYNC) != 0)
909 				goto rescan;
910 			else
911 				clearobjflags = FALSE;
912 		}
913 
914 		/*
915 		 * If the VOP_PUTPAGES() did a truncated write, so
916 		 * that even the first page of the run is not fully
917 		 * written, vm_pageout_flush() returns 0 as the run
918 		 * length.  Since the condition that caused truncated
919 		 * write may be permanent, e.g. exhausted free space,
920 		 * accepting n == 0 would cause an infinite loop.
921 		 *
922 		 * Forwarding the iterator leaves the unwritten page
923 		 * behind, but there is not much we can do there if
924 		 * filesystem refuses to write it.
925 		 */
926 		if (n == 0) {
927 			n = 1;
928 			clearobjflags = FALSE;
929 		}
930 		np = vm_page_find_least(object, pi + n);
931 	}
932 #if 0
933 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
934 #endif
935 
936 	if (clearobjflags)
937 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
938 	return (res);
939 }
940 
941 static int
942 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
943     int flags, boolean_t *clearobjflags, boolean_t *eio)
944 {
945 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
946 	int count, i, mreq, runlen;
947 
948 	vm_page_lock_assert(p, MA_NOTOWNED);
949 	VM_OBJECT_ASSERT_WLOCKED(object);
950 
951 	count = 1;
952 	mreq = 0;
953 
954 	for (tp = p; count < vm_pageout_page_count; count++) {
955 		tp = vm_page_next(tp);
956 		if (tp == NULL || vm_page_busied(tp))
957 			break;
958 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
959 			break;
960 	}
961 
962 	for (p_first = p; count < vm_pageout_page_count; count++) {
963 		tp = vm_page_prev(p_first);
964 		if (tp == NULL || vm_page_busied(tp))
965 			break;
966 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
967 			break;
968 		p_first = tp;
969 		mreq++;
970 	}
971 
972 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
973 		ma[i] = tp;
974 
975 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
976 	return (runlen);
977 }
978 
979 /*
980  * Note that there is absolutely no sense in writing out
981  * anonymous objects, so we track down the vnode object
982  * to write out.
983  * We invalidate (remove) all pages from the address space
984  * for semantic correctness.
985  *
986  * If the backing object is a device object with unmanaged pages, then any
987  * mappings to the specified range of pages must be removed before this
988  * function is called.
989  *
990  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
991  * may start out with a NULL object.
992  */
993 boolean_t
994 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
995     boolean_t syncio, boolean_t invalidate)
996 {
997 	vm_object_t backing_object;
998 	struct vnode *vp;
999 	struct mount *mp;
1000 	int error, flags, fsync_after;
1001 	boolean_t res;
1002 
1003 	if (object == NULL)
1004 		return (TRUE);
1005 	res = TRUE;
1006 	error = 0;
1007 	VM_OBJECT_WLOCK(object);
1008 	while ((backing_object = object->backing_object) != NULL) {
1009 		VM_OBJECT_WLOCK(backing_object);
1010 		offset += object->backing_object_offset;
1011 		VM_OBJECT_WUNLOCK(object);
1012 		object = backing_object;
1013 		if (object->size < OFF_TO_IDX(offset + size))
1014 			size = IDX_TO_OFF(object->size) - offset;
1015 	}
1016 	/*
1017 	 * Flush pages if writing is allowed, invalidate them
1018 	 * if invalidation requested.  Pages undergoing I/O
1019 	 * will be ignored by vm_object_page_remove().
1020 	 *
1021 	 * We cannot lock the vnode and then wait for paging
1022 	 * to complete without deadlocking against vm_fault.
1023 	 * Instead we simply call vm_object_page_remove() and
1024 	 * allow it to block internally on a page-by-page
1025 	 * basis when it encounters pages undergoing async
1026 	 * I/O.
1027 	 */
1028 	if (object->type == OBJT_VNODE &&
1029 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1030 		vp = object->handle;
1031 		VM_OBJECT_WUNLOCK(object);
1032 		(void) vn_start_write(vp, &mp, V_WAIT);
1033 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1034 		if (syncio && !invalidate && offset == 0 &&
1035 		    OFF_TO_IDX(size) == object->size) {
1036 			/*
1037 			 * If syncing the whole mapping of the file,
1038 			 * it is faster to schedule all the writes in
1039 			 * async mode, also allowing the clustering,
1040 			 * and then wait for i/o to complete.
1041 			 */
1042 			flags = 0;
1043 			fsync_after = TRUE;
1044 		} else {
1045 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1046 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1047 			fsync_after = FALSE;
1048 		}
1049 		VM_OBJECT_WLOCK(object);
1050 		res = vm_object_page_clean(object, offset, offset + size,
1051 		    flags);
1052 		VM_OBJECT_WUNLOCK(object);
1053 		if (fsync_after)
1054 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1055 		VOP_UNLOCK(vp, 0);
1056 		vn_finished_write(mp);
1057 		if (error != 0)
1058 			res = FALSE;
1059 		VM_OBJECT_WLOCK(object);
1060 	}
1061 	if ((object->type == OBJT_VNODE ||
1062 	     object->type == OBJT_DEVICE) && invalidate) {
1063 		if (object->type == OBJT_DEVICE)
1064 			/*
1065 			 * The option OBJPR_NOTMAPPED must be passed here
1066 			 * because vm_object_page_remove() cannot remove
1067 			 * unmanaged mappings.
1068 			 */
1069 			flags = OBJPR_NOTMAPPED;
1070 		else if (old_msync)
1071 			flags = 0;
1072 		else
1073 			flags = OBJPR_CLEANONLY;
1074 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1075 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1076 	}
1077 	VM_OBJECT_WUNLOCK(object);
1078 	return (res);
1079 }
1080 
1081 /*
1082  *	vm_object_madvise:
1083  *
1084  *	Implements the madvise function at the object/page level.
1085  *
1086  *	MADV_WILLNEED	(any object)
1087  *
1088  *	    Activate the specified pages if they are resident.
1089  *
1090  *	MADV_DONTNEED	(any object)
1091  *
1092  *	    Deactivate the specified pages if they are resident.
1093  *
1094  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1095  *			 OBJ_ONEMAPPING only)
1096  *
1097  *	    Deactivate and clean the specified pages if they are
1098  *	    resident.  This permits the process to reuse the pages
1099  *	    without faulting or the kernel to reclaim the pages
1100  *	    without I/O.
1101  */
1102 void
1103 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1104     int advise)
1105 {
1106 	vm_pindex_t tpindex;
1107 	vm_object_t backing_object, tobject;
1108 	vm_page_t m;
1109 
1110 	if (object == NULL)
1111 		return;
1112 	VM_OBJECT_WLOCK(object);
1113 	/*
1114 	 * Locate and adjust resident pages
1115 	 */
1116 	for (; pindex < end; pindex += 1) {
1117 relookup:
1118 		tobject = object;
1119 		tpindex = pindex;
1120 shadowlookup:
1121 		/*
1122 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1123 		 * and those pages must be OBJ_ONEMAPPING.
1124 		 */
1125 		if (advise == MADV_FREE) {
1126 			if ((tobject->type != OBJT_DEFAULT &&
1127 			     tobject->type != OBJT_SWAP) ||
1128 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1129 				goto unlock_tobject;
1130 			}
1131 		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1132 			goto unlock_tobject;
1133 		m = vm_page_lookup(tobject, tpindex);
1134 		if (m == NULL && advise == MADV_WILLNEED) {
1135 			/*
1136 			 * If the page is cached, reactivate it.
1137 			 */
1138 			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1139 			    VM_ALLOC_NOBUSY);
1140 		}
1141 		if (m == NULL) {
1142 			/*
1143 			 * There may be swap even if there is no backing page
1144 			 */
1145 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1146 				swap_pager_freespace(tobject, tpindex, 1);
1147 			/*
1148 			 * next object
1149 			 */
1150 			backing_object = tobject->backing_object;
1151 			if (backing_object == NULL)
1152 				goto unlock_tobject;
1153 			VM_OBJECT_WLOCK(backing_object);
1154 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1155 			if (tobject != object)
1156 				VM_OBJECT_WUNLOCK(tobject);
1157 			tobject = backing_object;
1158 			goto shadowlookup;
1159 		} else if (m->valid != VM_PAGE_BITS_ALL)
1160 			goto unlock_tobject;
1161 		/*
1162 		 * If the page is not in a normal state, skip it.
1163 		 */
1164 		vm_page_lock(m);
1165 		if (m->hold_count != 0 || m->wire_count != 0) {
1166 			vm_page_unlock(m);
1167 			goto unlock_tobject;
1168 		}
1169 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1170 		    ("vm_object_madvise: page %p is fictitious", m));
1171 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1172 		    ("vm_object_madvise: page %p is not managed", m));
1173 		if (vm_page_busied(m)) {
1174 			if (advise == MADV_WILLNEED) {
1175 				/*
1176 				 * Reference the page before unlocking and
1177 				 * sleeping so that the page daemon is less
1178 				 * likely to reclaim it.
1179 				 */
1180 				vm_page_aflag_set(m, PGA_REFERENCED);
1181 			}
1182 			if (object != tobject)
1183 				VM_OBJECT_WUNLOCK(object);
1184 			VM_OBJECT_WUNLOCK(tobject);
1185 			vm_page_busy_sleep(m, "madvpo");
1186 			VM_OBJECT_WLOCK(object);
1187   			goto relookup;
1188 		}
1189 		if (advise == MADV_WILLNEED) {
1190 			vm_page_activate(m);
1191 		} else {
1192 			vm_page_advise(m, advise);
1193 		}
1194 		vm_page_unlock(m);
1195 		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1196 			swap_pager_freespace(tobject, tpindex, 1);
1197 unlock_tobject:
1198 		if (tobject != object)
1199 			VM_OBJECT_WUNLOCK(tobject);
1200 	}
1201 	VM_OBJECT_WUNLOCK(object);
1202 }
1203 
1204 /*
1205  *	vm_object_shadow:
1206  *
1207  *	Create a new object which is backed by the
1208  *	specified existing object range.  The source
1209  *	object reference is deallocated.
1210  *
1211  *	The new object and offset into that object
1212  *	are returned in the source parameters.
1213  */
1214 void
1215 vm_object_shadow(
1216 	vm_object_t *object,	/* IN/OUT */
1217 	vm_ooffset_t *offset,	/* IN/OUT */
1218 	vm_size_t length)
1219 {
1220 	vm_object_t source;
1221 	vm_object_t result;
1222 
1223 	source = *object;
1224 
1225 	/*
1226 	 * Don't create the new object if the old object isn't shared.
1227 	 */
1228 	if (source != NULL) {
1229 		VM_OBJECT_WLOCK(source);
1230 		if (source->ref_count == 1 &&
1231 		    source->handle == NULL &&
1232 		    (source->type == OBJT_DEFAULT ||
1233 		     source->type == OBJT_SWAP)) {
1234 			VM_OBJECT_WUNLOCK(source);
1235 			return;
1236 		}
1237 		VM_OBJECT_WUNLOCK(source);
1238 	}
1239 
1240 	/*
1241 	 * Allocate a new object with the given length.
1242 	 */
1243 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1244 
1245 	/*
1246 	 * The new object shadows the source object, adding a reference to it.
1247 	 * Our caller changes his reference to point to the new object,
1248 	 * removing a reference to the source object.  Net result: no change
1249 	 * of reference count.
1250 	 *
1251 	 * Try to optimize the result object's page color when shadowing
1252 	 * in order to maintain page coloring consistency in the combined
1253 	 * shadowed object.
1254 	 */
1255 	result->backing_object = source;
1256 	/*
1257 	 * Store the offset into the source object, and fix up the offset into
1258 	 * the new object.
1259 	 */
1260 	result->backing_object_offset = *offset;
1261 	if (source != NULL) {
1262 		VM_OBJECT_WLOCK(source);
1263 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1264 		source->shadow_count++;
1265 #if VM_NRESERVLEVEL > 0
1266 		result->flags |= source->flags & OBJ_COLORED;
1267 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1268 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1269 #endif
1270 		VM_OBJECT_WUNLOCK(source);
1271 	}
1272 
1273 
1274 	/*
1275 	 * Return the new things
1276 	 */
1277 	*offset = 0;
1278 	*object = result;
1279 }
1280 
1281 /*
1282  *	vm_object_split:
1283  *
1284  * Split the pages in a map entry into a new object.  This affords
1285  * easier removal of unused pages, and keeps object inheritance from
1286  * being a negative impact on memory usage.
1287  */
1288 void
1289 vm_object_split(vm_map_entry_t entry)
1290 {
1291 	vm_page_t m, m_next;
1292 	vm_object_t orig_object, new_object, source;
1293 	vm_pindex_t idx, offidxstart;
1294 	vm_size_t size;
1295 
1296 	orig_object = entry->object.vm_object;
1297 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1298 		return;
1299 	if (orig_object->ref_count <= 1)
1300 		return;
1301 	VM_OBJECT_WUNLOCK(orig_object);
1302 
1303 	offidxstart = OFF_TO_IDX(entry->offset);
1304 	size = atop(entry->end - entry->start);
1305 
1306 	/*
1307 	 * If swap_pager_copy() is later called, it will convert new_object
1308 	 * into a swap object.
1309 	 */
1310 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1311 
1312 	/*
1313 	 * At this point, the new object is still private, so the order in
1314 	 * which the original and new objects are locked does not matter.
1315 	 */
1316 	VM_OBJECT_WLOCK(new_object);
1317 	VM_OBJECT_WLOCK(orig_object);
1318 	source = orig_object->backing_object;
1319 	if (source != NULL) {
1320 		VM_OBJECT_WLOCK(source);
1321 		if ((source->flags & OBJ_DEAD) != 0) {
1322 			VM_OBJECT_WUNLOCK(source);
1323 			VM_OBJECT_WUNLOCK(orig_object);
1324 			VM_OBJECT_WUNLOCK(new_object);
1325 			vm_object_deallocate(new_object);
1326 			VM_OBJECT_WLOCK(orig_object);
1327 			return;
1328 		}
1329 		LIST_INSERT_HEAD(&source->shadow_head,
1330 				  new_object, shadow_list);
1331 		source->shadow_count++;
1332 		vm_object_reference_locked(source);	/* for new_object */
1333 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1334 		VM_OBJECT_WUNLOCK(source);
1335 		new_object->backing_object_offset =
1336 			orig_object->backing_object_offset + entry->offset;
1337 		new_object->backing_object = source;
1338 	}
1339 	if (orig_object->cred != NULL) {
1340 		new_object->cred = orig_object->cred;
1341 		crhold(orig_object->cred);
1342 		new_object->charge = ptoa(size);
1343 		KASSERT(orig_object->charge >= ptoa(size),
1344 		    ("orig_object->charge < 0"));
1345 		orig_object->charge -= ptoa(size);
1346 	}
1347 retry:
1348 	m = vm_page_find_least(orig_object, offidxstart);
1349 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1350 	    m = m_next) {
1351 		m_next = TAILQ_NEXT(m, listq);
1352 
1353 		/*
1354 		 * We must wait for pending I/O to complete before we can
1355 		 * rename the page.
1356 		 *
1357 		 * We do not have to VM_PROT_NONE the page as mappings should
1358 		 * not be changed by this operation.
1359 		 */
1360 		if (vm_page_busied(m)) {
1361 			VM_OBJECT_WUNLOCK(new_object);
1362 			vm_page_lock(m);
1363 			VM_OBJECT_WUNLOCK(orig_object);
1364 			vm_page_busy_sleep(m, "spltwt");
1365 			VM_OBJECT_WLOCK(orig_object);
1366 			VM_OBJECT_WLOCK(new_object);
1367 			goto retry;
1368 		}
1369 
1370 		/* vm_page_rename() will handle dirty and cache. */
1371 		if (vm_page_rename(m, new_object, idx)) {
1372 			VM_OBJECT_WUNLOCK(new_object);
1373 			VM_OBJECT_WUNLOCK(orig_object);
1374 			VM_WAIT;
1375 			VM_OBJECT_WLOCK(orig_object);
1376 			VM_OBJECT_WLOCK(new_object);
1377 			goto retry;
1378 		}
1379 #if VM_NRESERVLEVEL > 0
1380 		/*
1381 		 * If some of the reservation's allocated pages remain with
1382 		 * the original object, then transferring the reservation to
1383 		 * the new object is neither particularly beneficial nor
1384 		 * particularly harmful as compared to leaving the reservation
1385 		 * with the original object.  If, however, all of the
1386 		 * reservation's allocated pages are transferred to the new
1387 		 * object, then transferring the reservation is typically
1388 		 * beneficial.  Determining which of these two cases applies
1389 		 * would be more costly than unconditionally renaming the
1390 		 * reservation.
1391 		 */
1392 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1393 #endif
1394 		if (orig_object->type == OBJT_SWAP)
1395 			vm_page_xbusy(m);
1396 	}
1397 	if (orig_object->type == OBJT_SWAP) {
1398 		/*
1399 		 * swap_pager_copy() can sleep, in which case the orig_object's
1400 		 * and new_object's locks are released and reacquired.
1401 		 */
1402 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1403 		TAILQ_FOREACH(m, &new_object->memq, listq)
1404 			vm_page_xunbusy(m);
1405 
1406 		/*
1407 		 * Transfer any cached pages from orig_object to new_object.
1408 		 * If swap_pager_copy() found swapped out pages within the
1409 		 * specified range of orig_object, then it changed
1410 		 * new_object's type to OBJT_SWAP when it transferred those
1411 		 * pages to new_object.  Otherwise, new_object's type
1412 		 * should still be OBJT_DEFAULT and orig_object should not
1413 		 * contain any cached pages within the specified range.
1414 		 */
1415 		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1416 			vm_page_cache_transfer(orig_object, offidxstart,
1417 			    new_object);
1418 	}
1419 	VM_OBJECT_WUNLOCK(orig_object);
1420 	VM_OBJECT_WUNLOCK(new_object);
1421 	entry->object.vm_object = new_object;
1422 	entry->offset = 0LL;
1423 	vm_object_deallocate(orig_object);
1424 	VM_OBJECT_WLOCK(new_object);
1425 }
1426 
1427 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1428 #define	OBSC_COLLAPSE_WAIT	0x0004
1429 
1430 static vm_page_t
1431 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1432     int op)
1433 {
1434 	vm_object_t backing_object;
1435 
1436 	VM_OBJECT_ASSERT_WLOCKED(object);
1437 	backing_object = object->backing_object;
1438 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1439 
1440 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1441 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1442 	    ("invalid ownership %p %p %p", p, object, backing_object));
1443 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1444 		return (next);
1445 	if (p != NULL)
1446 		vm_page_lock(p);
1447 	VM_OBJECT_WUNLOCK(object);
1448 	VM_OBJECT_WUNLOCK(backing_object);
1449 	if (p == NULL)
1450 		VM_WAIT;
1451 	else
1452 		vm_page_busy_sleep(p, "vmocol");
1453 	VM_OBJECT_WLOCK(object);
1454 	VM_OBJECT_WLOCK(backing_object);
1455 	return (TAILQ_FIRST(&backing_object->memq));
1456 }
1457 
1458 static bool
1459 vm_object_scan_all_shadowed(vm_object_t object)
1460 {
1461 	vm_object_t backing_object;
1462 	vm_page_t p, pp;
1463 	vm_pindex_t backing_offset_index, new_pindex;
1464 
1465 	VM_OBJECT_ASSERT_WLOCKED(object);
1466 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1467 
1468 	backing_object = object->backing_object;
1469 
1470 	/*
1471 	 * Initial conditions:
1472 	 *
1473 	 * We do not want to have to test for the existence of cache or swap
1474 	 * pages in the backing object.  XXX but with the new swapper this
1475 	 * would be pretty easy to do.
1476 	 */
1477 	if (backing_object->type != OBJT_DEFAULT)
1478 		return (false);
1479 
1480 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1481 
1482 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1483 	    p = TAILQ_NEXT(p, listq)) {
1484 		new_pindex = p->pindex - backing_offset_index;
1485 
1486 		/*
1487 		 * Ignore pages outside the parent object's range and outside
1488 		 * the parent object's mapping of the backing object.
1489 		 */
1490 		if (p->pindex < backing_offset_index ||
1491 		    new_pindex >= object->size)
1492 			continue;
1493 
1494 		/*
1495 		 * See if the parent has the page or if the parent's object
1496 		 * pager has the page.  If the parent has the page but the page
1497 		 * is not valid, the parent's object pager must have the page.
1498 		 *
1499 		 * If this fails, the parent does not completely shadow the
1500 		 * object and we might as well give up now.
1501 		 */
1502 		pp = vm_page_lookup(object, new_pindex);
1503 		if ((pp == NULL || pp->valid == 0) &&
1504 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1505 			return (false);
1506 	}
1507 	return (true);
1508 }
1509 
1510 static bool
1511 vm_object_collapse_scan(vm_object_t object, int op)
1512 {
1513 	vm_object_t backing_object;
1514 	vm_page_t next, p, pp;
1515 	vm_pindex_t backing_offset_index, new_pindex;
1516 
1517 	VM_OBJECT_ASSERT_WLOCKED(object);
1518 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1519 
1520 	backing_object = object->backing_object;
1521 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1522 
1523 	/*
1524 	 * Initial conditions
1525 	 */
1526 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1527 		vm_object_set_flag(backing_object, OBJ_DEAD);
1528 
1529 	/*
1530 	 * Our scan
1531 	 */
1532 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1533 		next = TAILQ_NEXT(p, listq);
1534 		new_pindex = p->pindex - backing_offset_index;
1535 
1536 		/*
1537 		 * Check for busy page
1538 		 */
1539 		if (vm_page_busied(p)) {
1540 			next = vm_object_collapse_scan_wait(object, p, next, op);
1541 			continue;
1542 		}
1543 
1544 		KASSERT(p->object == backing_object,
1545 		    ("vm_object_collapse_scan: object mismatch"));
1546 
1547 		if (p->pindex < backing_offset_index ||
1548 		    new_pindex >= object->size) {
1549 			if (backing_object->type == OBJT_SWAP)
1550 				swap_pager_freespace(backing_object, p->pindex,
1551 				    1);
1552 
1553 			/*
1554 			 * Page is out of the parent object's range, we can
1555 			 * simply destroy it.
1556 			 */
1557 			vm_page_lock(p);
1558 			KASSERT(!pmap_page_is_mapped(p),
1559 			    ("freeing mapped page %p", p));
1560 			if (p->wire_count == 0)
1561 				vm_page_free(p);
1562 			else
1563 				vm_page_remove(p);
1564 			vm_page_unlock(p);
1565 			continue;
1566 		}
1567 
1568 		pp = vm_page_lookup(object, new_pindex);
1569 		if (pp != NULL && vm_page_busied(pp)) {
1570 			/*
1571 			 * The page in the parent is busy and possibly not
1572 			 * (yet) valid.  Until its state is finalized by the
1573 			 * busy bit owner, we can't tell whether it shadows the
1574 			 * original page.  Therefore, we must either skip it
1575 			 * and the original (backing_object) page or wait for
1576 			 * its state to be finalized.
1577 			 *
1578 			 * This is due to a race with vm_fault() where we must
1579 			 * unbusy the original (backing_obj) page before we can
1580 			 * (re)lock the parent.  Hence we can get here.
1581 			 */
1582 			next = vm_object_collapse_scan_wait(object, pp, next,
1583 			    op);
1584 			continue;
1585 		}
1586 
1587 		KASSERT(pp == NULL || pp->valid != 0,
1588 		    ("unbusy invalid page %p", pp));
1589 
1590 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1591 			NULL)) {
1592 			/*
1593 			 * The page already exists in the parent OR swap exists
1594 			 * for this location in the parent.  Leave the parent's
1595 			 * page alone.  Destroy the original page from the
1596 			 * backing object.
1597 			 */
1598 			if (backing_object->type == OBJT_SWAP)
1599 				swap_pager_freespace(backing_object, p->pindex,
1600 				    1);
1601 			vm_page_lock(p);
1602 			KASSERT(!pmap_page_is_mapped(p),
1603 			    ("freeing mapped page %p", p));
1604 			if (p->wire_count == 0)
1605 				vm_page_free(p);
1606 			else
1607 				vm_page_remove(p);
1608 			vm_page_unlock(p);
1609 			continue;
1610 		}
1611 
1612 		/*
1613 		 * Page does not exist in parent, rename the page from the
1614 		 * backing object to the main object.
1615 		 *
1616 		 * If the page was mapped to a process, it can remain mapped
1617 		 * through the rename.  vm_page_rename() will handle dirty and
1618 		 * cache.
1619 		 */
1620 		if (vm_page_rename(p, object, new_pindex)) {
1621 			next = vm_object_collapse_scan_wait(object, NULL, next,
1622 			    op);
1623 			continue;
1624 		}
1625 
1626 		/* Use the old pindex to free the right page. */
1627 		if (backing_object->type == OBJT_SWAP)
1628 			swap_pager_freespace(backing_object,
1629 			    new_pindex + backing_offset_index, 1);
1630 
1631 #if VM_NRESERVLEVEL > 0
1632 		/*
1633 		 * Rename the reservation.
1634 		 */
1635 		vm_reserv_rename(p, object, backing_object,
1636 		    backing_offset_index);
1637 #endif
1638 	}
1639 	return (true);
1640 }
1641 
1642 
1643 /*
1644  * this version of collapse allows the operation to occur earlier and
1645  * when paging_in_progress is true for an object...  This is not a complete
1646  * operation, but should plug 99.9% of the rest of the leaks.
1647  */
1648 static void
1649 vm_object_qcollapse(vm_object_t object)
1650 {
1651 	vm_object_t backing_object = object->backing_object;
1652 
1653 	VM_OBJECT_ASSERT_WLOCKED(object);
1654 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1655 
1656 	if (backing_object->ref_count != 1)
1657 		return;
1658 
1659 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1660 }
1661 
1662 /*
1663  *	vm_object_collapse:
1664  *
1665  *	Collapse an object with the object backing it.
1666  *	Pages in the backing object are moved into the
1667  *	parent, and the backing object is deallocated.
1668  */
1669 void
1670 vm_object_collapse(vm_object_t object)
1671 {
1672 	VM_OBJECT_ASSERT_WLOCKED(object);
1673 
1674 	while (TRUE) {
1675 		vm_object_t backing_object;
1676 
1677 		/*
1678 		 * Verify that the conditions are right for collapse:
1679 		 *
1680 		 * The object exists and the backing object exists.
1681 		 */
1682 		if ((backing_object = object->backing_object) == NULL)
1683 			break;
1684 
1685 		/*
1686 		 * we check the backing object first, because it is most likely
1687 		 * not collapsable.
1688 		 */
1689 		VM_OBJECT_WLOCK(backing_object);
1690 		if (backing_object->handle != NULL ||
1691 		    (backing_object->type != OBJT_DEFAULT &&
1692 		     backing_object->type != OBJT_SWAP) ||
1693 		    (backing_object->flags & OBJ_DEAD) ||
1694 		    object->handle != NULL ||
1695 		    (object->type != OBJT_DEFAULT &&
1696 		     object->type != OBJT_SWAP) ||
1697 		    (object->flags & OBJ_DEAD)) {
1698 			VM_OBJECT_WUNLOCK(backing_object);
1699 			break;
1700 		}
1701 
1702 		if (
1703 		    object->paging_in_progress != 0 ||
1704 		    backing_object->paging_in_progress != 0
1705 		) {
1706 			vm_object_qcollapse(object);
1707 			VM_OBJECT_WUNLOCK(backing_object);
1708 			break;
1709 		}
1710 		/*
1711 		 * We know that we can either collapse the backing object (if
1712 		 * the parent is the only reference to it) or (perhaps) have
1713 		 * the parent bypass the object if the parent happens to shadow
1714 		 * all the resident pages in the entire backing object.
1715 		 *
1716 		 * This is ignoring pager-backed pages such as swap pages.
1717 		 * vm_object_collapse_scan fails the shadowing test in this
1718 		 * case.
1719 		 */
1720 		if (backing_object->ref_count == 1) {
1721 			/*
1722 			 * If there is exactly one reference to the backing
1723 			 * object, we can collapse it into the parent.
1724 			 */
1725 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1726 
1727 #if VM_NRESERVLEVEL > 0
1728 			/*
1729 			 * Break any reservations from backing_object.
1730 			 */
1731 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1732 				vm_reserv_break_all(backing_object);
1733 #endif
1734 
1735 			/*
1736 			 * Move the pager from backing_object to object.
1737 			 */
1738 			if (backing_object->type == OBJT_SWAP) {
1739 				/*
1740 				 * swap_pager_copy() can sleep, in which case
1741 				 * the backing_object's and object's locks are
1742 				 * released and reacquired.
1743 				 * Since swap_pager_copy() is being asked to
1744 				 * destroy the source, it will change the
1745 				 * backing_object's type to OBJT_DEFAULT.
1746 				 */
1747 				swap_pager_copy(
1748 				    backing_object,
1749 				    object,
1750 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1751 
1752 				/*
1753 				 * Free any cached pages from backing_object.
1754 				 */
1755 				if (__predict_false(
1756 				    !vm_object_cache_is_empty(backing_object)))
1757 					vm_page_cache_free(backing_object, 0, 0);
1758 			}
1759 			/*
1760 			 * Object now shadows whatever backing_object did.
1761 			 * Note that the reference to
1762 			 * backing_object->backing_object moves from within
1763 			 * backing_object to within object.
1764 			 */
1765 			LIST_REMOVE(object, shadow_list);
1766 			backing_object->shadow_count--;
1767 			if (backing_object->backing_object) {
1768 				VM_OBJECT_WLOCK(backing_object->backing_object);
1769 				LIST_REMOVE(backing_object, shadow_list);
1770 				LIST_INSERT_HEAD(
1771 				    &backing_object->backing_object->shadow_head,
1772 				    object, shadow_list);
1773 				/*
1774 				 * The shadow_count has not changed.
1775 				 */
1776 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1777 			}
1778 			object->backing_object = backing_object->backing_object;
1779 			object->backing_object_offset +=
1780 			    backing_object->backing_object_offset;
1781 
1782 			/*
1783 			 * Discard backing_object.
1784 			 *
1785 			 * Since the backing object has no pages, no pager left,
1786 			 * and no object references within it, all that is
1787 			 * necessary is to dispose of it.
1788 			 */
1789 			KASSERT(backing_object->ref_count == 1, (
1790 "backing_object %p was somehow re-referenced during collapse!",
1791 			    backing_object));
1792 			backing_object->type = OBJT_DEAD;
1793 			backing_object->ref_count = 0;
1794 			VM_OBJECT_WUNLOCK(backing_object);
1795 			vm_object_destroy(backing_object);
1796 
1797 			object_collapses++;
1798 		} else {
1799 			vm_object_t new_backing_object;
1800 
1801 			/*
1802 			 * If we do not entirely shadow the backing object,
1803 			 * there is nothing we can do so we give up.
1804 			 */
1805 			if (object->resident_page_count != object->size &&
1806 			    !vm_object_scan_all_shadowed(object)) {
1807 				VM_OBJECT_WUNLOCK(backing_object);
1808 				break;
1809 			}
1810 
1811 			/*
1812 			 * Make the parent shadow the next object in the
1813 			 * chain.  Deallocating backing_object will not remove
1814 			 * it, since its reference count is at least 2.
1815 			 */
1816 			LIST_REMOVE(object, shadow_list);
1817 			backing_object->shadow_count--;
1818 
1819 			new_backing_object = backing_object->backing_object;
1820 			if ((object->backing_object = new_backing_object) != NULL) {
1821 				VM_OBJECT_WLOCK(new_backing_object);
1822 				LIST_INSERT_HEAD(
1823 				    &new_backing_object->shadow_head,
1824 				    object,
1825 				    shadow_list
1826 				);
1827 				new_backing_object->shadow_count++;
1828 				vm_object_reference_locked(new_backing_object);
1829 				VM_OBJECT_WUNLOCK(new_backing_object);
1830 				object->backing_object_offset +=
1831 					backing_object->backing_object_offset;
1832 			}
1833 
1834 			/*
1835 			 * Drop the reference count on backing_object. Since
1836 			 * its ref_count was at least 2, it will not vanish.
1837 			 */
1838 			backing_object->ref_count--;
1839 			VM_OBJECT_WUNLOCK(backing_object);
1840 			object_bypasses++;
1841 		}
1842 
1843 		/*
1844 		 * Try again with this object's new backing object.
1845 		 */
1846 	}
1847 }
1848 
1849 /*
1850  *	vm_object_page_remove:
1851  *
1852  *	For the given object, either frees or invalidates each of the
1853  *	specified pages.  In general, a page is freed.  However, if a page is
1854  *	wired for any reason other than the existence of a managed, wired
1855  *	mapping, then it may be invalidated but not removed from the object.
1856  *	Pages are specified by the given range ["start", "end") and the option
1857  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1858  *	extends from "start" to the end of the object.  If the option
1859  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1860  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1861  *	specified, then the pages within the specified range must have no
1862  *	mappings.  Otherwise, if this option is not specified, any mappings to
1863  *	the specified pages are removed before the pages are freed or
1864  *	invalidated.
1865  *
1866  *	In general, this operation should only be performed on objects that
1867  *	contain managed pages.  There are, however, two exceptions.  First, it
1868  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1869  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1870  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1871  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1872  *
1873  *	The object must be locked.
1874  */
1875 void
1876 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1877     int options)
1878 {
1879 	vm_page_t p, next;
1880 
1881 	VM_OBJECT_ASSERT_WLOCKED(object);
1882 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1883 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1884 	    ("vm_object_page_remove: illegal options for object %p", object));
1885 	if (object->resident_page_count == 0)
1886 		goto skipmemq;
1887 	vm_object_pip_add(object, 1);
1888 again:
1889 	p = vm_page_find_least(object, start);
1890 
1891 	/*
1892 	 * Here, the variable "p" is either (1) the page with the least pindex
1893 	 * greater than or equal to the parameter "start" or (2) NULL.
1894 	 */
1895 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1896 		next = TAILQ_NEXT(p, listq);
1897 
1898 		/*
1899 		 * If the page is wired for any reason besides the existence
1900 		 * of managed, wired mappings, then it cannot be freed.  For
1901 		 * example, fictitious pages, which represent device memory,
1902 		 * are inherently wired and cannot be freed.  They can,
1903 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1904 		 * not specified.
1905 		 */
1906 		vm_page_lock(p);
1907 		if (vm_page_xbusied(p)) {
1908 			VM_OBJECT_WUNLOCK(object);
1909 			vm_page_busy_sleep(p, "vmopax");
1910 			VM_OBJECT_WLOCK(object);
1911 			goto again;
1912 		}
1913 		if (p->wire_count != 0) {
1914 			if ((options & OBJPR_NOTMAPPED) == 0)
1915 				pmap_remove_all(p);
1916 			if ((options & OBJPR_CLEANONLY) == 0) {
1917 				p->valid = 0;
1918 				vm_page_undirty(p);
1919 			}
1920 			goto next;
1921 		}
1922 		if (vm_page_busied(p)) {
1923 			VM_OBJECT_WUNLOCK(object);
1924 			vm_page_busy_sleep(p, "vmopar");
1925 			VM_OBJECT_WLOCK(object);
1926 			goto again;
1927 		}
1928 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1929 		    ("vm_object_page_remove: page %p is fictitious", p));
1930 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1931 			if ((options & OBJPR_NOTMAPPED) == 0)
1932 				pmap_remove_write(p);
1933 			if (p->dirty)
1934 				goto next;
1935 		}
1936 		if ((options & OBJPR_NOTMAPPED) == 0)
1937 			pmap_remove_all(p);
1938 		vm_page_free(p);
1939 next:
1940 		vm_page_unlock(p);
1941 	}
1942 	vm_object_pip_wakeup(object);
1943 skipmemq:
1944 	if (__predict_false(!vm_object_cache_is_empty(object)))
1945 		vm_page_cache_free(object, start, end);
1946 }
1947 
1948 /*
1949  *	vm_object_page_noreuse:
1950  *
1951  *	For the given object, attempt to move the specified pages to
1952  *	the head of the inactive queue.  This bypasses regular LRU
1953  *	operation and allows the pages to be reused quickly under memory
1954  *	pressure.  If a page is wired for any reason, then it will not
1955  *	be queued.  Pages are specified by the range ["start", "end").
1956  *	As a special case, if "end" is zero, then the range extends from
1957  *	"start" to the end of the object.
1958  *
1959  *	This operation should only be performed on objects that
1960  *	contain non-fictitious, managed pages.
1961  *
1962  *	The object must be locked.
1963  */
1964 void
1965 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1966 {
1967 	struct mtx *mtx, *new_mtx;
1968 	vm_page_t p, next;
1969 
1970 	VM_OBJECT_ASSERT_WLOCKED(object);
1971 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1972 	    ("vm_object_page_noreuse: illegal object %p", object));
1973 	if (object->resident_page_count == 0)
1974 		return;
1975 	p = vm_page_find_least(object, start);
1976 
1977 	/*
1978 	 * Here, the variable "p" is either (1) the page with the least pindex
1979 	 * greater than or equal to the parameter "start" or (2) NULL.
1980 	 */
1981 	mtx = NULL;
1982 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1983 		next = TAILQ_NEXT(p, listq);
1984 
1985 		/*
1986 		 * Avoid releasing and reacquiring the same page lock.
1987 		 */
1988 		new_mtx = vm_page_lockptr(p);
1989 		if (mtx != new_mtx) {
1990 			if (mtx != NULL)
1991 				mtx_unlock(mtx);
1992 			mtx = new_mtx;
1993 			mtx_lock(mtx);
1994 		}
1995 		vm_page_deactivate_noreuse(p);
1996 	}
1997 	if (mtx != NULL)
1998 		mtx_unlock(mtx);
1999 }
2000 
2001 /*
2002  *	Populate the specified range of the object with valid pages.  Returns
2003  *	TRUE if the range is successfully populated and FALSE otherwise.
2004  *
2005  *	Note: This function should be optimized to pass a larger array of
2006  *	pages to vm_pager_get_pages() before it is applied to a non-
2007  *	OBJT_DEVICE object.
2008  *
2009  *	The object must be locked.
2010  */
2011 boolean_t
2012 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2013 {
2014 	vm_page_t m;
2015 	vm_pindex_t pindex;
2016 	int rv;
2017 
2018 	VM_OBJECT_ASSERT_WLOCKED(object);
2019 	for (pindex = start; pindex < end; pindex++) {
2020 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2021 		if (m->valid != VM_PAGE_BITS_ALL) {
2022 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2023 			if (rv != VM_PAGER_OK) {
2024 				vm_page_lock(m);
2025 				vm_page_free(m);
2026 				vm_page_unlock(m);
2027 				break;
2028 			}
2029 		}
2030 		/*
2031 		 * Keep "m" busy because a subsequent iteration may unlock
2032 		 * the object.
2033 		 */
2034 	}
2035 	if (pindex > start) {
2036 		m = vm_page_lookup(object, start);
2037 		while (m != NULL && m->pindex < pindex) {
2038 			vm_page_xunbusy(m);
2039 			m = TAILQ_NEXT(m, listq);
2040 		}
2041 	}
2042 	return (pindex == end);
2043 }
2044 
2045 /*
2046  *	Routine:	vm_object_coalesce
2047  *	Function:	Coalesces two objects backing up adjoining
2048  *			regions of memory into a single object.
2049  *
2050  *	returns TRUE if objects were combined.
2051  *
2052  *	NOTE:	Only works at the moment if the second object is NULL -
2053  *		if it's not, which object do we lock first?
2054  *
2055  *	Parameters:
2056  *		prev_object	First object to coalesce
2057  *		prev_offset	Offset into prev_object
2058  *		prev_size	Size of reference to prev_object
2059  *		next_size	Size of reference to the second object
2060  *		reserved	Indicator that extension region has
2061  *				swap accounted for
2062  *
2063  *	Conditions:
2064  *	The object must *not* be locked.
2065  */
2066 boolean_t
2067 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2068     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2069 {
2070 	vm_pindex_t next_pindex;
2071 
2072 	if (prev_object == NULL)
2073 		return (TRUE);
2074 	VM_OBJECT_WLOCK(prev_object);
2075 	if ((prev_object->type != OBJT_DEFAULT &&
2076 	    prev_object->type != OBJT_SWAP) ||
2077 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2078 		VM_OBJECT_WUNLOCK(prev_object);
2079 		return (FALSE);
2080 	}
2081 
2082 	/*
2083 	 * Try to collapse the object first
2084 	 */
2085 	vm_object_collapse(prev_object);
2086 
2087 	/*
2088 	 * Can't coalesce if: . more than one reference . paged out . shadows
2089 	 * another object . has a copy elsewhere (any of which mean that the
2090 	 * pages not mapped to prev_entry may be in use anyway)
2091 	 */
2092 	if (prev_object->backing_object != NULL) {
2093 		VM_OBJECT_WUNLOCK(prev_object);
2094 		return (FALSE);
2095 	}
2096 
2097 	prev_size >>= PAGE_SHIFT;
2098 	next_size >>= PAGE_SHIFT;
2099 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2100 
2101 	if ((prev_object->ref_count > 1) &&
2102 	    (prev_object->size != next_pindex)) {
2103 		VM_OBJECT_WUNLOCK(prev_object);
2104 		return (FALSE);
2105 	}
2106 
2107 	/*
2108 	 * Account for the charge.
2109 	 */
2110 	if (prev_object->cred != NULL) {
2111 
2112 		/*
2113 		 * If prev_object was charged, then this mapping,
2114 		 * althought not charged now, may become writable
2115 		 * later. Non-NULL cred in the object would prevent
2116 		 * swap reservation during enabling of the write
2117 		 * access, so reserve swap now. Failed reservation
2118 		 * cause allocation of the separate object for the map
2119 		 * entry, and swap reservation for this entry is
2120 		 * managed in appropriate time.
2121 		 */
2122 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2123 		    prev_object->cred)) {
2124 			return (FALSE);
2125 		}
2126 		prev_object->charge += ptoa(next_size);
2127 	}
2128 
2129 	/*
2130 	 * Remove any pages that may still be in the object from a previous
2131 	 * deallocation.
2132 	 */
2133 	if (next_pindex < prev_object->size) {
2134 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2135 		    next_size, 0);
2136 		if (prev_object->type == OBJT_SWAP)
2137 			swap_pager_freespace(prev_object,
2138 					     next_pindex, next_size);
2139 #if 0
2140 		if (prev_object->cred != NULL) {
2141 			KASSERT(prev_object->charge >=
2142 			    ptoa(prev_object->size - next_pindex),
2143 			    ("object %p overcharged 1 %jx %jx", prev_object,
2144 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2145 			prev_object->charge -= ptoa(prev_object->size -
2146 			    next_pindex);
2147 		}
2148 #endif
2149 	}
2150 
2151 	/*
2152 	 * Extend the object if necessary.
2153 	 */
2154 	if (next_pindex + next_size > prev_object->size)
2155 		prev_object->size = next_pindex + next_size;
2156 
2157 	VM_OBJECT_WUNLOCK(prev_object);
2158 	return (TRUE);
2159 }
2160 
2161 void
2162 vm_object_set_writeable_dirty(vm_object_t object)
2163 {
2164 
2165 	VM_OBJECT_ASSERT_WLOCKED(object);
2166 	if (object->type != OBJT_VNODE) {
2167 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2168 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2169 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2170 		}
2171 		return;
2172 	}
2173 	object->generation++;
2174 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2175 		return;
2176 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2177 }
2178 
2179 /*
2180  *	vm_object_unwire:
2181  *
2182  *	For each page offset within the specified range of the given object,
2183  *	find the highest-level page in the shadow chain and unwire it.  A page
2184  *	must exist at every page offset, and the highest-level page must be
2185  *	wired.
2186  */
2187 void
2188 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2189     uint8_t queue)
2190 {
2191 	vm_object_t tobject;
2192 	vm_page_t m, tm;
2193 	vm_pindex_t end_pindex, pindex, tpindex;
2194 	int depth, locked_depth;
2195 
2196 	KASSERT((offset & PAGE_MASK) == 0,
2197 	    ("vm_object_unwire: offset is not page aligned"));
2198 	KASSERT((length & PAGE_MASK) == 0,
2199 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2200 	/* The wired count of a fictitious page never changes. */
2201 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2202 		return;
2203 	pindex = OFF_TO_IDX(offset);
2204 	end_pindex = pindex + atop(length);
2205 	locked_depth = 1;
2206 	VM_OBJECT_RLOCK(object);
2207 	m = vm_page_find_least(object, pindex);
2208 	while (pindex < end_pindex) {
2209 		if (m == NULL || pindex < m->pindex) {
2210 			/*
2211 			 * The first object in the shadow chain doesn't
2212 			 * contain a page at the current index.  Therefore,
2213 			 * the page must exist in a backing object.
2214 			 */
2215 			tobject = object;
2216 			tpindex = pindex;
2217 			depth = 0;
2218 			do {
2219 				tpindex +=
2220 				    OFF_TO_IDX(tobject->backing_object_offset);
2221 				tobject = tobject->backing_object;
2222 				KASSERT(tobject != NULL,
2223 				    ("vm_object_unwire: missing page"));
2224 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2225 					goto next_page;
2226 				depth++;
2227 				if (depth == locked_depth) {
2228 					locked_depth++;
2229 					VM_OBJECT_RLOCK(tobject);
2230 				}
2231 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2232 			    NULL);
2233 		} else {
2234 			tm = m;
2235 			m = TAILQ_NEXT(m, listq);
2236 		}
2237 		vm_page_lock(tm);
2238 		vm_page_unwire(tm, queue);
2239 		vm_page_unlock(tm);
2240 next_page:
2241 		pindex++;
2242 	}
2243 	/* Release the accumulated object locks. */
2244 	for (depth = 0; depth < locked_depth; depth++) {
2245 		tobject = object->backing_object;
2246 		VM_OBJECT_RUNLOCK(object);
2247 		object = tobject;
2248 	}
2249 }
2250 
2251 struct vnode *
2252 vm_object_vnode(vm_object_t object)
2253 {
2254 
2255 	VM_OBJECT_ASSERT_LOCKED(object);
2256 	if (object->type == OBJT_VNODE)
2257 		return (object->handle);
2258 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2259 		return (object->un_pager.swp.swp_tmpfs);
2260 	return (NULL);
2261 }
2262 
2263 static int
2264 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2265 {
2266 	struct kinfo_vmobject kvo;
2267 	char *fullpath, *freepath;
2268 	struct vnode *vp;
2269 	struct vattr va;
2270 	vm_object_t obj;
2271 	vm_page_t m;
2272 	int count, error;
2273 
2274 	if (req->oldptr == NULL) {
2275 		/*
2276 		 * If an old buffer has not been provided, generate an
2277 		 * estimate of the space needed for a subsequent call.
2278 		 */
2279 		mtx_lock(&vm_object_list_mtx);
2280 		count = 0;
2281 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2282 			if (obj->type == OBJT_DEAD)
2283 				continue;
2284 			count++;
2285 		}
2286 		mtx_unlock(&vm_object_list_mtx);
2287 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2288 		    count * 11 / 10));
2289 	}
2290 
2291 	error = 0;
2292 
2293 	/*
2294 	 * VM objects are type stable and are never removed from the
2295 	 * list once added.  This allows us to safely read obj->object_list
2296 	 * after reacquiring the VM object lock.
2297 	 */
2298 	mtx_lock(&vm_object_list_mtx);
2299 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2300 		if (obj->type == OBJT_DEAD)
2301 			continue;
2302 		VM_OBJECT_RLOCK(obj);
2303 		if (obj->type == OBJT_DEAD) {
2304 			VM_OBJECT_RUNLOCK(obj);
2305 			continue;
2306 		}
2307 		mtx_unlock(&vm_object_list_mtx);
2308 		kvo.kvo_size = ptoa(obj->size);
2309 		kvo.kvo_resident = obj->resident_page_count;
2310 		kvo.kvo_ref_count = obj->ref_count;
2311 		kvo.kvo_shadow_count = obj->shadow_count;
2312 		kvo.kvo_memattr = obj->memattr;
2313 		kvo.kvo_active = 0;
2314 		kvo.kvo_inactive = 0;
2315 		TAILQ_FOREACH(m, &obj->memq, listq) {
2316 			/*
2317 			 * A page may belong to the object but be
2318 			 * dequeued and set to PQ_NONE while the
2319 			 * object lock is not held.  This makes the
2320 			 * reads of m->queue below racy, and we do not
2321 			 * count pages set to PQ_NONE.  However, this
2322 			 * sysctl is only meant to give an
2323 			 * approximation of the system anyway.
2324 			 */
2325 			if (m->queue == PQ_ACTIVE)
2326 				kvo.kvo_active++;
2327 			else if (m->queue == PQ_INACTIVE)
2328 				kvo.kvo_inactive++;
2329 		}
2330 
2331 		kvo.kvo_vn_fileid = 0;
2332 		kvo.kvo_vn_fsid = 0;
2333 		freepath = NULL;
2334 		fullpath = "";
2335 		vp = NULL;
2336 		switch (obj->type) {
2337 		case OBJT_DEFAULT:
2338 			kvo.kvo_type = KVME_TYPE_DEFAULT;
2339 			break;
2340 		case OBJT_VNODE:
2341 			kvo.kvo_type = KVME_TYPE_VNODE;
2342 			vp = obj->handle;
2343 			vref(vp);
2344 			break;
2345 		case OBJT_SWAP:
2346 			kvo.kvo_type = KVME_TYPE_SWAP;
2347 			break;
2348 		case OBJT_DEVICE:
2349 			kvo.kvo_type = KVME_TYPE_DEVICE;
2350 			break;
2351 		case OBJT_PHYS:
2352 			kvo.kvo_type = KVME_TYPE_PHYS;
2353 			break;
2354 		case OBJT_DEAD:
2355 			kvo.kvo_type = KVME_TYPE_DEAD;
2356 			break;
2357 		case OBJT_SG:
2358 			kvo.kvo_type = KVME_TYPE_SG;
2359 			break;
2360 		case OBJT_MGTDEVICE:
2361 			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2362 			break;
2363 		default:
2364 			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2365 			break;
2366 		}
2367 		VM_OBJECT_RUNLOCK(obj);
2368 		if (vp != NULL) {
2369 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2370 			vn_lock(vp, LK_SHARED | LK_RETRY);
2371 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2372 				kvo.kvo_vn_fileid = va.va_fileid;
2373 				kvo.kvo_vn_fsid = va.va_fsid;
2374 			}
2375 			vput(vp);
2376 		}
2377 
2378 		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2379 		if (freepath != NULL)
2380 			free(freepath, M_TEMP);
2381 
2382 		/* Pack record size down */
2383 		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2384 		    strlen(kvo.kvo_path) + 1;
2385 		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2386 		    sizeof(uint64_t));
2387 		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2388 		mtx_lock(&vm_object_list_mtx);
2389 		if (error)
2390 			break;
2391 	}
2392 	mtx_unlock(&vm_object_list_mtx);
2393 	return (error);
2394 }
2395 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2396     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2397     "List of VM objects");
2398 
2399 #include "opt_ddb.h"
2400 #ifdef DDB
2401 #include <sys/kernel.h>
2402 
2403 #include <sys/cons.h>
2404 
2405 #include <ddb/ddb.h>
2406 
2407 static int
2408 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2409 {
2410 	vm_map_t tmpm;
2411 	vm_map_entry_t tmpe;
2412 	vm_object_t obj;
2413 	int entcount;
2414 
2415 	if (map == 0)
2416 		return 0;
2417 
2418 	if (entry == 0) {
2419 		tmpe = map->header.next;
2420 		entcount = map->nentries;
2421 		while (entcount-- && (tmpe != &map->header)) {
2422 			if (_vm_object_in_map(map, object, tmpe)) {
2423 				return 1;
2424 			}
2425 			tmpe = tmpe->next;
2426 		}
2427 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2428 		tmpm = entry->object.sub_map;
2429 		tmpe = tmpm->header.next;
2430 		entcount = tmpm->nentries;
2431 		while (entcount-- && tmpe != &tmpm->header) {
2432 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2433 				return 1;
2434 			}
2435 			tmpe = tmpe->next;
2436 		}
2437 	} else if ((obj = entry->object.vm_object) != NULL) {
2438 		for (; obj; obj = obj->backing_object)
2439 			if (obj == object) {
2440 				return 1;
2441 			}
2442 	}
2443 	return 0;
2444 }
2445 
2446 static int
2447 vm_object_in_map(vm_object_t object)
2448 {
2449 	struct proc *p;
2450 
2451 	/* sx_slock(&allproc_lock); */
2452 	FOREACH_PROC_IN_SYSTEM(p) {
2453 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2454 			continue;
2455 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2456 			/* sx_sunlock(&allproc_lock); */
2457 			return 1;
2458 		}
2459 	}
2460 	/* sx_sunlock(&allproc_lock); */
2461 	if (_vm_object_in_map(kernel_map, object, 0))
2462 		return 1;
2463 	return 0;
2464 }
2465 
2466 DB_SHOW_COMMAND(vmochk, vm_object_check)
2467 {
2468 	vm_object_t object;
2469 
2470 	/*
2471 	 * make sure that internal objs are in a map somewhere
2472 	 * and none have zero ref counts.
2473 	 */
2474 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2475 		if (object->handle == NULL &&
2476 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2477 			if (object->ref_count == 0) {
2478 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2479 					(long)object->size);
2480 			}
2481 			if (!vm_object_in_map(object)) {
2482 				db_printf(
2483 			"vmochk: internal obj is not in a map: "
2484 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2485 				    object->ref_count, (u_long)object->size,
2486 				    (u_long)object->size,
2487 				    (void *)object->backing_object);
2488 			}
2489 		}
2490 	}
2491 }
2492 
2493 /*
2494  *	vm_object_print:	[ debug ]
2495  */
2496 DB_SHOW_COMMAND(object, vm_object_print_static)
2497 {
2498 	/* XXX convert args. */
2499 	vm_object_t object = (vm_object_t)addr;
2500 	boolean_t full = have_addr;
2501 
2502 	vm_page_t p;
2503 
2504 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2505 #define	count	was_count
2506 
2507 	int count;
2508 
2509 	if (object == NULL)
2510 		return;
2511 
2512 	db_iprintf(
2513 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2514 	    object, (int)object->type, (uintmax_t)object->size,
2515 	    object->resident_page_count, object->ref_count, object->flags,
2516 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2517 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2518 	    object->shadow_count,
2519 	    object->backing_object ? object->backing_object->ref_count : 0,
2520 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2521 
2522 	if (!full)
2523 		return;
2524 
2525 	db_indent += 2;
2526 	count = 0;
2527 	TAILQ_FOREACH(p, &object->memq, listq) {
2528 		if (count == 0)
2529 			db_iprintf("memory:=");
2530 		else if (count == 6) {
2531 			db_printf("\n");
2532 			db_iprintf(" ...");
2533 			count = 0;
2534 		} else
2535 			db_printf(",");
2536 		count++;
2537 
2538 		db_printf("(off=0x%jx,page=0x%jx)",
2539 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2540 	}
2541 	if (count != 0)
2542 		db_printf("\n");
2543 	db_indent -= 2;
2544 }
2545 
2546 /* XXX. */
2547 #undef count
2548 
2549 /* XXX need this non-static entry for calling from vm_map_print. */
2550 void
2551 vm_object_print(
2552         /* db_expr_t */ long addr,
2553 	boolean_t have_addr,
2554 	/* db_expr_t */ long count,
2555 	char *modif)
2556 {
2557 	vm_object_print_static(addr, have_addr, count, modif);
2558 }
2559 
2560 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2561 {
2562 	vm_object_t object;
2563 	vm_pindex_t fidx;
2564 	vm_paddr_t pa;
2565 	vm_page_t m, prev_m;
2566 	int rcount, nl, c;
2567 
2568 	nl = 0;
2569 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2570 		db_printf("new object: %p\n", (void *)object);
2571 		if (nl > 18) {
2572 			c = cngetc();
2573 			if (c != ' ')
2574 				return;
2575 			nl = 0;
2576 		}
2577 		nl++;
2578 		rcount = 0;
2579 		fidx = 0;
2580 		pa = -1;
2581 		TAILQ_FOREACH(m, &object->memq, listq) {
2582 			if (m->pindex > 128)
2583 				break;
2584 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2585 			    prev_m->pindex + 1 != m->pindex) {
2586 				if (rcount) {
2587 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2588 						(long)fidx, rcount, (long)pa);
2589 					if (nl > 18) {
2590 						c = cngetc();
2591 						if (c != ' ')
2592 							return;
2593 						nl = 0;
2594 					}
2595 					nl++;
2596 					rcount = 0;
2597 				}
2598 			}
2599 			if (rcount &&
2600 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2601 				++rcount;
2602 				continue;
2603 			}
2604 			if (rcount) {
2605 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2606 					(long)fidx, rcount, (long)pa);
2607 				if (nl > 18) {
2608 					c = cngetc();
2609 					if (c != ' ')
2610 						return;
2611 					nl = 0;
2612 				}
2613 				nl++;
2614 			}
2615 			fidx = m->pindex;
2616 			pa = VM_PAGE_TO_PHYS(m);
2617 			rcount = 1;
2618 		}
2619 		if (rcount) {
2620 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2621 				(long)fidx, rcount, (long)pa);
2622 			if (nl > 18) {
2623 				c = cngetc();
2624 				if (c != ' ')
2625 					return;
2626 				nl = 0;
2627 			}
2628 			nl++;
2629 		}
2630 	}
2631 }
2632 #endif /* DDB */
2633