xref: /freebsd/sys/vm/vm_page.c (revision 19261079)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 #include <vm/uma_int.h>
114 
115 #include <machine/md_var.h>
116 
117 struct vm_domain vm_dom[MAXMEMDOM];
118 
119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
120 
121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
122 
123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
124 /* The following fields are protected by the domainset lock. */
125 domainset_t __exclusive_cache_line vm_min_domains;
126 domainset_t __exclusive_cache_line vm_severe_domains;
127 static int vm_min_waiters;
128 static int vm_severe_waiters;
129 static int vm_pageproc_waiters;
130 
131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132     "VM page statistics");
133 
134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
136     CTLFLAG_RD, &pqstate_commit_retries,
137     "Number of failed per-page atomic queue state updates");
138 
139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
141     CTLFLAG_RD, &queue_ops,
142     "Number of batched queue operations");
143 
144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
146     CTLFLAG_RD, &queue_nops,
147     "Number of batched queue operations with no effects");
148 
149 /*
150  * bogus page -- for I/O to/from partially complete buffers,
151  * or for paging into sparsely invalid regions.
152  */
153 vm_page_t bogus_page;
154 
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158 
159 struct bitset *vm_page_dump;
160 long vm_page_dump_pages;
161 
162 static TAILQ_HEAD(, vm_page) blacklist_head;
163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
165     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
166 
167 static uma_zone_t fakepg_zone;
168 
169 static void vm_page_alloc_check(vm_page_t m);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
178     vm_pindex_t pindex, vm_page_t mpred);
179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
180     vm_page_t mpred);
181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
182     const uint16_t nflag);
183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
184     vm_page_t m_run, vm_paddr_t high);
185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187     int req);
188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
189     int flags);
190 static void vm_page_zone_release(void *arg, void **store, int cnt);
191 
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193 
194 static void
195 vm_page_init(void *dummy)
196 {
197 
198 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
201 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
202 }
203 
204 /*
205  * The cache page zone is initialized later since we need to be able to allocate
206  * pages before UMA is fully initialized.
207  */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211 	struct vm_domain *vmd;
212 	struct vm_pgcache *pgcache;
213 	int cache, domain, maxcache, pool;
214 
215 	maxcache = 0;
216 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
217 	maxcache *= mp_ncpus;
218 	for (domain = 0; domain < vm_ndomains; domain++) {
219 		vmd = VM_DOMAIN(domain);
220 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221 			pgcache = &vmd->vmd_pgcache[pool];
222 			pgcache->domain = domain;
223 			pgcache->pool = pool;
224 			pgcache->zone = uma_zcache_create("vm pgcache",
225 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
226 			    vm_page_zone_import, vm_page_zone_release, pgcache,
227 			    UMA_ZONE_VM);
228 
229 			/*
230 			 * Limit each pool's zone to 0.1% of the pages in the
231 			 * domain.
232 			 */
233 			cache = maxcache != 0 ? maxcache :
234 			    vmd->vmd_page_count / 1000;
235 			uma_zone_set_maxcache(pgcache->zone, cache);
236 		}
237 	}
238 }
239 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
240 
241 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
242 #if PAGE_SIZE == 32768
243 #ifdef CTASSERT
244 CTASSERT(sizeof(u_long) >= 8);
245 #endif
246 #endif
247 
248 /*
249  *	vm_set_page_size:
250  *
251  *	Sets the page size, perhaps based upon the memory
252  *	size.  Must be called before any use of page-size
253  *	dependent functions.
254  */
255 void
256 vm_set_page_size(void)
257 {
258 	if (vm_cnt.v_page_size == 0)
259 		vm_cnt.v_page_size = PAGE_SIZE;
260 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
261 		panic("vm_set_page_size: page size not a power of two");
262 }
263 
264 /*
265  *	vm_page_blacklist_next:
266  *
267  *	Find the next entry in the provided string of blacklist
268  *	addresses.  Entries are separated by space, comma, or newline.
269  *	If an invalid integer is encountered then the rest of the
270  *	string is skipped.  Updates the list pointer to the next
271  *	character, or NULL if the string is exhausted or invalid.
272  */
273 static vm_paddr_t
274 vm_page_blacklist_next(char **list, char *end)
275 {
276 	vm_paddr_t bad;
277 	char *cp, *pos;
278 
279 	if (list == NULL || *list == NULL)
280 		return (0);
281 	if (**list =='\0') {
282 		*list = NULL;
283 		return (0);
284 	}
285 
286 	/*
287 	 * If there's no end pointer then the buffer is coming from
288 	 * the kenv and we know it's null-terminated.
289 	 */
290 	if (end == NULL)
291 		end = *list + strlen(*list);
292 
293 	/* Ensure that strtoq() won't walk off the end */
294 	if (*end != '\0') {
295 		if (*end == '\n' || *end == ' ' || *end  == ',')
296 			*end = '\0';
297 		else {
298 			printf("Blacklist not terminated, skipping\n");
299 			*list = NULL;
300 			return (0);
301 		}
302 	}
303 
304 	for (pos = *list; *pos != '\0'; pos = cp) {
305 		bad = strtoq(pos, &cp, 0);
306 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
307 			if (bad == 0) {
308 				if (++cp < end)
309 					continue;
310 				else
311 					break;
312 			}
313 		} else
314 			break;
315 		if (*cp == '\0' || ++cp >= end)
316 			*list = NULL;
317 		else
318 			*list = cp;
319 		return (trunc_page(bad));
320 	}
321 	printf("Garbage in RAM blacklist, skipping\n");
322 	*list = NULL;
323 	return (0);
324 }
325 
326 bool
327 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
328 {
329 	struct vm_domain *vmd;
330 	vm_page_t m;
331 	int ret;
332 
333 	m = vm_phys_paddr_to_vm_page(pa);
334 	if (m == NULL)
335 		return (true); /* page does not exist, no failure */
336 
337 	vmd = vm_pagequeue_domain(m);
338 	vm_domain_free_lock(vmd);
339 	ret = vm_phys_unfree_page(m);
340 	vm_domain_free_unlock(vmd);
341 	if (ret != 0) {
342 		vm_domain_freecnt_inc(vmd, -1);
343 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
344 		if (verbose)
345 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
346 	}
347 	return (ret);
348 }
349 
350 /*
351  *	vm_page_blacklist_check:
352  *
353  *	Iterate through the provided string of blacklist addresses, pulling
354  *	each entry out of the physical allocator free list and putting it
355  *	onto a list for reporting via the vm.page_blacklist sysctl.
356  */
357 static void
358 vm_page_blacklist_check(char *list, char *end)
359 {
360 	vm_paddr_t pa;
361 	char *next;
362 
363 	next = list;
364 	while (next != NULL) {
365 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
366 			continue;
367 		vm_page_blacklist_add(pa, bootverbose);
368 	}
369 }
370 
371 /*
372  *	vm_page_blacklist_load:
373  *
374  *	Search for a special module named "ram_blacklist".  It'll be a
375  *	plain text file provided by the user via the loader directive
376  *	of the same name.
377  */
378 static void
379 vm_page_blacklist_load(char **list, char **end)
380 {
381 	void *mod;
382 	u_char *ptr;
383 	u_int len;
384 
385 	mod = NULL;
386 	ptr = NULL;
387 
388 	mod = preload_search_by_type("ram_blacklist");
389 	if (mod != NULL) {
390 		ptr = preload_fetch_addr(mod);
391 		len = preload_fetch_size(mod);
392         }
393 	*list = ptr;
394 	if (ptr != NULL)
395 		*end = ptr + len;
396 	else
397 		*end = NULL;
398 	return;
399 }
400 
401 static int
402 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
403 {
404 	vm_page_t m;
405 	struct sbuf sbuf;
406 	int error, first;
407 
408 	first = 1;
409 	error = sysctl_wire_old_buffer(req, 0);
410 	if (error != 0)
411 		return (error);
412 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
413 	TAILQ_FOREACH(m, &blacklist_head, listq) {
414 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
415 		    (uintmax_t)m->phys_addr);
416 		first = 0;
417 	}
418 	error = sbuf_finish(&sbuf);
419 	sbuf_delete(&sbuf);
420 	return (error);
421 }
422 
423 /*
424  * Initialize a dummy page for use in scans of the specified paging queue.
425  * In principle, this function only needs to set the flag PG_MARKER.
426  * Nonetheless, it write busies the page as a safety precaution.
427  */
428 void
429 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
430 {
431 
432 	bzero(marker, sizeof(*marker));
433 	marker->flags = PG_MARKER;
434 	marker->a.flags = aflags;
435 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
436 	marker->a.queue = queue;
437 }
438 
439 static void
440 vm_page_domain_init(int domain)
441 {
442 	struct vm_domain *vmd;
443 	struct vm_pagequeue *pq;
444 	int i;
445 
446 	vmd = VM_DOMAIN(domain);
447 	bzero(vmd, sizeof(*vmd));
448 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
449 	    "vm inactive pagequeue";
450 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
451 	    "vm active pagequeue";
452 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
453 	    "vm laundry pagequeue";
454 	*__DECONST(const char **,
455 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
456 	    "vm unswappable pagequeue";
457 	vmd->vmd_domain = domain;
458 	vmd->vmd_page_count = 0;
459 	vmd->vmd_free_count = 0;
460 	vmd->vmd_segs = 0;
461 	vmd->vmd_oom = FALSE;
462 	for (i = 0; i < PQ_COUNT; i++) {
463 		pq = &vmd->vmd_pagequeues[i];
464 		TAILQ_INIT(&pq->pq_pl);
465 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
466 		    MTX_DEF | MTX_DUPOK);
467 		pq->pq_pdpages = 0;
468 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
469 	}
470 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
471 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
472 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
473 
474 	/*
475 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
476 	 * insertions.
477 	 */
478 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
479 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
480 	    &vmd->vmd_inacthead, plinks.q);
481 
482 	/*
483 	 * The clock pages are used to implement active queue scanning without
484 	 * requeues.  Scans start at clock[0], which is advanced after the scan
485 	 * ends.  When the two clock hands meet, they are reset and scanning
486 	 * resumes from the head of the queue.
487 	 */
488 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
489 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
490 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
491 	    &vmd->vmd_clock[0], plinks.q);
492 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
493 	    &vmd->vmd_clock[1], plinks.q);
494 }
495 
496 /*
497  * Initialize a physical page in preparation for adding it to the free
498  * lists.
499  */
500 void
501 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
502 {
503 
504 	m->object = NULL;
505 	m->ref_count = 0;
506 	m->busy_lock = VPB_FREED;
507 	m->flags = m->a.flags = 0;
508 	m->phys_addr = pa;
509 	m->a.queue = PQ_NONE;
510 	m->psind = 0;
511 	m->segind = segind;
512 	m->order = VM_NFREEORDER;
513 	m->pool = VM_FREEPOOL_DEFAULT;
514 	m->valid = m->dirty = 0;
515 	pmap_page_init(m);
516 }
517 
518 #ifndef PMAP_HAS_PAGE_ARRAY
519 static vm_paddr_t
520 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
521 {
522 	vm_paddr_t new_end;
523 
524 	/*
525 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
526 	 * However, because this page is allocated from KVM, out-of-bounds
527 	 * accesses using the direct map will not be trapped.
528 	 */
529 	*vaddr += PAGE_SIZE;
530 
531 	/*
532 	 * Allocate physical memory for the page structures, and map it.
533 	 */
534 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
535 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
536 	    VM_PROT_READ | VM_PROT_WRITE);
537 	vm_page_array_size = page_range;
538 
539 	return (new_end);
540 }
541 #endif
542 
543 /*
544  *	vm_page_startup:
545  *
546  *	Initializes the resident memory module.  Allocates physical memory for
547  *	bootstrapping UMA and some data structures that are used to manage
548  *	physical pages.  Initializes these structures, and populates the free
549  *	page queues.
550  */
551 vm_offset_t
552 vm_page_startup(vm_offset_t vaddr)
553 {
554 	struct vm_phys_seg *seg;
555 	vm_page_t m;
556 	char *list, *listend;
557 	vm_paddr_t end, high_avail, low_avail, new_end, size;
558 	vm_paddr_t page_range __unused;
559 	vm_paddr_t last_pa, pa;
560 	u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562 	u_long vm_page_dump_size;
563 #endif
564 	int biggestone, i, segind;
565 #ifdef WITNESS
566 	vm_offset_t mapped;
567 	int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 	long ii;
571 #endif
572 
573 	vaddr = round_page(vaddr);
574 
575 	vm_phys_early_startup();
576 	biggestone = vm_phys_avail_largest();
577 	end = phys_avail[biggestone+1];
578 
579 	/*
580 	 * Initialize the page and queue locks.
581 	 */
582 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 	for (i = 0; i < PA_LOCK_COUNT; i++)
584 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 	for (i = 0; i < vm_ndomains; i++)
586 		vm_page_domain_init(i);
587 
588 	new_end = end;
589 #ifdef WITNESS
590 	witness_size = round_page(witness_startup_count());
591 	new_end -= witness_size;
592 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593 	    VM_PROT_READ | VM_PROT_WRITE);
594 	bzero((void *)mapped, witness_size);
595 	witness_startup((void *)mapped);
596 #endif
597 
598 #if MINIDUMP_PAGE_TRACKING
599 	/*
600 	 * Allocate a bitmap to indicate that a random physical page
601 	 * needs to be included in a minidump.
602 	 *
603 	 * The amd64 port needs this to indicate which direct map pages
604 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605 	 *
606 	 * However, i386 still needs this workspace internally within the
607 	 * minidump code.  In theory, they are not needed on i386, but are
608 	 * included should the sf_buf code decide to use them.
609 	 */
610 	last_pa = 0;
611 	vm_page_dump_pages = 0;
612 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614 		    dump_avail[i] / PAGE_SIZE;
615 		if (dump_avail[i + 1] > last_pa)
616 			last_pa = dump_avail[i + 1];
617 	}
618 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619 	new_end -= vm_page_dump_size;
620 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622 	bzero((void *)vm_page_dump, vm_page_dump_size);
623 #else
624 	(void)last_pa;
625 #endif
626 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
627     defined(__riscv) || defined(__powerpc64__)
628 	/*
629 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
630 	 * in a crash dump.  When pmap_map() uses the direct map, they are
631 	 * not automatically included.
632 	 */
633 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
634 		dump_add_page(pa);
635 #endif
636 	phys_avail[biggestone + 1] = new_end;
637 #ifdef __amd64__
638 	/*
639 	 * Request that the physical pages underlying the message buffer be
640 	 * included in a crash dump.  Since the message buffer is accessed
641 	 * through the direct map, they are not automatically included.
642 	 */
643 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
644 	last_pa = pa + round_page(msgbufsize);
645 	while (pa < last_pa) {
646 		dump_add_page(pa);
647 		pa += PAGE_SIZE;
648 	}
649 #endif
650 	/*
651 	 * Compute the number of pages of memory that will be available for
652 	 * use, taking into account the overhead of a page structure per page.
653 	 * In other words, solve
654 	 *	"available physical memory" - round_page(page_range *
655 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
656 	 * for page_range.
657 	 */
658 	low_avail = phys_avail[0];
659 	high_avail = phys_avail[1];
660 	for (i = 0; i < vm_phys_nsegs; i++) {
661 		if (vm_phys_segs[i].start < low_avail)
662 			low_avail = vm_phys_segs[i].start;
663 		if (vm_phys_segs[i].end > high_avail)
664 			high_avail = vm_phys_segs[i].end;
665 	}
666 	/* Skip the first chunk.  It is already accounted for. */
667 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
668 		if (phys_avail[i] < low_avail)
669 			low_avail = phys_avail[i];
670 		if (phys_avail[i + 1] > high_avail)
671 			high_avail = phys_avail[i + 1];
672 	}
673 	first_page = low_avail / PAGE_SIZE;
674 #ifdef VM_PHYSSEG_SPARSE
675 	size = 0;
676 	for (i = 0; i < vm_phys_nsegs; i++)
677 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
679 		size += phys_avail[i + 1] - phys_avail[i];
680 #elif defined(VM_PHYSSEG_DENSE)
681 	size = high_avail - low_avail;
682 #else
683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
684 #endif
685 
686 #ifdef PMAP_HAS_PAGE_ARRAY
687 	pmap_page_array_startup(size / PAGE_SIZE);
688 	biggestone = vm_phys_avail_largest();
689 	end = new_end = phys_avail[biggestone + 1];
690 #else
691 #ifdef VM_PHYSSEG_DENSE
692 	/*
693 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
694 	 * the overhead of a page structure per page only if vm_page_array is
695 	 * allocated from the last physical memory chunk.  Otherwise, we must
696 	 * allocate page structures representing the physical memory
697 	 * underlying vm_page_array, even though they will not be used.
698 	 */
699 	if (new_end != high_avail)
700 		page_range = size / PAGE_SIZE;
701 	else
702 #endif
703 	{
704 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
705 
706 		/*
707 		 * If the partial bytes remaining are large enough for
708 		 * a page (PAGE_SIZE) without a corresponding
709 		 * 'struct vm_page', then new_end will contain an
710 		 * extra page after subtracting the length of the VM
711 		 * page array.  Compensate by subtracting an extra
712 		 * page from new_end.
713 		 */
714 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
715 			if (new_end == high_avail)
716 				high_avail -= PAGE_SIZE;
717 			new_end -= PAGE_SIZE;
718 		}
719 	}
720 	end = new_end;
721 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
722 #endif
723 
724 #if VM_NRESERVLEVEL > 0
725 	/*
726 	 * Allocate physical memory for the reservation management system's
727 	 * data structures, and map it.
728 	 */
729 	new_end = vm_reserv_startup(&vaddr, new_end);
730 #endif
731 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
732     defined(__riscv) || defined(__powerpc64__)
733 	/*
734 	 * Include vm_page_array and vm_reserv_array in a crash dump.
735 	 */
736 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
737 		dump_add_page(pa);
738 #endif
739 	phys_avail[biggestone + 1] = new_end;
740 
741 	/*
742 	 * Add physical memory segments corresponding to the available
743 	 * physical pages.
744 	 */
745 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
746 		if (vm_phys_avail_size(i) != 0)
747 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
748 
749 	/*
750 	 * Initialize the physical memory allocator.
751 	 */
752 	vm_phys_init();
753 
754 	/*
755 	 * Initialize the page structures and add every available page to the
756 	 * physical memory allocator's free lists.
757 	 */
758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
759 	for (ii = 0; ii < vm_page_array_size; ii++) {
760 		m = &vm_page_array[ii];
761 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
762 		m->flags = PG_FICTITIOUS;
763 	}
764 #endif
765 	vm_cnt.v_page_count = 0;
766 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
767 		seg = &vm_phys_segs[segind];
768 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
769 		    m++, pa += PAGE_SIZE)
770 			vm_page_init_page(m, pa, segind);
771 
772 		/*
773 		 * Add the segment to the free lists only if it is covered by
774 		 * one of the ranges in phys_avail.  Because we've added the
775 		 * ranges to the vm_phys_segs array, we can assume that each
776 		 * segment is either entirely contained in one of the ranges,
777 		 * or doesn't overlap any of them.
778 		 */
779 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
780 			struct vm_domain *vmd;
781 
782 			if (seg->start < phys_avail[i] ||
783 			    seg->end > phys_avail[i + 1])
784 				continue;
785 
786 			m = seg->first_page;
787 			pagecount = (u_long)atop(seg->end - seg->start);
788 
789 			vmd = VM_DOMAIN(seg->domain);
790 			vm_domain_free_lock(vmd);
791 			vm_phys_enqueue_contig(m, pagecount);
792 			vm_domain_free_unlock(vmd);
793 			vm_domain_freecnt_inc(vmd, pagecount);
794 			vm_cnt.v_page_count += (u_int)pagecount;
795 
796 			vmd = VM_DOMAIN(seg->domain);
797 			vmd->vmd_page_count += (u_int)pagecount;
798 			vmd->vmd_segs |= 1UL << m->segind;
799 			break;
800 		}
801 	}
802 
803 	/*
804 	 * Remove blacklisted pages from the physical memory allocator.
805 	 */
806 	TAILQ_INIT(&blacklist_head);
807 	vm_page_blacklist_load(&list, &listend);
808 	vm_page_blacklist_check(list, listend);
809 
810 	list = kern_getenv("vm.blacklist");
811 	vm_page_blacklist_check(list, NULL);
812 
813 	freeenv(list);
814 #if VM_NRESERVLEVEL > 0
815 	/*
816 	 * Initialize the reservation management system.
817 	 */
818 	vm_reserv_init();
819 #endif
820 
821 	return (vaddr);
822 }
823 
824 void
825 vm_page_reference(vm_page_t m)
826 {
827 
828 	vm_page_aflag_set(m, PGA_REFERENCED);
829 }
830 
831 /*
832  *	vm_page_trybusy
833  *
834  *	Helper routine for grab functions to trylock busy.
835  *
836  *	Returns true on success and false on failure.
837  */
838 static bool
839 vm_page_trybusy(vm_page_t m, int allocflags)
840 {
841 
842 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
843 		return (vm_page_trysbusy(m));
844 	else
845 		return (vm_page_tryxbusy(m));
846 }
847 
848 /*
849  *	vm_page_tryacquire
850  *
851  *	Helper routine for grab functions to trylock busy and wire.
852  *
853  *	Returns true on success and false on failure.
854  */
855 static inline bool
856 vm_page_tryacquire(vm_page_t m, int allocflags)
857 {
858 	bool locked;
859 
860 	locked = vm_page_trybusy(m, allocflags);
861 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
862 		vm_page_wire(m);
863 	return (locked);
864 }
865 
866 /*
867  *	vm_page_busy_acquire:
868  *
869  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
870  *	and drop the object lock if necessary.
871  */
872 bool
873 vm_page_busy_acquire(vm_page_t m, int allocflags)
874 {
875 	vm_object_t obj;
876 	bool locked;
877 
878 	/*
879 	 * The page-specific object must be cached because page
880 	 * identity can change during the sleep, causing the
881 	 * re-lock of a different object.
882 	 * It is assumed that a reference to the object is already
883 	 * held by the callers.
884 	 */
885 	obj = atomic_load_ptr(&m->object);
886 	for (;;) {
887 		if (vm_page_tryacquire(m, allocflags))
888 			return (true);
889 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
890 			return (false);
891 		if (obj != NULL)
892 			locked = VM_OBJECT_WOWNED(obj);
893 		else
894 			locked = false;
895 		MPASS(locked || vm_page_wired(m));
896 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
897 		    locked) && locked)
898 			VM_OBJECT_WLOCK(obj);
899 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
900 			return (false);
901 		KASSERT(m->object == obj || m->object == NULL,
902 		    ("vm_page_busy_acquire: page %p does not belong to %p",
903 		    m, obj));
904 	}
905 }
906 
907 /*
908  *	vm_page_busy_downgrade:
909  *
910  *	Downgrade an exclusive busy page into a single shared busy page.
911  */
912 void
913 vm_page_busy_downgrade(vm_page_t m)
914 {
915 	u_int x;
916 
917 	vm_page_assert_xbusied(m);
918 
919 	x = vm_page_busy_fetch(m);
920 	for (;;) {
921 		if (atomic_fcmpset_rel_int(&m->busy_lock,
922 		    &x, VPB_SHARERS_WORD(1)))
923 			break;
924 	}
925 	if ((x & VPB_BIT_WAITERS) != 0)
926 		wakeup(m);
927 }
928 
929 /*
930  *
931  *	vm_page_busy_tryupgrade:
932  *
933  *	Attempt to upgrade a single shared busy into an exclusive busy.
934  */
935 int
936 vm_page_busy_tryupgrade(vm_page_t m)
937 {
938 	u_int ce, x;
939 
940 	vm_page_assert_sbusied(m);
941 
942 	x = vm_page_busy_fetch(m);
943 	ce = VPB_CURTHREAD_EXCLUSIVE;
944 	for (;;) {
945 		if (VPB_SHARERS(x) > 1)
946 			return (0);
947 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
948 		    ("vm_page_busy_tryupgrade: invalid lock state"));
949 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
950 		    ce | (x & VPB_BIT_WAITERS)))
951 			continue;
952 		return (1);
953 	}
954 }
955 
956 /*
957  *	vm_page_sbusied:
958  *
959  *	Return a positive value if the page is shared busied, 0 otherwise.
960  */
961 int
962 vm_page_sbusied(vm_page_t m)
963 {
964 	u_int x;
965 
966 	x = vm_page_busy_fetch(m);
967 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
968 }
969 
970 /*
971  *	vm_page_sunbusy:
972  *
973  *	Shared unbusy a page.
974  */
975 void
976 vm_page_sunbusy(vm_page_t m)
977 {
978 	u_int x;
979 
980 	vm_page_assert_sbusied(m);
981 
982 	x = vm_page_busy_fetch(m);
983 	for (;;) {
984 		KASSERT(x != VPB_FREED,
985 		    ("vm_page_sunbusy: Unlocking freed page."));
986 		if (VPB_SHARERS(x) > 1) {
987 			if (atomic_fcmpset_int(&m->busy_lock, &x,
988 			    x - VPB_ONE_SHARER))
989 				break;
990 			continue;
991 		}
992 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
993 		    ("vm_page_sunbusy: invalid lock state"));
994 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
995 			continue;
996 		if ((x & VPB_BIT_WAITERS) == 0)
997 			break;
998 		wakeup(m);
999 		break;
1000 	}
1001 }
1002 
1003 /*
1004  *	vm_page_busy_sleep:
1005  *
1006  *	Sleep if the page is busy, using the page pointer as wchan.
1007  *	This is used to implement the hard-path of busying mechanism.
1008  *
1009  *	If nonshared is true, sleep only if the page is xbusy.
1010  *
1011  *	The object lock must be held on entry and will be released on exit.
1012  */
1013 void
1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1015 {
1016 	vm_object_t obj;
1017 
1018 	obj = m->object;
1019 	VM_OBJECT_ASSERT_LOCKED(obj);
1020 	vm_page_lock_assert(m, MA_NOTOWNED);
1021 
1022 	if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1023 	    nonshared ? VM_ALLOC_SBUSY : 0 , true))
1024 		VM_OBJECT_DROP(obj);
1025 }
1026 
1027 /*
1028  *	vm_page_busy_sleep_unlocked:
1029  *
1030  *	Sleep if the page is busy, using the page pointer as wchan.
1031  *	This is used to implement the hard-path of busying mechanism.
1032  *
1033  *	If nonshared is true, sleep only if the page is xbusy.
1034  *
1035  *	The object lock must not be held on entry.  The operation will
1036  *	return if the page changes identity.
1037  */
1038 void
1039 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1040     const char *wmesg, bool nonshared)
1041 {
1042 
1043 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1044 	vm_page_lock_assert(m, MA_NOTOWNED);
1045 
1046 	_vm_page_busy_sleep(obj, m, pindex, wmesg,
1047 	    nonshared ? VM_ALLOC_SBUSY : 0, false);
1048 }
1049 
1050 /*
1051  *	_vm_page_busy_sleep:
1052  *
1053  *	Internal busy sleep function.  Verifies the page identity and
1054  *	lockstate against parameters.  Returns true if it sleeps and
1055  *	false otherwise.
1056  *
1057  *	If locked is true the lock will be dropped for any true returns
1058  *	and held for any false returns.
1059  */
1060 static bool
1061 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1062     const char *wmesg, int allocflags, bool locked)
1063 {
1064 	bool xsleep;
1065 	u_int x;
1066 
1067 	/*
1068 	 * If the object is busy we must wait for that to drain to zero
1069 	 * before trying the page again.
1070 	 */
1071 	if (obj != NULL && vm_object_busied(obj)) {
1072 		if (locked)
1073 			VM_OBJECT_DROP(obj);
1074 		vm_object_busy_wait(obj, wmesg);
1075 		return (true);
1076 	}
1077 
1078 	if (!vm_page_busied(m))
1079 		return (false);
1080 
1081 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1082 	sleepq_lock(m);
1083 	x = vm_page_busy_fetch(m);
1084 	do {
1085 		/*
1086 		 * If the page changes objects or becomes unlocked we can
1087 		 * simply return.
1088 		 */
1089 		if (x == VPB_UNBUSIED ||
1090 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1091 		    m->object != obj || m->pindex != pindex) {
1092 			sleepq_release(m);
1093 			return (false);
1094 		}
1095 		if ((x & VPB_BIT_WAITERS) != 0)
1096 			break;
1097 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1098 	if (locked)
1099 		VM_OBJECT_DROP(obj);
1100 	DROP_GIANT();
1101 	sleepq_add(m, NULL, wmesg, 0, 0);
1102 	sleepq_wait(m, PVM);
1103 	PICKUP_GIANT();
1104 	return (true);
1105 }
1106 
1107 /*
1108  *	vm_page_trysbusy:
1109  *
1110  *	Try to shared busy a page.
1111  *	If the operation succeeds 1 is returned otherwise 0.
1112  *	The operation never sleeps.
1113  */
1114 int
1115 vm_page_trysbusy(vm_page_t m)
1116 {
1117 	vm_object_t obj;
1118 	u_int x;
1119 
1120 	obj = m->object;
1121 	x = vm_page_busy_fetch(m);
1122 	for (;;) {
1123 		if ((x & VPB_BIT_SHARED) == 0)
1124 			return (0);
1125 		/*
1126 		 * Reduce the window for transient busies that will trigger
1127 		 * false negatives in vm_page_ps_test().
1128 		 */
1129 		if (obj != NULL && vm_object_busied(obj))
1130 			return (0);
1131 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1132 		    x + VPB_ONE_SHARER))
1133 			break;
1134 	}
1135 
1136 	/* Refetch the object now that we're guaranteed that it is stable. */
1137 	obj = m->object;
1138 	if (obj != NULL && vm_object_busied(obj)) {
1139 		vm_page_sunbusy(m);
1140 		return (0);
1141 	}
1142 	return (1);
1143 }
1144 
1145 /*
1146  *	vm_page_tryxbusy:
1147  *
1148  *	Try to exclusive busy a page.
1149  *	If the operation succeeds 1 is returned otherwise 0.
1150  *	The operation never sleeps.
1151  */
1152 int
1153 vm_page_tryxbusy(vm_page_t m)
1154 {
1155 	vm_object_t obj;
1156 
1157         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1158             VPB_CURTHREAD_EXCLUSIVE) == 0)
1159 		return (0);
1160 
1161 	obj = m->object;
1162 	if (obj != NULL && vm_object_busied(obj)) {
1163 		vm_page_xunbusy(m);
1164 		return (0);
1165 	}
1166 	return (1);
1167 }
1168 
1169 static void
1170 vm_page_xunbusy_hard_tail(vm_page_t m)
1171 {
1172 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1173 	/* Wake the waiter. */
1174 	wakeup(m);
1175 }
1176 
1177 /*
1178  *	vm_page_xunbusy_hard:
1179  *
1180  *	Called when unbusy has failed because there is a waiter.
1181  */
1182 void
1183 vm_page_xunbusy_hard(vm_page_t m)
1184 {
1185 	vm_page_assert_xbusied(m);
1186 	vm_page_xunbusy_hard_tail(m);
1187 }
1188 
1189 void
1190 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1191 {
1192 	vm_page_assert_xbusied_unchecked(m);
1193 	vm_page_xunbusy_hard_tail(m);
1194 }
1195 
1196 static void
1197 vm_page_busy_free(vm_page_t m)
1198 {
1199 	u_int x;
1200 
1201 	atomic_thread_fence_rel();
1202 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1203 	if ((x & VPB_BIT_WAITERS) != 0)
1204 		wakeup(m);
1205 }
1206 
1207 /*
1208  *	vm_page_unhold_pages:
1209  *
1210  *	Unhold each of the pages that is referenced by the given array.
1211  */
1212 void
1213 vm_page_unhold_pages(vm_page_t *ma, int count)
1214 {
1215 
1216 	for (; count != 0; count--) {
1217 		vm_page_unwire(*ma, PQ_ACTIVE);
1218 		ma++;
1219 	}
1220 }
1221 
1222 vm_page_t
1223 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1224 {
1225 	vm_page_t m;
1226 
1227 #ifdef VM_PHYSSEG_SPARSE
1228 	m = vm_phys_paddr_to_vm_page(pa);
1229 	if (m == NULL)
1230 		m = vm_phys_fictitious_to_vm_page(pa);
1231 	return (m);
1232 #elif defined(VM_PHYSSEG_DENSE)
1233 	long pi;
1234 
1235 	pi = atop(pa);
1236 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1237 		m = &vm_page_array[pi - first_page];
1238 		return (m);
1239 	}
1240 	return (vm_phys_fictitious_to_vm_page(pa));
1241 #else
1242 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1243 #endif
1244 }
1245 
1246 /*
1247  *	vm_page_getfake:
1248  *
1249  *	Create a fictitious page with the specified physical address and
1250  *	memory attribute.  The memory attribute is the only the machine-
1251  *	dependent aspect of a fictitious page that must be initialized.
1252  */
1253 vm_page_t
1254 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1255 {
1256 	vm_page_t m;
1257 
1258 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1259 	vm_page_initfake(m, paddr, memattr);
1260 	return (m);
1261 }
1262 
1263 void
1264 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1265 {
1266 
1267 	if ((m->flags & PG_FICTITIOUS) != 0) {
1268 		/*
1269 		 * The page's memattr might have changed since the
1270 		 * previous initialization.  Update the pmap to the
1271 		 * new memattr.
1272 		 */
1273 		goto memattr;
1274 	}
1275 	m->phys_addr = paddr;
1276 	m->a.queue = PQ_NONE;
1277 	/* Fictitious pages don't use "segind". */
1278 	m->flags = PG_FICTITIOUS;
1279 	/* Fictitious pages don't use "order" or "pool". */
1280 	m->oflags = VPO_UNMANAGED;
1281 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1282 	/* Fictitious pages are unevictable. */
1283 	m->ref_count = 1;
1284 	pmap_page_init(m);
1285 memattr:
1286 	pmap_page_set_memattr(m, memattr);
1287 }
1288 
1289 /*
1290  *	vm_page_putfake:
1291  *
1292  *	Release a fictitious page.
1293  */
1294 void
1295 vm_page_putfake(vm_page_t m)
1296 {
1297 
1298 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1299 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1300 	    ("vm_page_putfake: bad page %p", m));
1301 	vm_page_assert_xbusied(m);
1302 	vm_page_busy_free(m);
1303 	uma_zfree(fakepg_zone, m);
1304 }
1305 
1306 /*
1307  *	vm_page_updatefake:
1308  *
1309  *	Update the given fictitious page to the specified physical address and
1310  *	memory attribute.
1311  */
1312 void
1313 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1314 {
1315 
1316 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1317 	    ("vm_page_updatefake: bad page %p", m));
1318 	m->phys_addr = paddr;
1319 	pmap_page_set_memattr(m, memattr);
1320 }
1321 
1322 /*
1323  *	vm_page_free:
1324  *
1325  *	Free a page.
1326  */
1327 void
1328 vm_page_free(vm_page_t m)
1329 {
1330 
1331 	m->flags &= ~PG_ZERO;
1332 	vm_page_free_toq(m);
1333 }
1334 
1335 /*
1336  *	vm_page_free_zero:
1337  *
1338  *	Free a page to the zerod-pages queue
1339  */
1340 void
1341 vm_page_free_zero(vm_page_t m)
1342 {
1343 
1344 	m->flags |= PG_ZERO;
1345 	vm_page_free_toq(m);
1346 }
1347 
1348 /*
1349  * Unbusy and handle the page queueing for a page from a getpages request that
1350  * was optionally read ahead or behind.
1351  */
1352 void
1353 vm_page_readahead_finish(vm_page_t m)
1354 {
1355 
1356 	/* We shouldn't put invalid pages on queues. */
1357 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1358 
1359 	/*
1360 	 * Since the page is not the actually needed one, whether it should
1361 	 * be activated or deactivated is not obvious.  Empirical results
1362 	 * have shown that deactivating the page is usually the best choice,
1363 	 * unless the page is wanted by another thread.
1364 	 */
1365 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1366 		vm_page_activate(m);
1367 	else
1368 		vm_page_deactivate(m);
1369 	vm_page_xunbusy_unchecked(m);
1370 }
1371 
1372 /*
1373  * Destroy the identity of an invalid page and free it if possible.
1374  * This is intended to be used when reading a page from backing store fails.
1375  */
1376 void
1377 vm_page_free_invalid(vm_page_t m)
1378 {
1379 
1380 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1381 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1382 	KASSERT(m->object != NULL, ("page %p has no object", m));
1383 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1384 
1385 	/*
1386 	 * We may be attempting to free the page as part of the handling for an
1387 	 * I/O error, in which case the page was xbusied by a different thread.
1388 	 */
1389 	vm_page_xbusy_claim(m);
1390 
1391 	/*
1392 	 * If someone has wired this page while the object lock
1393 	 * was not held, then the thread that unwires is responsible
1394 	 * for freeing the page.  Otherwise just free the page now.
1395 	 * The wire count of this unmapped page cannot change while
1396 	 * we have the page xbusy and the page's object wlocked.
1397 	 */
1398 	if (vm_page_remove(m))
1399 		vm_page_free(m);
1400 }
1401 
1402 /*
1403  *	vm_page_sleep_if_busy:
1404  *
1405  *	Sleep and release the object lock if the page is busied.
1406  *	Returns TRUE if the thread slept.
1407  *
1408  *	The given page must be unlocked and object containing it must
1409  *	be locked.
1410  */
1411 int
1412 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1413 {
1414 	vm_object_t obj;
1415 
1416 	vm_page_lock_assert(m, MA_NOTOWNED);
1417 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1418 
1419 	/*
1420 	 * The page-specific object must be cached because page
1421 	 * identity can change during the sleep, causing the
1422 	 * re-lock of a different object.
1423 	 * It is assumed that a reference to the object is already
1424 	 * held by the callers.
1425 	 */
1426 	obj = m->object;
1427 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1428 		VM_OBJECT_WLOCK(obj);
1429 		return (TRUE);
1430 	}
1431 	return (FALSE);
1432 }
1433 
1434 /*
1435  *	vm_page_sleep_if_xbusy:
1436  *
1437  *	Sleep and release the object lock if the page is xbusied.
1438  *	Returns TRUE if the thread slept.
1439  *
1440  *	The given page must be unlocked and object containing it must
1441  *	be locked.
1442  */
1443 int
1444 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1445 {
1446 	vm_object_t obj;
1447 
1448 	vm_page_lock_assert(m, MA_NOTOWNED);
1449 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1450 
1451 	/*
1452 	 * The page-specific object must be cached because page
1453 	 * identity can change during the sleep, causing the
1454 	 * re-lock of a different object.
1455 	 * It is assumed that a reference to the object is already
1456 	 * held by the callers.
1457 	 */
1458 	obj = m->object;
1459 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1460 	    true)) {
1461 		VM_OBJECT_WLOCK(obj);
1462 		return (TRUE);
1463 	}
1464 	return (FALSE);
1465 }
1466 
1467 /*
1468  *	vm_page_dirty_KBI:		[ internal use only ]
1469  *
1470  *	Set all bits in the page's dirty field.
1471  *
1472  *	The object containing the specified page must be locked if the
1473  *	call is made from the machine-independent layer.
1474  *
1475  *	See vm_page_clear_dirty_mask().
1476  *
1477  *	This function should only be called by vm_page_dirty().
1478  */
1479 void
1480 vm_page_dirty_KBI(vm_page_t m)
1481 {
1482 
1483 	/* Refer to this operation by its public name. */
1484 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1485 	m->dirty = VM_PAGE_BITS_ALL;
1486 }
1487 
1488 /*
1489  *	vm_page_insert:		[ internal use only ]
1490  *
1491  *	Inserts the given mem entry into the object and object list.
1492  *
1493  *	The object must be locked.
1494  */
1495 int
1496 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1497 {
1498 	vm_page_t mpred;
1499 
1500 	VM_OBJECT_ASSERT_WLOCKED(object);
1501 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1502 	return (vm_page_insert_after(m, object, pindex, mpred));
1503 }
1504 
1505 /*
1506  *	vm_page_insert_after:
1507  *
1508  *	Inserts the page "m" into the specified object at offset "pindex".
1509  *
1510  *	The page "mpred" must immediately precede the offset "pindex" within
1511  *	the specified object.
1512  *
1513  *	The object must be locked.
1514  */
1515 static int
1516 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1517     vm_page_t mpred)
1518 {
1519 	vm_page_t msucc;
1520 
1521 	VM_OBJECT_ASSERT_WLOCKED(object);
1522 	KASSERT(m->object == NULL,
1523 	    ("vm_page_insert_after: page already inserted"));
1524 	if (mpred != NULL) {
1525 		KASSERT(mpred->object == object,
1526 		    ("vm_page_insert_after: object doesn't contain mpred"));
1527 		KASSERT(mpred->pindex < pindex,
1528 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1529 		msucc = TAILQ_NEXT(mpred, listq);
1530 	} else
1531 		msucc = TAILQ_FIRST(&object->memq);
1532 	if (msucc != NULL)
1533 		KASSERT(msucc->pindex > pindex,
1534 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1535 
1536 	/*
1537 	 * Record the object/offset pair in this page.
1538 	 */
1539 	m->object = object;
1540 	m->pindex = pindex;
1541 	m->ref_count |= VPRC_OBJREF;
1542 
1543 	/*
1544 	 * Now link into the object's ordered list of backed pages.
1545 	 */
1546 	if (vm_radix_insert(&object->rtree, m)) {
1547 		m->object = NULL;
1548 		m->pindex = 0;
1549 		m->ref_count &= ~VPRC_OBJREF;
1550 		return (1);
1551 	}
1552 	vm_page_insert_radixdone(m, object, mpred);
1553 	return (0);
1554 }
1555 
1556 /*
1557  *	vm_page_insert_radixdone:
1558  *
1559  *	Complete page "m" insertion into the specified object after the
1560  *	radix trie hooking.
1561  *
1562  *	The page "mpred" must precede the offset "m->pindex" within the
1563  *	specified object.
1564  *
1565  *	The object must be locked.
1566  */
1567 static void
1568 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1569 {
1570 
1571 	VM_OBJECT_ASSERT_WLOCKED(object);
1572 	KASSERT(object != NULL && m->object == object,
1573 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1574 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1575 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1576 	if (mpred != NULL) {
1577 		KASSERT(mpred->object == object,
1578 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1579 		KASSERT(mpred->pindex < m->pindex,
1580 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1581 	}
1582 
1583 	if (mpred != NULL)
1584 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1585 	else
1586 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1587 
1588 	/*
1589 	 * Show that the object has one more resident page.
1590 	 */
1591 	object->resident_page_count++;
1592 
1593 	/*
1594 	 * Hold the vnode until the last page is released.
1595 	 */
1596 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1597 		vhold(object->handle);
1598 
1599 	/*
1600 	 * Since we are inserting a new and possibly dirty page,
1601 	 * update the object's generation count.
1602 	 */
1603 	if (pmap_page_is_write_mapped(m))
1604 		vm_object_set_writeable_dirty(object);
1605 }
1606 
1607 /*
1608  * Do the work to remove a page from its object.  The caller is responsible for
1609  * updating the page's fields to reflect this removal.
1610  */
1611 static void
1612 vm_page_object_remove(vm_page_t m)
1613 {
1614 	vm_object_t object;
1615 	vm_page_t mrem;
1616 
1617 	vm_page_assert_xbusied(m);
1618 	object = m->object;
1619 	VM_OBJECT_ASSERT_WLOCKED(object);
1620 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1621 	    ("page %p is missing its object ref", m));
1622 
1623 	/* Deferred free of swap space. */
1624 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1625 		vm_pager_page_unswapped(m);
1626 
1627 	m->object = NULL;
1628 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1629 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1630 
1631 	/*
1632 	 * Now remove from the object's list of backed pages.
1633 	 */
1634 	TAILQ_REMOVE(&object->memq, m, listq);
1635 
1636 	/*
1637 	 * And show that the object has one fewer resident page.
1638 	 */
1639 	object->resident_page_count--;
1640 
1641 	/*
1642 	 * The vnode may now be recycled.
1643 	 */
1644 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1645 		vdrop(object->handle);
1646 }
1647 
1648 /*
1649  *	vm_page_remove:
1650  *
1651  *	Removes the specified page from its containing object, but does not
1652  *	invalidate any backing storage.  Returns true if the object's reference
1653  *	was the last reference to the page, and false otherwise.
1654  *
1655  *	The object must be locked and the page must be exclusively busied.
1656  *	The exclusive busy will be released on return.  If this is not the
1657  *	final ref and the caller does not hold a wire reference it may not
1658  *	continue to access the page.
1659  */
1660 bool
1661 vm_page_remove(vm_page_t m)
1662 {
1663 	bool dropped;
1664 
1665 	dropped = vm_page_remove_xbusy(m);
1666 	vm_page_xunbusy(m);
1667 
1668 	return (dropped);
1669 }
1670 
1671 /*
1672  *	vm_page_remove_xbusy
1673  *
1674  *	Removes the page but leaves the xbusy held.  Returns true if this
1675  *	removed the final ref and false otherwise.
1676  */
1677 bool
1678 vm_page_remove_xbusy(vm_page_t m)
1679 {
1680 
1681 	vm_page_object_remove(m);
1682 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1683 }
1684 
1685 /*
1686  *	vm_page_lookup:
1687  *
1688  *	Returns the page associated with the object/offset
1689  *	pair specified; if none is found, NULL is returned.
1690  *
1691  *	The object must be locked.
1692  */
1693 vm_page_t
1694 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1695 {
1696 
1697 	VM_OBJECT_ASSERT_LOCKED(object);
1698 	return (vm_radix_lookup(&object->rtree, pindex));
1699 }
1700 
1701 /*
1702  *	vm_page_lookup_unlocked:
1703  *
1704  *	Returns the page associated with the object/offset pair specified;
1705  *	if none is found, NULL is returned.  The page may be no longer be
1706  *	present in the object at the time that this function returns.  Only
1707  *	useful for opportunistic checks such as inmem().
1708  */
1709 vm_page_t
1710 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1711 {
1712 
1713 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1714 }
1715 
1716 /*
1717  *	vm_page_relookup:
1718  *
1719  *	Returns a page that must already have been busied by
1720  *	the caller.  Used for bogus page replacement.
1721  */
1722 vm_page_t
1723 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1724 {
1725 	vm_page_t m;
1726 
1727 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1728 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1729 	    m->object == object && m->pindex == pindex,
1730 	    ("vm_page_relookup: Invalid page %p", m));
1731 	return (m);
1732 }
1733 
1734 /*
1735  * This should only be used by lockless functions for releasing transient
1736  * incorrect acquires.  The page may have been freed after we acquired a
1737  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1738  * further to do.
1739  */
1740 static void
1741 vm_page_busy_release(vm_page_t m)
1742 {
1743 	u_int x;
1744 
1745 	x = vm_page_busy_fetch(m);
1746 	for (;;) {
1747 		if (x == VPB_FREED)
1748 			break;
1749 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1750 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1751 			    x - VPB_ONE_SHARER))
1752 				break;
1753 			continue;
1754 		}
1755 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1756 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1757 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1758 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1759 			continue;
1760 		if ((x & VPB_BIT_WAITERS) != 0)
1761 			wakeup(m);
1762 		break;
1763 	}
1764 }
1765 
1766 /*
1767  *	vm_page_find_least:
1768  *
1769  *	Returns the page associated with the object with least pindex
1770  *	greater than or equal to the parameter pindex, or NULL.
1771  *
1772  *	The object must be locked.
1773  */
1774 vm_page_t
1775 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1776 {
1777 	vm_page_t m;
1778 
1779 	VM_OBJECT_ASSERT_LOCKED(object);
1780 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1781 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1782 	return (m);
1783 }
1784 
1785 /*
1786  * Returns the given page's successor (by pindex) within the object if it is
1787  * resident; if none is found, NULL is returned.
1788  *
1789  * The object must be locked.
1790  */
1791 vm_page_t
1792 vm_page_next(vm_page_t m)
1793 {
1794 	vm_page_t next;
1795 
1796 	VM_OBJECT_ASSERT_LOCKED(m->object);
1797 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1798 		MPASS(next->object == m->object);
1799 		if (next->pindex != m->pindex + 1)
1800 			next = NULL;
1801 	}
1802 	return (next);
1803 }
1804 
1805 /*
1806  * Returns the given page's predecessor (by pindex) within the object if it is
1807  * resident; if none is found, NULL is returned.
1808  *
1809  * The object must be locked.
1810  */
1811 vm_page_t
1812 vm_page_prev(vm_page_t m)
1813 {
1814 	vm_page_t prev;
1815 
1816 	VM_OBJECT_ASSERT_LOCKED(m->object);
1817 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1818 		MPASS(prev->object == m->object);
1819 		if (prev->pindex != m->pindex - 1)
1820 			prev = NULL;
1821 	}
1822 	return (prev);
1823 }
1824 
1825 /*
1826  * Uses the page mnew as a replacement for an existing page at index
1827  * pindex which must be already present in the object.
1828  *
1829  * Both pages must be exclusively busied on enter.  The old page is
1830  * unbusied on exit.
1831  *
1832  * A return value of true means mold is now free.  If this is not the
1833  * final ref and the caller does not hold a wire reference it may not
1834  * continue to access the page.
1835  */
1836 static bool
1837 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1838     vm_page_t mold)
1839 {
1840 	vm_page_t mret;
1841 	bool dropped;
1842 
1843 	VM_OBJECT_ASSERT_WLOCKED(object);
1844 	vm_page_assert_xbusied(mold);
1845 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1846 	    ("vm_page_replace: page %p already in object", mnew));
1847 
1848 	/*
1849 	 * This function mostly follows vm_page_insert() and
1850 	 * vm_page_remove() without the radix, object count and vnode
1851 	 * dance.  Double check such functions for more comments.
1852 	 */
1853 
1854 	mnew->object = object;
1855 	mnew->pindex = pindex;
1856 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1857 	mret = vm_radix_replace(&object->rtree, mnew);
1858 	KASSERT(mret == mold,
1859 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1860 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1861 	    (mnew->oflags & VPO_UNMANAGED),
1862 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1863 
1864 	/* Keep the resident page list in sorted order. */
1865 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1866 	TAILQ_REMOVE(&object->memq, mold, listq);
1867 	mold->object = NULL;
1868 
1869 	/*
1870 	 * The object's resident_page_count does not change because we have
1871 	 * swapped one page for another, but the generation count should
1872 	 * change if the page is dirty.
1873 	 */
1874 	if (pmap_page_is_write_mapped(mnew))
1875 		vm_object_set_writeable_dirty(object);
1876 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1877 	vm_page_xunbusy(mold);
1878 
1879 	return (dropped);
1880 }
1881 
1882 void
1883 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1884     vm_page_t mold)
1885 {
1886 
1887 	vm_page_assert_xbusied(mnew);
1888 
1889 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1890 		vm_page_free(mold);
1891 }
1892 
1893 /*
1894  *	vm_page_rename:
1895  *
1896  *	Move the given memory entry from its
1897  *	current object to the specified target object/offset.
1898  *
1899  *	Note: swap associated with the page must be invalidated by the move.  We
1900  *	      have to do this for several reasons:  (1) we aren't freeing the
1901  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1902  *	      moving the page from object A to B, and will then later move
1903  *	      the backing store from A to B and we can't have a conflict.
1904  *
1905  *	Note: we *always* dirty the page.  It is necessary both for the
1906  *	      fact that we moved it, and because we may be invalidating
1907  *	      swap.
1908  *
1909  *	The objects must be locked.
1910  */
1911 int
1912 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1913 {
1914 	vm_page_t mpred;
1915 	vm_pindex_t opidx;
1916 
1917 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1918 
1919 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1920 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1921 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1922 	    ("vm_page_rename: pindex already renamed"));
1923 
1924 	/*
1925 	 * Create a custom version of vm_page_insert() which does not depend
1926 	 * by m_prev and can cheat on the implementation aspects of the
1927 	 * function.
1928 	 */
1929 	opidx = m->pindex;
1930 	m->pindex = new_pindex;
1931 	if (vm_radix_insert(&new_object->rtree, m)) {
1932 		m->pindex = opidx;
1933 		return (1);
1934 	}
1935 
1936 	/*
1937 	 * The operation cannot fail anymore.  The removal must happen before
1938 	 * the listq iterator is tainted.
1939 	 */
1940 	m->pindex = opidx;
1941 	vm_page_object_remove(m);
1942 
1943 	/* Return back to the new pindex to complete vm_page_insert(). */
1944 	m->pindex = new_pindex;
1945 	m->object = new_object;
1946 
1947 	vm_page_insert_radixdone(m, new_object, mpred);
1948 	vm_page_dirty(m);
1949 	return (0);
1950 }
1951 
1952 /*
1953  *	vm_page_alloc:
1954  *
1955  *	Allocate and return a page that is associated with the specified
1956  *	object and offset pair.  By default, this page is exclusive busied.
1957  *
1958  *	The caller must always specify an allocation class.
1959  *
1960  *	allocation classes:
1961  *	VM_ALLOC_NORMAL		normal process request
1962  *	VM_ALLOC_SYSTEM		system *really* needs a page
1963  *	VM_ALLOC_INTERRUPT	interrupt time request
1964  *
1965  *	optional allocation flags:
1966  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1967  *				intends to allocate
1968  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1969  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1970  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1971  *				should not be exclusive busy
1972  *	VM_ALLOC_SBUSY		shared busy the allocated page
1973  *	VM_ALLOC_WIRED		wire the allocated page
1974  *	VM_ALLOC_ZERO		prefer a zeroed page
1975  */
1976 vm_page_t
1977 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1978 {
1979 
1980 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1981 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1982 }
1983 
1984 vm_page_t
1985 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1986     int req)
1987 {
1988 
1989 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1990 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1991 	    NULL));
1992 }
1993 
1994 /*
1995  * Allocate a page in the specified object with the given page index.  To
1996  * optimize insertion of the page into the object, the caller must also specifiy
1997  * the resident page in the object with largest index smaller than the given
1998  * page index, or NULL if no such page exists.
1999  */
2000 vm_page_t
2001 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2002     int req, vm_page_t mpred)
2003 {
2004 	struct vm_domainset_iter di;
2005 	vm_page_t m;
2006 	int domain;
2007 
2008 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2009 	do {
2010 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
2011 		    mpred);
2012 		if (m != NULL)
2013 			break;
2014 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2015 
2016 	return (m);
2017 }
2018 
2019 /*
2020  * Returns true if the number of free pages exceeds the minimum
2021  * for the request class and false otherwise.
2022  */
2023 static int
2024 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2025 {
2026 	u_int limit, old, new;
2027 
2028 	if (req_class == VM_ALLOC_INTERRUPT)
2029 		limit = 0;
2030 	else if (req_class == VM_ALLOC_SYSTEM)
2031 		limit = vmd->vmd_interrupt_free_min;
2032 	else
2033 		limit = vmd->vmd_free_reserved;
2034 
2035 	/*
2036 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2037 	 */
2038 	limit += npages;
2039 	old = vmd->vmd_free_count;
2040 	do {
2041 		if (old < limit)
2042 			return (0);
2043 		new = old - npages;
2044 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2045 
2046 	/* Wake the page daemon if we've crossed the threshold. */
2047 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2048 		pagedaemon_wakeup(vmd->vmd_domain);
2049 
2050 	/* Only update bitsets on transitions. */
2051 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2052 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2053 		vm_domain_set(vmd);
2054 
2055 	return (1);
2056 }
2057 
2058 int
2059 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2060 {
2061 	int req_class;
2062 
2063 	/*
2064 	 * The page daemon is allowed to dig deeper into the free page list.
2065 	 */
2066 	req_class = req & VM_ALLOC_CLASS_MASK;
2067 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2068 		req_class = VM_ALLOC_SYSTEM;
2069 	return (_vm_domain_allocate(vmd, req_class, npages));
2070 }
2071 
2072 vm_page_t
2073 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2074     int req, vm_page_t mpred)
2075 {
2076 	struct vm_domain *vmd;
2077 	vm_page_t m;
2078 	int flags, pool;
2079 
2080 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2081 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2082 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2083 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2084 	    ("inconsistent object(%p)/req(%x)", object, req));
2085 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2086 	    ("Can't sleep and retry object insertion."));
2087 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2088 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2089 	    (uintmax_t)pindex));
2090 	if (object != NULL)
2091 		VM_OBJECT_ASSERT_WLOCKED(object);
2092 
2093 	flags = 0;
2094 	m = NULL;
2095 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2096 again:
2097 #if VM_NRESERVLEVEL > 0
2098 	/*
2099 	 * Can we allocate the page from a reservation?
2100 	 */
2101 	if (vm_object_reserv(object) &&
2102 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2103 	    NULL) {
2104 		goto found;
2105 	}
2106 #endif
2107 	vmd = VM_DOMAIN(domain);
2108 	if (vmd->vmd_pgcache[pool].zone != NULL) {
2109 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2110 		if (m != NULL) {
2111 			flags |= PG_PCPU_CACHE;
2112 			goto found;
2113 		}
2114 	}
2115 	if (vm_domain_allocate(vmd, req, 1)) {
2116 		/*
2117 		 * If not, allocate it from the free page queues.
2118 		 */
2119 		vm_domain_free_lock(vmd);
2120 		m = vm_phys_alloc_pages(domain, pool, 0);
2121 		vm_domain_free_unlock(vmd);
2122 		if (m == NULL) {
2123 			vm_domain_freecnt_inc(vmd, 1);
2124 #if VM_NRESERVLEVEL > 0
2125 			if (vm_reserv_reclaim_inactive(domain))
2126 				goto again;
2127 #endif
2128 		}
2129 	}
2130 	if (m == NULL) {
2131 		/*
2132 		 * Not allocatable, give up.
2133 		 */
2134 		if (vm_domain_alloc_fail(vmd, object, req))
2135 			goto again;
2136 		return (NULL);
2137 	}
2138 
2139 	/*
2140 	 * At this point we had better have found a good page.
2141 	 */
2142 found:
2143 	vm_page_dequeue(m);
2144 	vm_page_alloc_check(m);
2145 
2146 	/*
2147 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2148 	 */
2149 	if ((req & VM_ALLOC_ZERO) != 0)
2150 		flags |= (m->flags & PG_ZERO);
2151 	if ((req & VM_ALLOC_NODUMP) != 0)
2152 		flags |= PG_NODUMP;
2153 	m->flags = flags;
2154 	m->a.flags = 0;
2155 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2156 	    VPO_UNMANAGED : 0;
2157 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2158 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2159 	else if ((req & VM_ALLOC_SBUSY) != 0)
2160 		m->busy_lock = VPB_SHARERS_WORD(1);
2161 	else
2162 		m->busy_lock = VPB_UNBUSIED;
2163 	if (req & VM_ALLOC_WIRED) {
2164 		vm_wire_add(1);
2165 		m->ref_count = 1;
2166 	}
2167 	m->a.act_count = 0;
2168 
2169 	if (object != NULL) {
2170 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2171 			if (req & VM_ALLOC_WIRED) {
2172 				vm_wire_sub(1);
2173 				m->ref_count = 0;
2174 			}
2175 			KASSERT(m->object == NULL, ("page %p has object", m));
2176 			m->oflags = VPO_UNMANAGED;
2177 			m->busy_lock = VPB_UNBUSIED;
2178 			/* Don't change PG_ZERO. */
2179 			vm_page_free_toq(m);
2180 			if (req & VM_ALLOC_WAITFAIL) {
2181 				VM_OBJECT_WUNLOCK(object);
2182 				vm_radix_wait();
2183 				VM_OBJECT_WLOCK(object);
2184 			}
2185 			return (NULL);
2186 		}
2187 
2188 		/* Ignore device objects; the pager sets "memattr" for them. */
2189 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2190 		    (object->flags & OBJ_FICTITIOUS) == 0)
2191 			pmap_page_set_memattr(m, object->memattr);
2192 	} else
2193 		m->pindex = pindex;
2194 
2195 	return (m);
2196 }
2197 
2198 /*
2199  *	vm_page_alloc_contig:
2200  *
2201  *	Allocate a contiguous set of physical pages of the given size "npages"
2202  *	from the free lists.  All of the physical pages must be at or above
2203  *	the given physical address "low" and below the given physical address
2204  *	"high".  The given value "alignment" determines the alignment of the
2205  *	first physical page in the set.  If the given value "boundary" is
2206  *	non-zero, then the set of physical pages cannot cross any physical
2207  *	address boundary that is a multiple of that value.  Both "alignment"
2208  *	and "boundary" must be a power of two.
2209  *
2210  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2211  *	then the memory attribute setting for the physical pages is configured
2212  *	to the object's memory attribute setting.  Otherwise, the memory
2213  *	attribute setting for the physical pages is configured to "memattr",
2214  *	overriding the object's memory attribute setting.  However, if the
2215  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2216  *	memory attribute setting for the physical pages cannot be configured
2217  *	to VM_MEMATTR_DEFAULT.
2218  *
2219  *	The specified object may not contain fictitious pages.
2220  *
2221  *	The caller must always specify an allocation class.
2222  *
2223  *	allocation classes:
2224  *	VM_ALLOC_NORMAL		normal process request
2225  *	VM_ALLOC_SYSTEM		system *really* needs a page
2226  *	VM_ALLOC_INTERRUPT	interrupt time request
2227  *
2228  *	optional allocation flags:
2229  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2230  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2231  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2232  *				should not be exclusive busy
2233  *	VM_ALLOC_SBUSY		shared busy the allocated page
2234  *	VM_ALLOC_WIRED		wire the allocated page
2235  *	VM_ALLOC_ZERO		prefer a zeroed page
2236  */
2237 vm_page_t
2238 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2239     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2240     vm_paddr_t boundary, vm_memattr_t memattr)
2241 {
2242 	struct vm_domainset_iter di;
2243 	vm_page_t m;
2244 	int domain;
2245 
2246 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2247 	do {
2248 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2249 		    npages, low, high, alignment, boundary, memattr);
2250 		if (m != NULL)
2251 			break;
2252 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2253 
2254 	return (m);
2255 }
2256 
2257 vm_page_t
2258 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2259     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2260     vm_paddr_t boundary, vm_memattr_t memattr)
2261 {
2262 	struct vm_domain *vmd;
2263 	vm_page_t m, m_ret, mpred;
2264 	u_int busy_lock, flags, oflags;
2265 
2266 	mpred = NULL;	/* XXX: pacify gcc */
2267 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2268 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2269 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2270 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2271 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2272 	    req));
2273 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2274 	    ("Can't sleep and retry object insertion."));
2275 	if (object != NULL) {
2276 		VM_OBJECT_ASSERT_WLOCKED(object);
2277 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2278 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2279 		    object));
2280 	}
2281 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2282 
2283 	if (object != NULL) {
2284 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2285 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2286 		    ("vm_page_alloc_contig: pindex already allocated"));
2287 	}
2288 
2289 	/*
2290 	 * Can we allocate the pages without the number of free pages falling
2291 	 * below the lower bound for the allocation class?
2292 	 */
2293 	m_ret = NULL;
2294 again:
2295 #if VM_NRESERVLEVEL > 0
2296 	/*
2297 	 * Can we allocate the pages from a reservation?
2298 	 */
2299 	if (vm_object_reserv(object) &&
2300 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2301 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2302 		goto found;
2303 	}
2304 #endif
2305 	vmd = VM_DOMAIN(domain);
2306 	if (vm_domain_allocate(vmd, req, npages)) {
2307 		/*
2308 		 * allocate them from the free page queues.
2309 		 */
2310 		vm_domain_free_lock(vmd);
2311 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2312 		    alignment, boundary);
2313 		vm_domain_free_unlock(vmd);
2314 		if (m_ret == NULL) {
2315 			vm_domain_freecnt_inc(vmd, npages);
2316 #if VM_NRESERVLEVEL > 0
2317 			if (vm_reserv_reclaim_contig(domain, npages, low,
2318 			    high, alignment, boundary))
2319 				goto again;
2320 #endif
2321 		}
2322 	}
2323 	if (m_ret == NULL) {
2324 		if (vm_domain_alloc_fail(vmd, object, req))
2325 			goto again;
2326 		return (NULL);
2327 	}
2328 #if VM_NRESERVLEVEL > 0
2329 found:
2330 #endif
2331 	for (m = m_ret; m < &m_ret[npages]; m++) {
2332 		vm_page_dequeue(m);
2333 		vm_page_alloc_check(m);
2334 	}
2335 
2336 	/*
2337 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2338 	 */
2339 	flags = 0;
2340 	if ((req & VM_ALLOC_ZERO) != 0)
2341 		flags = PG_ZERO;
2342 	if ((req & VM_ALLOC_NODUMP) != 0)
2343 		flags |= PG_NODUMP;
2344 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2345 	    VPO_UNMANAGED : 0;
2346 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2347 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2348 	else if ((req & VM_ALLOC_SBUSY) != 0)
2349 		busy_lock = VPB_SHARERS_WORD(1);
2350 	else
2351 		busy_lock = VPB_UNBUSIED;
2352 	if ((req & VM_ALLOC_WIRED) != 0)
2353 		vm_wire_add(npages);
2354 	if (object != NULL) {
2355 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2356 		    memattr == VM_MEMATTR_DEFAULT)
2357 			memattr = object->memattr;
2358 	}
2359 	for (m = m_ret; m < &m_ret[npages]; m++) {
2360 		m->a.flags = 0;
2361 		m->flags = (m->flags | PG_NODUMP) & flags;
2362 		m->busy_lock = busy_lock;
2363 		if ((req & VM_ALLOC_WIRED) != 0)
2364 			m->ref_count = 1;
2365 		m->a.act_count = 0;
2366 		m->oflags = oflags;
2367 		if (object != NULL) {
2368 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2369 				if ((req & VM_ALLOC_WIRED) != 0)
2370 					vm_wire_sub(npages);
2371 				KASSERT(m->object == NULL,
2372 				    ("page %p has object", m));
2373 				mpred = m;
2374 				for (m = m_ret; m < &m_ret[npages]; m++) {
2375 					if (m <= mpred &&
2376 					    (req & VM_ALLOC_WIRED) != 0)
2377 						m->ref_count = 0;
2378 					m->oflags = VPO_UNMANAGED;
2379 					m->busy_lock = VPB_UNBUSIED;
2380 					/* Don't change PG_ZERO. */
2381 					vm_page_free_toq(m);
2382 				}
2383 				if (req & VM_ALLOC_WAITFAIL) {
2384 					VM_OBJECT_WUNLOCK(object);
2385 					vm_radix_wait();
2386 					VM_OBJECT_WLOCK(object);
2387 				}
2388 				return (NULL);
2389 			}
2390 			mpred = m;
2391 		} else
2392 			m->pindex = pindex;
2393 		if (memattr != VM_MEMATTR_DEFAULT)
2394 			pmap_page_set_memattr(m, memattr);
2395 		pindex++;
2396 	}
2397 	return (m_ret);
2398 }
2399 
2400 /*
2401  * Check a page that has been freshly dequeued from a freelist.
2402  */
2403 static void
2404 vm_page_alloc_check(vm_page_t m)
2405 {
2406 
2407 	KASSERT(m->object == NULL, ("page %p has object", m));
2408 	KASSERT(m->a.queue == PQ_NONE &&
2409 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2410 	    ("page %p has unexpected queue %d, flags %#x",
2411 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2412 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2413 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2414 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2415 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2416 	    ("page %p has unexpected memattr %d",
2417 	    m, pmap_page_get_memattr(m)));
2418 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2419 	pmap_vm_page_alloc_check(m);
2420 }
2421 
2422 /*
2423  * 	vm_page_alloc_freelist:
2424  *
2425  *	Allocate a physical page from the specified free page list.
2426  *
2427  *	The caller must always specify an allocation class.
2428  *
2429  *	allocation classes:
2430  *	VM_ALLOC_NORMAL		normal process request
2431  *	VM_ALLOC_SYSTEM		system *really* needs a page
2432  *	VM_ALLOC_INTERRUPT	interrupt time request
2433  *
2434  *	optional allocation flags:
2435  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2436  *				intends to allocate
2437  *	VM_ALLOC_WIRED		wire the allocated page
2438  *	VM_ALLOC_ZERO		prefer a zeroed page
2439  */
2440 vm_page_t
2441 vm_page_alloc_freelist(int freelist, int req)
2442 {
2443 	struct vm_domainset_iter di;
2444 	vm_page_t m;
2445 	int domain;
2446 
2447 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2448 	do {
2449 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2450 		if (m != NULL)
2451 			break;
2452 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2453 
2454 	return (m);
2455 }
2456 
2457 vm_page_t
2458 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2459 {
2460 	struct vm_domain *vmd;
2461 	vm_page_t m;
2462 	u_int flags;
2463 
2464 	m = NULL;
2465 	vmd = VM_DOMAIN(domain);
2466 again:
2467 	if (vm_domain_allocate(vmd, req, 1)) {
2468 		vm_domain_free_lock(vmd);
2469 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2470 		    VM_FREEPOOL_DIRECT, 0);
2471 		vm_domain_free_unlock(vmd);
2472 		if (m == NULL)
2473 			vm_domain_freecnt_inc(vmd, 1);
2474 	}
2475 	if (m == NULL) {
2476 		if (vm_domain_alloc_fail(vmd, NULL, req))
2477 			goto again;
2478 		return (NULL);
2479 	}
2480 	vm_page_dequeue(m);
2481 	vm_page_alloc_check(m);
2482 
2483 	/*
2484 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2485 	 */
2486 	m->a.flags = 0;
2487 	flags = 0;
2488 	if ((req & VM_ALLOC_ZERO) != 0)
2489 		flags = PG_ZERO;
2490 	m->flags &= flags;
2491 	if ((req & VM_ALLOC_WIRED) != 0) {
2492 		vm_wire_add(1);
2493 		m->ref_count = 1;
2494 	}
2495 	/* Unmanaged pages don't use "act_count". */
2496 	m->oflags = VPO_UNMANAGED;
2497 	return (m);
2498 }
2499 
2500 static int
2501 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2502 {
2503 	struct vm_domain *vmd;
2504 	struct vm_pgcache *pgcache;
2505 	int i;
2506 
2507 	pgcache = arg;
2508 	vmd = VM_DOMAIN(pgcache->domain);
2509 
2510 	/*
2511 	 * The page daemon should avoid creating extra memory pressure since its
2512 	 * main purpose is to replenish the store of free pages.
2513 	 */
2514 	if (vmd->vmd_severeset || curproc == pageproc ||
2515 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2516 		return (0);
2517 	domain = vmd->vmd_domain;
2518 	vm_domain_free_lock(vmd);
2519 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2520 	    (vm_page_t *)store);
2521 	vm_domain_free_unlock(vmd);
2522 	if (cnt != i)
2523 		vm_domain_freecnt_inc(vmd, cnt - i);
2524 
2525 	return (i);
2526 }
2527 
2528 static void
2529 vm_page_zone_release(void *arg, void **store, int cnt)
2530 {
2531 	struct vm_domain *vmd;
2532 	struct vm_pgcache *pgcache;
2533 	vm_page_t m;
2534 	int i;
2535 
2536 	pgcache = arg;
2537 	vmd = VM_DOMAIN(pgcache->domain);
2538 	vm_domain_free_lock(vmd);
2539 	for (i = 0; i < cnt; i++) {
2540 		m = (vm_page_t)store[i];
2541 		vm_phys_free_pages(m, 0);
2542 	}
2543 	vm_domain_free_unlock(vmd);
2544 	vm_domain_freecnt_inc(vmd, cnt);
2545 }
2546 
2547 #define	VPSC_ANY	0	/* No restrictions. */
2548 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2549 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2550 
2551 /*
2552  *	vm_page_scan_contig:
2553  *
2554  *	Scan vm_page_array[] between the specified entries "m_start" and
2555  *	"m_end" for a run of contiguous physical pages that satisfy the
2556  *	specified conditions, and return the lowest page in the run.  The
2557  *	specified "alignment" determines the alignment of the lowest physical
2558  *	page in the run.  If the specified "boundary" is non-zero, then the
2559  *	run of physical pages cannot span a physical address that is a
2560  *	multiple of "boundary".
2561  *
2562  *	"m_end" is never dereferenced, so it need not point to a vm_page
2563  *	structure within vm_page_array[].
2564  *
2565  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2566  *	span a hole (or discontiguity) in the physical address space.  Both
2567  *	"alignment" and "boundary" must be a power of two.
2568  */
2569 vm_page_t
2570 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2571     u_long alignment, vm_paddr_t boundary, int options)
2572 {
2573 	vm_object_t object;
2574 	vm_paddr_t pa;
2575 	vm_page_t m, m_run;
2576 #if VM_NRESERVLEVEL > 0
2577 	int level;
2578 #endif
2579 	int m_inc, order, run_ext, run_len;
2580 
2581 	KASSERT(npages > 0, ("npages is 0"));
2582 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2583 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2584 	m_run = NULL;
2585 	run_len = 0;
2586 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2587 		KASSERT((m->flags & PG_MARKER) == 0,
2588 		    ("page %p is PG_MARKER", m));
2589 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2590 		    ("fictitious page %p has invalid ref count", m));
2591 
2592 		/*
2593 		 * If the current page would be the start of a run, check its
2594 		 * physical address against the end, alignment, and boundary
2595 		 * conditions.  If it doesn't satisfy these conditions, either
2596 		 * terminate the scan or advance to the next page that
2597 		 * satisfies the failed condition.
2598 		 */
2599 		if (run_len == 0) {
2600 			KASSERT(m_run == NULL, ("m_run != NULL"));
2601 			if (m + npages > m_end)
2602 				break;
2603 			pa = VM_PAGE_TO_PHYS(m);
2604 			if ((pa & (alignment - 1)) != 0) {
2605 				m_inc = atop(roundup2(pa, alignment) - pa);
2606 				continue;
2607 			}
2608 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2609 			    boundary) != 0) {
2610 				m_inc = atop(roundup2(pa, boundary) - pa);
2611 				continue;
2612 			}
2613 		} else
2614 			KASSERT(m_run != NULL, ("m_run == NULL"));
2615 
2616 retry:
2617 		m_inc = 1;
2618 		if (vm_page_wired(m))
2619 			run_ext = 0;
2620 #if VM_NRESERVLEVEL > 0
2621 		else if ((level = vm_reserv_level(m)) >= 0 &&
2622 		    (options & VPSC_NORESERV) != 0) {
2623 			run_ext = 0;
2624 			/* Advance to the end of the reservation. */
2625 			pa = VM_PAGE_TO_PHYS(m);
2626 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2627 			    pa);
2628 		}
2629 #endif
2630 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2631 			/*
2632 			 * The page is considered eligible for relocation if
2633 			 * and only if it could be laundered or reclaimed by
2634 			 * the page daemon.
2635 			 */
2636 			VM_OBJECT_RLOCK(object);
2637 			if (object != m->object) {
2638 				VM_OBJECT_RUNLOCK(object);
2639 				goto retry;
2640 			}
2641 			/* Don't care: PG_NODUMP, PG_ZERO. */
2642 			if (object->type != OBJT_DEFAULT &&
2643 			    (object->flags & OBJ_SWAP) == 0 &&
2644 			    object->type != OBJT_VNODE) {
2645 				run_ext = 0;
2646 #if VM_NRESERVLEVEL > 0
2647 			} else if ((options & VPSC_NOSUPER) != 0 &&
2648 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2649 				run_ext = 0;
2650 				/* Advance to the end of the superpage. */
2651 				pa = VM_PAGE_TO_PHYS(m);
2652 				m_inc = atop(roundup2(pa + 1,
2653 				    vm_reserv_size(level)) - pa);
2654 #endif
2655 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2656 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2657 				/*
2658 				 * The page is allocated but eligible for
2659 				 * relocation.  Extend the current run by one
2660 				 * page.
2661 				 */
2662 				KASSERT(pmap_page_get_memattr(m) ==
2663 				    VM_MEMATTR_DEFAULT,
2664 				    ("page %p has an unexpected memattr", m));
2665 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2666 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2667 				    ("page %p has unexpected oflags", m));
2668 				/* Don't care: PGA_NOSYNC. */
2669 				run_ext = 1;
2670 			} else
2671 				run_ext = 0;
2672 			VM_OBJECT_RUNLOCK(object);
2673 #if VM_NRESERVLEVEL > 0
2674 		} else if (level >= 0) {
2675 			/*
2676 			 * The page is reserved but not yet allocated.  In
2677 			 * other words, it is still free.  Extend the current
2678 			 * run by one page.
2679 			 */
2680 			run_ext = 1;
2681 #endif
2682 		} else if ((order = m->order) < VM_NFREEORDER) {
2683 			/*
2684 			 * The page is enqueued in the physical memory
2685 			 * allocator's free page queues.  Moreover, it is the
2686 			 * first page in a power-of-two-sized run of
2687 			 * contiguous free pages.  Add these pages to the end
2688 			 * of the current run, and jump ahead.
2689 			 */
2690 			run_ext = 1 << order;
2691 			m_inc = 1 << order;
2692 		} else {
2693 			/*
2694 			 * Skip the page for one of the following reasons: (1)
2695 			 * It is enqueued in the physical memory allocator's
2696 			 * free page queues.  However, it is not the first
2697 			 * page in a run of contiguous free pages.  (This case
2698 			 * rarely occurs because the scan is performed in
2699 			 * ascending order.) (2) It is not reserved, and it is
2700 			 * transitioning from free to allocated.  (Conversely,
2701 			 * the transition from allocated to free for managed
2702 			 * pages is blocked by the page busy lock.) (3) It is
2703 			 * allocated but not contained by an object and not
2704 			 * wired, e.g., allocated by Xen's balloon driver.
2705 			 */
2706 			run_ext = 0;
2707 		}
2708 
2709 		/*
2710 		 * Extend or reset the current run of pages.
2711 		 */
2712 		if (run_ext > 0) {
2713 			if (run_len == 0)
2714 				m_run = m;
2715 			run_len += run_ext;
2716 		} else {
2717 			if (run_len > 0) {
2718 				m_run = NULL;
2719 				run_len = 0;
2720 			}
2721 		}
2722 	}
2723 	if (run_len >= npages)
2724 		return (m_run);
2725 	return (NULL);
2726 }
2727 
2728 /*
2729  *	vm_page_reclaim_run:
2730  *
2731  *	Try to relocate each of the allocated virtual pages within the
2732  *	specified run of physical pages to a new physical address.  Free the
2733  *	physical pages underlying the relocated virtual pages.  A virtual page
2734  *	is relocatable if and only if it could be laundered or reclaimed by
2735  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2736  *	physical address above "high".
2737  *
2738  *	Returns 0 if every physical page within the run was already free or
2739  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2740  *	value indicating why the last attempt to relocate a virtual page was
2741  *	unsuccessful.
2742  *
2743  *	"req_class" must be an allocation class.
2744  */
2745 static int
2746 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2747     vm_paddr_t high)
2748 {
2749 	struct vm_domain *vmd;
2750 	struct spglist free;
2751 	vm_object_t object;
2752 	vm_paddr_t pa;
2753 	vm_page_t m, m_end, m_new;
2754 	int error, order, req;
2755 
2756 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2757 	    ("req_class is not an allocation class"));
2758 	SLIST_INIT(&free);
2759 	error = 0;
2760 	m = m_run;
2761 	m_end = m_run + npages;
2762 	for (; error == 0 && m < m_end; m++) {
2763 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2764 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2765 
2766 		/*
2767 		 * Racily check for wirings.  Races are handled once the object
2768 		 * lock is held and the page is unmapped.
2769 		 */
2770 		if (vm_page_wired(m))
2771 			error = EBUSY;
2772 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2773 			/*
2774 			 * The page is relocated if and only if it could be
2775 			 * laundered or reclaimed by the page daemon.
2776 			 */
2777 			VM_OBJECT_WLOCK(object);
2778 			/* Don't care: PG_NODUMP, PG_ZERO. */
2779 			if (m->object != object ||
2780 			    (object->type != OBJT_DEFAULT &&
2781 			    (object->flags & OBJ_SWAP) == 0 &&
2782 			    object->type != OBJT_VNODE))
2783 				error = EINVAL;
2784 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2785 				error = EINVAL;
2786 			else if (vm_page_queue(m) != PQ_NONE &&
2787 			    vm_page_tryxbusy(m) != 0) {
2788 				if (vm_page_wired(m)) {
2789 					vm_page_xunbusy(m);
2790 					error = EBUSY;
2791 					goto unlock;
2792 				}
2793 				KASSERT(pmap_page_get_memattr(m) ==
2794 				    VM_MEMATTR_DEFAULT,
2795 				    ("page %p has an unexpected memattr", m));
2796 				KASSERT(m->oflags == 0,
2797 				    ("page %p has unexpected oflags", m));
2798 				/* Don't care: PGA_NOSYNC. */
2799 				if (!vm_page_none_valid(m)) {
2800 					/*
2801 					 * First, try to allocate a new page
2802 					 * that is above "high".  Failing
2803 					 * that, try to allocate a new page
2804 					 * that is below "m_run".  Allocate
2805 					 * the new page between the end of
2806 					 * "m_run" and "high" only as a last
2807 					 * resort.
2808 					 */
2809 					req = req_class | VM_ALLOC_NOOBJ;
2810 					if ((m->flags & PG_NODUMP) != 0)
2811 						req |= VM_ALLOC_NODUMP;
2812 					if (trunc_page(high) !=
2813 					    ~(vm_paddr_t)PAGE_MASK) {
2814 						m_new = vm_page_alloc_contig(
2815 						    NULL, 0, req, 1,
2816 						    round_page(high),
2817 						    ~(vm_paddr_t)0,
2818 						    PAGE_SIZE, 0,
2819 						    VM_MEMATTR_DEFAULT);
2820 					} else
2821 						m_new = NULL;
2822 					if (m_new == NULL) {
2823 						pa = VM_PAGE_TO_PHYS(m_run);
2824 						m_new = vm_page_alloc_contig(
2825 						    NULL, 0, req, 1,
2826 						    0, pa - 1, PAGE_SIZE, 0,
2827 						    VM_MEMATTR_DEFAULT);
2828 					}
2829 					if (m_new == NULL) {
2830 						pa += ptoa(npages);
2831 						m_new = vm_page_alloc_contig(
2832 						    NULL, 0, req, 1,
2833 						    pa, high, PAGE_SIZE, 0,
2834 						    VM_MEMATTR_DEFAULT);
2835 					}
2836 					if (m_new == NULL) {
2837 						vm_page_xunbusy(m);
2838 						error = ENOMEM;
2839 						goto unlock;
2840 					}
2841 
2842 					/*
2843 					 * Unmap the page and check for new
2844 					 * wirings that may have been acquired
2845 					 * through a pmap lookup.
2846 					 */
2847 					if (object->ref_count != 0 &&
2848 					    !vm_page_try_remove_all(m)) {
2849 						vm_page_xunbusy(m);
2850 						vm_page_free(m_new);
2851 						error = EBUSY;
2852 						goto unlock;
2853 					}
2854 
2855 					/*
2856 					 * Replace "m" with the new page.  For
2857 					 * vm_page_replace(), "m" must be busy
2858 					 * and dequeued.  Finally, change "m"
2859 					 * as if vm_page_free() was called.
2860 					 */
2861 					m_new->a.flags = m->a.flags &
2862 					    ~PGA_QUEUE_STATE_MASK;
2863 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2864 					    ("page %p is managed", m_new));
2865 					m_new->oflags = 0;
2866 					pmap_copy_page(m, m_new);
2867 					m_new->valid = m->valid;
2868 					m_new->dirty = m->dirty;
2869 					m->flags &= ~PG_ZERO;
2870 					vm_page_dequeue(m);
2871 					if (vm_page_replace_hold(m_new, object,
2872 					    m->pindex, m) &&
2873 					    vm_page_free_prep(m))
2874 						SLIST_INSERT_HEAD(&free, m,
2875 						    plinks.s.ss);
2876 
2877 					/*
2878 					 * The new page must be deactivated
2879 					 * before the object is unlocked.
2880 					 */
2881 					vm_page_deactivate(m_new);
2882 				} else {
2883 					m->flags &= ~PG_ZERO;
2884 					vm_page_dequeue(m);
2885 					if (vm_page_free_prep(m))
2886 						SLIST_INSERT_HEAD(&free, m,
2887 						    plinks.s.ss);
2888 					KASSERT(m->dirty == 0,
2889 					    ("page %p is dirty", m));
2890 				}
2891 			} else
2892 				error = EBUSY;
2893 unlock:
2894 			VM_OBJECT_WUNLOCK(object);
2895 		} else {
2896 			MPASS(vm_page_domain(m) == domain);
2897 			vmd = VM_DOMAIN(domain);
2898 			vm_domain_free_lock(vmd);
2899 			order = m->order;
2900 			if (order < VM_NFREEORDER) {
2901 				/*
2902 				 * The page is enqueued in the physical memory
2903 				 * allocator's free page queues.  Moreover, it
2904 				 * is the first page in a power-of-two-sized
2905 				 * run of contiguous free pages.  Jump ahead
2906 				 * to the last page within that run, and
2907 				 * continue from there.
2908 				 */
2909 				m += (1 << order) - 1;
2910 			}
2911 #if VM_NRESERVLEVEL > 0
2912 			else if (vm_reserv_is_page_free(m))
2913 				order = 0;
2914 #endif
2915 			vm_domain_free_unlock(vmd);
2916 			if (order == VM_NFREEORDER)
2917 				error = EINVAL;
2918 		}
2919 	}
2920 	if ((m = SLIST_FIRST(&free)) != NULL) {
2921 		int cnt;
2922 
2923 		vmd = VM_DOMAIN(domain);
2924 		cnt = 0;
2925 		vm_domain_free_lock(vmd);
2926 		do {
2927 			MPASS(vm_page_domain(m) == domain);
2928 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2929 			vm_phys_free_pages(m, 0);
2930 			cnt++;
2931 		} while ((m = SLIST_FIRST(&free)) != NULL);
2932 		vm_domain_free_unlock(vmd);
2933 		vm_domain_freecnt_inc(vmd, cnt);
2934 	}
2935 	return (error);
2936 }
2937 
2938 #define	NRUNS	16
2939 
2940 CTASSERT(powerof2(NRUNS));
2941 
2942 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2943 
2944 #define	MIN_RECLAIM	8
2945 
2946 /*
2947  *	vm_page_reclaim_contig:
2948  *
2949  *	Reclaim allocated, contiguous physical memory satisfying the specified
2950  *	conditions by relocating the virtual pages using that physical memory.
2951  *	Returns true if reclamation is successful and false otherwise.  Since
2952  *	relocation requires the allocation of physical pages, reclamation may
2953  *	fail due to a shortage of free pages.  When reclamation fails, callers
2954  *	are expected to perform vm_wait() before retrying a failed allocation
2955  *	operation, e.g., vm_page_alloc_contig().
2956  *
2957  *	The caller must always specify an allocation class through "req".
2958  *
2959  *	allocation classes:
2960  *	VM_ALLOC_NORMAL		normal process request
2961  *	VM_ALLOC_SYSTEM		system *really* needs a page
2962  *	VM_ALLOC_INTERRUPT	interrupt time request
2963  *
2964  *	The optional allocation flags are ignored.
2965  *
2966  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2967  *	must be a power of two.
2968  */
2969 bool
2970 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2971     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2972 {
2973 	struct vm_domain *vmd;
2974 	vm_paddr_t curr_low;
2975 	vm_page_t m_run, m_runs[NRUNS];
2976 	u_long count, minalign, reclaimed;
2977 	int error, i, options, req_class;
2978 
2979 	KASSERT(npages > 0, ("npages is 0"));
2980 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2981 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2982 
2983 	/*
2984 	 * The caller will attempt an allocation after some runs have been
2985 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
2986 	 * of vm_phys_alloc_contig(), round up the requested length to the next
2987 	 * power of two or maximum chunk size, and ensure that each run is
2988 	 * suitably aligned.
2989 	 */
2990 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
2991 	npages = roundup2(npages, minalign);
2992 	if (alignment < ptoa(minalign))
2993 		alignment = ptoa(minalign);
2994 
2995 	/*
2996 	 * The page daemon is allowed to dig deeper into the free page list.
2997 	 */
2998 	req_class = req & VM_ALLOC_CLASS_MASK;
2999 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3000 		req_class = VM_ALLOC_SYSTEM;
3001 
3002 	/*
3003 	 * Return if the number of free pages cannot satisfy the requested
3004 	 * allocation.
3005 	 */
3006 	vmd = VM_DOMAIN(domain);
3007 	count = vmd->vmd_free_count;
3008 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3009 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3010 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3011 		return (false);
3012 
3013 	/*
3014 	 * Scan up to three times, relaxing the restrictions ("options") on
3015 	 * the reclamation of reservations and superpages each time.
3016 	 */
3017 	for (options = VPSC_NORESERV;;) {
3018 		/*
3019 		 * Find the highest runs that satisfy the given constraints
3020 		 * and restrictions, and record them in "m_runs".
3021 		 */
3022 		curr_low = low;
3023 		count = 0;
3024 		for (;;) {
3025 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
3026 			    high, alignment, boundary, options);
3027 			if (m_run == NULL)
3028 				break;
3029 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3030 			m_runs[RUN_INDEX(count)] = m_run;
3031 			count++;
3032 		}
3033 
3034 		/*
3035 		 * Reclaim the highest runs in LIFO (descending) order until
3036 		 * the number of reclaimed pages, "reclaimed", is at least
3037 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
3038 		 * reclamation is idempotent, and runs will (likely) recur
3039 		 * from one scan to the next as restrictions are relaxed.
3040 		 */
3041 		reclaimed = 0;
3042 		for (i = 0; count > 0 && i < NRUNS; i++) {
3043 			count--;
3044 			m_run = m_runs[RUN_INDEX(count)];
3045 			error = vm_page_reclaim_run(req_class, domain, npages,
3046 			    m_run, high);
3047 			if (error == 0) {
3048 				reclaimed += npages;
3049 				if (reclaimed >= MIN_RECLAIM)
3050 					return (true);
3051 			}
3052 		}
3053 
3054 		/*
3055 		 * Either relax the restrictions on the next scan or return if
3056 		 * the last scan had no restrictions.
3057 		 */
3058 		if (options == VPSC_NORESERV)
3059 			options = VPSC_NOSUPER;
3060 		else if (options == VPSC_NOSUPER)
3061 			options = VPSC_ANY;
3062 		else if (options == VPSC_ANY)
3063 			return (reclaimed != 0);
3064 	}
3065 }
3066 
3067 bool
3068 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3069     u_long alignment, vm_paddr_t boundary)
3070 {
3071 	struct vm_domainset_iter di;
3072 	int domain;
3073 	bool ret;
3074 
3075 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3076 	do {
3077 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3078 		    high, alignment, boundary);
3079 		if (ret)
3080 			break;
3081 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3082 
3083 	return (ret);
3084 }
3085 
3086 /*
3087  * Set the domain in the appropriate page level domainset.
3088  */
3089 void
3090 vm_domain_set(struct vm_domain *vmd)
3091 {
3092 
3093 	mtx_lock(&vm_domainset_lock);
3094 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3095 		vmd->vmd_minset = 1;
3096 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3097 	}
3098 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3099 		vmd->vmd_severeset = 1;
3100 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3101 	}
3102 	mtx_unlock(&vm_domainset_lock);
3103 }
3104 
3105 /*
3106  * Clear the domain from the appropriate page level domainset.
3107  */
3108 void
3109 vm_domain_clear(struct vm_domain *vmd)
3110 {
3111 
3112 	mtx_lock(&vm_domainset_lock);
3113 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3114 		vmd->vmd_minset = 0;
3115 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3116 		if (vm_min_waiters != 0) {
3117 			vm_min_waiters = 0;
3118 			wakeup(&vm_min_domains);
3119 		}
3120 	}
3121 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3122 		vmd->vmd_severeset = 0;
3123 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3124 		if (vm_severe_waiters != 0) {
3125 			vm_severe_waiters = 0;
3126 			wakeup(&vm_severe_domains);
3127 		}
3128 	}
3129 
3130 	/*
3131 	 * If pageout daemon needs pages, then tell it that there are
3132 	 * some free.
3133 	 */
3134 	if (vmd->vmd_pageout_pages_needed &&
3135 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3136 		wakeup(&vmd->vmd_pageout_pages_needed);
3137 		vmd->vmd_pageout_pages_needed = 0;
3138 	}
3139 
3140 	/* See comments in vm_wait_doms(). */
3141 	if (vm_pageproc_waiters) {
3142 		vm_pageproc_waiters = 0;
3143 		wakeup(&vm_pageproc_waiters);
3144 	}
3145 	mtx_unlock(&vm_domainset_lock);
3146 }
3147 
3148 /*
3149  * Wait for free pages to exceed the min threshold globally.
3150  */
3151 void
3152 vm_wait_min(void)
3153 {
3154 
3155 	mtx_lock(&vm_domainset_lock);
3156 	while (vm_page_count_min()) {
3157 		vm_min_waiters++;
3158 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3159 	}
3160 	mtx_unlock(&vm_domainset_lock);
3161 }
3162 
3163 /*
3164  * Wait for free pages to exceed the severe threshold globally.
3165  */
3166 void
3167 vm_wait_severe(void)
3168 {
3169 
3170 	mtx_lock(&vm_domainset_lock);
3171 	while (vm_page_count_severe()) {
3172 		vm_severe_waiters++;
3173 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3174 		    "vmwait", 0);
3175 	}
3176 	mtx_unlock(&vm_domainset_lock);
3177 }
3178 
3179 u_int
3180 vm_wait_count(void)
3181 {
3182 
3183 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3184 }
3185 
3186 int
3187 vm_wait_doms(const domainset_t *wdoms, int mflags)
3188 {
3189 	int error;
3190 
3191 	error = 0;
3192 
3193 	/*
3194 	 * We use racey wakeup synchronization to avoid expensive global
3195 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3196 	 * To handle this, we only sleep for one tick in this instance.  It
3197 	 * is expected that most allocations for the pageproc will come from
3198 	 * kmem or vm_page_grab* which will use the more specific and
3199 	 * race-free vm_wait_domain().
3200 	 */
3201 	if (curproc == pageproc) {
3202 		mtx_lock(&vm_domainset_lock);
3203 		vm_pageproc_waiters++;
3204 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3205 		    PVM | PDROP | mflags, "pageprocwait", 1);
3206 	} else {
3207 		/*
3208 		 * XXX Ideally we would wait only until the allocation could
3209 		 * be satisfied.  This condition can cause new allocators to
3210 		 * consume all freed pages while old allocators wait.
3211 		 */
3212 		mtx_lock(&vm_domainset_lock);
3213 		if (vm_page_count_min_set(wdoms)) {
3214 			vm_min_waiters++;
3215 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3216 			    PVM | PDROP | mflags, "vmwait", 0);
3217 		} else
3218 			mtx_unlock(&vm_domainset_lock);
3219 	}
3220 	return (error);
3221 }
3222 
3223 /*
3224  *	vm_wait_domain:
3225  *
3226  *	Sleep until free pages are available for allocation.
3227  *	- Called in various places after failed memory allocations.
3228  */
3229 void
3230 vm_wait_domain(int domain)
3231 {
3232 	struct vm_domain *vmd;
3233 	domainset_t wdom;
3234 
3235 	vmd = VM_DOMAIN(domain);
3236 	vm_domain_free_assert_unlocked(vmd);
3237 
3238 	if (curproc == pageproc) {
3239 		mtx_lock(&vm_domainset_lock);
3240 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3241 			vmd->vmd_pageout_pages_needed = 1;
3242 			msleep(&vmd->vmd_pageout_pages_needed,
3243 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3244 		} else
3245 			mtx_unlock(&vm_domainset_lock);
3246 	} else {
3247 		if (pageproc == NULL)
3248 			panic("vm_wait in early boot");
3249 		DOMAINSET_ZERO(&wdom);
3250 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3251 		vm_wait_doms(&wdom, 0);
3252 	}
3253 }
3254 
3255 static int
3256 vm_wait_flags(vm_object_t obj, int mflags)
3257 {
3258 	struct domainset *d;
3259 
3260 	d = NULL;
3261 
3262 	/*
3263 	 * Carefully fetch pointers only once: the struct domainset
3264 	 * itself is ummutable but the pointer might change.
3265 	 */
3266 	if (obj != NULL)
3267 		d = obj->domain.dr_policy;
3268 	if (d == NULL)
3269 		d = curthread->td_domain.dr_policy;
3270 
3271 	return (vm_wait_doms(&d->ds_mask, mflags));
3272 }
3273 
3274 /*
3275  *	vm_wait:
3276  *
3277  *	Sleep until free pages are available for allocation in the
3278  *	affinity domains of the obj.  If obj is NULL, the domain set
3279  *	for the calling thread is used.
3280  *	Called in various places after failed memory allocations.
3281  */
3282 void
3283 vm_wait(vm_object_t obj)
3284 {
3285 	(void)vm_wait_flags(obj, 0);
3286 }
3287 
3288 int
3289 vm_wait_intr(vm_object_t obj)
3290 {
3291 	return (vm_wait_flags(obj, PCATCH));
3292 }
3293 
3294 /*
3295  *	vm_domain_alloc_fail:
3296  *
3297  *	Called when a page allocation function fails.  Informs the
3298  *	pagedaemon and performs the requested wait.  Requires the
3299  *	domain_free and object lock on entry.  Returns with the
3300  *	object lock held and free lock released.  Returns an error when
3301  *	retry is necessary.
3302  *
3303  */
3304 static int
3305 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3306 {
3307 
3308 	vm_domain_free_assert_unlocked(vmd);
3309 
3310 	atomic_add_int(&vmd->vmd_pageout_deficit,
3311 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3312 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3313 		if (object != NULL)
3314 			VM_OBJECT_WUNLOCK(object);
3315 		vm_wait_domain(vmd->vmd_domain);
3316 		if (object != NULL)
3317 			VM_OBJECT_WLOCK(object);
3318 		if (req & VM_ALLOC_WAITOK)
3319 			return (EAGAIN);
3320 	}
3321 
3322 	return (0);
3323 }
3324 
3325 /*
3326  *	vm_waitpfault:
3327  *
3328  *	Sleep until free pages are available for allocation.
3329  *	- Called only in vm_fault so that processes page faulting
3330  *	  can be easily tracked.
3331  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3332  *	  processes will be able to grab memory first.  Do not change
3333  *	  this balance without careful testing first.
3334  */
3335 void
3336 vm_waitpfault(struct domainset *dset, int timo)
3337 {
3338 
3339 	/*
3340 	 * XXX Ideally we would wait only until the allocation could
3341 	 * be satisfied.  This condition can cause new allocators to
3342 	 * consume all freed pages while old allocators wait.
3343 	 */
3344 	mtx_lock(&vm_domainset_lock);
3345 	if (vm_page_count_min_set(&dset->ds_mask)) {
3346 		vm_min_waiters++;
3347 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3348 		    "pfault", timo);
3349 	} else
3350 		mtx_unlock(&vm_domainset_lock);
3351 }
3352 
3353 static struct vm_pagequeue *
3354 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3355 {
3356 
3357 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3358 }
3359 
3360 #ifdef INVARIANTS
3361 static struct vm_pagequeue *
3362 vm_page_pagequeue(vm_page_t m)
3363 {
3364 
3365 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3366 }
3367 #endif
3368 
3369 static __always_inline bool
3370 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3371 {
3372 	vm_page_astate_t tmp;
3373 
3374 	tmp = *old;
3375 	do {
3376 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3377 			return (true);
3378 		counter_u64_add(pqstate_commit_retries, 1);
3379 	} while (old->_bits == tmp._bits);
3380 
3381 	return (false);
3382 }
3383 
3384 /*
3385  * Do the work of committing a queue state update that moves the page out of
3386  * its current queue.
3387  */
3388 static bool
3389 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3390     vm_page_astate_t *old, vm_page_astate_t new)
3391 {
3392 	vm_page_t next;
3393 
3394 	vm_pagequeue_assert_locked(pq);
3395 	KASSERT(vm_page_pagequeue(m) == pq,
3396 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3397 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3398 	    ("%s: invalid queue indices %d %d",
3399 	    __func__, old->queue, new.queue));
3400 
3401 	/*
3402 	 * Once the queue index of the page changes there is nothing
3403 	 * synchronizing with further updates to the page's physical
3404 	 * queue state.  Therefore we must speculatively remove the page
3405 	 * from the queue now and be prepared to roll back if the queue
3406 	 * state update fails.  If the page is not physically enqueued then
3407 	 * we just update its queue index.
3408 	 */
3409 	if ((old->flags & PGA_ENQUEUED) != 0) {
3410 		new.flags &= ~PGA_ENQUEUED;
3411 		next = TAILQ_NEXT(m, plinks.q);
3412 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3413 		vm_pagequeue_cnt_dec(pq);
3414 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3415 			if (next == NULL)
3416 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3417 			else
3418 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3419 			vm_pagequeue_cnt_inc(pq);
3420 			return (false);
3421 		} else {
3422 			return (true);
3423 		}
3424 	} else {
3425 		return (vm_page_pqstate_fcmpset(m, old, new));
3426 	}
3427 }
3428 
3429 static bool
3430 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3431     vm_page_astate_t new)
3432 {
3433 	struct vm_pagequeue *pq;
3434 	vm_page_astate_t as;
3435 	bool ret;
3436 
3437 	pq = _vm_page_pagequeue(m, old->queue);
3438 
3439 	/*
3440 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3441 	 * corresponding page queue lock is held.
3442 	 */
3443 	vm_pagequeue_lock(pq);
3444 	as = vm_page_astate_load(m);
3445 	if (__predict_false(as._bits != old->_bits)) {
3446 		*old = as;
3447 		ret = false;
3448 	} else {
3449 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3450 	}
3451 	vm_pagequeue_unlock(pq);
3452 	return (ret);
3453 }
3454 
3455 /*
3456  * Commit a queue state update that enqueues or requeues a page.
3457  */
3458 static bool
3459 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3460     vm_page_astate_t *old, vm_page_astate_t new)
3461 {
3462 	struct vm_domain *vmd;
3463 
3464 	vm_pagequeue_assert_locked(pq);
3465 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3466 	    ("%s: invalid queue indices %d %d",
3467 	    __func__, old->queue, new.queue));
3468 
3469 	new.flags |= PGA_ENQUEUED;
3470 	if (!vm_page_pqstate_fcmpset(m, old, new))
3471 		return (false);
3472 
3473 	if ((old->flags & PGA_ENQUEUED) != 0)
3474 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3475 	else
3476 		vm_pagequeue_cnt_inc(pq);
3477 
3478 	/*
3479 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3480 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3481 	 * applied, even if it was set first.
3482 	 */
3483 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3484 		vmd = vm_pagequeue_domain(m);
3485 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3486 		    ("%s: invalid page queue for page %p", __func__, m));
3487 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3488 	} else {
3489 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3490 	}
3491 	return (true);
3492 }
3493 
3494 /*
3495  * Commit a queue state update that encodes a request for a deferred queue
3496  * operation.
3497  */
3498 static bool
3499 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3500     vm_page_astate_t new)
3501 {
3502 
3503 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3504 	    ("%s: invalid state, queue %d flags %x",
3505 	    __func__, new.queue, new.flags));
3506 
3507 	if (old->_bits != new._bits &&
3508 	    !vm_page_pqstate_fcmpset(m, old, new))
3509 		return (false);
3510 	vm_page_pqbatch_submit(m, new.queue);
3511 	return (true);
3512 }
3513 
3514 /*
3515  * A generic queue state update function.  This handles more cases than the
3516  * specialized functions above.
3517  */
3518 bool
3519 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3520 {
3521 
3522 	if (old->_bits == new._bits)
3523 		return (true);
3524 
3525 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3526 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3527 			return (false);
3528 		if (new.queue != PQ_NONE)
3529 			vm_page_pqbatch_submit(m, new.queue);
3530 	} else {
3531 		if (!vm_page_pqstate_fcmpset(m, old, new))
3532 			return (false);
3533 		if (new.queue != PQ_NONE &&
3534 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3535 			vm_page_pqbatch_submit(m, new.queue);
3536 	}
3537 	return (true);
3538 }
3539 
3540 /*
3541  * Apply deferred queue state updates to a page.
3542  */
3543 static inline void
3544 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3545 {
3546 	vm_page_astate_t new, old;
3547 
3548 	CRITICAL_ASSERT(curthread);
3549 	vm_pagequeue_assert_locked(pq);
3550 	KASSERT(queue < PQ_COUNT,
3551 	    ("%s: invalid queue index %d", __func__, queue));
3552 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3553 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3554 
3555 	for (old = vm_page_astate_load(m);;) {
3556 		if (__predict_false(old.queue != queue ||
3557 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3558 			counter_u64_add(queue_nops, 1);
3559 			break;
3560 		}
3561 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3562 		    ("%s: page %p is unmanaged", __func__, m));
3563 
3564 		new = old;
3565 		if ((old.flags & PGA_DEQUEUE) != 0) {
3566 			new.flags &= ~PGA_QUEUE_OP_MASK;
3567 			new.queue = PQ_NONE;
3568 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3569 			    m, &old, new))) {
3570 				counter_u64_add(queue_ops, 1);
3571 				break;
3572 			}
3573 		} else {
3574 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3575 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3576 			    m, &old, new))) {
3577 				counter_u64_add(queue_ops, 1);
3578 				break;
3579 			}
3580 		}
3581 	}
3582 }
3583 
3584 static void
3585 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3586     uint8_t queue)
3587 {
3588 	int i;
3589 
3590 	for (i = 0; i < bq->bq_cnt; i++)
3591 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3592 	vm_batchqueue_init(bq);
3593 }
3594 
3595 /*
3596  *	vm_page_pqbatch_submit:		[ internal use only ]
3597  *
3598  *	Enqueue a page in the specified page queue's batched work queue.
3599  *	The caller must have encoded the requested operation in the page
3600  *	structure's a.flags field.
3601  */
3602 void
3603 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3604 {
3605 	struct vm_batchqueue *bq;
3606 	struct vm_pagequeue *pq;
3607 	int domain;
3608 
3609 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3610 
3611 	domain = vm_page_domain(m);
3612 	critical_enter();
3613 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3614 	if (vm_batchqueue_insert(bq, m)) {
3615 		critical_exit();
3616 		return;
3617 	}
3618 	critical_exit();
3619 
3620 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3621 	vm_pagequeue_lock(pq);
3622 	critical_enter();
3623 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3624 	vm_pqbatch_process(pq, bq, queue);
3625 	vm_pqbatch_process_page(pq, m, queue);
3626 	vm_pagequeue_unlock(pq);
3627 	critical_exit();
3628 }
3629 
3630 /*
3631  *	vm_page_pqbatch_drain:		[ internal use only ]
3632  *
3633  *	Force all per-CPU page queue batch queues to be drained.  This is
3634  *	intended for use in severe memory shortages, to ensure that pages
3635  *	do not remain stuck in the batch queues.
3636  */
3637 void
3638 vm_page_pqbatch_drain(void)
3639 {
3640 	struct thread *td;
3641 	struct vm_domain *vmd;
3642 	struct vm_pagequeue *pq;
3643 	int cpu, domain, queue;
3644 
3645 	td = curthread;
3646 	CPU_FOREACH(cpu) {
3647 		thread_lock(td);
3648 		sched_bind(td, cpu);
3649 		thread_unlock(td);
3650 
3651 		for (domain = 0; domain < vm_ndomains; domain++) {
3652 			vmd = VM_DOMAIN(domain);
3653 			for (queue = 0; queue < PQ_COUNT; queue++) {
3654 				pq = &vmd->vmd_pagequeues[queue];
3655 				vm_pagequeue_lock(pq);
3656 				critical_enter();
3657 				vm_pqbatch_process(pq,
3658 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3659 				critical_exit();
3660 				vm_pagequeue_unlock(pq);
3661 			}
3662 		}
3663 	}
3664 	thread_lock(td);
3665 	sched_unbind(td);
3666 	thread_unlock(td);
3667 }
3668 
3669 /*
3670  *	vm_page_dequeue_deferred:	[ internal use only ]
3671  *
3672  *	Request removal of the given page from its current page
3673  *	queue.  Physical removal from the queue may be deferred
3674  *	indefinitely.
3675  */
3676 void
3677 vm_page_dequeue_deferred(vm_page_t m)
3678 {
3679 	vm_page_astate_t new, old;
3680 
3681 	old = vm_page_astate_load(m);
3682 	do {
3683 		if (old.queue == PQ_NONE) {
3684 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3685 			    ("%s: page %p has unexpected queue state",
3686 			    __func__, m));
3687 			break;
3688 		}
3689 		new = old;
3690 		new.flags |= PGA_DEQUEUE;
3691 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3692 }
3693 
3694 /*
3695  *	vm_page_dequeue:
3696  *
3697  *	Remove the page from whichever page queue it's in, if any, before
3698  *	returning.
3699  */
3700 void
3701 vm_page_dequeue(vm_page_t m)
3702 {
3703 	vm_page_astate_t new, old;
3704 
3705 	old = vm_page_astate_load(m);
3706 	do {
3707 		if (old.queue == PQ_NONE) {
3708 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3709 			    ("%s: page %p has unexpected queue state",
3710 			    __func__, m));
3711 			break;
3712 		}
3713 		new = old;
3714 		new.flags &= ~PGA_QUEUE_OP_MASK;
3715 		new.queue = PQ_NONE;
3716 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3717 
3718 }
3719 
3720 /*
3721  * Schedule the given page for insertion into the specified page queue.
3722  * Physical insertion of the page may be deferred indefinitely.
3723  */
3724 static void
3725 vm_page_enqueue(vm_page_t m, uint8_t queue)
3726 {
3727 
3728 	KASSERT(m->a.queue == PQ_NONE &&
3729 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3730 	    ("%s: page %p is already enqueued", __func__, m));
3731 	KASSERT(m->ref_count > 0,
3732 	    ("%s: page %p does not carry any references", __func__, m));
3733 
3734 	m->a.queue = queue;
3735 	if ((m->a.flags & PGA_REQUEUE) == 0)
3736 		vm_page_aflag_set(m, PGA_REQUEUE);
3737 	vm_page_pqbatch_submit(m, queue);
3738 }
3739 
3740 /*
3741  *	vm_page_free_prep:
3742  *
3743  *	Prepares the given page to be put on the free list,
3744  *	disassociating it from any VM object. The caller may return
3745  *	the page to the free list only if this function returns true.
3746  *
3747  *	The object, if it exists, must be locked, and then the page must
3748  *	be xbusy.  Otherwise the page must be not busied.  A managed
3749  *	page must be unmapped.
3750  */
3751 static bool
3752 vm_page_free_prep(vm_page_t m)
3753 {
3754 
3755 	/*
3756 	 * Synchronize with threads that have dropped a reference to this
3757 	 * page.
3758 	 */
3759 	atomic_thread_fence_acq();
3760 
3761 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3762 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3763 		uint64_t *p;
3764 		int i;
3765 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3766 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3767 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3768 			    m, i, (uintmax_t)*p));
3769 	}
3770 #endif
3771 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3772 		KASSERT(!pmap_page_is_mapped(m),
3773 		    ("vm_page_free_prep: freeing mapped page %p", m));
3774 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3775 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3776 	} else {
3777 		KASSERT(m->a.queue == PQ_NONE,
3778 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3779 	}
3780 	VM_CNT_INC(v_tfree);
3781 
3782 	if (m->object != NULL) {
3783 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3784 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3785 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3786 		    m));
3787 		vm_page_assert_xbusied(m);
3788 
3789 		/*
3790 		 * The object reference can be released without an atomic
3791 		 * operation.
3792 		 */
3793 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3794 		    m->ref_count == VPRC_OBJREF,
3795 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3796 		    m, m->ref_count));
3797 		vm_page_object_remove(m);
3798 		m->ref_count -= VPRC_OBJREF;
3799 	} else
3800 		vm_page_assert_unbusied(m);
3801 
3802 	vm_page_busy_free(m);
3803 
3804 	/*
3805 	 * If fictitious remove object association and
3806 	 * return.
3807 	 */
3808 	if ((m->flags & PG_FICTITIOUS) != 0) {
3809 		KASSERT(m->ref_count == 1,
3810 		    ("fictitious page %p is referenced", m));
3811 		KASSERT(m->a.queue == PQ_NONE,
3812 		    ("fictitious page %p is queued", m));
3813 		return (false);
3814 	}
3815 
3816 	/*
3817 	 * Pages need not be dequeued before they are returned to the physical
3818 	 * memory allocator, but they must at least be marked for a deferred
3819 	 * dequeue.
3820 	 */
3821 	if ((m->oflags & VPO_UNMANAGED) == 0)
3822 		vm_page_dequeue_deferred(m);
3823 
3824 	m->valid = 0;
3825 	vm_page_undirty(m);
3826 
3827 	if (m->ref_count != 0)
3828 		panic("vm_page_free_prep: page %p has references", m);
3829 
3830 	/*
3831 	 * Restore the default memory attribute to the page.
3832 	 */
3833 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3834 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3835 
3836 #if VM_NRESERVLEVEL > 0
3837 	/*
3838 	 * Determine whether the page belongs to a reservation.  If the page was
3839 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3840 	 * as an optimization, we avoid the check in that case.
3841 	 */
3842 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3843 		return (false);
3844 #endif
3845 
3846 	return (true);
3847 }
3848 
3849 /*
3850  *	vm_page_free_toq:
3851  *
3852  *	Returns the given page to the free list, disassociating it
3853  *	from any VM object.
3854  *
3855  *	The object must be locked.  The page must be exclusively busied if it
3856  *	belongs to an object.
3857  */
3858 static void
3859 vm_page_free_toq(vm_page_t m)
3860 {
3861 	struct vm_domain *vmd;
3862 	uma_zone_t zone;
3863 
3864 	if (!vm_page_free_prep(m))
3865 		return;
3866 
3867 	vmd = vm_pagequeue_domain(m);
3868 	zone = vmd->vmd_pgcache[m->pool].zone;
3869 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3870 		uma_zfree(zone, m);
3871 		return;
3872 	}
3873 	vm_domain_free_lock(vmd);
3874 	vm_phys_free_pages(m, 0);
3875 	vm_domain_free_unlock(vmd);
3876 	vm_domain_freecnt_inc(vmd, 1);
3877 }
3878 
3879 /*
3880  *	vm_page_free_pages_toq:
3881  *
3882  *	Returns a list of pages to the free list, disassociating it
3883  *	from any VM object.  In other words, this is equivalent to
3884  *	calling vm_page_free_toq() for each page of a list of VM objects.
3885  */
3886 void
3887 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3888 {
3889 	vm_page_t m;
3890 	int count;
3891 
3892 	if (SLIST_EMPTY(free))
3893 		return;
3894 
3895 	count = 0;
3896 	while ((m = SLIST_FIRST(free)) != NULL) {
3897 		count++;
3898 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3899 		vm_page_free_toq(m);
3900 	}
3901 
3902 	if (update_wire_count)
3903 		vm_wire_sub(count);
3904 }
3905 
3906 /*
3907  * Mark this page as wired down.  For managed pages, this prevents reclamation
3908  * by the page daemon, or when the containing object, if any, is destroyed.
3909  */
3910 void
3911 vm_page_wire(vm_page_t m)
3912 {
3913 	u_int old;
3914 
3915 #ifdef INVARIANTS
3916 	if (m->object != NULL && !vm_page_busied(m) &&
3917 	    !vm_object_busied(m->object))
3918 		VM_OBJECT_ASSERT_LOCKED(m->object);
3919 #endif
3920 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3921 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3922 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3923 
3924 	old = atomic_fetchadd_int(&m->ref_count, 1);
3925 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3926 	    ("vm_page_wire: counter overflow for page %p", m));
3927 	if (VPRC_WIRE_COUNT(old) == 0) {
3928 		if ((m->oflags & VPO_UNMANAGED) == 0)
3929 			vm_page_aflag_set(m, PGA_DEQUEUE);
3930 		vm_wire_add(1);
3931 	}
3932 }
3933 
3934 /*
3935  * Attempt to wire a mapped page following a pmap lookup of that page.
3936  * This may fail if a thread is concurrently tearing down mappings of the page.
3937  * The transient failure is acceptable because it translates to the
3938  * failure of the caller pmap_extract_and_hold(), which should be then
3939  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3940  */
3941 bool
3942 vm_page_wire_mapped(vm_page_t m)
3943 {
3944 	u_int old;
3945 
3946 	old = m->ref_count;
3947 	do {
3948 		KASSERT(old > 0,
3949 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3950 		if ((old & VPRC_BLOCKED) != 0)
3951 			return (false);
3952 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3953 
3954 	if (VPRC_WIRE_COUNT(old) == 0) {
3955 		if ((m->oflags & VPO_UNMANAGED) == 0)
3956 			vm_page_aflag_set(m, PGA_DEQUEUE);
3957 		vm_wire_add(1);
3958 	}
3959 	return (true);
3960 }
3961 
3962 /*
3963  * Release a wiring reference to a managed page.  If the page still belongs to
3964  * an object, update its position in the page queues to reflect the reference.
3965  * If the wiring was the last reference to the page, free the page.
3966  */
3967 static void
3968 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3969 {
3970 	u_int old;
3971 
3972 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3973 	    ("%s: page %p is unmanaged", __func__, m));
3974 
3975 	/*
3976 	 * Update LRU state before releasing the wiring reference.
3977 	 * Use a release store when updating the reference count to
3978 	 * synchronize with vm_page_free_prep().
3979 	 */
3980 	old = m->ref_count;
3981 	do {
3982 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3983 		    ("vm_page_unwire: wire count underflow for page %p", m));
3984 
3985 		if (old > VPRC_OBJREF + 1) {
3986 			/*
3987 			 * The page has at least one other wiring reference.  An
3988 			 * earlier iteration of this loop may have called
3989 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3990 			 * re-set it if necessary.
3991 			 */
3992 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3993 				vm_page_aflag_set(m, PGA_DEQUEUE);
3994 		} else if (old == VPRC_OBJREF + 1) {
3995 			/*
3996 			 * This is the last wiring.  Clear PGA_DEQUEUE and
3997 			 * update the page's queue state to reflect the
3998 			 * reference.  If the page does not belong to an object
3999 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4000 			 * clear leftover queue state.
4001 			 */
4002 			vm_page_release_toq(m, nqueue, noreuse);
4003 		} else if (old == 1) {
4004 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4005 		}
4006 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4007 
4008 	if (VPRC_WIRE_COUNT(old) == 1) {
4009 		vm_wire_sub(1);
4010 		if (old == 1)
4011 			vm_page_free(m);
4012 	}
4013 }
4014 
4015 /*
4016  * Release one wiring of the specified page, potentially allowing it to be
4017  * paged out.
4018  *
4019  * Only managed pages belonging to an object can be paged out.  If the number
4020  * of wirings transitions to zero and the page is eligible for page out, then
4021  * the page is added to the specified paging queue.  If the released wiring
4022  * represented the last reference to the page, the page is freed.
4023  */
4024 void
4025 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4026 {
4027 
4028 	KASSERT(nqueue < PQ_COUNT,
4029 	    ("vm_page_unwire: invalid queue %u request for page %p",
4030 	    nqueue, m));
4031 
4032 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4033 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4034 			vm_page_free(m);
4035 		return;
4036 	}
4037 	vm_page_unwire_managed(m, nqueue, false);
4038 }
4039 
4040 /*
4041  * Unwire a page without (re-)inserting it into a page queue.  It is up
4042  * to the caller to enqueue, requeue, or free the page as appropriate.
4043  * In most cases involving managed pages, vm_page_unwire() should be used
4044  * instead.
4045  */
4046 bool
4047 vm_page_unwire_noq(vm_page_t m)
4048 {
4049 	u_int old;
4050 
4051 	old = vm_page_drop(m, 1);
4052 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4053 	    ("%s: counter underflow for page %p", __func__,  m));
4054 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4055 	    ("%s: missing ref on fictitious page %p", __func__, m));
4056 
4057 	if (VPRC_WIRE_COUNT(old) > 1)
4058 		return (false);
4059 	if ((m->oflags & VPO_UNMANAGED) == 0)
4060 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4061 	vm_wire_sub(1);
4062 	return (true);
4063 }
4064 
4065 /*
4066  * Ensure that the page ends up in the specified page queue.  If the page is
4067  * active or being moved to the active queue, ensure that its act_count is
4068  * at least ACT_INIT but do not otherwise mess with it.
4069  */
4070 static __always_inline void
4071 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4072 {
4073 	vm_page_astate_t old, new;
4074 
4075 	KASSERT(m->ref_count > 0,
4076 	    ("%s: page %p does not carry any references", __func__, m));
4077 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4078 	    ("%s: invalid flags %x", __func__, nflag));
4079 
4080 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4081 		return;
4082 
4083 	old = vm_page_astate_load(m);
4084 	do {
4085 		if ((old.flags & PGA_DEQUEUE) != 0)
4086 			break;
4087 		new = old;
4088 		new.flags &= ~PGA_QUEUE_OP_MASK;
4089 		if (nqueue == PQ_ACTIVE)
4090 			new.act_count = max(old.act_count, ACT_INIT);
4091 		if (old.queue == nqueue) {
4092 			if (nqueue != PQ_ACTIVE)
4093 				new.flags |= nflag;
4094 		} else {
4095 			new.flags |= nflag;
4096 			new.queue = nqueue;
4097 		}
4098 	} while (!vm_page_pqstate_commit(m, &old, new));
4099 }
4100 
4101 /*
4102  * Put the specified page on the active list (if appropriate).
4103  */
4104 void
4105 vm_page_activate(vm_page_t m)
4106 {
4107 
4108 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4109 }
4110 
4111 /*
4112  * Move the specified page to the tail of the inactive queue, or requeue
4113  * the page if it is already in the inactive queue.
4114  */
4115 void
4116 vm_page_deactivate(vm_page_t m)
4117 {
4118 
4119 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4120 }
4121 
4122 void
4123 vm_page_deactivate_noreuse(vm_page_t m)
4124 {
4125 
4126 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4127 }
4128 
4129 /*
4130  * Put a page in the laundry, or requeue it if it is already there.
4131  */
4132 void
4133 vm_page_launder(vm_page_t m)
4134 {
4135 
4136 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4137 }
4138 
4139 /*
4140  * Put a page in the PQ_UNSWAPPABLE holding queue.
4141  */
4142 void
4143 vm_page_unswappable(vm_page_t m)
4144 {
4145 
4146 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4147 	    ("page %p already unswappable", m));
4148 
4149 	vm_page_dequeue(m);
4150 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4151 }
4152 
4153 /*
4154  * Release a page back to the page queues in preparation for unwiring.
4155  */
4156 static void
4157 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4158 {
4159 	vm_page_astate_t old, new;
4160 	uint16_t nflag;
4161 
4162 	/*
4163 	 * Use a check of the valid bits to determine whether we should
4164 	 * accelerate reclamation of the page.  The object lock might not be
4165 	 * held here, in which case the check is racy.  At worst we will either
4166 	 * accelerate reclamation of a valid page and violate LRU, or
4167 	 * unnecessarily defer reclamation of an invalid page.
4168 	 *
4169 	 * If we were asked to not cache the page, place it near the head of the
4170 	 * inactive queue so that is reclaimed sooner.
4171 	 */
4172 	if (noreuse || m->valid == 0) {
4173 		nqueue = PQ_INACTIVE;
4174 		nflag = PGA_REQUEUE_HEAD;
4175 	} else {
4176 		nflag = PGA_REQUEUE;
4177 	}
4178 
4179 	old = vm_page_astate_load(m);
4180 	do {
4181 		new = old;
4182 
4183 		/*
4184 		 * If the page is already in the active queue and we are not
4185 		 * trying to accelerate reclamation, simply mark it as
4186 		 * referenced and avoid any queue operations.
4187 		 */
4188 		new.flags &= ~PGA_QUEUE_OP_MASK;
4189 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4190 			new.flags |= PGA_REFERENCED;
4191 		else {
4192 			new.flags |= nflag;
4193 			new.queue = nqueue;
4194 		}
4195 	} while (!vm_page_pqstate_commit(m, &old, new));
4196 }
4197 
4198 /*
4199  * Unwire a page and either attempt to free it or re-add it to the page queues.
4200  */
4201 void
4202 vm_page_release(vm_page_t m, int flags)
4203 {
4204 	vm_object_t object;
4205 
4206 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4207 	    ("vm_page_release: page %p is unmanaged", m));
4208 
4209 	if ((flags & VPR_TRYFREE) != 0) {
4210 		for (;;) {
4211 			object = atomic_load_ptr(&m->object);
4212 			if (object == NULL)
4213 				break;
4214 			/* Depends on type-stability. */
4215 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4216 				break;
4217 			if (object == m->object) {
4218 				vm_page_release_locked(m, flags);
4219 				VM_OBJECT_WUNLOCK(object);
4220 				return;
4221 			}
4222 			VM_OBJECT_WUNLOCK(object);
4223 		}
4224 	}
4225 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4226 }
4227 
4228 /* See vm_page_release(). */
4229 void
4230 vm_page_release_locked(vm_page_t m, int flags)
4231 {
4232 
4233 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4234 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4235 	    ("vm_page_release_locked: page %p is unmanaged", m));
4236 
4237 	if (vm_page_unwire_noq(m)) {
4238 		if ((flags & VPR_TRYFREE) != 0 &&
4239 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4240 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4241 			/*
4242 			 * An unlocked lookup may have wired the page before the
4243 			 * busy lock was acquired, in which case the page must
4244 			 * not be freed.
4245 			 */
4246 			if (__predict_true(!vm_page_wired(m))) {
4247 				vm_page_free(m);
4248 				return;
4249 			}
4250 			vm_page_xunbusy(m);
4251 		} else {
4252 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4253 		}
4254 	}
4255 }
4256 
4257 static bool
4258 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4259 {
4260 	u_int old;
4261 
4262 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4263 	    ("vm_page_try_blocked_op: page %p has no object", m));
4264 	KASSERT(vm_page_busied(m),
4265 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4266 	VM_OBJECT_ASSERT_LOCKED(m->object);
4267 
4268 	old = m->ref_count;
4269 	do {
4270 		KASSERT(old != 0,
4271 		    ("vm_page_try_blocked_op: page %p has no references", m));
4272 		if (VPRC_WIRE_COUNT(old) != 0)
4273 			return (false);
4274 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4275 
4276 	(op)(m);
4277 
4278 	/*
4279 	 * If the object is read-locked, new wirings may be created via an
4280 	 * object lookup.
4281 	 */
4282 	old = vm_page_drop(m, VPRC_BLOCKED);
4283 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4284 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4285 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4286 	    old, m));
4287 	return (true);
4288 }
4289 
4290 /*
4291  * Atomically check for wirings and remove all mappings of the page.
4292  */
4293 bool
4294 vm_page_try_remove_all(vm_page_t m)
4295 {
4296 
4297 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4298 }
4299 
4300 /*
4301  * Atomically check for wirings and remove all writeable mappings of the page.
4302  */
4303 bool
4304 vm_page_try_remove_write(vm_page_t m)
4305 {
4306 
4307 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4308 }
4309 
4310 /*
4311  * vm_page_advise
4312  *
4313  * 	Apply the specified advice to the given page.
4314  */
4315 void
4316 vm_page_advise(vm_page_t m, int advice)
4317 {
4318 
4319 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4320 	vm_page_assert_xbusied(m);
4321 
4322 	if (advice == MADV_FREE)
4323 		/*
4324 		 * Mark the page clean.  This will allow the page to be freed
4325 		 * without first paging it out.  MADV_FREE pages are often
4326 		 * quickly reused by malloc(3), so we do not do anything that
4327 		 * would result in a page fault on a later access.
4328 		 */
4329 		vm_page_undirty(m);
4330 	else if (advice != MADV_DONTNEED) {
4331 		if (advice == MADV_WILLNEED)
4332 			vm_page_activate(m);
4333 		return;
4334 	}
4335 
4336 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4337 		vm_page_dirty(m);
4338 
4339 	/*
4340 	 * Clear any references to the page.  Otherwise, the page daemon will
4341 	 * immediately reactivate the page.
4342 	 */
4343 	vm_page_aflag_clear(m, PGA_REFERENCED);
4344 
4345 	/*
4346 	 * Place clean pages near the head of the inactive queue rather than
4347 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4348 	 * the page will be reused quickly.  Dirty pages not already in the
4349 	 * laundry are moved there.
4350 	 */
4351 	if (m->dirty == 0)
4352 		vm_page_deactivate_noreuse(m);
4353 	else if (!vm_page_in_laundry(m))
4354 		vm_page_launder(m);
4355 }
4356 
4357 /*
4358  *	vm_page_grab_release
4359  *
4360  *	Helper routine for grab functions to release busy on return.
4361  */
4362 static inline void
4363 vm_page_grab_release(vm_page_t m, int allocflags)
4364 {
4365 
4366 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4367 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4368 			vm_page_sunbusy(m);
4369 		else
4370 			vm_page_xunbusy(m);
4371 	}
4372 }
4373 
4374 /*
4375  *	vm_page_grab_sleep
4376  *
4377  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4378  *	if the caller should retry and false otherwise.
4379  *
4380  *	If the object is locked on entry the object will be unlocked with
4381  *	false returns and still locked but possibly having been dropped
4382  *	with true returns.
4383  */
4384 static bool
4385 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4386     const char *wmesg, int allocflags, bool locked)
4387 {
4388 
4389 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4390 		return (false);
4391 
4392 	/*
4393 	 * Reference the page before unlocking and sleeping so that
4394 	 * the page daemon is less likely to reclaim it.
4395 	 */
4396 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4397 		vm_page_reference(m);
4398 
4399 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4400 	    locked)
4401 		VM_OBJECT_WLOCK(object);
4402 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4403 		return (false);
4404 
4405 	return (true);
4406 }
4407 
4408 /*
4409  * Assert that the grab flags are valid.
4410  */
4411 static inline void
4412 vm_page_grab_check(int allocflags)
4413 {
4414 
4415 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4416 	    (allocflags & VM_ALLOC_WIRED) != 0,
4417 	    ("vm_page_grab*: the pages must be busied or wired"));
4418 
4419 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4420 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4421 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4422 }
4423 
4424 /*
4425  * Calculate the page allocation flags for grab.
4426  */
4427 static inline int
4428 vm_page_grab_pflags(int allocflags)
4429 {
4430 	int pflags;
4431 
4432 	pflags = allocflags &
4433 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4434 	    VM_ALLOC_NOBUSY);
4435 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4436 		pflags |= VM_ALLOC_WAITFAIL;
4437 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4438 		pflags |= VM_ALLOC_SBUSY;
4439 
4440 	return (pflags);
4441 }
4442 
4443 /*
4444  * Grab a page, waiting until we are waken up due to the page
4445  * changing state.  We keep on waiting, if the page continues
4446  * to be in the object.  If the page doesn't exist, first allocate it
4447  * and then conditionally zero it.
4448  *
4449  * This routine may sleep.
4450  *
4451  * The object must be locked on entry.  The lock will, however, be released
4452  * and reacquired if the routine sleeps.
4453  */
4454 vm_page_t
4455 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4456 {
4457 	vm_page_t m;
4458 
4459 	VM_OBJECT_ASSERT_WLOCKED(object);
4460 	vm_page_grab_check(allocflags);
4461 
4462 retrylookup:
4463 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4464 		if (!vm_page_tryacquire(m, allocflags)) {
4465 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4466 			    allocflags, true))
4467 				goto retrylookup;
4468 			return (NULL);
4469 		}
4470 		goto out;
4471 	}
4472 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4473 		return (NULL);
4474 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4475 	if (m == NULL) {
4476 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4477 			return (NULL);
4478 		goto retrylookup;
4479 	}
4480 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4481 		pmap_zero_page(m);
4482 
4483 out:
4484 	vm_page_grab_release(m, allocflags);
4485 
4486 	return (m);
4487 }
4488 
4489 /*
4490  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4491  * and an optional previous page to avoid the radix lookup.  The resulting
4492  * page will be validated against the identity tuple and busied or wired
4493  * as requested.  A NULL *mp return guarantees that the page was not in
4494  * radix at the time of the call but callers must perform higher level
4495  * synchronization or retry the operation under a lock if they require
4496  * an atomic answer.  This is the only lock free validation routine,
4497  * other routines can depend on the resulting page state.
4498  *
4499  * The return value indicates whether the operation failed due to caller
4500  * flags.  The return is tri-state with mp:
4501  *
4502  * (true, *mp != NULL) - The operation was successful.
4503  * (true, *mp == NULL) - The page was not found in tree.
4504  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4505  */
4506 static bool
4507 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4508     vm_page_t prev, vm_page_t *mp, int allocflags)
4509 {
4510 	vm_page_t m;
4511 
4512 	vm_page_grab_check(allocflags);
4513 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4514 
4515 	*mp = NULL;
4516 	for (;;) {
4517 		/*
4518 		 * We may see a false NULL here because the previous page
4519 		 * has been removed or just inserted and the list is loaded
4520 		 * without barriers.  Switch to radix to verify.
4521 		 */
4522 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4523 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4524 		    atomic_load_ptr(&m->object) != object) {
4525 			prev = NULL;
4526 			/*
4527 			 * This guarantees the result is instantaneously
4528 			 * correct.
4529 			 */
4530 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4531 		}
4532 		if (m == NULL)
4533 			return (true);
4534 		if (vm_page_trybusy(m, allocflags)) {
4535 			if (m->object == object && m->pindex == pindex)
4536 				break;
4537 			/* relookup. */
4538 			vm_page_busy_release(m);
4539 			cpu_spinwait();
4540 			continue;
4541 		}
4542 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4543 		    allocflags, false))
4544 			return (false);
4545 	}
4546 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4547 		vm_page_wire(m);
4548 	vm_page_grab_release(m, allocflags);
4549 	*mp = m;
4550 	return (true);
4551 }
4552 
4553 /*
4554  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4555  * is not set.
4556  */
4557 vm_page_t
4558 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4559 {
4560 	vm_page_t m;
4561 
4562 	vm_page_grab_check(allocflags);
4563 
4564 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4565 		return (NULL);
4566 	if (m != NULL)
4567 		return (m);
4568 
4569 	/*
4570 	 * The radix lockless lookup should never return a false negative
4571 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4572 	 * was no page present at the instant of the call.  A NOCREAT caller
4573 	 * must handle create races gracefully.
4574 	 */
4575 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4576 		return (NULL);
4577 
4578 	VM_OBJECT_WLOCK(object);
4579 	m = vm_page_grab(object, pindex, allocflags);
4580 	VM_OBJECT_WUNLOCK(object);
4581 
4582 	return (m);
4583 }
4584 
4585 /*
4586  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4587  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4588  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4589  * in simultaneously.  Additional pages will be left on a paging queue but
4590  * will neither be wired nor busy regardless of allocflags.
4591  */
4592 int
4593 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4594 {
4595 	vm_page_t m;
4596 	vm_page_t ma[VM_INITIAL_PAGEIN];
4597 	int after, i, pflags, rv;
4598 
4599 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4600 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4601 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4602 	KASSERT((allocflags &
4603 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4604 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4605 	VM_OBJECT_ASSERT_WLOCKED(object);
4606 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4607 	    VM_ALLOC_WIRED);
4608 	pflags |= VM_ALLOC_WAITFAIL;
4609 
4610 retrylookup:
4611 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4612 		/*
4613 		 * If the page is fully valid it can only become invalid
4614 		 * with the object lock held.  If it is not valid it can
4615 		 * become valid with the busy lock held.  Therefore, we
4616 		 * may unnecessarily lock the exclusive busy here if we
4617 		 * race with I/O completion not using the object lock.
4618 		 * However, we will not end up with an invalid page and a
4619 		 * shared lock.
4620 		 */
4621 		if (!vm_page_trybusy(m,
4622 		    vm_page_all_valid(m) ? allocflags : 0)) {
4623 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4624 			    allocflags, true);
4625 			goto retrylookup;
4626 		}
4627 		if (vm_page_all_valid(m))
4628 			goto out;
4629 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4630 			vm_page_busy_release(m);
4631 			*mp = NULL;
4632 			return (VM_PAGER_FAIL);
4633 		}
4634 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4635 		*mp = NULL;
4636 		return (VM_PAGER_FAIL);
4637 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4638 		goto retrylookup;
4639 	}
4640 
4641 	vm_page_assert_xbusied(m);
4642 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4643 		after = MIN(after, VM_INITIAL_PAGEIN);
4644 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4645 		after = MAX(after, 1);
4646 		ma[0] = m;
4647 		for (i = 1; i < after; i++) {
4648 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4649 				if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4650 					break;
4651 			} else {
4652 				ma[i] = vm_page_alloc(object, m->pindex + i,
4653 				    VM_ALLOC_NORMAL);
4654 				if (ma[i] == NULL)
4655 					break;
4656 			}
4657 		}
4658 		after = i;
4659 		vm_object_pip_add(object, after);
4660 		VM_OBJECT_WUNLOCK(object);
4661 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4662 		VM_OBJECT_WLOCK(object);
4663 		vm_object_pip_wakeupn(object, after);
4664 		/* Pager may have replaced a page. */
4665 		m = ma[0];
4666 		if (rv != VM_PAGER_OK) {
4667 			for (i = 0; i < after; i++) {
4668 				if (!vm_page_wired(ma[i]))
4669 					vm_page_free(ma[i]);
4670 				else
4671 					vm_page_xunbusy(ma[i]);
4672 			}
4673 			*mp = NULL;
4674 			return (rv);
4675 		}
4676 		for (i = 1; i < after; i++)
4677 			vm_page_readahead_finish(ma[i]);
4678 		MPASS(vm_page_all_valid(m));
4679 	} else {
4680 		vm_page_zero_invalid(m, TRUE);
4681 	}
4682 out:
4683 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4684 		vm_page_wire(m);
4685 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4686 		vm_page_busy_downgrade(m);
4687 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4688 		vm_page_busy_release(m);
4689 	*mp = m;
4690 	return (VM_PAGER_OK);
4691 }
4692 
4693 /*
4694  * Locklessly grab a valid page.  If the page is not valid or not yet
4695  * allocated this will fall back to the object lock method.
4696  */
4697 int
4698 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4699     vm_pindex_t pindex, int allocflags)
4700 {
4701 	vm_page_t m;
4702 	int flags;
4703 	int error;
4704 
4705 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4706 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4707 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4708 	    "mismatch"));
4709 	KASSERT((allocflags &
4710 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4711 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4712 
4713 	/*
4714 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4715 	 * before we can inspect the valid field and return a wired page.
4716 	 */
4717 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4718 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4719 		return (VM_PAGER_FAIL);
4720 	if ((m = *mp) != NULL) {
4721 		if (vm_page_all_valid(m)) {
4722 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4723 				vm_page_wire(m);
4724 			vm_page_grab_release(m, allocflags);
4725 			return (VM_PAGER_OK);
4726 		}
4727 		vm_page_busy_release(m);
4728 	}
4729 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4730 		*mp = NULL;
4731 		return (VM_PAGER_FAIL);
4732 	}
4733 	VM_OBJECT_WLOCK(object);
4734 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4735 	VM_OBJECT_WUNLOCK(object);
4736 
4737 	return (error);
4738 }
4739 
4740 /*
4741  * Return the specified range of pages from the given object.  For each
4742  * page offset within the range, if a page already exists within the object
4743  * at that offset and it is busy, then wait for it to change state.  If,
4744  * instead, the page doesn't exist, then allocate it.
4745  *
4746  * The caller must always specify an allocation class.
4747  *
4748  * allocation classes:
4749  *	VM_ALLOC_NORMAL		normal process request
4750  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4751  *
4752  * The caller must always specify that the pages are to be busied and/or
4753  * wired.
4754  *
4755  * optional allocation flags:
4756  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4757  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4758  *	VM_ALLOC_NOWAIT		do not sleep
4759  *	VM_ALLOC_SBUSY		set page to sbusy state
4760  *	VM_ALLOC_WIRED		wire the pages
4761  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4762  *
4763  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4764  * may return a partial prefix of the requested range.
4765  */
4766 int
4767 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4768     vm_page_t *ma, int count)
4769 {
4770 	vm_page_t m, mpred;
4771 	int pflags;
4772 	int i;
4773 
4774 	VM_OBJECT_ASSERT_WLOCKED(object);
4775 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4776 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4777 	KASSERT(count > 0,
4778 	    ("vm_page_grab_pages: invalid page count %d", count));
4779 	vm_page_grab_check(allocflags);
4780 
4781 	pflags = vm_page_grab_pflags(allocflags);
4782 	i = 0;
4783 retrylookup:
4784 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4785 	if (m == NULL || m->pindex != pindex + i) {
4786 		mpred = m;
4787 		m = NULL;
4788 	} else
4789 		mpred = TAILQ_PREV(m, pglist, listq);
4790 	for (; i < count; i++) {
4791 		if (m != NULL) {
4792 			if (!vm_page_tryacquire(m, allocflags)) {
4793 				if (vm_page_grab_sleep(object, m, pindex + i,
4794 				    "grbmaw", allocflags, true))
4795 					goto retrylookup;
4796 				break;
4797 			}
4798 		} else {
4799 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4800 				break;
4801 			m = vm_page_alloc_after(object, pindex + i,
4802 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4803 			if (m == NULL) {
4804 				if ((allocflags & (VM_ALLOC_NOWAIT |
4805 				    VM_ALLOC_WAITFAIL)) != 0)
4806 					break;
4807 				goto retrylookup;
4808 			}
4809 		}
4810 		if (vm_page_none_valid(m) &&
4811 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4812 			if ((m->flags & PG_ZERO) == 0)
4813 				pmap_zero_page(m);
4814 			vm_page_valid(m);
4815 		}
4816 		vm_page_grab_release(m, allocflags);
4817 		ma[i] = mpred = m;
4818 		m = vm_page_next(m);
4819 	}
4820 	return (i);
4821 }
4822 
4823 /*
4824  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4825  * and will fall back to the locked variant to handle allocation.
4826  */
4827 int
4828 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4829     int allocflags, vm_page_t *ma, int count)
4830 {
4831 	vm_page_t m, pred;
4832 	int flags;
4833 	int i;
4834 
4835 	KASSERT(count > 0,
4836 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4837 	vm_page_grab_check(allocflags);
4838 
4839 	/*
4840 	 * Modify flags for lockless acquire to hold the page until we
4841 	 * set it valid if necessary.
4842 	 */
4843 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4844 	pred = NULL;
4845 	for (i = 0; i < count; i++, pindex++) {
4846 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4847 			return (i);
4848 		if (m == NULL)
4849 			break;
4850 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4851 			if ((m->flags & PG_ZERO) == 0)
4852 				pmap_zero_page(m);
4853 			vm_page_valid(m);
4854 		}
4855 		/* m will still be wired or busy according to flags. */
4856 		vm_page_grab_release(m, allocflags);
4857 		pred = ma[i] = m;
4858 	}
4859 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4860 		return (i);
4861 	count -= i;
4862 	VM_OBJECT_WLOCK(object);
4863 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4864 	VM_OBJECT_WUNLOCK(object);
4865 
4866 	return (i);
4867 }
4868 
4869 /*
4870  * Mapping function for valid or dirty bits in a page.
4871  *
4872  * Inputs are required to range within a page.
4873  */
4874 vm_page_bits_t
4875 vm_page_bits(int base, int size)
4876 {
4877 	int first_bit;
4878 	int last_bit;
4879 
4880 	KASSERT(
4881 	    base + size <= PAGE_SIZE,
4882 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4883 	);
4884 
4885 	if (size == 0)		/* handle degenerate case */
4886 		return (0);
4887 
4888 	first_bit = base >> DEV_BSHIFT;
4889 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4890 
4891 	return (((vm_page_bits_t)2 << last_bit) -
4892 	    ((vm_page_bits_t)1 << first_bit));
4893 }
4894 
4895 void
4896 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4897 {
4898 
4899 #if PAGE_SIZE == 32768
4900 	atomic_set_64((uint64_t *)bits, set);
4901 #elif PAGE_SIZE == 16384
4902 	atomic_set_32((uint32_t *)bits, set);
4903 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4904 	atomic_set_16((uint16_t *)bits, set);
4905 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4906 	atomic_set_8((uint8_t *)bits, set);
4907 #else		/* PAGE_SIZE <= 8192 */
4908 	uintptr_t addr;
4909 	int shift;
4910 
4911 	addr = (uintptr_t)bits;
4912 	/*
4913 	 * Use a trick to perform a 32-bit atomic on the
4914 	 * containing aligned word, to not depend on the existence
4915 	 * of atomic_{set, clear}_{8, 16}.
4916 	 */
4917 	shift = addr & (sizeof(uint32_t) - 1);
4918 #if BYTE_ORDER == BIG_ENDIAN
4919 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4920 #else
4921 	shift *= NBBY;
4922 #endif
4923 	addr &= ~(sizeof(uint32_t) - 1);
4924 	atomic_set_32((uint32_t *)addr, set << shift);
4925 #endif		/* PAGE_SIZE */
4926 }
4927 
4928 static inline void
4929 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4930 {
4931 
4932 #if PAGE_SIZE == 32768
4933 	atomic_clear_64((uint64_t *)bits, clear);
4934 #elif PAGE_SIZE == 16384
4935 	atomic_clear_32((uint32_t *)bits, clear);
4936 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4937 	atomic_clear_16((uint16_t *)bits, clear);
4938 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4939 	atomic_clear_8((uint8_t *)bits, clear);
4940 #else		/* PAGE_SIZE <= 8192 */
4941 	uintptr_t addr;
4942 	int shift;
4943 
4944 	addr = (uintptr_t)bits;
4945 	/*
4946 	 * Use a trick to perform a 32-bit atomic on the
4947 	 * containing aligned word, to not depend on the existence
4948 	 * of atomic_{set, clear}_{8, 16}.
4949 	 */
4950 	shift = addr & (sizeof(uint32_t) - 1);
4951 #if BYTE_ORDER == BIG_ENDIAN
4952 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4953 #else
4954 	shift *= NBBY;
4955 #endif
4956 	addr &= ~(sizeof(uint32_t) - 1);
4957 	atomic_clear_32((uint32_t *)addr, clear << shift);
4958 #endif		/* PAGE_SIZE */
4959 }
4960 
4961 static inline vm_page_bits_t
4962 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4963 {
4964 #if PAGE_SIZE == 32768
4965 	uint64_t old;
4966 
4967 	old = *bits;
4968 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4969 	return (old);
4970 #elif PAGE_SIZE == 16384
4971 	uint32_t old;
4972 
4973 	old = *bits;
4974 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4975 	return (old);
4976 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4977 	uint16_t old;
4978 
4979 	old = *bits;
4980 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4981 	return (old);
4982 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4983 	uint8_t old;
4984 
4985 	old = *bits;
4986 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4987 	return (old);
4988 #else		/* PAGE_SIZE <= 4096*/
4989 	uintptr_t addr;
4990 	uint32_t old, new, mask;
4991 	int shift;
4992 
4993 	addr = (uintptr_t)bits;
4994 	/*
4995 	 * Use a trick to perform a 32-bit atomic on the
4996 	 * containing aligned word, to not depend on the existence
4997 	 * of atomic_{set, swap, clear}_{8, 16}.
4998 	 */
4999 	shift = addr & (sizeof(uint32_t) - 1);
5000 #if BYTE_ORDER == BIG_ENDIAN
5001 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5002 #else
5003 	shift *= NBBY;
5004 #endif
5005 	addr &= ~(sizeof(uint32_t) - 1);
5006 	mask = VM_PAGE_BITS_ALL << shift;
5007 
5008 	old = *bits;
5009 	do {
5010 		new = old & ~mask;
5011 		new |= newbits << shift;
5012 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5013 	return (old >> shift);
5014 #endif		/* PAGE_SIZE */
5015 }
5016 
5017 /*
5018  *	vm_page_set_valid_range:
5019  *
5020  *	Sets portions of a page valid.  The arguments are expected
5021  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5022  *	of any partial chunks touched by the range.  The invalid portion of
5023  *	such chunks will be zeroed.
5024  *
5025  *	(base + size) must be less then or equal to PAGE_SIZE.
5026  */
5027 void
5028 vm_page_set_valid_range(vm_page_t m, int base, int size)
5029 {
5030 	int endoff, frag;
5031 	vm_page_bits_t pagebits;
5032 
5033 	vm_page_assert_busied(m);
5034 	if (size == 0)	/* handle degenerate case */
5035 		return;
5036 
5037 	/*
5038 	 * If the base is not DEV_BSIZE aligned and the valid
5039 	 * bit is clear, we have to zero out a portion of the
5040 	 * first block.
5041 	 */
5042 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5043 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5044 		pmap_zero_page_area(m, frag, base - frag);
5045 
5046 	/*
5047 	 * If the ending offset is not DEV_BSIZE aligned and the
5048 	 * valid bit is clear, we have to zero out a portion of
5049 	 * the last block.
5050 	 */
5051 	endoff = base + size;
5052 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5053 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5054 		pmap_zero_page_area(m, endoff,
5055 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5056 
5057 	/*
5058 	 * Assert that no previously invalid block that is now being validated
5059 	 * is already dirty.
5060 	 */
5061 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5062 	    ("vm_page_set_valid_range: page %p is dirty", m));
5063 
5064 	/*
5065 	 * Set valid bits inclusive of any overlap.
5066 	 */
5067 	pagebits = vm_page_bits(base, size);
5068 	if (vm_page_xbusied(m))
5069 		m->valid |= pagebits;
5070 	else
5071 		vm_page_bits_set(m, &m->valid, pagebits);
5072 }
5073 
5074 /*
5075  * Set the page dirty bits and free the invalid swap space if
5076  * present.  Returns the previous dirty bits.
5077  */
5078 vm_page_bits_t
5079 vm_page_set_dirty(vm_page_t m)
5080 {
5081 	vm_page_bits_t old;
5082 
5083 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5084 
5085 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5086 		old = m->dirty;
5087 		m->dirty = VM_PAGE_BITS_ALL;
5088 	} else
5089 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5090 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5091 		vm_pager_page_unswapped(m);
5092 
5093 	return (old);
5094 }
5095 
5096 /*
5097  * Clear the given bits from the specified page's dirty field.
5098  */
5099 static __inline void
5100 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5101 {
5102 
5103 	vm_page_assert_busied(m);
5104 
5105 	/*
5106 	 * If the page is xbusied and not write mapped we are the
5107 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5108 	 * layer can call vm_page_dirty() without holding a distinguished
5109 	 * lock.  The combination of page busy and atomic operations
5110 	 * suffice to guarantee consistency of the page dirty field.
5111 	 */
5112 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5113 		m->dirty &= ~pagebits;
5114 	else
5115 		vm_page_bits_clear(m, &m->dirty, pagebits);
5116 }
5117 
5118 /*
5119  *	vm_page_set_validclean:
5120  *
5121  *	Sets portions of a page valid and clean.  The arguments are expected
5122  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5123  *	of any partial chunks touched by the range.  The invalid portion of
5124  *	such chunks will be zero'd.
5125  *
5126  *	(base + size) must be less then or equal to PAGE_SIZE.
5127  */
5128 void
5129 vm_page_set_validclean(vm_page_t m, int base, int size)
5130 {
5131 	vm_page_bits_t oldvalid, pagebits;
5132 	int endoff, frag;
5133 
5134 	vm_page_assert_busied(m);
5135 	if (size == 0)	/* handle degenerate case */
5136 		return;
5137 
5138 	/*
5139 	 * If the base is not DEV_BSIZE aligned and the valid
5140 	 * bit is clear, we have to zero out a portion of the
5141 	 * first block.
5142 	 */
5143 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5144 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5145 		pmap_zero_page_area(m, frag, base - frag);
5146 
5147 	/*
5148 	 * If the ending offset is not DEV_BSIZE aligned and the
5149 	 * valid bit is clear, we have to zero out a portion of
5150 	 * the last block.
5151 	 */
5152 	endoff = base + size;
5153 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5154 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5155 		pmap_zero_page_area(m, endoff,
5156 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5157 
5158 	/*
5159 	 * Set valid, clear dirty bits.  If validating the entire
5160 	 * page we can safely clear the pmap modify bit.  We also
5161 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5162 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5163 	 * be set again.
5164 	 *
5165 	 * We set valid bits inclusive of any overlap, but we can only
5166 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5167 	 * the range.
5168 	 */
5169 	oldvalid = m->valid;
5170 	pagebits = vm_page_bits(base, size);
5171 	if (vm_page_xbusied(m))
5172 		m->valid |= pagebits;
5173 	else
5174 		vm_page_bits_set(m, &m->valid, pagebits);
5175 #if 0	/* NOT YET */
5176 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5177 		frag = DEV_BSIZE - frag;
5178 		base += frag;
5179 		size -= frag;
5180 		if (size < 0)
5181 			size = 0;
5182 	}
5183 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5184 #endif
5185 	if (base == 0 && size == PAGE_SIZE) {
5186 		/*
5187 		 * The page can only be modified within the pmap if it is
5188 		 * mapped, and it can only be mapped if it was previously
5189 		 * fully valid.
5190 		 */
5191 		if (oldvalid == VM_PAGE_BITS_ALL)
5192 			/*
5193 			 * Perform the pmap_clear_modify() first.  Otherwise,
5194 			 * a concurrent pmap operation, such as
5195 			 * pmap_protect(), could clear a modification in the
5196 			 * pmap and set the dirty field on the page before
5197 			 * pmap_clear_modify() had begun and after the dirty
5198 			 * field was cleared here.
5199 			 */
5200 			pmap_clear_modify(m);
5201 		m->dirty = 0;
5202 		vm_page_aflag_clear(m, PGA_NOSYNC);
5203 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5204 		m->dirty &= ~pagebits;
5205 	else
5206 		vm_page_clear_dirty_mask(m, pagebits);
5207 }
5208 
5209 void
5210 vm_page_clear_dirty(vm_page_t m, int base, int size)
5211 {
5212 
5213 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5214 }
5215 
5216 /*
5217  *	vm_page_set_invalid:
5218  *
5219  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5220  *	valid and dirty bits for the effected areas are cleared.
5221  */
5222 void
5223 vm_page_set_invalid(vm_page_t m, int base, int size)
5224 {
5225 	vm_page_bits_t bits;
5226 	vm_object_t object;
5227 
5228 	/*
5229 	 * The object lock is required so that pages can't be mapped
5230 	 * read-only while we're in the process of invalidating them.
5231 	 */
5232 	object = m->object;
5233 	VM_OBJECT_ASSERT_WLOCKED(object);
5234 	vm_page_assert_busied(m);
5235 
5236 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5237 	    size >= object->un_pager.vnp.vnp_size)
5238 		bits = VM_PAGE_BITS_ALL;
5239 	else
5240 		bits = vm_page_bits(base, size);
5241 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5242 		pmap_remove_all(m);
5243 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5244 	    !pmap_page_is_mapped(m),
5245 	    ("vm_page_set_invalid: page %p is mapped", m));
5246 	if (vm_page_xbusied(m)) {
5247 		m->valid &= ~bits;
5248 		m->dirty &= ~bits;
5249 	} else {
5250 		vm_page_bits_clear(m, &m->valid, bits);
5251 		vm_page_bits_clear(m, &m->dirty, bits);
5252 	}
5253 }
5254 
5255 /*
5256  *	vm_page_invalid:
5257  *
5258  *	Invalidates the entire page.  The page must be busy, unmapped, and
5259  *	the enclosing object must be locked.  The object locks protects
5260  *	against concurrent read-only pmap enter which is done without
5261  *	busy.
5262  */
5263 void
5264 vm_page_invalid(vm_page_t m)
5265 {
5266 
5267 	vm_page_assert_busied(m);
5268 	VM_OBJECT_ASSERT_LOCKED(m->object);
5269 	MPASS(!pmap_page_is_mapped(m));
5270 
5271 	if (vm_page_xbusied(m))
5272 		m->valid = 0;
5273 	else
5274 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5275 }
5276 
5277 /*
5278  * vm_page_zero_invalid()
5279  *
5280  *	The kernel assumes that the invalid portions of a page contain
5281  *	garbage, but such pages can be mapped into memory by user code.
5282  *	When this occurs, we must zero out the non-valid portions of the
5283  *	page so user code sees what it expects.
5284  *
5285  *	Pages are most often semi-valid when the end of a file is mapped
5286  *	into memory and the file's size is not page aligned.
5287  */
5288 void
5289 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5290 {
5291 	int b;
5292 	int i;
5293 
5294 	/*
5295 	 * Scan the valid bits looking for invalid sections that
5296 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5297 	 * valid bit may be set ) have already been zeroed by
5298 	 * vm_page_set_validclean().
5299 	 */
5300 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5301 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5302 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5303 			if (i > b) {
5304 				pmap_zero_page_area(m,
5305 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5306 			}
5307 			b = i + 1;
5308 		}
5309 	}
5310 
5311 	/*
5312 	 * setvalid is TRUE when we can safely set the zero'd areas
5313 	 * as being valid.  We can do this if there are no cache consistancy
5314 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5315 	 */
5316 	if (setvalid)
5317 		vm_page_valid(m);
5318 }
5319 
5320 /*
5321  *	vm_page_is_valid:
5322  *
5323  *	Is (partial) page valid?  Note that the case where size == 0
5324  *	will return FALSE in the degenerate case where the page is
5325  *	entirely invalid, and TRUE otherwise.
5326  *
5327  *	Some callers envoke this routine without the busy lock held and
5328  *	handle races via higher level locks.  Typical callers should
5329  *	hold a busy lock to prevent invalidation.
5330  */
5331 int
5332 vm_page_is_valid(vm_page_t m, int base, int size)
5333 {
5334 	vm_page_bits_t bits;
5335 
5336 	bits = vm_page_bits(base, size);
5337 	return (m->valid != 0 && (m->valid & bits) == bits);
5338 }
5339 
5340 /*
5341  * Returns true if all of the specified predicates are true for the entire
5342  * (super)page and false otherwise.
5343  */
5344 bool
5345 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5346 {
5347 	vm_object_t object;
5348 	int i, npages;
5349 
5350 	object = m->object;
5351 	if (skip_m != NULL && skip_m->object != object)
5352 		return (false);
5353 	VM_OBJECT_ASSERT_LOCKED(object);
5354 	npages = atop(pagesizes[m->psind]);
5355 
5356 	/*
5357 	 * The physically contiguous pages that make up a superpage, i.e., a
5358 	 * page with a page size index ("psind") greater than zero, will
5359 	 * occupy adjacent entries in vm_page_array[].
5360 	 */
5361 	for (i = 0; i < npages; i++) {
5362 		/* Always test object consistency, including "skip_m". */
5363 		if (m[i].object != object)
5364 			return (false);
5365 		if (&m[i] == skip_m)
5366 			continue;
5367 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5368 			return (false);
5369 		if ((flags & PS_ALL_DIRTY) != 0) {
5370 			/*
5371 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5372 			 * might stop this case from spuriously returning
5373 			 * "false".  However, that would require a write lock
5374 			 * on the object containing "m[i]".
5375 			 */
5376 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5377 				return (false);
5378 		}
5379 		if ((flags & PS_ALL_VALID) != 0 &&
5380 		    m[i].valid != VM_PAGE_BITS_ALL)
5381 			return (false);
5382 	}
5383 	return (true);
5384 }
5385 
5386 /*
5387  * Set the page's dirty bits if the page is modified.
5388  */
5389 void
5390 vm_page_test_dirty(vm_page_t m)
5391 {
5392 
5393 	vm_page_assert_busied(m);
5394 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5395 		vm_page_dirty(m);
5396 }
5397 
5398 void
5399 vm_page_valid(vm_page_t m)
5400 {
5401 
5402 	vm_page_assert_busied(m);
5403 	if (vm_page_xbusied(m))
5404 		m->valid = VM_PAGE_BITS_ALL;
5405 	else
5406 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5407 }
5408 
5409 void
5410 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5411 {
5412 
5413 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5414 }
5415 
5416 void
5417 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5418 {
5419 
5420 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5421 }
5422 
5423 int
5424 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5425 {
5426 
5427 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5428 }
5429 
5430 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5431 void
5432 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5433 {
5434 
5435 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5436 }
5437 
5438 void
5439 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5440 {
5441 
5442 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5443 }
5444 #endif
5445 
5446 #ifdef INVARIANTS
5447 void
5448 vm_page_object_busy_assert(vm_page_t m)
5449 {
5450 
5451 	/*
5452 	 * Certain of the page's fields may only be modified by the
5453 	 * holder of a page or object busy.
5454 	 */
5455 	if (m->object != NULL && !vm_page_busied(m))
5456 		VM_OBJECT_ASSERT_BUSY(m->object);
5457 }
5458 
5459 void
5460 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5461 {
5462 
5463 	if ((bits & PGA_WRITEABLE) == 0)
5464 		return;
5465 
5466 	/*
5467 	 * The PGA_WRITEABLE flag can only be set if the page is
5468 	 * managed, is exclusively busied or the object is locked.
5469 	 * Currently, this flag is only set by pmap_enter().
5470 	 */
5471 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5472 	    ("PGA_WRITEABLE on unmanaged page"));
5473 	if (!vm_page_xbusied(m))
5474 		VM_OBJECT_ASSERT_BUSY(m->object);
5475 }
5476 #endif
5477 
5478 #include "opt_ddb.h"
5479 #ifdef DDB
5480 #include <sys/kernel.h>
5481 
5482 #include <ddb/ddb.h>
5483 
5484 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5485 {
5486 
5487 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5488 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5489 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5490 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5491 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5492 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5493 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5494 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5495 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5496 }
5497 
5498 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5499 {
5500 	int dom;
5501 
5502 	db_printf("pq_free %d\n", vm_free_count());
5503 	for (dom = 0; dom < vm_ndomains; dom++) {
5504 		db_printf(
5505     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5506 		    dom,
5507 		    vm_dom[dom].vmd_page_count,
5508 		    vm_dom[dom].vmd_free_count,
5509 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5510 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5511 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5512 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5513 	}
5514 }
5515 
5516 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5517 {
5518 	vm_page_t m;
5519 	boolean_t phys, virt;
5520 
5521 	if (!have_addr) {
5522 		db_printf("show pginfo addr\n");
5523 		return;
5524 	}
5525 
5526 	phys = strchr(modif, 'p') != NULL;
5527 	virt = strchr(modif, 'v') != NULL;
5528 	if (virt)
5529 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5530 	else if (phys)
5531 		m = PHYS_TO_VM_PAGE(addr);
5532 	else
5533 		m = (vm_page_t)addr;
5534 	db_printf(
5535     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5536     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5537 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5538 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5539 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5540 }
5541 #endif /* DDB */
5542