xref: /freebsd/sys/vm/vm_radix.c (revision 224e0c2f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  * The following code is not generalized into a general purpose library
35  * because there are way too many parameters embedded that should really
36  * be decided by the library consumers.  At the same time, consumers
37  * of this code must achieve highest possible performance.
38  *
39  * The implementation takes into account the following rationale:
40  * - Size of the nodes should be as small as possible but still big enough
41  *   to avoid a large maximum depth for the trie.  This is a balance
42  *   between the necessity to not wire too much physical memory for the nodes
43  *   and the necessity to avoid too much cache pollution during the trie
44  *   operations.
45  * - There is not a huge bias toward the number of lookup operations over
46  *   the number of insert and remove operations.  This basically implies
47  *   that optimizations supposedly helping one operation but hurting the
48  *   other might be carefully evaluated.
49  * - On average not many nodes are expected to be fully populated, hence
50  *   level compression may just complicate things.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_ddb.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/vmmeter.h>
62 
63 #include <vm/uma.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_radix.h>
68 
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72 
73 /*
74  * These widths should allow the pointers to a node's children to fit within
75  * a single cache line.  The extra levels from a narrow width should not be
76  * a problem thanks to path compression.
77  */
78 #ifdef __LP64__
79 #define	VM_RADIX_WIDTH	4
80 #else
81 #define	VM_RADIX_WIDTH	3
82 #endif
83 
84 #define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
85 #define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
86 #define	VM_RADIX_LIMIT							\
87 	(howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
88 
89 /* Flag bits stored in node pointers. */
90 #define	VM_RADIX_ISLEAF	0x1
91 #define	VM_RADIX_FLAGS	0x1
92 #define	VM_RADIX_PAD	VM_RADIX_FLAGS
93 
94 /* Returns one unit associated with specified level. */
95 #define	VM_RADIX_UNITLEVEL(lev)						\
96 	((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
97 
98 struct vm_radix_node {
99 	vm_pindex_t	 rn_owner;			/* Owner of record. */
100 	uint16_t	 rn_count;			/* Valid children. */
101 	uint16_t	 rn_clev;			/* Current level. */
102 	void		*rn_child[VM_RADIX_COUNT];	/* Child nodes. */
103 };
104 
105 static uma_zone_t vm_radix_node_zone;
106 
107 /*
108  * Allocate a radix node.
109  */
110 static __inline struct vm_radix_node *
111 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
112 {
113 	struct vm_radix_node *rnode;
114 
115 	rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
116 	if (rnode == NULL)
117 		return (NULL);
118 	rnode->rn_owner = owner;
119 	rnode->rn_count = count;
120 	rnode->rn_clev = clevel;
121 	return (rnode);
122 }
123 
124 /*
125  * Free radix node.
126  */
127 static __inline void
128 vm_radix_node_put(struct vm_radix_node *rnode)
129 {
130 
131 	uma_zfree(vm_radix_node_zone, rnode);
132 }
133 
134 /*
135  * Return the position in the array for a given level.
136  */
137 static __inline int
138 vm_radix_slot(vm_pindex_t index, uint16_t level)
139 {
140 
141 	return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
142 }
143 
144 /* Trims the key after the specified level. */
145 static __inline vm_pindex_t
146 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
147 {
148 	vm_pindex_t ret;
149 
150 	ret = index;
151 	if (level > 0) {
152 		ret >>= level * VM_RADIX_WIDTH;
153 		ret <<= level * VM_RADIX_WIDTH;
154 	}
155 	return (ret);
156 }
157 
158 /*
159  * Get the root node for a radix tree.
160  */
161 static __inline struct vm_radix_node *
162 vm_radix_getroot(struct vm_radix *rtree)
163 {
164 
165 	return ((struct vm_radix_node *)rtree->rt_root);
166 }
167 
168 /*
169  * Set the root node for a radix tree.
170  */
171 static __inline void
172 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
173 {
174 
175 	rtree->rt_root = (uintptr_t)rnode;
176 }
177 
178 /*
179  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
180  */
181 static __inline boolean_t
182 vm_radix_isleaf(struct vm_radix_node *rnode)
183 {
184 
185 	return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
186 }
187 
188 /*
189  * Returns the associated page extracted from rnode.
190  */
191 static __inline vm_page_t
192 vm_radix_topage(struct vm_radix_node *rnode)
193 {
194 
195 	return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
196 }
197 
198 /*
199  * Adds the page as a child of the provided node.
200  */
201 static __inline void
202 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
203     vm_page_t page)
204 {
205 	int slot;
206 
207 	slot = vm_radix_slot(index, clev);
208 	rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
209 }
210 
211 /*
212  * Returns the slot where two keys differ.
213  * It cannot accept 2 equal keys.
214  */
215 static __inline uint16_t
216 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
217 {
218 	uint16_t clev;
219 
220 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
221 	    __func__, (uintmax_t)index1));
222 
223 	index1 ^= index2;
224 	for (clev = VM_RADIX_LIMIT;; clev--)
225 		if (vm_radix_slot(index1, clev) != 0)
226 			return (clev);
227 }
228 
229 /*
230  * Returns TRUE if it can be determined that key does not belong to the
231  * specified rnode.  Otherwise, returns FALSE.
232  */
233 static __inline boolean_t
234 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
235 {
236 
237 	if (rnode->rn_clev < VM_RADIX_LIMIT) {
238 		idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
239 		return (idx != rnode->rn_owner);
240 	}
241 	return (FALSE);
242 }
243 
244 /*
245  * Internal helper for vm_radix_reclaim_allnodes().
246  * This function is recursive.
247  */
248 static void
249 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
250 {
251 	int slot;
252 
253 	KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
254 	    ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
255 	for (slot = 0; rnode->rn_count != 0; slot++) {
256 		if (rnode->rn_child[slot] == NULL)
257 			continue;
258 		if (!vm_radix_isleaf(rnode->rn_child[slot]))
259 			vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
260 		rnode->rn_child[slot] = NULL;
261 		rnode->rn_count--;
262 	}
263 	vm_radix_node_put(rnode);
264 }
265 
266 #ifdef INVARIANTS
267 /*
268  * Radix node zone destructor.
269  */
270 static void
271 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
272 {
273 	struct vm_radix_node *rnode;
274 	int slot;
275 
276 	rnode = mem;
277 	KASSERT(rnode->rn_count == 0,
278 	    ("vm_radix_node_put: rnode %p has %d children", rnode,
279 	    rnode->rn_count));
280 	for (slot = 0; slot < VM_RADIX_COUNT; slot++)
281 		KASSERT(rnode->rn_child[slot] == NULL,
282 		    ("vm_radix_node_put: rnode %p has a child", rnode));
283 }
284 #endif
285 
286 #ifndef UMA_MD_SMALL_ALLOC
287 /*
288  * Reserve the KVA necessary to satisfy the node allocation.
289  * This is mandatory in architectures not supporting direct
290  * mapping as they will need otherwise to carve into the kernel maps for
291  * every node allocation, resulting into deadlocks for consumers already
292  * working with kernel maps.
293  */
294 static void
295 vm_radix_reserve_kva(void *arg __unused)
296 {
297 
298 	/*
299 	 * Calculate the number of reserved nodes, discounting the pages that
300 	 * are needed to store them.
301 	 */
302 	if (!uma_zone_reserve_kva(vm_radix_node_zone,
303 	    ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
304 	    sizeof(struct vm_radix_node))))
305 		panic("%s: unable to reserve KVA", __func__);
306 }
307 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_THIRD,
308     vm_radix_reserve_kva, NULL);
309 #endif
310 
311 /*
312  * Initialize the UMA slab zone.
313  */
314 void
315 vm_radix_zinit(void)
316 {
317 
318 	vm_radix_node_zone = uma_zcreate("RADIX NODE",
319 	    sizeof(struct vm_radix_node), NULL,
320 #ifdef INVARIANTS
321 	    vm_radix_node_zone_dtor,
322 #else
323 	    NULL,
324 #endif
325 	    NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
326 }
327 
328 /*
329  * Inserts the key-value pair into the trie.
330  * Panics if the key already exists.
331  */
332 int
333 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
334 {
335 	vm_pindex_t index, newind;
336 	void **parentp;
337 	struct vm_radix_node *rnode, *tmp;
338 	vm_page_t m;
339 	int slot;
340 	uint16_t clev;
341 
342 	index = page->pindex;
343 
344 	/*
345 	 * The owner of record for root is not really important because it
346 	 * will never be used.
347 	 */
348 	rnode = vm_radix_getroot(rtree);
349 	if (rnode == NULL) {
350 		rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
351 		return (0);
352 	}
353 	parentp = (void **)&rtree->rt_root;
354 	for (;;) {
355 		if (vm_radix_isleaf(rnode)) {
356 			m = vm_radix_topage(rnode);
357 			if (m->pindex == index)
358 				panic("%s: key %jx is already present",
359 				    __func__, (uintmax_t)index);
360 			clev = vm_radix_keydiff(m->pindex, index);
361 			tmp = vm_radix_node_get(vm_radix_trimkey(index,
362 			    clev + 1), 2, clev);
363 			if (tmp == NULL)
364 				return (ENOMEM);
365 			*parentp = tmp;
366 			vm_radix_addpage(tmp, index, clev, page);
367 			vm_radix_addpage(tmp, m->pindex, clev, m);
368 			return (0);
369 		} else if (vm_radix_keybarr(rnode, index))
370 			break;
371 		slot = vm_radix_slot(index, rnode->rn_clev);
372 		if (rnode->rn_child[slot] == NULL) {
373 			rnode->rn_count++;
374 			vm_radix_addpage(rnode, index, rnode->rn_clev, page);
375 			return (0);
376 		}
377 		parentp = &rnode->rn_child[slot];
378 		rnode = rnode->rn_child[slot];
379 	}
380 
381 	/*
382 	 * A new node is needed because the right insertion level is reached.
383 	 * Setup the new intermediate node and add the 2 children: the
384 	 * new object and the older edge.
385 	 */
386 	newind = rnode->rn_owner;
387 	clev = vm_radix_keydiff(newind, index);
388 	tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
389 	if (tmp == NULL)
390 		return (ENOMEM);
391 	*parentp = tmp;
392 	vm_radix_addpage(tmp, index, clev, page);
393 	slot = vm_radix_slot(newind, clev);
394 	tmp->rn_child[slot] = rnode;
395 	return (0);
396 }
397 
398 /*
399  * Returns TRUE if the specified radix tree contains a single leaf and FALSE
400  * otherwise.
401  */
402 boolean_t
403 vm_radix_is_singleton(struct vm_radix *rtree)
404 {
405 	struct vm_radix_node *rnode;
406 
407 	rnode = vm_radix_getroot(rtree);
408 	if (rnode == NULL)
409 		return (FALSE);
410 	return (vm_radix_isleaf(rnode));
411 }
412 
413 /*
414  * Returns the value stored at the index.  If the index is not present,
415  * NULL is returned.
416  */
417 vm_page_t
418 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
419 {
420 	struct vm_radix_node *rnode;
421 	vm_page_t m;
422 	int slot;
423 
424 	rnode = vm_radix_getroot(rtree);
425 	while (rnode != NULL) {
426 		if (vm_radix_isleaf(rnode)) {
427 			m = vm_radix_topage(rnode);
428 			if (m->pindex == index)
429 				return (m);
430 			else
431 				break;
432 		} else if (vm_radix_keybarr(rnode, index))
433 			break;
434 		slot = vm_radix_slot(index, rnode->rn_clev);
435 		rnode = rnode->rn_child[slot];
436 	}
437 	return (NULL);
438 }
439 
440 /*
441  * Look up the nearest entry at a position bigger than or equal to index.
442  */
443 vm_page_t
444 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
445 {
446 	struct vm_radix_node *stack[VM_RADIX_LIMIT];
447 	vm_pindex_t inc;
448 	vm_page_t m;
449 	struct vm_radix_node *child, *rnode;
450 #ifdef INVARIANTS
451 	int loops = 0;
452 #endif
453 	int slot, tos;
454 
455 	rnode = vm_radix_getroot(rtree);
456 	if (rnode == NULL)
457 		return (NULL);
458 	else if (vm_radix_isleaf(rnode)) {
459 		m = vm_radix_topage(rnode);
460 		if (m->pindex >= index)
461 			return (m);
462 		else
463 			return (NULL);
464 	}
465 	tos = 0;
466 	for (;;) {
467 		/*
468 		 * If the keys differ before the current bisection node,
469 		 * then the search key might rollback to the earliest
470 		 * available bisection node or to the smallest key
471 		 * in the current node (if the owner is bigger than the
472 		 * search key).
473 		 */
474 		if (vm_radix_keybarr(rnode, index)) {
475 			if (index > rnode->rn_owner) {
476 ascend:
477 				KASSERT(++loops < 1000,
478 				    ("vm_radix_lookup_ge: too many loops"));
479 
480 				/*
481 				 * Pop nodes from the stack until either the
482 				 * stack is empty or a node that could have a
483 				 * matching descendant is found.
484 				 */
485 				do {
486 					if (tos == 0)
487 						return (NULL);
488 					rnode = stack[--tos];
489 				} while (vm_radix_slot(index,
490 				    rnode->rn_clev) == (VM_RADIX_COUNT - 1));
491 
492 				/*
493 				 * The following computation cannot overflow
494 				 * because index's slot at the current level
495 				 * is less than VM_RADIX_COUNT - 1.
496 				 */
497 				index = vm_radix_trimkey(index,
498 				    rnode->rn_clev);
499 				index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
500 			} else
501 				index = rnode->rn_owner;
502 			KASSERT(!vm_radix_keybarr(rnode, index),
503 			    ("vm_radix_lookup_ge: keybarr failed"));
504 		}
505 		slot = vm_radix_slot(index, rnode->rn_clev);
506 		child = rnode->rn_child[slot];
507 		if (vm_radix_isleaf(child)) {
508 			m = vm_radix_topage(child);
509 			if (m->pindex >= index)
510 				return (m);
511 		} else if (child != NULL)
512 			goto descend;
513 
514 		/*
515 		 * Look for an available edge or page within the current
516 		 * bisection node.
517 		 */
518                 if (slot < (VM_RADIX_COUNT - 1)) {
519 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
520 			index = vm_radix_trimkey(index, rnode->rn_clev);
521 			do {
522 				index += inc;
523 				slot++;
524 				child = rnode->rn_child[slot];
525 				if (vm_radix_isleaf(child)) {
526 					m = vm_radix_topage(child);
527 					if (m->pindex >= index)
528 						return (m);
529 				} else if (child != NULL)
530 					goto descend;
531 			} while (slot < (VM_RADIX_COUNT - 1));
532 		}
533 		KASSERT(child == NULL || vm_radix_isleaf(child),
534 		    ("vm_radix_lookup_ge: child is radix node"));
535 
536 		/*
537 		 * If a page or edge bigger than the search slot is not found
538 		 * in the current node, ascend to the next higher-level node.
539 		 */
540 		goto ascend;
541 descend:
542 		KASSERT(rnode->rn_clev > 0,
543 		    ("vm_radix_lookup_ge: pushing leaf's parent"));
544 		KASSERT(tos < VM_RADIX_LIMIT,
545 		    ("vm_radix_lookup_ge: stack overflow"));
546 		stack[tos++] = rnode;
547 		rnode = child;
548 	}
549 }
550 
551 /*
552  * Look up the nearest entry at a position less than or equal to index.
553  */
554 vm_page_t
555 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
556 {
557 	struct vm_radix_node *stack[VM_RADIX_LIMIT];
558 	vm_pindex_t inc;
559 	vm_page_t m;
560 	struct vm_radix_node *child, *rnode;
561 #ifdef INVARIANTS
562 	int loops = 0;
563 #endif
564 	int slot, tos;
565 
566 	rnode = vm_radix_getroot(rtree);
567 	if (rnode == NULL)
568 		return (NULL);
569 	else if (vm_radix_isleaf(rnode)) {
570 		m = vm_radix_topage(rnode);
571 		if (m->pindex <= index)
572 			return (m);
573 		else
574 			return (NULL);
575 	}
576 	tos = 0;
577 	for (;;) {
578 		/*
579 		 * If the keys differ before the current bisection node,
580 		 * then the search key might rollback to the earliest
581 		 * available bisection node or to the largest key
582 		 * in the current node (if the owner is smaller than the
583 		 * search key).
584 		 */
585 		if (vm_radix_keybarr(rnode, index)) {
586 			if (index > rnode->rn_owner) {
587 				index = rnode->rn_owner + VM_RADIX_COUNT *
588 				    VM_RADIX_UNITLEVEL(rnode->rn_clev);
589 			} else {
590 ascend:
591 				KASSERT(++loops < 1000,
592 				    ("vm_radix_lookup_le: too many loops"));
593 
594 				/*
595 				 * Pop nodes from the stack until either the
596 				 * stack is empty or a node that could have a
597 				 * matching descendant is found.
598 				 */
599 				do {
600 					if (tos == 0)
601 						return (NULL);
602 					rnode = stack[--tos];
603 				} while (vm_radix_slot(index,
604 				    rnode->rn_clev) == 0);
605 
606 				/*
607 				 * The following computation cannot overflow
608 				 * because index's slot at the current level
609 				 * is greater than 0.
610 				 */
611 				index = vm_radix_trimkey(index,
612 				    rnode->rn_clev);
613 			}
614 			index--;
615 			KASSERT(!vm_radix_keybarr(rnode, index),
616 			    ("vm_radix_lookup_le: keybarr failed"));
617 		}
618 		slot = vm_radix_slot(index, rnode->rn_clev);
619 		child = rnode->rn_child[slot];
620 		if (vm_radix_isleaf(child)) {
621 			m = vm_radix_topage(child);
622 			if (m->pindex <= index)
623 				return (m);
624 		} else if (child != NULL)
625 			goto descend;
626 
627 		/*
628 		 * Look for an available edge or page within the current
629 		 * bisection node.
630 		 */
631 		if (slot > 0) {
632 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
633 			index |= inc - 1;
634 			do {
635 				index -= inc;
636 				slot--;
637 				child = rnode->rn_child[slot];
638 				if (vm_radix_isleaf(child)) {
639 					m = vm_radix_topage(child);
640 					if (m->pindex <= index)
641 						return (m);
642 				} else if (child != NULL)
643 					goto descend;
644 			} while (slot > 0);
645 		}
646 		KASSERT(child == NULL || vm_radix_isleaf(child),
647 		    ("vm_radix_lookup_le: child is radix node"));
648 
649 		/*
650 		 * If a page or edge smaller than the search slot is not found
651 		 * in the current node, ascend to the next higher-level node.
652 		 */
653 		goto ascend;
654 descend:
655 		KASSERT(rnode->rn_clev > 0,
656 		    ("vm_radix_lookup_le: pushing leaf's parent"));
657 		KASSERT(tos < VM_RADIX_LIMIT,
658 		    ("vm_radix_lookup_le: stack overflow"));
659 		stack[tos++] = rnode;
660 		rnode = child;
661 	}
662 }
663 
664 /*
665  * Remove the specified index from the trie, and return the value stored at
666  * that index.  If the index is not present, return NULL.
667  */
668 vm_page_t
669 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
670 {
671 	struct vm_radix_node *rnode, *parent;
672 	vm_page_t m;
673 	int i, slot;
674 
675 	rnode = vm_radix_getroot(rtree);
676 	if (vm_radix_isleaf(rnode)) {
677 		m = vm_radix_topage(rnode);
678 		if (m->pindex != index)
679 			return (NULL);
680 		vm_radix_setroot(rtree, NULL);
681 		return (m);
682 	}
683 	parent = NULL;
684 	for (;;) {
685 		if (rnode == NULL)
686 			return (NULL);
687 		slot = vm_radix_slot(index, rnode->rn_clev);
688 		if (vm_radix_isleaf(rnode->rn_child[slot])) {
689 			m = vm_radix_topage(rnode->rn_child[slot]);
690 			if (m->pindex != index)
691 				return (NULL);
692 			rnode->rn_child[slot] = NULL;
693 			rnode->rn_count--;
694 			if (rnode->rn_count > 1)
695 				return (m);
696 			for (i = 0; i < VM_RADIX_COUNT; i++)
697 				if (rnode->rn_child[i] != NULL)
698 					break;
699 			KASSERT(i != VM_RADIX_COUNT,
700 			    ("%s: invalid node configuration", __func__));
701 			if (parent == NULL)
702 				vm_radix_setroot(rtree, rnode->rn_child[i]);
703 			else {
704 				slot = vm_radix_slot(index, parent->rn_clev);
705 				KASSERT(parent->rn_child[slot] == rnode,
706 				    ("%s: invalid child value", __func__));
707 				parent->rn_child[slot] = rnode->rn_child[i];
708 			}
709 			rnode->rn_count--;
710 			rnode->rn_child[i] = NULL;
711 			vm_radix_node_put(rnode);
712 			return (m);
713 		}
714 		parent = rnode;
715 		rnode = rnode->rn_child[slot];
716 	}
717 }
718 
719 /*
720  * Remove and free all the nodes from the radix tree.
721  * This function is recursive but there is a tight control on it as the
722  * maximum depth of the tree is fixed.
723  */
724 void
725 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
726 {
727 	struct vm_radix_node *root;
728 
729 	root = vm_radix_getroot(rtree);
730 	if (root == NULL)
731 		return;
732 	vm_radix_setroot(rtree, NULL);
733 	if (!vm_radix_isleaf(root))
734 		vm_radix_reclaim_allnodes_int(root);
735 }
736 
737 /*
738  * Replace an existing page in the trie with another one.
739  * Panics if there is not an old page in the trie at the new page's index.
740  */
741 vm_page_t
742 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
743 {
744 	struct vm_radix_node *rnode;
745 	vm_page_t m;
746 	vm_pindex_t index;
747 	int slot;
748 
749 	index = newpage->pindex;
750 	rnode = vm_radix_getroot(rtree);
751 	if (rnode == NULL)
752 		panic("%s: replacing page on an empty trie", __func__);
753 	if (vm_radix_isleaf(rnode)) {
754 		m = vm_radix_topage(rnode);
755 		if (m->pindex != index)
756 			panic("%s: original replacing root key not found",
757 			    __func__);
758 		rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
759 		return (m);
760 	}
761 	for (;;) {
762 		slot = vm_radix_slot(index, rnode->rn_clev);
763 		if (vm_radix_isleaf(rnode->rn_child[slot])) {
764 			m = vm_radix_topage(rnode->rn_child[slot]);
765 			if (m->pindex == index) {
766 				rnode->rn_child[slot] =
767 				    (void *)((uintptr_t)newpage |
768 				    VM_RADIX_ISLEAF);
769 				return (m);
770 			} else
771 				break;
772 		} else if (rnode->rn_child[slot] == NULL ||
773 		    vm_radix_keybarr(rnode->rn_child[slot], index))
774 			break;
775 		rnode = rnode->rn_child[slot];
776 	}
777 	panic("%s: original replacing page not found", __func__);
778 }
779 
780 void
781 vm_radix_wait(void)
782 {
783 	uma_zwait(vm_radix_node_zone);
784 }
785 
786 #ifdef DDB
787 /*
788  * Show details about the given radix node.
789  */
790 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
791 {
792 	struct vm_radix_node *rnode;
793 	int i;
794 
795         if (!have_addr)
796                 return;
797 	rnode = (struct vm_radix_node *)addr;
798 	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
799 	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
800 	    rnode->rn_clev);
801 	for (i = 0; i < VM_RADIX_COUNT; i++)
802 		if (rnode->rn_child[i] != NULL)
803 			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
804 			    i, (void *)rnode->rn_child[i],
805 			    vm_radix_isleaf(rnode->rn_child[i]) ?
806 			    vm_radix_topage(rnode->rn_child[i]) : NULL,
807 			    rnode->rn_clev);
808 }
809 #endif /* DDB */
810