xref: /freebsd/sys/x86/x86/identcpu.c (revision 19261079)
1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4  * Copyright (c) 1997 KATO Takenori.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: Id: machdep.c,v 1.193 1996/06/18 01:22:04 bde Exp
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_cpu.h"
45 
46 #include <sys/param.h>
47 #include <sys/bus.h>
48 #include <sys/cpu.h>
49 #include <sys/eventhandler.h>
50 #include <sys/limits.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/sysctl.h>
54 #include <sys/power.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 
59 #include <machine/asmacros.h>
60 #include <machine/clock.h>
61 #include <machine/cputypes.h>
62 #include <machine/frame.h>
63 #include <machine/intr_machdep.h>
64 #include <machine/md_var.h>
65 #include <machine/segments.h>
66 #include <machine/specialreg.h>
67 
68 #include <amd64/vmm/intel/vmx_controls.h>
69 #include <x86/isa/icu.h>
70 #include <x86/vmware.h>
71 
72 #ifdef __i386__
73 #define	IDENTBLUE_CYRIX486	0
74 #define	IDENTBLUE_IBMCPU	1
75 #define	IDENTBLUE_CYRIXM2	2
76 
77 static void identifycyrix(void);
78 static void print_transmeta_info(void);
79 #endif
80 static u_int find_cpu_vendor_id(void);
81 static void print_AMD_info(void);
82 static void print_INTEL_info(void);
83 static void print_INTEL_TLB(u_int data);
84 static void print_hypervisor_info(void);
85 static void print_svm_info(void);
86 static void print_via_padlock_info(void);
87 static void print_vmx_info(void);
88 
89 #ifdef __i386__
90 int	cpu;			/* Are we 386, 386sx, 486, etc? */
91 int	cpu_class;
92 #endif
93 u_int	cpu_feature;		/* Feature flags */
94 u_int	cpu_feature2;		/* Feature flags */
95 u_int	amd_feature;		/* AMD feature flags */
96 u_int	amd_feature2;		/* AMD feature flags */
97 u_int	amd_rascap;		/* AMD RAS capabilities */
98 u_int	amd_pminfo;		/* AMD advanced power management info */
99 u_int	amd_extended_feature_extensions;
100 u_int	via_feature_rng;	/* VIA RNG features */
101 u_int	via_feature_xcrypt;	/* VIA ACE features */
102 u_int	cpu_high;		/* Highest arg to CPUID */
103 u_int	cpu_exthigh;		/* Highest arg to extended CPUID */
104 u_int	cpu_id;			/* Stepping ID */
105 u_int	cpu_procinfo;		/* HyperThreading Info / Brand Index / CLFUSH */
106 u_int	cpu_procinfo2;		/* Multicore info */
107 char	cpu_vendor[20];		/* CPU Origin code */
108 u_int	cpu_vendor_id;		/* CPU vendor ID */
109 u_int	cpu_fxsr;		/* SSE enabled */
110 u_int	cpu_mxcsr_mask;		/* Valid bits in mxcsr */
111 u_int	cpu_clflush_line_size = 32;
112 u_int	cpu_stdext_feature;	/* %ebx */
113 u_int	cpu_stdext_feature2;	/* %ecx */
114 u_int	cpu_stdext_feature3;	/* %edx */
115 uint64_t cpu_ia32_arch_caps;
116 u_int	cpu_max_ext_state_size;
117 u_int	cpu_mon_mwait_flags;	/* MONITOR/MWAIT flags (CPUID.05H.ECX) */
118 u_int	cpu_mon_min_size;	/* MONITOR minimum range size, bytes */
119 u_int	cpu_mon_max_size;	/* MONITOR minimum range size, bytes */
120 u_int	cpu_maxphyaddr;		/* Max phys addr width in bits */
121 u_int	cpu_power_eax;		/* 06H: Power management leaf, %eax */
122 u_int	cpu_power_ebx;		/* 06H: Power management leaf, %ebx */
123 u_int	cpu_power_ecx;		/* 06H: Power management leaf, %ecx */
124 u_int	cpu_power_edx;		/* 06H: Power management leaf, %edx */
125 char machine[] = MACHINE;
126 
127 SYSCTL_UINT(_hw, OID_AUTO, via_feature_rng, CTLFLAG_RD,
128     &via_feature_rng, 0,
129     "VIA RNG feature available in CPU");
130 SYSCTL_UINT(_hw, OID_AUTO, via_feature_xcrypt, CTLFLAG_RD,
131     &via_feature_xcrypt, 0,
132     "VIA xcrypt feature available in CPU");
133 
134 #ifdef __amd64__
135 #ifdef SCTL_MASK32
136 extern int adaptive_machine_arch;
137 #endif
138 
139 static int
140 sysctl_hw_machine(SYSCTL_HANDLER_ARGS)
141 {
142 #ifdef SCTL_MASK32
143 	static const char machine32[] = "i386";
144 #endif
145 	int error;
146 
147 #ifdef SCTL_MASK32
148 	if ((req->flags & SCTL_MASK32) != 0 && adaptive_machine_arch)
149 		error = SYSCTL_OUT(req, machine32, sizeof(machine32));
150 	else
151 #endif
152 		error = SYSCTL_OUT(req, machine, sizeof(machine));
153 	return (error);
154 
155 }
156 SYSCTL_PROC(_hw, HW_MACHINE, machine, CTLTYPE_STRING | CTLFLAG_RD |
157     CTLFLAG_MPSAFE, NULL, 0, sysctl_hw_machine, "A", "Machine class");
158 #else
159 SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD,
160     machine, 0, "Machine class");
161 #endif
162 
163 static char cpu_model[128];
164 SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD | CTLFLAG_MPSAFE,
165     cpu_model, 0, "Machine model");
166 
167 static int hw_clockrate;
168 SYSCTL_INT(_hw, OID_AUTO, clockrate, CTLFLAG_RD,
169     &hw_clockrate, 0, "CPU instruction clock rate");
170 
171 u_int hv_base;
172 u_int hv_high;
173 char hv_vendor[16];
174 SYSCTL_STRING(_hw, OID_AUTO, hv_vendor, CTLFLAG_RD | CTLFLAG_MPSAFE, hv_vendor,
175     0, "Hypervisor vendor");
176 
177 static eventhandler_tag tsc_post_tag;
178 
179 static char cpu_brand[48];
180 
181 #ifdef __i386__
182 #define	MAX_BRAND_INDEX	8
183 
184 static const char *cpu_brandtable[MAX_BRAND_INDEX + 1] = {
185 	NULL,			/* No brand */
186 	"Intel Celeron",
187 	"Intel Pentium III",
188 	"Intel Pentium III Xeon",
189 	NULL,
190 	NULL,
191 	NULL,
192 	NULL,
193 	"Intel Pentium 4"
194 };
195 
196 static struct {
197 	char	*cpu_name;
198 	int	cpu_class;
199 } cpus[] = {
200 	{ "Intel 80286",	CPUCLASS_286 },		/* CPU_286   */
201 	{ "i386SX",		CPUCLASS_386 },		/* CPU_386SX */
202 	{ "i386DX",		CPUCLASS_386 },		/* CPU_386   */
203 	{ "i486SX",		CPUCLASS_486 },		/* CPU_486SX */
204 	{ "i486DX",		CPUCLASS_486 },		/* CPU_486   */
205 	{ "Pentium",		CPUCLASS_586 },		/* CPU_586   */
206 	{ "Cyrix 486",		CPUCLASS_486 },		/* CPU_486DLC */
207 	{ "Pentium Pro",	CPUCLASS_686 },		/* CPU_686 */
208 	{ "Cyrix 5x86",		CPUCLASS_486 },		/* CPU_M1SC */
209 	{ "Cyrix 6x86",		CPUCLASS_486 },		/* CPU_M1 */
210 	{ "Blue Lightning",	CPUCLASS_486 },		/* CPU_BLUE */
211 	{ "Cyrix 6x86MX",	CPUCLASS_686 },		/* CPU_M2 */
212 	{ "NexGen 586",		CPUCLASS_386 },		/* CPU_NX586 (XXX) */
213 	{ "Cyrix 486S/DX",	CPUCLASS_486 },		/* CPU_CY486DX */
214 	{ "Pentium II",		CPUCLASS_686 },		/* CPU_PII */
215 	{ "Pentium III",	CPUCLASS_686 },		/* CPU_PIII */
216 	{ "Pentium 4",		CPUCLASS_686 },		/* CPU_P4 */
217 };
218 #endif
219 
220 static struct {
221 	char	*vendor;
222 	u_int	vendor_id;
223 } cpu_vendors[] = {
224 	{ INTEL_VENDOR_ID,	CPU_VENDOR_INTEL },	/* GenuineIntel */
225 	{ AMD_VENDOR_ID,	CPU_VENDOR_AMD },	/* AuthenticAMD */
226 	{ HYGON_VENDOR_ID,	CPU_VENDOR_HYGON },	/* HygonGenuine */
227 	{ CENTAUR_VENDOR_ID,	CPU_VENDOR_CENTAUR },	/* CentaurHauls */
228 #ifdef __i386__
229 	{ NSC_VENDOR_ID,	CPU_VENDOR_NSC },	/* Geode by NSC */
230 	{ CYRIX_VENDOR_ID,	CPU_VENDOR_CYRIX },	/* CyrixInstead */
231 	{ TRANSMETA_VENDOR_ID,	CPU_VENDOR_TRANSMETA },	/* GenuineTMx86 */
232 	{ SIS_VENDOR_ID,	CPU_VENDOR_SIS },	/* SiS SiS SiS  */
233 	{ UMC_VENDOR_ID,	CPU_VENDOR_UMC },	/* UMC UMC UMC  */
234 	{ NEXGEN_VENDOR_ID,	CPU_VENDOR_NEXGEN },	/* NexGenDriven */
235 	{ RISE_VENDOR_ID,	CPU_VENDOR_RISE },	/* RiseRiseRise */
236 #if 0
237 	/* XXX CPUID 8000_0000h and 8086_0000h, not 0000_0000h */
238 	{ "TransmetaCPU",	CPU_VENDOR_TRANSMETA },
239 #endif
240 #endif
241 };
242 
243 void
244 printcpuinfo(void)
245 {
246 	u_int regs[4], i;
247 	char *brand;
248 
249 	printf("CPU: ");
250 #ifdef __i386__
251 	cpu_class = cpus[cpu].cpu_class;
252 	strncpy(cpu_model, cpus[cpu].cpu_name, sizeof (cpu_model));
253 #else
254 	strncpy(cpu_model, "Hammer", sizeof (cpu_model));
255 #endif
256 
257 	/* Check for extended CPUID information and a processor name. */
258 	if (cpu_exthigh >= 0x80000004) {
259 		brand = cpu_brand;
260 		for (i = 0x80000002; i < 0x80000005; i++) {
261 			do_cpuid(i, regs);
262 			memcpy(brand, regs, sizeof(regs));
263 			brand += sizeof(regs);
264 		}
265 	}
266 
267 	switch (cpu_vendor_id) {
268 	case CPU_VENDOR_INTEL:
269 #ifdef __i386__
270 		if ((cpu_id & 0xf00) > 0x300) {
271 			u_int brand_index;
272 
273 			cpu_model[0] = '\0';
274 
275 			switch (cpu_id & 0x3000) {
276 			case 0x1000:
277 				strcpy(cpu_model, "Overdrive ");
278 				break;
279 			case 0x2000:
280 				strcpy(cpu_model, "Dual ");
281 				break;
282 			}
283 
284 			switch (cpu_id & 0xf00) {
285 			case 0x400:
286 				strcat(cpu_model, "i486 ");
287 				/* Check the particular flavor of 486 */
288 				switch (cpu_id & 0xf0) {
289 				case 0x00:
290 				case 0x10:
291 					strcat(cpu_model, "DX");
292 					break;
293 				case 0x20:
294 					strcat(cpu_model, "SX");
295 					break;
296 				case 0x30:
297 					strcat(cpu_model, "DX2");
298 					break;
299 				case 0x40:
300 					strcat(cpu_model, "SL");
301 					break;
302 				case 0x50:
303 					strcat(cpu_model, "SX2");
304 					break;
305 				case 0x70:
306 					strcat(cpu_model,
307 					    "DX2 Write-Back Enhanced");
308 					break;
309 				case 0x80:
310 					strcat(cpu_model, "DX4");
311 					break;
312 				}
313 				break;
314 			case 0x500:
315 				/* Check the particular flavor of 586 */
316 				strcat(cpu_model, "Pentium");
317 				switch (cpu_id & 0xf0) {
318 				case 0x00:
319 					strcat(cpu_model, " A-step");
320 					break;
321 				case 0x10:
322 					strcat(cpu_model, "/P5");
323 					break;
324 				case 0x20:
325 					strcat(cpu_model, "/P54C");
326 					break;
327 				case 0x30:
328 					strcat(cpu_model, "/P24T");
329 					break;
330 				case 0x40:
331 					strcat(cpu_model, "/P55C");
332 					break;
333 				case 0x70:
334 					strcat(cpu_model, "/P54C");
335 					break;
336 				case 0x80:
337 					strcat(cpu_model, "/P55C (quarter-micron)");
338 					break;
339 				default:
340 					/* nothing */
341 					break;
342 				}
343 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
344 				/*
345 				 * XXX - If/when Intel fixes the bug, this
346 				 * should also check the version of the
347 				 * CPU, not just that it's a Pentium.
348 				 */
349 				has_f00f_bug = 1;
350 #endif
351 				break;
352 			case 0x600:
353 				/* Check the particular flavor of 686 */
354 				switch (cpu_id & 0xf0) {
355 				case 0x00:
356 					strcat(cpu_model, "Pentium Pro A-step");
357 					break;
358 				case 0x10:
359 					strcat(cpu_model, "Pentium Pro");
360 					break;
361 				case 0x30:
362 				case 0x50:
363 				case 0x60:
364 					strcat(cpu_model,
365 				"Pentium II/Pentium II Xeon/Celeron");
366 					cpu = CPU_PII;
367 					break;
368 				case 0x70:
369 				case 0x80:
370 				case 0xa0:
371 				case 0xb0:
372 					strcat(cpu_model,
373 					"Pentium III/Pentium III Xeon/Celeron");
374 					cpu = CPU_PIII;
375 					break;
376 				default:
377 					strcat(cpu_model, "Unknown 80686");
378 					break;
379 				}
380 				break;
381 			case 0xf00:
382 				strcat(cpu_model, "Pentium 4");
383 				cpu = CPU_P4;
384 				break;
385 			default:
386 				strcat(cpu_model, "unknown");
387 				break;
388 			}
389 
390 			/*
391 			 * If we didn't get a brand name from the extended
392 			 * CPUID, try to look it up in the brand table.
393 			 */
394 			if (cpu_high > 0 && *cpu_brand == '\0') {
395 				brand_index = cpu_procinfo & CPUID_BRAND_INDEX;
396 				if (brand_index <= MAX_BRAND_INDEX &&
397 				    cpu_brandtable[brand_index] != NULL)
398 					strcpy(cpu_brand,
399 					    cpu_brandtable[brand_index]);
400 			}
401 		}
402 #else
403 		/* Please make up your mind folks! */
404 		strcat(cpu_model, "EM64T");
405 #endif
406 		break;
407 	case CPU_VENDOR_AMD:
408 		/*
409 		 * Values taken from AMD Processor Recognition
410 		 * http://www.amd.com/K6/k6docs/pdf/20734g.pdf
411 		 * (also describes ``Features'' encodings.
412 		 */
413 		strcpy(cpu_model, "AMD ");
414 #ifdef __i386__
415 		switch (cpu_id & 0xFF0) {
416 		case 0x410:
417 			strcat(cpu_model, "Standard Am486DX");
418 			break;
419 		case 0x430:
420 			strcat(cpu_model, "Enhanced Am486DX2 Write-Through");
421 			break;
422 		case 0x470:
423 			strcat(cpu_model, "Enhanced Am486DX2 Write-Back");
424 			break;
425 		case 0x480:
426 			strcat(cpu_model, "Enhanced Am486DX4/Am5x86 Write-Through");
427 			break;
428 		case 0x490:
429 			strcat(cpu_model, "Enhanced Am486DX4/Am5x86 Write-Back");
430 			break;
431 		case 0x4E0:
432 			strcat(cpu_model, "Am5x86 Write-Through");
433 			break;
434 		case 0x4F0:
435 			strcat(cpu_model, "Am5x86 Write-Back");
436 			break;
437 		case 0x500:
438 			strcat(cpu_model, "K5 model 0");
439 			break;
440 		case 0x510:
441 			strcat(cpu_model, "K5 model 1");
442 			break;
443 		case 0x520:
444 			strcat(cpu_model, "K5 PR166 (model 2)");
445 			break;
446 		case 0x530:
447 			strcat(cpu_model, "K5 PR200 (model 3)");
448 			break;
449 		case 0x560:
450 			strcat(cpu_model, "K6");
451 			break;
452 		case 0x570:
453 			strcat(cpu_model, "K6 266 (model 1)");
454 			break;
455 		case 0x580:
456 			strcat(cpu_model, "K6-2");
457 			break;
458 		case 0x590:
459 			strcat(cpu_model, "K6-III");
460 			break;
461 		case 0x5a0:
462 			strcat(cpu_model, "Geode LX");
463 			break;
464 		default:
465 			strcat(cpu_model, "Unknown");
466 			break;
467 		}
468 #else
469 		if ((cpu_id & 0xf00) == 0xf00)
470 			strcat(cpu_model, "AMD64 Processor");
471 		else
472 			strcat(cpu_model, "Unknown");
473 #endif
474 		break;
475 #ifdef __i386__
476 	case CPU_VENDOR_CYRIX:
477 		strcpy(cpu_model, "Cyrix ");
478 		switch (cpu_id & 0xff0) {
479 		case 0x440:
480 			strcat(cpu_model, "MediaGX");
481 			break;
482 		case 0x520:
483 			strcat(cpu_model, "6x86");
484 			break;
485 		case 0x540:
486 			cpu_class = CPUCLASS_586;
487 			strcat(cpu_model, "GXm");
488 			break;
489 		case 0x600:
490 			strcat(cpu_model, "6x86MX");
491 			break;
492 		default:
493 			/*
494 			 * Even though CPU supports the cpuid
495 			 * instruction, it can be disabled.
496 			 * Therefore, this routine supports all Cyrix
497 			 * CPUs.
498 			 */
499 			switch (cyrix_did & 0xf0) {
500 			case 0x00:
501 				switch (cyrix_did & 0x0f) {
502 				case 0x00:
503 					strcat(cpu_model, "486SLC");
504 					break;
505 				case 0x01:
506 					strcat(cpu_model, "486DLC");
507 					break;
508 				case 0x02:
509 					strcat(cpu_model, "486SLC2");
510 					break;
511 				case 0x03:
512 					strcat(cpu_model, "486DLC2");
513 					break;
514 				case 0x04:
515 					strcat(cpu_model, "486SRx");
516 					break;
517 				case 0x05:
518 					strcat(cpu_model, "486DRx");
519 					break;
520 				case 0x06:
521 					strcat(cpu_model, "486SRx2");
522 					break;
523 				case 0x07:
524 					strcat(cpu_model, "486DRx2");
525 					break;
526 				case 0x08:
527 					strcat(cpu_model, "486SRu");
528 					break;
529 				case 0x09:
530 					strcat(cpu_model, "486DRu");
531 					break;
532 				case 0x0a:
533 					strcat(cpu_model, "486SRu2");
534 					break;
535 				case 0x0b:
536 					strcat(cpu_model, "486DRu2");
537 					break;
538 				default:
539 					strcat(cpu_model, "Unknown");
540 					break;
541 				}
542 				break;
543 			case 0x10:
544 				switch (cyrix_did & 0x0f) {
545 				case 0x00:
546 					strcat(cpu_model, "486S");
547 					break;
548 				case 0x01:
549 					strcat(cpu_model, "486S2");
550 					break;
551 				case 0x02:
552 					strcat(cpu_model, "486Se");
553 					break;
554 				case 0x03:
555 					strcat(cpu_model, "486S2e");
556 					break;
557 				case 0x0a:
558 					strcat(cpu_model, "486DX");
559 					break;
560 				case 0x0b:
561 					strcat(cpu_model, "486DX2");
562 					break;
563 				case 0x0f:
564 					strcat(cpu_model, "486DX4");
565 					break;
566 				default:
567 					strcat(cpu_model, "Unknown");
568 					break;
569 				}
570 				break;
571 			case 0x20:
572 				if ((cyrix_did & 0x0f) < 8)
573 					strcat(cpu_model, "6x86");	/* Where did you get it? */
574 				else
575 					strcat(cpu_model, "5x86");
576 				break;
577 			case 0x30:
578 				strcat(cpu_model, "6x86");
579 				break;
580 			case 0x40:
581 				if ((cyrix_did & 0xf000) == 0x3000) {
582 					cpu_class = CPUCLASS_586;
583 					strcat(cpu_model, "GXm");
584 				} else
585 					strcat(cpu_model, "MediaGX");
586 				break;
587 			case 0x50:
588 				strcat(cpu_model, "6x86MX");
589 				break;
590 			case 0xf0:
591 				switch (cyrix_did & 0x0f) {
592 				case 0x0d:
593 					strcat(cpu_model, "Overdrive CPU");
594 					break;
595 				case 0x0e:
596 					strcpy(cpu_model, "Texas Instruments 486SXL");
597 					break;
598 				case 0x0f:
599 					strcat(cpu_model, "486SLC/DLC");
600 					break;
601 				default:
602 					strcat(cpu_model, "Unknown");
603 					break;
604 				}
605 				break;
606 			default:
607 				strcat(cpu_model, "Unknown");
608 				break;
609 			}
610 			break;
611 		}
612 		break;
613 	case CPU_VENDOR_RISE:
614 		strcpy(cpu_model, "Rise ");
615 		switch (cpu_id & 0xff0) {
616 		case 0x500:	/* 6401 and 6441 (Kirin) */
617 		case 0x520:	/* 6510 (Lynx) */
618 			strcat(cpu_model, "mP6");
619 			break;
620 		default:
621 			strcat(cpu_model, "Unknown");
622 		}
623 		break;
624 #endif
625 	case CPU_VENDOR_CENTAUR:
626 #ifdef __i386__
627 		switch (cpu_id & 0xff0) {
628 		case 0x540:
629 			strcpy(cpu_model, "IDT WinChip C6");
630 			break;
631 		case 0x580:
632 			strcpy(cpu_model, "IDT WinChip 2");
633 			break;
634 		case 0x590:
635 			strcpy(cpu_model, "IDT WinChip 3");
636 			break;
637 		case 0x660:
638 			strcpy(cpu_model, "VIA C3 Samuel");
639 			break;
640 		case 0x670:
641 			if (cpu_id & 0x8)
642 				strcpy(cpu_model, "VIA C3 Ezra");
643 			else
644 				strcpy(cpu_model, "VIA C3 Samuel 2");
645 			break;
646 		case 0x680:
647 			strcpy(cpu_model, "VIA C3 Ezra-T");
648 			break;
649 		case 0x690:
650 			strcpy(cpu_model, "VIA C3 Nehemiah");
651 			break;
652 		case 0x6a0:
653 		case 0x6d0:
654 			strcpy(cpu_model, "VIA C7 Esther");
655 			break;
656 		case 0x6f0:
657 			strcpy(cpu_model, "VIA Nano");
658 			break;
659 		default:
660 			strcpy(cpu_model, "VIA/IDT Unknown");
661 		}
662 #else
663 		strcpy(cpu_model, "VIA ");
664 		if ((cpu_id & 0xff0) == 0x6f0)
665 			strcat(cpu_model, "Nano Processor");
666 		else
667 			strcat(cpu_model, "Unknown");
668 #endif
669 		break;
670 #ifdef __i386__
671 	case CPU_VENDOR_IBM:
672 		strcpy(cpu_model, "Blue Lightning CPU");
673 		break;
674 	case CPU_VENDOR_NSC:
675 		switch (cpu_id & 0xff0) {
676 		case 0x540:
677 			strcpy(cpu_model, "Geode SC1100");
678 			cpu = CPU_GEODE1100;
679 			break;
680 		default:
681 			strcpy(cpu_model, "Geode/NSC unknown");
682 			break;
683 		}
684 		break;
685 #endif
686 	case CPU_VENDOR_HYGON:
687 		strcpy(cpu_model, "Hygon ");
688 #ifdef __i386__
689 		strcat(cpu_model, "Unknown");
690 #else
691 		if ((cpu_id & 0xf00) == 0xf00)
692 			strcat(cpu_model, "AMD64 Processor");
693 		else
694 			strcat(cpu_model, "Unknown");
695 #endif
696 		break;
697 
698 	default:
699 		strcat(cpu_model, "Unknown");
700 		break;
701 	}
702 
703 	/*
704 	 * Replace cpu_model with cpu_brand minus leading spaces if
705 	 * we have one.
706 	 */
707 	brand = cpu_brand;
708 	while (*brand == ' ')
709 		++brand;
710 	if (*brand != '\0')
711 		strcpy(cpu_model, brand);
712 
713 	printf("%s (", cpu_model);
714 	if (tsc_freq != 0) {
715 		hw_clockrate = (tsc_freq + 5000) / 1000000;
716 		printf("%jd.%02d-MHz ",
717 		    (intmax_t)(tsc_freq + 4999) / 1000000,
718 		    (u_int)((tsc_freq + 4999) / 10000) % 100);
719 	}
720 #ifdef __i386__
721 	switch(cpu_class) {
722 	case CPUCLASS_286:
723 		printf("286");
724 		break;
725 	case CPUCLASS_386:
726 		printf("386");
727 		break;
728 #if defined(I486_CPU)
729 	case CPUCLASS_486:
730 		printf("486");
731 		break;
732 #endif
733 #if defined(I586_CPU)
734 	case CPUCLASS_586:
735 		printf("586");
736 		break;
737 #endif
738 #if defined(I686_CPU)
739 	case CPUCLASS_686:
740 		printf("686");
741 		break;
742 #endif
743 	default:
744 		printf("Unknown");	/* will panic below... */
745 	}
746 #else
747 	printf("K8");
748 #endif
749 	printf("-class CPU)\n");
750 	if (*cpu_vendor)
751 		printf("  Origin=\"%s\"", cpu_vendor);
752 	if (cpu_id)
753 		printf("  Id=0x%x", cpu_id);
754 
755 	if (cpu_vendor_id == CPU_VENDOR_INTEL ||
756 	    cpu_vendor_id == CPU_VENDOR_AMD ||
757 	    cpu_vendor_id == CPU_VENDOR_HYGON ||
758 	    cpu_vendor_id == CPU_VENDOR_CENTAUR ||
759 #ifdef __i386__
760 	    cpu_vendor_id == CPU_VENDOR_TRANSMETA ||
761 	    cpu_vendor_id == CPU_VENDOR_RISE ||
762 	    cpu_vendor_id == CPU_VENDOR_NSC ||
763 	    (cpu_vendor_id == CPU_VENDOR_CYRIX && ((cpu_id & 0xf00) > 0x500)) ||
764 #endif
765 	    0) {
766 		printf("  Family=0x%x", CPUID_TO_FAMILY(cpu_id));
767 		printf("  Model=0x%x", CPUID_TO_MODEL(cpu_id));
768 		printf("  Stepping=%u", cpu_id & CPUID_STEPPING);
769 #ifdef __i386__
770 		if (cpu_vendor_id == CPU_VENDOR_CYRIX)
771 			printf("\n  DIR=0x%04x", cyrix_did);
772 #endif
773 
774 		/*
775 		 * AMD CPUID Specification
776 		 * http://support.amd.com/us/Embedded_TechDocs/25481.pdf
777 		 *
778 		 * Intel Processor Identification and CPUID Instruction
779 		 * http://www.intel.com/assets/pdf/appnote/241618.pdf
780 		 */
781 		if (cpu_high > 0) {
782 			/*
783 			 * Here we should probably set up flags indicating
784 			 * whether or not various features are available.
785 			 * The interesting ones are probably VME, PSE, PAE,
786 			 * and PGE.  The code already assumes without bothering
787 			 * to check that all CPUs >= Pentium have a TSC and
788 			 * MSRs.
789 			 */
790 			printf("\n  Features=0x%b", cpu_feature,
791 			"\020"
792 			"\001FPU"	/* Integral FPU */
793 			"\002VME"	/* Extended VM86 mode support */
794 			"\003DE"	/* Debugging Extensions (CR4.DE) */
795 			"\004PSE"	/* 4MByte page tables */
796 			"\005TSC"	/* Timestamp counter */
797 			"\006MSR"	/* Machine specific registers */
798 			"\007PAE"	/* Physical address extension */
799 			"\010MCE"	/* Machine Check support */
800 			"\011CX8"	/* CMPEXCH8 instruction */
801 			"\012APIC"	/* SMP local APIC */
802 			"\013oldMTRR"	/* Previous implementation of MTRR */
803 			"\014SEP"	/* Fast System Call */
804 			"\015MTRR"	/* Memory Type Range Registers */
805 			"\016PGE"	/* PG_G (global bit) support */
806 			"\017MCA"	/* Machine Check Architecture */
807 			"\020CMOV"	/* CMOV instruction */
808 			"\021PAT"	/* Page attributes table */
809 			"\022PSE36"	/* 36 bit address space support */
810 			"\023PN"	/* Processor Serial number */
811 			"\024CLFLUSH"	/* Has the CLFLUSH instruction */
812 			"\025<b20>"
813 			"\026DTS"	/* Debug Trace Store */
814 			"\027ACPI"	/* ACPI support */
815 			"\030MMX"	/* MMX instructions */
816 			"\031FXSR"	/* FXSAVE/FXRSTOR */
817 			"\032SSE"	/* Streaming SIMD Extensions */
818 			"\033SSE2"	/* Streaming SIMD Extensions #2 */
819 			"\034SS"	/* Self snoop */
820 			"\035HTT"	/* Hyperthreading (see EBX bit 16-23) */
821 			"\036TM"	/* Thermal Monitor clock slowdown */
822 			"\037IA64"	/* CPU can execute IA64 instructions */
823 			"\040PBE"	/* Pending Break Enable */
824 			);
825 
826 			if (cpu_feature2 != 0) {
827 				printf("\n  Features2=0x%b", cpu_feature2,
828 				"\020"
829 				"\001SSE3"	/* SSE3 */
830 				"\002PCLMULQDQ"	/* Carry-Less Mul Quadword */
831 				"\003DTES64"	/* 64-bit Debug Trace */
832 				"\004MON"	/* MONITOR/MWAIT Instructions */
833 				"\005DS_CPL"	/* CPL Qualified Debug Store */
834 				"\006VMX"	/* Virtual Machine Extensions */
835 				"\007SMX"	/* Safer Mode Extensions */
836 				"\010EST"	/* Enhanced SpeedStep */
837 				"\011TM2"	/* Thermal Monitor 2 */
838 				"\012SSSE3"	/* SSSE3 */
839 				"\013CNXT-ID"	/* L1 context ID available */
840 				"\014SDBG"	/* IA32 silicon debug */
841 				"\015FMA"	/* Fused Multiply Add */
842 				"\016CX16"	/* CMPXCHG16B Instruction */
843 				"\017xTPR"	/* Send Task Priority Messages*/
844 				"\020PDCM"	/* Perf/Debug Capability MSR */
845 				"\021<b16>"
846 				"\022PCID"	/* Process-context Identifiers*/
847 				"\023DCA"	/* Direct Cache Access */
848 				"\024SSE4.1"	/* SSE 4.1 */
849 				"\025SSE4.2"	/* SSE 4.2 */
850 				"\026x2APIC"	/* xAPIC Extensions */
851 				"\027MOVBE"	/* MOVBE Instruction */
852 				"\030POPCNT"	/* POPCNT Instruction */
853 				"\031TSCDLT"	/* TSC-Deadline Timer */
854 				"\032AESNI"	/* AES Crypto */
855 				"\033XSAVE"	/* XSAVE/XRSTOR States */
856 				"\034OSXSAVE"	/* OS-Enabled State Management*/
857 				"\035AVX"	/* Advanced Vector Extensions */
858 				"\036F16C"	/* Half-precision conversions */
859 				"\037RDRAND"	/* RDRAND Instruction */
860 				"\040HV"	/* Hypervisor */
861 				);
862 			}
863 
864 			if (amd_feature != 0) {
865 				printf("\n  AMD Features=0x%b", amd_feature,
866 				"\020"		/* in hex */
867 				"\001<s0>"	/* Same */
868 				"\002<s1>"	/* Same */
869 				"\003<s2>"	/* Same */
870 				"\004<s3>"	/* Same */
871 				"\005<s4>"	/* Same */
872 				"\006<s5>"	/* Same */
873 				"\007<s6>"	/* Same */
874 				"\010<s7>"	/* Same */
875 				"\011<s8>"	/* Same */
876 				"\012<s9>"	/* Same */
877 				"\013<b10>"	/* Undefined */
878 				"\014SYSCALL"	/* Have SYSCALL/SYSRET */
879 				"\015<s12>"	/* Same */
880 				"\016<s13>"	/* Same */
881 				"\017<s14>"	/* Same */
882 				"\020<s15>"	/* Same */
883 				"\021<s16>"	/* Same */
884 				"\022<s17>"	/* Same */
885 				"\023<b18>"	/* Reserved, unknown */
886 				"\024MP"	/* Multiprocessor Capable */
887 				"\025NX"	/* Has EFER.NXE, NX */
888 				"\026<b21>"	/* Undefined */
889 				"\027MMX+"	/* AMD MMX Extensions */
890 				"\030<s23>"	/* Same */
891 				"\031<s24>"	/* Same */
892 				"\032FFXSR"	/* Fast FXSAVE/FXRSTOR */
893 				"\033Page1GB"	/* 1-GB large page support */
894 				"\034RDTSCP"	/* RDTSCP */
895 				"\035<b28>"	/* Undefined */
896 				"\036LM"	/* 64 bit long mode */
897 				"\0373DNow!+"	/* AMD 3DNow! Extensions */
898 				"\0403DNow!"	/* AMD 3DNow! */
899 				);
900 			}
901 
902 			if (amd_feature2 != 0) {
903 				printf("\n  AMD Features2=0x%b", amd_feature2,
904 				"\020"
905 				"\001LAHF"	/* LAHF/SAHF in long mode */
906 				"\002CMP"	/* CMP legacy */
907 				"\003SVM"	/* Secure Virtual Mode */
908 				"\004ExtAPIC"	/* Extended APIC register */
909 				"\005CR8"	/* CR8 in legacy mode */
910 				"\006ABM"	/* LZCNT instruction */
911 				"\007SSE4A"	/* SSE4A */
912 				"\010MAS"	/* Misaligned SSE mode */
913 				"\011Prefetch"	/* 3DNow! Prefetch/PrefetchW */
914 				"\012OSVW"	/* OS visible workaround */
915 				"\013IBS"	/* Instruction based sampling */
916 				"\014XOP"	/* XOP extended instructions */
917 				"\015SKINIT"	/* SKINIT/STGI */
918 				"\016WDT"	/* Watchdog timer */
919 				"\017<b14>"
920 				"\020LWP"	/* Lightweight Profiling */
921 				"\021FMA4"	/* 4-operand FMA instructions */
922 				"\022TCE"	/* Translation Cache Extension */
923 				"\023<b18>"
924 				"\024NodeId"	/* NodeId MSR support */
925 				"\025<b20>"
926 				"\026TBM"	/* Trailing Bit Manipulation */
927 				"\027Topology"	/* Topology Extensions */
928 				"\030PCXC"	/* Core perf count */
929 				"\031PNXC"	/* NB perf count */
930 				"\032<b25>"
931 				"\033DBE"	/* Data Breakpoint extension */
932 				"\034PTSC"	/* Performance TSC */
933 				"\035PL2I"	/* L2I perf count */
934 				"\036MWAITX"	/* MONITORX/MWAITX instructions */
935 				"\037ADMSKX"	/* Address mask extension */
936 				"\040<b31>"
937 				);
938 			}
939 
940 			if (cpu_stdext_feature != 0) {
941 				printf("\n  Structured Extended Features=0x%b",
942 				    cpu_stdext_feature,
943 				       "\020"
944 				       /* RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE */
945 				       "\001FSGSBASE"
946 				       "\002TSCADJ"
947 				       "\003SGX"
948 				       /* Bit Manipulation Instructions */
949 				       "\004BMI1"
950 				       /* Hardware Lock Elision */
951 				       "\005HLE"
952 				       /* Advanced Vector Instructions 2 */
953 				       "\006AVX2"
954 				       /* FDP_EXCPTN_ONLY */
955 				       "\007FDPEXC"
956 				       /* Supervisor Mode Execution Prot. */
957 				       "\010SMEP"
958 				       /* Bit Manipulation Instructions */
959 				       "\011BMI2"
960 				       "\012ERMS"
961 				       /* Invalidate Processor Context ID */
962 				       "\013INVPCID"
963 				       /* Restricted Transactional Memory */
964 				       "\014RTM"
965 				       "\015PQM"
966 				       "\016NFPUSG"
967 				       /* Intel Memory Protection Extensions */
968 				       "\017MPX"
969 				       "\020PQE"
970 				       /* AVX512 Foundation */
971 				       "\021AVX512F"
972 				       "\022AVX512DQ"
973 				       /* Enhanced NRBG */
974 				       "\023RDSEED"
975 				       /* ADCX + ADOX */
976 				       "\024ADX"
977 				       /* Supervisor Mode Access Prevention */
978 				       "\025SMAP"
979 				       "\026AVX512IFMA"
980 				       /* Formerly PCOMMIT */
981 				       "\027<b22>"
982 				       "\030CLFLUSHOPT"
983 				       "\031CLWB"
984 				       "\032PROCTRACE"
985 				       "\033AVX512PF"
986 				       "\034AVX512ER"
987 				       "\035AVX512CD"
988 				       "\036SHA"
989 				       "\037AVX512BW"
990 				       "\040AVX512VL"
991 				       );
992 			}
993 
994 			if (cpu_stdext_feature2 != 0) {
995 				printf("\n  Structured Extended Features2=0x%b",
996 				    cpu_stdext_feature2,
997 				       "\020"
998 				       "\001PREFETCHWT1"
999 				       "\002AVX512VBMI"
1000 				       "\003UMIP"
1001 				       "\004PKU"
1002 				       "\005OSPKE"
1003 				       "\006WAITPKG"
1004 				       "\007AVX512VBMI2"
1005 				       "\011GFNI"
1006 				       "\012VAES"
1007 				       "\013VPCLMULQDQ"
1008 				       "\014AVX512VNNI"
1009 				       "\015AVX512BITALG"
1010 				       "\016TME"
1011 				       "\017AVX512VPOPCNTDQ"
1012 				       "\021LA57"
1013 				       "\027RDPID"
1014 				       "\032CLDEMOTE"
1015 				       "\034MOVDIRI"
1016 				       "\035MOVDIR64B"
1017 				       "\036ENQCMD"
1018 				       "\037SGXLC"
1019 				       );
1020 			}
1021 
1022 			if (cpu_stdext_feature3 != 0) {
1023 				printf("\n  Structured Extended Features3=0x%b",
1024 				    cpu_stdext_feature3,
1025 				       "\020"
1026 				       "\003AVX512_4VNNIW"
1027 				       "\004AVX512_4FMAPS"
1028 				       "\005FSRM"
1029 				       "\011AVX512VP2INTERSECT"
1030 				       "\012MCUOPT"
1031 				       "\013MD_CLEAR"
1032 				       "\016TSXFA"
1033 				       "\023PCONFIG"
1034 				       "\025IBT"
1035 				       "\033IBPB"
1036 				       "\034STIBP"
1037 				       "\035L1DFL"
1038 				       "\036ARCH_CAP"
1039 				       "\037CORE_CAP"
1040 				       "\040SSBD"
1041 				       );
1042 			}
1043 
1044 			if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
1045 				cpuid_count(0xd, 0x1, regs);
1046 				if (regs[0] != 0) {
1047 					printf("\n  XSAVE Features=0x%b",
1048 					    regs[0],
1049 					    "\020"
1050 					    "\001XSAVEOPT"
1051 					    "\002XSAVEC"
1052 					    "\003XINUSE"
1053 					    "\004XSAVES");
1054 				}
1055 			}
1056 
1057 			if (cpu_ia32_arch_caps != 0) {
1058 				printf("\n  IA32_ARCH_CAPS=0x%b",
1059 				    (u_int)cpu_ia32_arch_caps,
1060 				       "\020"
1061 				       "\001RDCL_NO"
1062 				       "\002IBRS_ALL"
1063 				       "\003RSBA"
1064 				       "\004SKIP_L1DFL_VME"
1065 				       "\005SSB_NO"
1066 				       "\006MDS_NO"
1067 				       "\010TSX_CTRL"
1068 				       "\011TAA_NO"
1069 				       );
1070 			}
1071 
1072 			if (amd_extended_feature_extensions != 0) {
1073 				u_int amd_fe_masked;
1074 
1075 				amd_fe_masked = amd_extended_feature_extensions;
1076 				if ((amd_fe_masked & AMDFEID_IBRS) == 0)
1077 					amd_fe_masked &=
1078 					    ~(AMDFEID_IBRS_ALWAYSON |
1079 						AMDFEID_PREFER_IBRS);
1080 				if ((amd_fe_masked & AMDFEID_STIBP) == 0)
1081 					amd_fe_masked &=
1082 					    ~AMDFEID_STIBP_ALWAYSON;
1083 
1084 				printf("\n  "
1085 				    "AMD Extended Feature Extensions ID EBX="
1086 				    "0x%b", amd_fe_masked,
1087 				    "\020"
1088 				    "\001CLZERO"
1089 				    "\002IRPerf"
1090 				    "\003XSaveErPtr"
1091 				    "\005RDPRU"
1092 				    "\011MCOMMIT"
1093 				    "\012WBNOINVD"
1094 				    "\015IBPB"
1095 				    "\017IBRS"
1096 				    "\020STIBP"
1097 				    "\021IBRS_ALWAYSON"
1098 				    "\022STIBP_ALWAYSON"
1099 				    "\023PREFER_IBRS"
1100 				    "\030PPIN"
1101 				    "\031SSBD"
1102 				    "\032VIRT_SSBD"
1103 				    "\033SSB_NO"
1104 				    );
1105 			}
1106 
1107 			if (via_feature_rng != 0 || via_feature_xcrypt != 0)
1108 				print_via_padlock_info();
1109 
1110 			if (cpu_feature2 & CPUID2_VMX)
1111 				print_vmx_info();
1112 
1113 			if (amd_feature2 & AMDID2_SVM)
1114 				print_svm_info();
1115 
1116 			if ((cpu_feature & CPUID_HTT) &&
1117 			    (cpu_vendor_id == CPU_VENDOR_AMD ||
1118 			     cpu_vendor_id == CPU_VENDOR_HYGON))
1119 				cpu_feature &= ~CPUID_HTT;
1120 
1121 			/*
1122 			 * If this CPU supports P-state invariant TSC then
1123 			 * mention the capability.
1124 			 */
1125 			if (tsc_is_invariant) {
1126 				printf("\n  TSC: P-state invariant");
1127 				if (tsc_perf_stat)
1128 					printf(", performance statistics");
1129 			}
1130 		}
1131 #ifdef __i386__
1132 	} else if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
1133 		printf("  DIR=0x%04x", cyrix_did);
1134 		printf("  Stepping=%u", (cyrix_did & 0xf000) >> 12);
1135 		printf("  Revision=%u", (cyrix_did & 0x0f00) >> 8);
1136 #ifndef CYRIX_CACHE_REALLY_WORKS
1137 		if (cpu == CPU_M1 && (cyrix_did & 0xff00) < 0x1700)
1138 			printf("\n  CPU cache: write-through mode");
1139 #endif
1140 #endif
1141 	}
1142 
1143 	/* Avoid ugly blank lines: only print newline when we have to. */
1144 	if (*cpu_vendor || cpu_id)
1145 		printf("\n");
1146 
1147 	if (bootverbose) {
1148 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
1149 		    cpu_vendor_id == CPU_VENDOR_HYGON)
1150 			print_AMD_info();
1151 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
1152 			print_INTEL_info();
1153 #ifdef __i386__
1154 		else if (cpu_vendor_id == CPU_VENDOR_TRANSMETA)
1155 			print_transmeta_info();
1156 #endif
1157 	}
1158 
1159 	print_hypervisor_info();
1160 }
1161 
1162 #ifdef __i386__
1163 void
1164 panicifcpuunsupported(void)
1165 {
1166 
1167 #if !defined(lint)
1168 #if !defined(I486_CPU) && !defined(I586_CPU) && !defined(I686_CPU)
1169 #error This kernel is not configured for one of the supported CPUs
1170 #endif
1171 #else /* lint */
1172 #endif /* lint */
1173 	/*
1174 	 * Now that we have told the user what they have,
1175 	 * let them know if that machine type isn't configured.
1176 	 */
1177 	switch (cpu_class) {
1178 	case CPUCLASS_286:	/* a 286 should not make it this far, anyway */
1179 	case CPUCLASS_386:
1180 #if !defined(I486_CPU)
1181 	case CPUCLASS_486:
1182 #endif
1183 #if !defined(I586_CPU)
1184 	case CPUCLASS_586:
1185 #endif
1186 #if !defined(I686_CPU)
1187 	case CPUCLASS_686:
1188 #endif
1189 		panic("CPU class not configured");
1190 	default:
1191 		break;
1192 	}
1193 }
1194 
1195 static	volatile u_int trap_by_rdmsr;
1196 
1197 /*
1198  * Special exception 6 handler.
1199  * The rdmsr instruction generates invalid opcodes fault on 486-class
1200  * Cyrix CPU.  Stacked eip register points the rdmsr instruction in the
1201  * function identblue() when this handler is called.  Stacked eip should
1202  * be advanced.
1203  */
1204 inthand_t	bluetrap6;
1205 #ifdef __GNUCLIKE_ASM
1206 __asm
1207 ("									\n\
1208 	.text								\n\
1209 	.p2align 2,0x90							\n\
1210 	.type	" __XSTRING(CNAME(bluetrap6)) ",@function		\n\
1211 " __XSTRING(CNAME(bluetrap6)) ":					\n\
1212 	ss								\n\
1213 	movl	$0xa8c1d," __XSTRING(CNAME(trap_by_rdmsr)) "		\n\
1214 	addl	$2, (%esp)	/* rdmsr is a 2-byte instruction */	\n\
1215 	iret								\n\
1216 ");
1217 #endif
1218 
1219 /*
1220  * Special exception 13 handler.
1221  * Accessing non-existent MSR generates general protection fault.
1222  */
1223 inthand_t	bluetrap13;
1224 #ifdef __GNUCLIKE_ASM
1225 __asm
1226 ("									\n\
1227 	.text								\n\
1228 	.p2align 2,0x90							\n\
1229 	.type	" __XSTRING(CNAME(bluetrap13)) ",@function		\n\
1230 " __XSTRING(CNAME(bluetrap13)) ":					\n\
1231 	ss								\n\
1232 	movl	$0xa89c4," __XSTRING(CNAME(trap_by_rdmsr)) "		\n\
1233 	popl	%eax		/* discard error code */		\n\
1234 	addl	$2, (%esp)	/* rdmsr is a 2-byte instruction */	\n\
1235 	iret								\n\
1236 ");
1237 #endif
1238 
1239 /*
1240  * Distinguish IBM Blue Lightning CPU from Cyrix CPUs that does not
1241  * support cpuid instruction.  This function should be called after
1242  * loading interrupt descriptor table register.
1243  *
1244  * I don't like this method that handles fault, but I couldn't get
1245  * information for any other methods.  Does blue giant know?
1246  */
1247 static int
1248 identblue(void)
1249 {
1250 
1251 	trap_by_rdmsr = 0;
1252 
1253 	/*
1254 	 * Cyrix 486-class CPU does not support rdmsr instruction.
1255 	 * The rdmsr instruction generates invalid opcode fault, and exception
1256 	 * will be trapped by bluetrap6() on Cyrix 486-class CPU.  The
1257 	 * bluetrap6() set the magic number to trap_by_rdmsr.
1258 	 */
1259 	setidt(IDT_UD, bluetrap6, SDT_SYS386TGT, SEL_KPL,
1260 	    GSEL(GCODE_SEL, SEL_KPL));
1261 
1262 	/*
1263 	 * Certain BIOS disables cpuid instruction of Cyrix 6x86MX CPU.
1264 	 * In this case, rdmsr generates general protection fault, and
1265 	 * exception will be trapped by bluetrap13().
1266 	 */
1267 	setidt(IDT_GP, bluetrap13, SDT_SYS386TGT, SEL_KPL,
1268 	    GSEL(GCODE_SEL, SEL_KPL));
1269 
1270 	rdmsr(0x1002);		/* Cyrix CPU generates fault. */
1271 
1272 	if (trap_by_rdmsr == 0xa8c1d)
1273 		return IDENTBLUE_CYRIX486;
1274 	else if (trap_by_rdmsr == 0xa89c4)
1275 		return IDENTBLUE_CYRIXM2;
1276 	return IDENTBLUE_IBMCPU;
1277 }
1278 
1279 /*
1280  * identifycyrix() set lower 16 bits of cyrix_did as follows:
1281  *
1282  *  F E D C B A 9 8 7 6 5 4 3 2 1 0
1283  * +-------+-------+---------------+
1284  * |  SID  |  RID  |   Device ID   |
1285  * |    (DIR 1)    |    (DIR 0)    |
1286  * +-------+-------+---------------+
1287  */
1288 static void
1289 identifycyrix(void)
1290 {
1291 	register_t saveintr;
1292 	int	ccr2_test = 0, dir_test = 0;
1293 	u_char	ccr2, ccr3;
1294 
1295 	saveintr = intr_disable();
1296 
1297 	ccr2 = read_cyrix_reg(CCR2);
1298 	write_cyrix_reg(CCR2, ccr2 ^ CCR2_LOCK_NW);
1299 	read_cyrix_reg(CCR2);
1300 	if (read_cyrix_reg(CCR2) != ccr2)
1301 		ccr2_test = 1;
1302 	write_cyrix_reg(CCR2, ccr2);
1303 
1304 	ccr3 = read_cyrix_reg(CCR3);
1305 	write_cyrix_reg(CCR3, ccr3 ^ CCR3_MAPEN3);
1306 	read_cyrix_reg(CCR3);
1307 	if (read_cyrix_reg(CCR3) != ccr3)
1308 		dir_test = 1;					/* CPU supports DIRs. */
1309 	write_cyrix_reg(CCR3, ccr3);
1310 
1311 	if (dir_test) {
1312 		/* Device ID registers are available. */
1313 		cyrix_did = read_cyrix_reg(DIR1) << 8;
1314 		cyrix_did += read_cyrix_reg(DIR0);
1315 	} else if (ccr2_test)
1316 		cyrix_did = 0x0010;		/* 486S A-step */
1317 	else
1318 		cyrix_did = 0x00ff;		/* Old 486SLC/DLC and TI486SXLC/SXL */
1319 
1320 	intr_restore(saveintr);
1321 }
1322 #endif
1323 
1324 /* Update TSC freq with the value indicated by the caller. */
1325 static void
1326 tsc_freq_changed(void *arg __unused, const struct cf_level *level, int status)
1327 {
1328 
1329 	/* If there was an error during the transition, don't do anything. */
1330 	if (status != 0)
1331 		return;
1332 
1333 	/* Total setting for this level gives the new frequency in MHz. */
1334 	hw_clockrate = level->total_set.freq;
1335 }
1336 
1337 static void
1338 hook_tsc_freq(void *arg __unused)
1339 {
1340 
1341 	if (tsc_is_invariant)
1342 		return;
1343 
1344 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
1345 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_ANY);
1346 }
1347 
1348 SYSINIT(hook_tsc_freq, SI_SUB_CONFIGURE, SI_ORDER_ANY, hook_tsc_freq, NULL);
1349 
1350 static const struct {
1351 	const char *	vm_bname;
1352 	int		vm_guest;
1353 } vm_bnames[] = {
1354 	{ "QEMU",	VM_GUEST_VM },		/* QEMU */
1355 	{ "Plex86",	VM_GUEST_VM },		/* Plex86 */
1356 	{ "Bochs",	VM_GUEST_VM },		/* Bochs */
1357 	{ "Xen",	VM_GUEST_XEN },		/* Xen */
1358 	{ "BHYVE",	VM_GUEST_BHYVE },	/* bhyve */
1359 	{ "Seabios",	VM_GUEST_KVM },		/* KVM */
1360 };
1361 
1362 static const struct {
1363 	const char *	vm_pname;
1364 	int		vm_guest;
1365 } vm_pnames[] = {
1366 	{ "VMware Virtual Platform",	VM_GUEST_VMWARE },
1367 	{ "Virtual Machine",		VM_GUEST_VM }, /* Microsoft VirtualPC */
1368 	{ "VirtualBox",			VM_GUEST_VBOX },
1369 	{ "Parallels Virtual Platform",	VM_GUEST_PARALLELS },
1370 	{ "KVM",			VM_GUEST_KVM },
1371 };
1372 
1373 static struct {
1374 	const char	*vm_cpuid;
1375 	int		vm_guest;
1376 } vm_cpuids[] = {
1377 	{ "XENXENXEN",		VM_GUEST_XEN },		/* XEN */
1378 	{ "Microsoft Hv",	VM_GUEST_HV },		/* Microsoft Hyper-V */
1379 	{ "VMwareVMware",	VM_GUEST_VMWARE },	/* VMware VM */
1380 	{ "KVMKVMKVM",		VM_GUEST_KVM },		/* KVM */
1381 	{ "bhyve bhyve ",	VM_GUEST_BHYVE },	/* bhyve */
1382 	{ "VBoxVBoxVBox",	VM_GUEST_VBOX },	/* VirtualBox */
1383 };
1384 
1385 static void
1386 identify_hypervisor_cpuid_base(void)
1387 {
1388 	u_int leaf, regs[4];
1389 	int i;
1390 
1391 	/*
1392 	 * [RFC] CPUID usage for interaction between Hypervisors and Linux.
1393 	 * http://lkml.org/lkml/2008/10/1/246
1394 	 *
1395 	 * KB1009458: Mechanisms to determine if software is running in
1396 	 * a VMware virtual machine
1397 	 * http://kb.vmware.com/kb/1009458
1398 	 *
1399 	 * Search for a hypervisor that we recognize. If we cannot find
1400 	 * a specific hypervisor, return the first information about the
1401 	 * hypervisor that we found, as others may be able to use.
1402 	 */
1403 	for (leaf = 0x40000000; leaf < 0x40010000; leaf += 0x100) {
1404 		do_cpuid(leaf, regs);
1405 
1406 		/*
1407 		 * KVM from Linux kernels prior to commit
1408 		 * 57c22e5f35aa4b9b2fe11f73f3e62bbf9ef36190 set %eax
1409 		 * to 0 rather than a valid hv_high value.  Check for
1410 		 * the KVM signature bytes and fixup %eax to the
1411 		 * highest supported leaf in that case.
1412 		 */
1413 		if (regs[0] == 0 && regs[1] == 0x4b4d564b &&
1414 		    regs[2] == 0x564b4d56 && regs[3] == 0x0000004d)
1415 			regs[0] = leaf + 1;
1416 
1417 		if (regs[0] >= leaf) {
1418 			for (i = 0; i < nitems(vm_cpuids); i++)
1419 				if (strncmp((const char *)&regs[1],
1420 				    vm_cpuids[i].vm_cpuid, 12) == 0) {
1421 					vm_guest = vm_cpuids[i].vm_guest;
1422 					break;
1423 				}
1424 
1425 			/*
1426 			 * If this is the first entry or we found a
1427 			 * specific hypervisor, record the base, high value,
1428 			 * and vendor identifier.
1429 			 */
1430 			if (vm_guest != VM_GUEST_VM || leaf == 0x40000000) {
1431 				hv_base = leaf;
1432 				hv_high = regs[0];
1433 				((u_int *)&hv_vendor)[0] = regs[1];
1434 				((u_int *)&hv_vendor)[1] = regs[2];
1435 				((u_int *)&hv_vendor)[2] = regs[3];
1436 				hv_vendor[12] = '\0';
1437 
1438 				/*
1439 				 * If we found a specific hypervisor, then
1440 				 * we are finished.
1441 				 */
1442 				if (vm_guest != VM_GUEST_VM)
1443 					return;
1444 			}
1445 		}
1446 	}
1447 }
1448 
1449 void
1450 identify_hypervisor(void)
1451 {
1452 	u_int regs[4];
1453 	char *p;
1454 	int i;
1455 
1456 	/*
1457 	 * If CPUID2_HV is set, we are running in a hypervisor environment.
1458 	 */
1459 	if (cpu_feature2 & CPUID2_HV) {
1460 		vm_guest = VM_GUEST_VM;
1461 		identify_hypervisor_cpuid_base();
1462 
1463 		/* If we have a definitive vendor, we can return now. */
1464 		if (*hv_vendor != '\0')
1465 			return;
1466 	}
1467 
1468 	/*
1469 	 * Examine SMBIOS strings for older hypervisors.
1470 	 */
1471 	p = kern_getenv("smbios.system.serial");
1472 	if (p != NULL) {
1473 		if (strncmp(p, "VMware-", 7) == 0 || strncmp(p, "VMW", 3) == 0) {
1474 			vmware_hvcall(VMW_HVCMD_GETVERSION, regs);
1475 			if (regs[1] == VMW_HVMAGIC) {
1476 				vm_guest = VM_GUEST_VMWARE;
1477 				freeenv(p);
1478 				return;
1479 			}
1480 		}
1481 		freeenv(p);
1482 	}
1483 
1484 	/*
1485 	 * XXX: Some of these entries may not be needed since they were
1486 	 * added to FreeBSD before the checks above.
1487 	 */
1488 	p = kern_getenv("smbios.bios.vendor");
1489 	if (p != NULL) {
1490 		for (i = 0; i < nitems(vm_bnames); i++)
1491 			if (strcmp(p, vm_bnames[i].vm_bname) == 0) {
1492 				vm_guest = vm_bnames[i].vm_guest;
1493 				/* If we have a specific match, return */
1494 				if (vm_guest != VM_GUEST_VM) {
1495 					freeenv(p);
1496 					return;
1497 				}
1498 				/*
1499 				 * We are done with bnames, but there might be
1500 				 * a more specific match in the pnames
1501 				 */
1502 				break;
1503 			}
1504 		freeenv(p);
1505 	}
1506 	p = kern_getenv("smbios.system.product");
1507 	if (p != NULL) {
1508 		for (i = 0; i < nitems(vm_pnames); i++)
1509 			if (strcmp(p, vm_pnames[i].vm_pname) == 0) {
1510 				vm_guest = vm_pnames[i].vm_guest;
1511 				freeenv(p);
1512 				return;
1513 			}
1514 		freeenv(p);
1515 	}
1516 }
1517 
1518 bool
1519 fix_cpuid(void)
1520 {
1521 	uint64_t msr;
1522 
1523 	/*
1524 	 * Clear "Limit CPUID Maxval" bit and return true if the caller should
1525 	 * get the largest standard CPUID function number again if it is set
1526 	 * from BIOS.  It is necessary for probing correct CPU topology later
1527 	 * and for the correct operation of the AVX-aware userspace.
1528 	 */
1529 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
1530 	    ((CPUID_TO_FAMILY(cpu_id) == 0xf &&
1531 	    CPUID_TO_MODEL(cpu_id) >= 0x3) ||
1532 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
1533 	    CPUID_TO_MODEL(cpu_id) >= 0xe))) {
1534 		msr = rdmsr(MSR_IA32_MISC_ENABLE);
1535 		if ((msr & IA32_MISC_EN_LIMCPUID) != 0) {
1536 			msr &= ~IA32_MISC_EN_LIMCPUID;
1537 			wrmsr(MSR_IA32_MISC_ENABLE, msr);
1538 			return (true);
1539 		}
1540 	}
1541 
1542 	/*
1543 	 * Re-enable AMD Topology Extension that could be disabled by BIOS
1544 	 * on some notebook processors.  Without the extension it's really
1545 	 * hard to determine the correct CPU cache topology.
1546 	 * See BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h
1547 	 * Models 60h-6Fh Processors, Publication # 50742.
1548 	 */
1549 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_AMD &&
1550 	    CPUID_TO_FAMILY(cpu_id) == 0x15) {
1551 		msr = rdmsr(MSR_EXTFEATURES);
1552 		if ((msr & ((uint64_t)1 << 54)) == 0) {
1553 			msr |= (uint64_t)1 << 54;
1554 			wrmsr(MSR_EXTFEATURES, msr);
1555 			return (true);
1556 		}
1557 	}
1558 	return (false);
1559 }
1560 
1561 void
1562 identify_cpu1(void)
1563 {
1564 	u_int regs[4];
1565 
1566 	do_cpuid(0, regs);
1567 	cpu_high = regs[0];
1568 	((u_int *)&cpu_vendor)[0] = regs[1];
1569 	((u_int *)&cpu_vendor)[1] = regs[3];
1570 	((u_int *)&cpu_vendor)[2] = regs[2];
1571 	cpu_vendor[12] = '\0';
1572 
1573 	do_cpuid(1, regs);
1574 	cpu_id = regs[0];
1575 	cpu_procinfo = regs[1];
1576 	cpu_feature = regs[3];
1577 	cpu_feature2 = regs[2];
1578 }
1579 
1580 void
1581 identify_cpu2(void)
1582 {
1583 	u_int regs[4], cpu_stdext_disable;
1584 
1585 	if (cpu_high >= 6) {
1586 		cpuid_count(6, 0, regs);
1587 		cpu_power_eax = regs[0];
1588 		cpu_power_ebx = regs[1];
1589 		cpu_power_ecx = regs[2];
1590 		cpu_power_edx = regs[3];
1591 	}
1592 
1593 	if (cpu_high >= 7) {
1594 		cpuid_count(7, 0, regs);
1595 		cpu_stdext_feature = regs[1];
1596 
1597 		/*
1598 		 * Some hypervisors failed to filter out unsupported
1599 		 * extended features.  Allow to disable the
1600 		 * extensions, activation of which requires setting a
1601 		 * bit in CR4, and which VM monitors do not support.
1602 		 */
1603 		cpu_stdext_disable = 0;
1604 		TUNABLE_INT_FETCH("hw.cpu_stdext_disable", &cpu_stdext_disable);
1605 		cpu_stdext_feature &= ~cpu_stdext_disable;
1606 
1607 		cpu_stdext_feature2 = regs[2];
1608 		cpu_stdext_feature3 = regs[3];
1609 
1610 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_ARCH_CAP) != 0)
1611 			cpu_ia32_arch_caps = rdmsr(MSR_IA32_ARCH_CAP);
1612 	}
1613 }
1614 
1615 void
1616 identify_cpu_fixup_bsp(void)
1617 {
1618 	u_int regs[4];
1619 
1620 	cpu_vendor_id = find_cpu_vendor_id();
1621 
1622 	if (fix_cpuid()) {
1623 		do_cpuid(0, regs);
1624 		cpu_high = regs[0];
1625 	}
1626 }
1627 
1628 /*
1629  * Final stage of CPU identification.
1630  */
1631 void
1632 finishidentcpu(void)
1633 {
1634 	u_int regs[4];
1635 #ifdef __i386__
1636 	u_char ccr3;
1637 #endif
1638 
1639 	identify_cpu_fixup_bsp();
1640 
1641 	if (cpu_high >= 5 && (cpu_feature2 & CPUID2_MON) != 0) {
1642 		do_cpuid(5, regs);
1643 		cpu_mon_mwait_flags = regs[2];
1644 		cpu_mon_min_size = regs[0] &  CPUID5_MON_MIN_SIZE;
1645 		cpu_mon_max_size = regs[1] &  CPUID5_MON_MAX_SIZE;
1646 	}
1647 
1648 	identify_cpu2();
1649 
1650 #ifdef __i386__
1651 	if (cpu_high > 0 &&
1652 	    (cpu_vendor_id == CPU_VENDOR_INTEL ||
1653 	     cpu_vendor_id == CPU_VENDOR_AMD ||
1654 	     cpu_vendor_id == CPU_VENDOR_HYGON ||
1655 	     cpu_vendor_id == CPU_VENDOR_TRANSMETA ||
1656 	     cpu_vendor_id == CPU_VENDOR_CENTAUR ||
1657 	     cpu_vendor_id == CPU_VENDOR_NSC)) {
1658 		do_cpuid(0x80000000, regs);
1659 		if (regs[0] >= 0x80000000)
1660 			cpu_exthigh = regs[0];
1661 	}
1662 #else
1663 	if (cpu_vendor_id == CPU_VENDOR_INTEL ||
1664 	    cpu_vendor_id == CPU_VENDOR_AMD ||
1665 	    cpu_vendor_id == CPU_VENDOR_HYGON ||
1666 	    cpu_vendor_id == CPU_VENDOR_CENTAUR) {
1667 		do_cpuid(0x80000000, regs);
1668 		cpu_exthigh = regs[0];
1669 	}
1670 #endif
1671 	if (cpu_exthigh >= 0x80000001) {
1672 		do_cpuid(0x80000001, regs);
1673 		amd_feature = regs[3] & ~(cpu_feature & 0x0183f3ff);
1674 		amd_feature2 = regs[2];
1675 	}
1676 	if (cpu_exthigh >= 0x80000007) {
1677 		do_cpuid(0x80000007, regs);
1678 		amd_rascap = regs[1];
1679 		amd_pminfo = regs[3];
1680 	}
1681 	if (cpu_exthigh >= 0x80000008) {
1682 		do_cpuid(0x80000008, regs);
1683 		cpu_maxphyaddr = regs[0] & 0xff;
1684 		amd_extended_feature_extensions = regs[1];
1685 		cpu_procinfo2 = regs[2];
1686 	} else {
1687 		cpu_maxphyaddr = (cpu_feature & CPUID_PAE) != 0 ? 36 : 32;
1688 	}
1689 
1690 #ifdef __i386__
1691 	if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
1692 		if (cpu == CPU_486) {
1693 			/*
1694 			 * These conditions are equivalent to:
1695 			 *     - CPU does not support cpuid instruction.
1696 			 *     - Cyrix/IBM CPU is detected.
1697 			 */
1698 			if (identblue() == IDENTBLUE_IBMCPU) {
1699 				strcpy(cpu_vendor, "IBM");
1700 				cpu_vendor_id = CPU_VENDOR_IBM;
1701 				cpu = CPU_BLUE;
1702 				return;
1703 			}
1704 		}
1705 		switch (cpu_id & 0xf00) {
1706 		case 0x600:
1707 			/*
1708 			 * Cyrix's datasheet does not describe DIRs.
1709 			 * Therefor, I assume it does not have them
1710 			 * and use the result of the cpuid instruction.
1711 			 * XXX they seem to have it for now at least. -Peter
1712 			 */
1713 			identifycyrix();
1714 			cpu = CPU_M2;
1715 			break;
1716 		default:
1717 			identifycyrix();
1718 			/*
1719 			 * This routine contains a trick.
1720 			 * Don't check (cpu_id & 0x00f0) == 0x50 to detect M2, now.
1721 			 */
1722 			switch (cyrix_did & 0x00f0) {
1723 			case 0x00:
1724 			case 0xf0:
1725 				cpu = CPU_486DLC;
1726 				break;
1727 			case 0x10:
1728 				cpu = CPU_CY486DX;
1729 				break;
1730 			case 0x20:
1731 				if ((cyrix_did & 0x000f) < 8)
1732 					cpu = CPU_M1;
1733 				else
1734 					cpu = CPU_M1SC;
1735 				break;
1736 			case 0x30:
1737 				cpu = CPU_M1;
1738 				break;
1739 			case 0x40:
1740 				/* MediaGX CPU */
1741 				cpu = CPU_M1SC;
1742 				break;
1743 			default:
1744 				/* M2 and later CPUs are treated as M2. */
1745 				cpu = CPU_M2;
1746 
1747 				/*
1748 				 * enable cpuid instruction.
1749 				 */
1750 				ccr3 = read_cyrix_reg(CCR3);
1751 				write_cyrix_reg(CCR3, CCR3_MAPEN0);
1752 				write_cyrix_reg(CCR4, read_cyrix_reg(CCR4) | CCR4_CPUID);
1753 				write_cyrix_reg(CCR3, ccr3);
1754 
1755 				do_cpuid(0, regs);
1756 				cpu_high = regs[0];	/* eax */
1757 				do_cpuid(1, regs);
1758 				cpu_id = regs[0];	/* eax */
1759 				cpu_feature = regs[3];	/* edx */
1760 				break;
1761 			}
1762 		}
1763 	} else if (cpu == CPU_486 && *cpu_vendor == '\0') {
1764 		/*
1765 		 * There are BlueLightning CPUs that do not change
1766 		 * undefined flags by dividing 5 by 2.  In this case,
1767 		 * the CPU identification routine in locore.s leaves
1768 		 * cpu_vendor null string and puts CPU_486 into the
1769 		 * cpu.
1770 		 */
1771 		if (identblue() == IDENTBLUE_IBMCPU) {
1772 			strcpy(cpu_vendor, "IBM");
1773 			cpu_vendor_id = CPU_VENDOR_IBM;
1774 			cpu = CPU_BLUE;
1775 			return;
1776 		}
1777 	}
1778 #endif
1779 }
1780 
1781 int
1782 pti_get_default(void)
1783 {
1784 
1785 	if (strcmp(cpu_vendor, AMD_VENDOR_ID) == 0 ||
1786 	    strcmp(cpu_vendor, HYGON_VENDOR_ID) == 0)
1787 		return (0);
1788 	if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_RDCL_NO) != 0)
1789 		return (0);
1790 	return (1);
1791 }
1792 
1793 static u_int
1794 find_cpu_vendor_id(void)
1795 {
1796 	int	i;
1797 
1798 	for (i = 0; i < nitems(cpu_vendors); i++)
1799 		if (strcmp(cpu_vendor, cpu_vendors[i].vendor) == 0)
1800 			return (cpu_vendors[i].vendor_id);
1801 	return (0);
1802 }
1803 
1804 static void
1805 print_AMD_assoc(int i)
1806 {
1807 	if (i == 255)
1808 		printf(", fully associative\n");
1809 	else
1810 		printf(", %d-way associative\n", i);
1811 }
1812 
1813 static void
1814 print_AMD_l2_assoc(int i)
1815 {
1816 	switch (i & 0x0f) {
1817 	case 0: printf(", disabled/not present\n"); break;
1818 	case 1: printf(", direct mapped\n"); break;
1819 	case 2: printf(", 2-way associative\n"); break;
1820 	case 4: printf(", 4-way associative\n"); break;
1821 	case 6: printf(", 8-way associative\n"); break;
1822 	case 8: printf(", 16-way associative\n"); break;
1823 	case 15: printf(", fully associative\n"); break;
1824 	default: printf(", reserved configuration\n"); break;
1825 	}
1826 }
1827 
1828 static void
1829 print_AMD_info(void)
1830 {
1831 #ifdef __i386__
1832 	uint64_t amd_whcr;
1833 #endif
1834 	u_int regs[4];
1835 
1836 	if (cpu_exthigh >= 0x80000005) {
1837 		do_cpuid(0x80000005, regs);
1838 		printf("L1 2MB data TLB: %d entries", (regs[0] >> 16) & 0xff);
1839 		print_AMD_assoc(regs[0] >> 24);
1840 
1841 		printf("L1 2MB instruction TLB: %d entries", regs[0] & 0xff);
1842 		print_AMD_assoc((regs[0] >> 8) & 0xff);
1843 
1844 		printf("L1 4KB data TLB: %d entries", (regs[1] >> 16) & 0xff);
1845 		print_AMD_assoc(regs[1] >> 24);
1846 
1847 		printf("L1 4KB instruction TLB: %d entries", regs[1] & 0xff);
1848 		print_AMD_assoc((regs[1] >> 8) & 0xff);
1849 
1850 		printf("L1 data cache: %d kbytes", regs[2] >> 24);
1851 		printf(", %d bytes/line", regs[2] & 0xff);
1852 		printf(", %d lines/tag", (regs[2] >> 8) & 0xff);
1853 		print_AMD_assoc((regs[2] >> 16) & 0xff);
1854 
1855 		printf("L1 instruction cache: %d kbytes", regs[3] >> 24);
1856 		printf(", %d bytes/line", regs[3] & 0xff);
1857 		printf(", %d lines/tag", (regs[3] >> 8) & 0xff);
1858 		print_AMD_assoc((regs[3] >> 16) & 0xff);
1859 	}
1860 
1861 	if (cpu_exthigh >= 0x80000006) {
1862 		do_cpuid(0x80000006, regs);
1863 		if ((regs[0] >> 16) != 0) {
1864 			printf("L2 2MB data TLB: %d entries",
1865 			    (regs[0] >> 16) & 0xfff);
1866 			print_AMD_l2_assoc(regs[0] >> 28);
1867 			printf("L2 2MB instruction TLB: %d entries",
1868 			    regs[0] & 0xfff);
1869 			print_AMD_l2_assoc((regs[0] >> 28) & 0xf);
1870 		} else {
1871 			printf("L2 2MB unified TLB: %d entries",
1872 			    regs[0] & 0xfff);
1873 			print_AMD_l2_assoc((regs[0] >> 28) & 0xf);
1874 		}
1875 		if ((regs[1] >> 16) != 0) {
1876 			printf("L2 4KB data TLB: %d entries",
1877 			    (regs[1] >> 16) & 0xfff);
1878 			print_AMD_l2_assoc(regs[1] >> 28);
1879 
1880 			printf("L2 4KB instruction TLB: %d entries",
1881 			    (regs[1] >> 16) & 0xfff);
1882 			print_AMD_l2_assoc((regs[1] >> 28) & 0xf);
1883 		} else {
1884 			printf("L2 4KB unified TLB: %d entries",
1885 			    (regs[1] >> 16) & 0xfff);
1886 			print_AMD_l2_assoc((regs[1] >> 28) & 0xf);
1887 		}
1888 		printf("L2 unified cache: %d kbytes", regs[2] >> 16);
1889 		printf(", %d bytes/line", regs[2] & 0xff);
1890 		printf(", %d lines/tag", (regs[2] >> 8) & 0x0f);
1891 		print_AMD_l2_assoc((regs[2] >> 12) & 0x0f);
1892 	}
1893 
1894 #ifdef __i386__
1895 	if (((cpu_id & 0xf00) == 0x500)
1896 	    && (((cpu_id & 0x0f0) > 0x80)
1897 		|| (((cpu_id & 0x0f0) == 0x80)
1898 		    && (cpu_id & 0x00f) > 0x07))) {
1899 		/* K6-2(new core [Stepping 8-F]), K6-III or later */
1900 		amd_whcr = rdmsr(0xc0000082);
1901 		if (!(amd_whcr & (0x3ff << 22))) {
1902 			printf("Write Allocate Disable\n");
1903 		} else {
1904 			printf("Write Allocate Enable Limit: %dM bytes\n",
1905 			    (u_int32_t)((amd_whcr & (0x3ff << 22)) >> 22) * 4);
1906 			printf("Write Allocate 15-16M bytes: %s\n",
1907 			    (amd_whcr & (1 << 16)) ? "Enable" : "Disable");
1908 		}
1909 	} else if (((cpu_id & 0xf00) == 0x500)
1910 		   && ((cpu_id & 0x0f0) > 0x50)) {
1911 		/* K6, K6-2(old core) */
1912 		amd_whcr = rdmsr(0xc0000082);
1913 		if (!(amd_whcr & (0x7f << 1))) {
1914 			printf("Write Allocate Disable\n");
1915 		} else {
1916 			printf("Write Allocate Enable Limit: %dM bytes\n",
1917 			    (u_int32_t)((amd_whcr & (0x7f << 1)) >> 1) * 4);
1918 			printf("Write Allocate 15-16M bytes: %s\n",
1919 			    (amd_whcr & 0x0001) ? "Enable" : "Disable");
1920 			printf("Hardware Write Allocate Control: %s\n",
1921 			    (amd_whcr & 0x0100) ? "Enable" : "Disable");
1922 		}
1923 	}
1924 #endif
1925 	/*
1926 	 * Opteron Rev E shows a bug as in very rare occasions a read memory
1927 	 * barrier is not performed as expected if it is followed by a
1928 	 * non-atomic read-modify-write instruction.
1929 	 * As long as that bug pops up very rarely (intensive machine usage
1930 	 * on other operating systems generally generates one unexplainable
1931 	 * crash any 2 months) and as long as a model specific fix would be
1932 	 * impractical at this stage, print out a warning string if the broken
1933 	 * model and family are identified.
1934 	 */
1935 	if (CPUID_TO_FAMILY(cpu_id) == 0xf && CPUID_TO_MODEL(cpu_id) >= 0x20 &&
1936 	    CPUID_TO_MODEL(cpu_id) <= 0x3f)
1937 		printf("WARNING: This architecture revision has known SMP "
1938 		    "hardware bugs which may cause random instability\n");
1939 }
1940 
1941 static void
1942 print_INTEL_info(void)
1943 {
1944 	u_int regs[4];
1945 	u_int rounds, regnum;
1946 	u_int nwaycode, nway;
1947 
1948 	if (cpu_high >= 2) {
1949 		rounds = 0;
1950 		do {
1951 			do_cpuid(0x2, regs);
1952 			if (rounds == 0 && (rounds = (regs[0] & 0xff)) == 0)
1953 				break;	/* we have a buggy CPU */
1954 
1955 			for (regnum = 0; regnum <= 3; ++regnum) {
1956 				if (regs[regnum] & (1<<31))
1957 					continue;
1958 				if (regnum != 0)
1959 					print_INTEL_TLB(regs[regnum] & 0xff);
1960 				print_INTEL_TLB((regs[regnum] >> 8) & 0xff);
1961 				print_INTEL_TLB((regs[regnum] >> 16) & 0xff);
1962 				print_INTEL_TLB((regs[regnum] >> 24) & 0xff);
1963 			}
1964 		} while (--rounds > 0);
1965 	}
1966 
1967 	if (cpu_exthigh >= 0x80000006) {
1968 		do_cpuid(0x80000006, regs);
1969 		nwaycode = (regs[2] >> 12) & 0x0f;
1970 		if (nwaycode >= 0x02 && nwaycode <= 0x08)
1971 			nway = 1 << (nwaycode / 2);
1972 		else
1973 			nway = 0;
1974 		printf("L2 cache: %u kbytes, %u-way associative, %u bytes/line\n",
1975 		    (regs[2] >> 16) & 0xffff, nway, regs[2] & 0xff);
1976 	}
1977 }
1978 
1979 static void
1980 print_INTEL_TLB(u_int data)
1981 {
1982 	switch (data) {
1983 	case 0x0:
1984 	case 0x40:
1985 	default:
1986 		break;
1987 	case 0x1:
1988 		printf("Instruction TLB: 4 KB pages, 4-way set associative, 32 entries\n");
1989 		break;
1990 	case 0x2:
1991 		printf("Instruction TLB: 4 MB pages, fully associative, 2 entries\n");
1992 		break;
1993 	case 0x3:
1994 		printf("Data TLB: 4 KB pages, 4-way set associative, 64 entries\n");
1995 		break;
1996 	case 0x4:
1997 		printf("Data TLB: 4 MB Pages, 4-way set associative, 8 entries\n");
1998 		break;
1999 	case 0x6:
2000 		printf("1st-level instruction cache: 8 KB, 4-way set associative, 32 byte line size\n");
2001 		break;
2002 	case 0x8:
2003 		printf("1st-level instruction cache: 16 KB, 4-way set associative, 32 byte line size\n");
2004 		break;
2005 	case 0x9:
2006 		printf("1st-level instruction cache: 32 KB, 4-way set associative, 64 byte line size\n");
2007 		break;
2008 	case 0xa:
2009 		printf("1st-level data cache: 8 KB, 2-way set associative, 32 byte line size\n");
2010 		break;
2011 	case 0xb:
2012 		printf("Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries\n");
2013 		break;
2014 	case 0xc:
2015 		printf("1st-level data cache: 16 KB, 4-way set associative, 32 byte line size\n");
2016 		break;
2017 	case 0xd:
2018 		printf("1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size");
2019 		break;
2020 	case 0xe:
2021 		printf("1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size\n");
2022 		break;
2023 	case 0x1d:
2024 		printf("2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size\n");
2025 		break;
2026 	case 0x21:
2027 		printf("2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size\n");
2028 		break;
2029 	case 0x22:
2030 		printf("3rd-level cache: 512 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2031 		break;
2032 	case 0x23:
2033 		printf("3rd-level cache: 1 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2034 		break;
2035 	case 0x24:
2036 		printf("2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size\n");
2037 		break;
2038 	case 0x25:
2039 		printf("3rd-level cache: 2 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2040 		break;
2041 	case 0x29:
2042 		printf("3rd-level cache: 4 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2043 		break;
2044 	case 0x2c:
2045 		printf("1st-level data cache: 32 KB, 8-way set associative, 64 byte line size\n");
2046 		break;
2047 	case 0x30:
2048 		printf("1st-level instruction cache: 32 KB, 8-way set associative, 64 byte line size\n");
2049 		break;
2050 	case 0x39: /* De-listed in SDM rev. 54 */
2051 		printf("2nd-level cache: 128 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2052 		break;
2053 	case 0x3b: /* De-listed in SDM rev. 54 */
2054 		printf("2nd-level cache: 128 KB, 2-way set associative, sectored cache, 64 byte line size\n");
2055 		break;
2056 	case 0x3c: /* De-listed in SDM rev. 54 */
2057 		printf("2nd-level cache: 256 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2058 		break;
2059 	case 0x41:
2060 		printf("2nd-level cache: 128 KB, 4-way set associative, 32 byte line size\n");
2061 		break;
2062 	case 0x42:
2063 		printf("2nd-level cache: 256 KB, 4-way set associative, 32 byte line size\n");
2064 		break;
2065 	case 0x43:
2066 		printf("2nd-level cache: 512 KB, 4-way set associative, 32 byte line size\n");
2067 		break;
2068 	case 0x44:
2069 		printf("2nd-level cache: 1 MB, 4-way set associative, 32 byte line size\n");
2070 		break;
2071 	case 0x45:
2072 		printf("2nd-level cache: 2 MB, 4-way set associative, 32 byte line size\n");
2073 		break;
2074 	case 0x46:
2075 		printf("3rd-level cache: 4 MB, 4-way set associative, 64 byte line size\n");
2076 		break;
2077 	case 0x47:
2078 		printf("3rd-level cache: 8 MB, 8-way set associative, 64 byte line size\n");
2079 		break;
2080 	case 0x48:
2081 		printf("2nd-level cache: 3MByte, 12-way set associative, 64 byte line size\n");
2082 		break;
2083 	case 0x49:
2084 		if (CPUID_TO_FAMILY(cpu_id) == 0xf &&
2085 		    CPUID_TO_MODEL(cpu_id) == 0x6)
2086 			printf("3rd-level cache: 4MB, 16-way set associative, 64-byte line size\n");
2087 		else
2088 			printf("2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size");
2089 		break;
2090 	case 0x4a:
2091 		printf("3rd-level cache: 6MByte, 12-way set associative, 64 byte line size\n");
2092 		break;
2093 	case 0x4b:
2094 		printf("3rd-level cache: 8MByte, 16-way set associative, 64 byte line size\n");
2095 		break;
2096 	case 0x4c:
2097 		printf("3rd-level cache: 12MByte, 12-way set associative, 64 byte line size\n");
2098 		break;
2099 	case 0x4d:
2100 		printf("3rd-level cache: 16MByte, 16-way set associative, 64 byte line size\n");
2101 		break;
2102 	case 0x4e:
2103 		printf("2nd-level cache: 6MByte, 24-way set associative, 64 byte line size\n");
2104 		break;
2105 	case 0x4f:
2106 		printf("Instruction TLB: 4 KByte pages, 32 entries\n");
2107 		break;
2108 	case 0x50:
2109 		printf("Instruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 64 entries\n");
2110 		break;
2111 	case 0x51:
2112 		printf("Instruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 128 entries\n");
2113 		break;
2114 	case 0x52:
2115 		printf("Instruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 256 entries\n");
2116 		break;
2117 	case 0x55:
2118 		printf("Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries\n");
2119 		break;
2120 	case 0x56:
2121 		printf("Data TLB0: 4 MByte pages, 4-way set associative, 16 entries\n");
2122 		break;
2123 	case 0x57:
2124 		printf("Data TLB0: 4 KByte pages, 4-way associative, 16 entries\n");
2125 		break;
2126 	case 0x59:
2127 		printf("Data TLB0: 4 KByte pages, fully associative, 16 entries\n");
2128 		break;
2129 	case 0x5a:
2130 		printf("Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries\n");
2131 		break;
2132 	case 0x5b:
2133 		printf("Data TLB: 4 KB or 4 MB pages, fully associative, 64 entries\n");
2134 		break;
2135 	case 0x5c:
2136 		printf("Data TLB: 4 KB or 4 MB pages, fully associative, 128 entries\n");
2137 		break;
2138 	case 0x5d:
2139 		printf("Data TLB: 4 KB or 4 MB pages, fully associative, 256 entries\n");
2140 		break;
2141 	case 0x60:
2142 		printf("1st-level data cache: 16 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2143 		break;
2144 	case 0x61:
2145 		printf("Instruction TLB: 4 KByte pages, fully associative, 48 entries\n");
2146 		break;
2147 	case 0x63:
2148 		printf("Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte pages, 4-way set associative, 4 entries\n");
2149 		break;
2150 	case 0x64:
2151 		printf("Data TLB: 4 KBytes pages, 4-way set associative, 512 entries\n");
2152 		break;
2153 	case 0x66:
2154 		printf("1st-level data cache: 8 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2155 		break;
2156 	case 0x67:
2157 		printf("1st-level data cache: 16 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2158 		break;
2159 	case 0x68:
2160 		printf("1st-level data cache: 32 KB, 4 way set associative, sectored cache, 64 byte line size\n");
2161 		break;
2162 	case 0x6a:
2163 		printf("uTLB: 4KByte pages, 8-way set associative, 64 entries\n");
2164 		break;
2165 	case 0x6b:
2166 		printf("DTLB: 4KByte pages, 8-way set associative, 256 entries\n");
2167 		break;
2168 	case 0x6c:
2169 		printf("DTLB: 2M/4M pages, 8-way set associative, 128 entries\n");
2170 		break;
2171 	case 0x6d:
2172 		printf("DTLB: 1 GByte pages, fully associative, 16 entries\n");
2173 		break;
2174 	case 0x70:
2175 		printf("Trace cache: 12K-uops, 8-way set associative\n");
2176 		break;
2177 	case 0x71:
2178 		printf("Trace cache: 16K-uops, 8-way set associative\n");
2179 		break;
2180 	case 0x72:
2181 		printf("Trace cache: 32K-uops, 8-way set associative\n");
2182 		break;
2183 	case 0x76:
2184 		printf("Instruction TLB: 2M/4M pages, fully associative, 8 entries\n");
2185 		break;
2186 	case 0x78:
2187 		printf("2nd-level cache: 1 MB, 4-way set associative, 64-byte line size\n");
2188 		break;
2189 	case 0x79:
2190 		printf("2nd-level cache: 128 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2191 		break;
2192 	case 0x7a:
2193 		printf("2nd-level cache: 256 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2194 		break;
2195 	case 0x7b:
2196 		printf("2nd-level cache: 512 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2197 		break;
2198 	case 0x7c:
2199 		printf("2nd-level cache: 1 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2200 		break;
2201 	case 0x7d:
2202 		printf("2nd-level cache: 2-MB, 8-way set associative, 64-byte line size\n");
2203 		break;
2204 	case 0x7f:
2205 		printf("2nd-level cache: 512-KB, 2-way set associative, 64-byte line size\n");
2206 		break;
2207 	case 0x80:
2208 		printf("2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size\n");
2209 		break;
2210 	case 0x82:
2211 		printf("2nd-level cache: 256 KB, 8-way set associative, 32 byte line size\n");
2212 		break;
2213 	case 0x83:
2214 		printf("2nd-level cache: 512 KB, 8-way set associative, 32 byte line size\n");
2215 		break;
2216 	case 0x84:
2217 		printf("2nd-level cache: 1 MB, 8-way set associative, 32 byte line size\n");
2218 		break;
2219 	case 0x85:
2220 		printf("2nd-level cache: 2 MB, 8-way set associative, 32 byte line size\n");
2221 		break;
2222 	case 0x86:
2223 		printf("2nd-level cache: 512 KB, 4-way set associative, 64 byte line size\n");
2224 		break;
2225 	case 0x87:
2226 		printf("2nd-level cache: 1 MB, 8-way set associative, 64 byte line size\n");
2227 		break;
2228 	case 0xa0:
2229 		printf("DTLB: 4k pages, fully associative, 32 entries\n");
2230 		break;
2231 	case 0xb0:
2232 		printf("Instruction TLB: 4 KB Pages, 4-way set associative, 128 entries\n");
2233 		break;
2234 	case 0xb1:
2235 		printf("Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries\n");
2236 		break;
2237 	case 0xb2:
2238 		printf("Instruction TLB: 4KByte pages, 4-way set associative, 64 entries\n");
2239 		break;
2240 	case 0xb3:
2241 		printf("Data TLB: 4 KB Pages, 4-way set associative, 128 entries\n");
2242 		break;
2243 	case 0xb4:
2244 		printf("Data TLB1: 4 KByte pages, 4-way associative, 256 entries\n");
2245 		break;
2246 	case 0xb5:
2247 		printf("Instruction TLB: 4KByte pages, 8-way set associative, 64 entries\n");
2248 		break;
2249 	case 0xb6:
2250 		printf("Instruction TLB: 4KByte pages, 8-way set associative, 128 entries\n");
2251 		break;
2252 	case 0xba:
2253 		printf("Data TLB1: 4 KByte pages, 4-way associative, 64 entries\n");
2254 		break;
2255 	case 0xc0:
2256 		printf("Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries\n");
2257 		break;
2258 	case 0xc1:
2259 		printf("Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries\n");
2260 		break;
2261 	case 0xc2:
2262 		printf("DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries\n");
2263 		break;
2264 	case 0xc3:
2265 		printf("Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries\n");
2266 		break;
2267 	case 0xc4:
2268 		printf("DTLB: 2M/4M Byte pages, 4-way associative, 32 entries\n");
2269 		break;
2270 	case 0xca:
2271 		printf("Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries\n");
2272 		break;
2273 	case 0xd0:
2274 		printf("3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size\n");
2275 		break;
2276 	case 0xd1:
2277 		printf("3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size\n");
2278 		break;
2279 	case 0xd2:
2280 		printf("3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size\n");
2281 		break;
2282 	case 0xd6:
2283 		printf("3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size\n");
2284 		break;
2285 	case 0xd7:
2286 		printf("3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size\n");
2287 		break;
2288 	case 0xd8:
2289 		printf("3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size\n");
2290 		break;
2291 	case 0xdc:
2292 		printf("3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size\n");
2293 		break;
2294 	case 0xdd:
2295 		printf("3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size\n");
2296 		break;
2297 	case 0xde:
2298 		printf("3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size\n");
2299 		break;
2300 	case 0xe2:
2301 		printf("3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size\n");
2302 		break;
2303 	case 0xe3:
2304 		printf("3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size\n");
2305 		break;
2306 	case 0xe4:
2307 		printf("3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size\n");
2308 		break;
2309 	case 0xea:
2310 		printf("3rd-level cache: 12MByte, 24-way set associative, 64 byte line size\n");
2311 		break;
2312 	case 0xeb:
2313 		printf("3rd-level cache: 18MByte, 24-way set associative, 64 byte line size\n");
2314 		break;
2315 	case 0xec:
2316 		printf("3rd-level cache: 24MByte, 24-way set associative, 64 byte line size\n");
2317 		break;
2318 	case 0xf0:
2319 		printf("64-Byte prefetching\n");
2320 		break;
2321 	case 0xf1:
2322 		printf("128-Byte prefetching\n");
2323 		break;
2324 	}
2325 }
2326 
2327 static void
2328 print_svm_info(void)
2329 {
2330 	u_int features, regs[4];
2331 	uint64_t msr;
2332 	int comma;
2333 
2334 	printf("\n  SVM: ");
2335 	do_cpuid(0x8000000A, regs);
2336 	features = regs[3];
2337 
2338 	msr = rdmsr(MSR_VM_CR);
2339 	if ((msr & VM_CR_SVMDIS) == VM_CR_SVMDIS)
2340 		printf("(disabled in BIOS) ");
2341 
2342 	if (!bootverbose) {
2343 		comma = 0;
2344 		if (features & (1 << 0)) {
2345 			printf("%sNP", comma ? "," : "");
2346 			comma = 1;
2347 		}
2348 		if (features & (1 << 3)) {
2349 			printf("%sNRIP", comma ? "," : "");
2350 			comma = 1;
2351 		}
2352 		if (features & (1 << 5)) {
2353 			printf("%sVClean", comma ? "," : "");
2354 			comma = 1;
2355 		}
2356 		if (features & (1 << 6)) {
2357 			printf("%sAFlush", comma ? "," : "");
2358 			comma = 1;
2359 		}
2360 		if (features & (1 << 7)) {
2361 			printf("%sDAssist", comma ? "," : "");
2362 			comma = 1;
2363 		}
2364 		printf("%sNAsids=%d", comma ? "," : "", regs[1]);
2365 		return;
2366 	}
2367 
2368 	printf("Features=0x%b", features,
2369 	       "\020"
2370 	       "\001NP"			/* Nested paging */
2371 	       "\002LbrVirt"		/* LBR virtualization */
2372 	       "\003SVML"		/* SVM lock */
2373 	       "\004NRIPS"		/* NRIP save */
2374 	       "\005TscRateMsr"		/* MSR based TSC rate control */
2375 	       "\006VmcbClean"		/* VMCB clean bits */
2376 	       "\007FlushByAsid"	/* Flush by ASID */
2377 	       "\010DecodeAssist"	/* Decode assist */
2378 	       "\011<b8>"
2379 	       "\012<b9>"
2380 	       "\013PauseFilter"	/* PAUSE intercept filter */
2381 	       "\014EncryptedMcodePatch"
2382 	       "\015PauseFilterThreshold" /* PAUSE filter threshold */
2383 	       "\016AVIC"		/* virtual interrupt controller */
2384 	       "\017<b14>"
2385 	       "\020V_VMSAVE_VMLOAD"
2386 	       "\021vGIF"
2387 	       "\022GMET"		/* Guest Mode Execute Trap */
2388 	       "\023<b18>"
2389 	       "\024<b19>"
2390 	       "\025GuesSpecCtl"	/* Guest Spec_ctl */
2391 	       "\026<b21>"
2392 	       "\027<b22>"
2393 	       "\030<b23>"
2394 	       "\031<b24>"
2395 	       "\032<b25>"
2396 	       "\033<b26>"
2397 	       "\034<b27>"
2398 	       "\035<b28>"
2399 	       "\036<b29>"
2400 	       "\037<b30>"
2401 	       "\040<b31>"
2402 	       );
2403 	printf("\nRevision=%d, ASIDs=%d", regs[0] & 0xff, regs[1]);
2404 }
2405 
2406 #ifdef __i386__
2407 static void
2408 print_transmeta_info(void)
2409 {
2410 	u_int regs[4], nreg = 0;
2411 
2412 	do_cpuid(0x80860000, regs);
2413 	nreg = regs[0];
2414 	if (nreg >= 0x80860001) {
2415 		do_cpuid(0x80860001, regs);
2416 		printf("  Processor revision %u.%u.%u.%u\n",
2417 		       (regs[1] >> 24) & 0xff,
2418 		       (regs[1] >> 16) & 0xff,
2419 		       (regs[1] >> 8) & 0xff,
2420 		       regs[1] & 0xff);
2421 	}
2422 	if (nreg >= 0x80860002) {
2423 		do_cpuid(0x80860002, regs);
2424 		printf("  Code Morphing Software revision %u.%u.%u-%u-%u\n",
2425 		       (regs[1] >> 24) & 0xff,
2426 		       (regs[1] >> 16) & 0xff,
2427 		       (regs[1] >> 8) & 0xff,
2428 		       regs[1] & 0xff,
2429 		       regs[2]);
2430 	}
2431 	if (nreg >= 0x80860006) {
2432 		char info[65];
2433 		do_cpuid(0x80860003, (u_int*) &info[0]);
2434 		do_cpuid(0x80860004, (u_int*) &info[16]);
2435 		do_cpuid(0x80860005, (u_int*) &info[32]);
2436 		do_cpuid(0x80860006, (u_int*) &info[48]);
2437 		info[64] = 0;
2438 		printf("  %s\n", info);
2439 	}
2440 }
2441 #endif
2442 
2443 static void
2444 print_via_padlock_info(void)
2445 {
2446 	u_int regs[4];
2447 
2448 	do_cpuid(0xc0000001, regs);
2449 	printf("\n  VIA Padlock Features=0x%b", regs[3],
2450 	"\020"
2451 	"\003RNG"		/* RNG */
2452 	"\007AES"		/* ACE */
2453 	"\011AES-CTR"		/* ACE2 */
2454 	"\013SHA1,SHA256"	/* PHE */
2455 	"\015RSA"		/* PMM */
2456 	);
2457 }
2458 
2459 static uint32_t
2460 vmx_settable(uint64_t basic, int msr, int true_msr)
2461 {
2462 	uint64_t val;
2463 
2464 	if (basic & (1ULL << 55))
2465 		val = rdmsr(true_msr);
2466 	else
2467 		val = rdmsr(msr);
2468 
2469 	/* Just report the controls that can be set to 1. */
2470 	return (val >> 32);
2471 }
2472 
2473 static void
2474 print_vmx_info(void)
2475 {
2476 	uint64_t basic, msr;
2477 	uint32_t entry, exit, mask, pin, proc, proc2;
2478 	int comma;
2479 
2480 	printf("\n  VT-x: ");
2481 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2482 	if (!(msr & IA32_FEATURE_CONTROL_VMX_EN))
2483 		printf("(disabled in BIOS) ");
2484 	basic = rdmsr(MSR_VMX_BASIC);
2485 	pin = vmx_settable(basic, MSR_VMX_PINBASED_CTLS,
2486 	    MSR_VMX_TRUE_PINBASED_CTLS);
2487 	proc = vmx_settable(basic, MSR_VMX_PROCBASED_CTLS,
2488 	    MSR_VMX_TRUE_PROCBASED_CTLS);
2489 	if (proc & PROCBASED_SECONDARY_CONTROLS)
2490 		proc2 = vmx_settable(basic, MSR_VMX_PROCBASED_CTLS2,
2491 		    MSR_VMX_PROCBASED_CTLS2);
2492 	else
2493 		proc2 = 0;
2494 	exit = vmx_settable(basic, MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS);
2495 	entry = vmx_settable(basic, MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS);
2496 
2497 	if (!bootverbose) {
2498 		comma = 0;
2499 		if (exit & VM_EXIT_SAVE_PAT && exit & VM_EXIT_LOAD_PAT &&
2500 		    entry & VM_ENTRY_LOAD_PAT) {
2501 			printf("%sPAT", comma ? "," : "");
2502 			comma = 1;
2503 		}
2504 		if (proc & PROCBASED_HLT_EXITING) {
2505 			printf("%sHLT", comma ? "," : "");
2506 			comma = 1;
2507 		}
2508 		if (proc & PROCBASED_MTF) {
2509 			printf("%sMTF", comma ? "," : "");
2510 			comma = 1;
2511 		}
2512 		if (proc & PROCBASED_PAUSE_EXITING) {
2513 			printf("%sPAUSE", comma ? "," : "");
2514 			comma = 1;
2515 		}
2516 		if (proc2 & PROCBASED2_ENABLE_EPT) {
2517 			printf("%sEPT", comma ? "," : "");
2518 			comma = 1;
2519 		}
2520 		if (proc2 & PROCBASED2_UNRESTRICTED_GUEST) {
2521 			printf("%sUG", comma ? "," : "");
2522 			comma = 1;
2523 		}
2524 		if (proc2 & PROCBASED2_ENABLE_VPID) {
2525 			printf("%sVPID", comma ? "," : "");
2526 			comma = 1;
2527 		}
2528 		if (proc & PROCBASED_USE_TPR_SHADOW &&
2529 		    proc2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES &&
2530 		    proc2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE &&
2531 		    proc2 & PROCBASED2_APIC_REGISTER_VIRTUALIZATION &&
2532 		    proc2 & PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY) {
2533 			printf("%sVID", comma ? "," : "");
2534 			comma = 1;
2535 			if (pin & PINBASED_POSTED_INTERRUPT)
2536 				printf(",PostIntr");
2537 		}
2538 		return;
2539 	}
2540 
2541 	mask = basic >> 32;
2542 	printf("Basic Features=0x%b", mask,
2543 	"\020"
2544 	"\02132PA"		/* 32-bit physical addresses */
2545 	"\022SMM"		/* SMM dual-monitor */
2546 	"\027INS/OUTS"		/* VM-exit info for INS and OUTS */
2547 	"\030TRUE"		/* TRUE_CTLS MSRs */
2548 	);
2549 	printf("\n        Pin-Based Controls=0x%b", pin,
2550 	"\020"
2551 	"\001ExtINT"		/* External-interrupt exiting */
2552 	"\004NMI"		/* NMI exiting */
2553 	"\006VNMI"		/* Virtual NMIs */
2554 	"\007PreTmr"		/* Activate VMX-preemption timer */
2555 	"\010PostIntr"		/* Process posted interrupts */
2556 	);
2557 	printf("\n        Primary Processor Controls=0x%b", proc,
2558 	"\020"
2559 	"\003INTWIN"		/* Interrupt-window exiting */
2560 	"\004TSCOff"		/* Use TSC offsetting */
2561 	"\010HLT"		/* HLT exiting */
2562 	"\012INVLPG"		/* INVLPG exiting */
2563 	"\013MWAIT"		/* MWAIT exiting */
2564 	"\014RDPMC"		/* RDPMC exiting */
2565 	"\015RDTSC"		/* RDTSC exiting */
2566 	"\020CR3-LD"		/* CR3-load exiting */
2567 	"\021CR3-ST"		/* CR3-store exiting */
2568 	"\024CR8-LD"		/* CR8-load exiting */
2569 	"\025CR8-ST"		/* CR8-store exiting */
2570 	"\026TPR"		/* Use TPR shadow */
2571 	"\027NMIWIN"		/* NMI-window exiting */
2572 	"\030MOV-DR"		/* MOV-DR exiting */
2573 	"\031IO"		/* Unconditional I/O exiting */
2574 	"\032IOmap"		/* Use I/O bitmaps */
2575 	"\034MTF"		/* Monitor trap flag */
2576 	"\035MSRmap"		/* Use MSR bitmaps */
2577 	"\036MONITOR"		/* MONITOR exiting */
2578 	"\037PAUSE"		/* PAUSE exiting */
2579 	);
2580 	if (proc & PROCBASED_SECONDARY_CONTROLS)
2581 		printf("\n        Secondary Processor Controls=0x%b", proc2,
2582 		"\020"
2583 		"\001APIC"		/* Virtualize APIC accesses */
2584 		"\002EPT"		/* Enable EPT */
2585 		"\003DT"		/* Descriptor-table exiting */
2586 		"\004RDTSCP"		/* Enable RDTSCP */
2587 		"\005x2APIC"		/* Virtualize x2APIC mode */
2588 		"\006VPID"		/* Enable VPID */
2589 		"\007WBINVD"		/* WBINVD exiting */
2590 		"\010UG"		/* Unrestricted guest */
2591 		"\011APIC-reg"		/* APIC-register virtualization */
2592 		"\012VID"		/* Virtual-interrupt delivery */
2593 		"\013PAUSE-loop"	/* PAUSE-loop exiting */
2594 		"\014RDRAND"		/* RDRAND exiting */
2595 		"\015INVPCID"		/* Enable INVPCID */
2596 		"\016VMFUNC"		/* Enable VM functions */
2597 		"\017VMCS"		/* VMCS shadowing */
2598 		"\020EPT#VE"		/* EPT-violation #VE */
2599 		"\021XSAVES"		/* Enable XSAVES/XRSTORS */
2600 		);
2601 	printf("\n        Exit Controls=0x%b", mask,
2602 	"\020"
2603 	"\003DR"		/* Save debug controls */
2604 				/* Ignore Host address-space size */
2605 	"\015PERF"		/* Load MSR_PERF_GLOBAL_CTRL */
2606 	"\020AckInt"		/* Acknowledge interrupt on exit */
2607 	"\023PAT-SV"		/* Save MSR_PAT */
2608 	"\024PAT-LD"		/* Load MSR_PAT */
2609 	"\025EFER-SV"		/* Save MSR_EFER */
2610 	"\026EFER-LD"		/* Load MSR_EFER */
2611 	"\027PTMR-SV"		/* Save VMX-preemption timer value */
2612 	);
2613 	printf("\n        Entry Controls=0x%b", mask,
2614 	"\020"
2615 	"\003DR"		/* Save debug controls */
2616 				/* Ignore IA-32e mode guest */
2617 				/* Ignore Entry to SMM */
2618 				/* Ignore Deactivate dual-monitor treatment */
2619 	"\016PERF"		/* Load MSR_PERF_GLOBAL_CTRL */
2620 	"\017PAT"		/* Load MSR_PAT */
2621 	"\020EFER"		/* Load MSR_EFER */
2622 	);
2623 	if (proc & PROCBASED_SECONDARY_CONTROLS &&
2624 	    (proc2 & (PROCBASED2_ENABLE_EPT | PROCBASED2_ENABLE_VPID)) != 0) {
2625 		msr = rdmsr(MSR_VMX_EPT_VPID_CAP);
2626 		mask = msr;
2627 		printf("\n        EPT Features=0x%b", mask,
2628 		"\020"
2629 		"\001XO"		/* Execute-only translations */
2630 		"\007PW4"		/* Page-walk length of 4 */
2631 		"\011UC"		/* EPT paging-structure mem can be UC */
2632 		"\017WB"		/* EPT paging-structure mem can be WB */
2633 		"\0212M"		/* EPT PDE can map a 2-Mbyte page */
2634 		"\0221G"		/* EPT PDPTE can map a 1-Gbyte page */
2635 		"\025INVEPT"		/* INVEPT is supported */
2636 		"\026AD"		/* Accessed and dirty flags for EPT */
2637 		"\032single"		/* INVEPT single-context type */
2638 		"\033all"		/* INVEPT all-context type */
2639 		);
2640 		mask = msr >> 32;
2641 		printf("\n        VPID Features=0x%b", mask,
2642 		"\020"
2643 		"\001INVVPID"		/* INVVPID is supported */
2644 		"\011individual"	/* INVVPID individual-address type */
2645 		"\012single"		/* INVVPID single-context type */
2646 		"\013all"		/* INVVPID all-context type */
2647 		 /* INVVPID single-context-retaining-globals type */
2648 		"\014single-globals"
2649 		);
2650 	}
2651 }
2652 
2653 static void
2654 print_hypervisor_info(void)
2655 {
2656 
2657 	if (*hv_vendor != '\0')
2658 		printf("Hypervisor: Origin = \"%s\"\n", hv_vendor);
2659 }
2660 
2661 /*
2662  * Returns the maximum physical address that can be used with the
2663  * current system.
2664  */
2665 vm_paddr_t
2666 cpu_getmaxphyaddr(void)
2667 {
2668 
2669 #if defined(__i386__)
2670 	if (!pae_mode)
2671 		return (0xffffffff);
2672 #endif
2673 	return ((1ULL << cpu_maxphyaddr) - 1);
2674 }
2675