xref: /freebsd/usr.bin/find/operator.c (revision 076ad2f8)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Cimarron D. Taylor of the University of California, Berkeley.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #ifndef lint
34 #if 0
35 static char sccsid[] = "@(#)operator.c	8.1 (Berkeley) 6/6/93";
36 #endif
37 #endif /* not lint */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/types.h>
43 
44 #include <err.h>
45 #include <fts.h>
46 #include <stdio.h>
47 
48 #include "find.h"
49 
50 static PLAN *yanknode(PLAN **);
51 static PLAN *yankexpr(PLAN **);
52 
53 /*
54  * yanknode --
55  *	destructively removes the top from the plan
56  */
57 static PLAN *
58 yanknode(PLAN **planp)
59 {
60 	PLAN *node;		/* top node removed from the plan */
61 
62 	if ((node = (*planp)) == NULL)
63 		return (NULL);
64 	(*planp) = (*planp)->next;
65 	node->next = NULL;
66 	return (node);
67 }
68 
69 /*
70  * yankexpr --
71  *	Removes one expression from the plan.  This is used mainly by
72  *	paren_squish.  In comments below, an expression is either a
73  *	simple node or a f_expr node containing a list of simple nodes.
74  */
75 static PLAN *
76 yankexpr(PLAN **planp)
77 {
78 	PLAN *next;		/* temp node holding subexpression results */
79 	PLAN *node;		/* pointer to returned node or expression */
80 	PLAN *tail;		/* pointer to tail of subplan */
81 	PLAN *subplan;		/* pointer to head of ( ) expression */
82 
83 	/* first pull the top node from the plan */
84 	if ((node = yanknode(planp)) == NULL)
85 		return (NULL);
86 
87 	/*
88 	 * If the node is an '(' then we recursively slurp up expressions
89 	 * until we find its associated ')'.  If it's a closing paren we
90 	 * just return it and unwind our recursion; all other nodes are
91 	 * complete expressions, so just return them.
92 	 */
93 	if (node->execute == f_openparen)
94 		for (tail = subplan = NULL;;) {
95 			if ((next = yankexpr(planp)) == NULL)
96 				errx(1, "(: missing closing ')'");
97 			/*
98 			 * If we find a closing ')' we store the collected
99 			 * subplan in our '(' node and convert the node to
100 			 * a f_expr.  The ')' we found is ignored.  Otherwise,
101 			 * we just continue to add whatever we get to our
102 			 * subplan.
103 			 */
104 			if (next->execute == f_closeparen) {
105 				if (subplan == NULL)
106 					errx(1, "(): empty inner expression");
107 				node->p_data[0] = subplan;
108 				node->execute = f_expr;
109 				break;
110 			} else {
111 				if (subplan == NULL)
112 					tail = subplan = next;
113 				else {
114 					tail->next = next;
115 					tail = next;
116 				}
117 				tail->next = NULL;
118 			}
119 		}
120 	return (node);
121 }
122 
123 /*
124  * paren_squish --
125  *	replaces "parenthesized" plans in our search plan with "expr" nodes.
126  */
127 PLAN *
128 paren_squish(PLAN *plan)
129 {
130 	PLAN *expr;		/* pointer to next expression */
131 	PLAN *tail;		/* pointer to tail of result plan */
132 	PLAN *result;		/* pointer to head of result plan */
133 
134 	result = tail = NULL;
135 
136 	/*
137 	 * the basic idea is to have yankexpr do all our work and just
138 	 * collect its results together.
139 	 */
140 	while ((expr = yankexpr(&plan)) != NULL) {
141 		/*
142 		 * if we find an unclaimed ')' it means there is a missing
143 		 * '(' someplace.
144 		 */
145 		if (expr->execute == f_closeparen)
146 			errx(1, "): no beginning '('");
147 
148 		/* add the expression to our result plan */
149 		if (result == NULL)
150 			tail = result = expr;
151 		else {
152 			tail->next = expr;
153 			tail = expr;
154 		}
155 		tail->next = NULL;
156 	}
157 	return (result);
158 }
159 
160 /*
161  * not_squish --
162  *	compresses "!" expressions in our search plan.
163  */
164 PLAN *
165 not_squish(PLAN *plan)
166 {
167 	PLAN *next;		/* next node being processed */
168 	PLAN *node;		/* temporary node used in f_not processing */
169 	PLAN *tail;		/* pointer to tail of result plan */
170 	PLAN *result;		/* pointer to head of result plan */
171 
172 	tail = result = NULL;
173 
174 	while ((next = yanknode(&plan))) {
175 		/*
176 		 * if we encounter a ( expression ) then look for nots in
177 		 * the expr subplan.
178 		 */
179 		if (next->execute == f_expr)
180 			next->p_data[0] = not_squish(next->p_data[0]);
181 
182 		/*
183 		 * if we encounter a not, then snag the next node and place
184 		 * it in the not's subplan.  As an optimization we compress
185 		 * several not's to zero or one not.
186 		 */
187 		if (next->execute == f_not) {
188 			int notlevel = 1;
189 
190 			node = yanknode(&plan);
191 			while (node != NULL && node->execute == f_not) {
192 				++notlevel;
193 				node = yanknode(&plan);
194 			}
195 			if (node == NULL)
196 				errx(1, "!: no following expression");
197 			if (node->execute == f_or)
198 				errx(1, "!: nothing between ! and -o");
199 			/*
200 			 * If we encounter ! ( expr ) then look for nots in
201 			 * the expr subplan.
202 			 */
203 			if (node->execute == f_expr)
204 				node->p_data[0] = not_squish(node->p_data[0]);
205 			if (notlevel % 2 != 1)
206 				next = node;
207 			else
208 				next->p_data[0] = node;
209 		}
210 
211 		/* add the node to our result plan */
212 		if (result == NULL)
213 			tail = result = next;
214 		else {
215 			tail->next = next;
216 			tail = next;
217 		}
218 		tail->next = NULL;
219 	}
220 	return (result);
221 }
222 
223 /*
224  * or_squish --
225  *	compresses -o expressions in our search plan.
226  */
227 PLAN *
228 or_squish(PLAN *plan)
229 {
230 	PLAN *next;		/* next node being processed */
231 	PLAN *tail;		/* pointer to tail of result plan */
232 	PLAN *result;		/* pointer to head of result plan */
233 
234 	tail = result = next = NULL;
235 
236 	while ((next = yanknode(&plan)) != NULL) {
237 		/*
238 		 * if we encounter a ( expression ) then look for or's in
239 		 * the expr subplan.
240 		 */
241 		if (next->execute == f_expr)
242 			next->p_data[0] = or_squish(next->p_data[0]);
243 
244 		/* if we encounter a not then look for or's in the subplan */
245 		if (next->execute == f_not)
246 			next->p_data[0] = or_squish(next->p_data[0]);
247 
248 		/*
249 		 * if we encounter an or, then place our collected plan in the
250 		 * or's first subplan and then recursively collect the
251 		 * remaining stuff into the second subplan and return the or.
252 		 */
253 		if (next->execute == f_or) {
254 			if (result == NULL)
255 				errx(1, "-o: no expression before -o");
256 			next->p_data[0] = result;
257 			next->p_data[1] = or_squish(plan);
258 			if (next->p_data[1] == NULL)
259 				errx(1, "-o: no expression after -o");
260 			return (next);
261 		}
262 
263 		/* add the node to our result plan */
264 		if (result == NULL)
265 			tail = result = next;
266 		else {
267 			tail->next = next;
268 			tail = next;
269 		}
270 		tail->next = NULL;
271 	}
272 	return (result);
273 }
274