xref: /freebsd/usr.sbin/bhyve/pci_e82545.c (revision 076ad2f8)
1 /*
2  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
3  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
4  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/types.h>
34 #ifndef WITHOUT_CAPSICUM
35 #include <sys/capsicum.h>
36 #endif
37 #include <sys/limits.h>
38 #include <sys/ioctl.h>
39 #include <sys/uio.h>
40 #include <net/ethernet.h>
41 #include <netinet/in.h>
42 #include <netinet/tcp.h>
43 
44 #include <err.h>
45 #include <errno.h>
46 #include <fcntl.h>
47 #include <md5.h>
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sysexits.h>
52 #include <unistd.h>
53 #include <pthread.h>
54 #include <pthread_np.h>
55 
56 #include "e1000_regs.h"
57 #include "e1000_defines.h"
58 #include "mii.h"
59 
60 #include "bhyverun.h"
61 #include "pci_emul.h"
62 #include "mevent.h"
63 
64 /* Hardware/register definitions XXX: move some to common code. */
65 #define E82545_VENDOR_ID_INTEL			0x8086
66 #define E82545_DEV_ID_82545EM_COPPER		0x100F
67 #define E82545_SUBDEV_ID			0x1008
68 
69 #define E82545_REVISION_4			4
70 
71 #define E82545_MDIC_DATA_MASK			0x0000FFFF
72 #define E82545_MDIC_OP_MASK			0x0c000000
73 #define E82545_MDIC_IE				0x20000000
74 
75 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
76 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
77 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
78 
79 #define E82545_BAR_REGISTER			0
80 #define E82545_BAR_REGISTER_LEN			(128*1024)
81 #define E82545_BAR_FLASH			1
82 #define E82545_BAR_FLASH_LEN			(64*1024)
83 #define E82545_BAR_IO				2
84 #define E82545_BAR_IO_LEN			8
85 
86 #define E82545_IOADDR				0x00000000
87 #define E82545_IODATA				0x00000004
88 #define E82545_IO_REGISTER_MAX			0x0001FFFF
89 #define E82545_IO_FLASH_BASE			0x00080000
90 #define E82545_IO_FLASH_MAX			0x000FFFFF
91 
92 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
93 #define E82545_RAR_MAX				15
94 #define E82545_MTA_MAX				127
95 #define E82545_VFTA_MAX				127
96 
97 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
98  * followed by 6 address bits.
99  * TODO: make opcode bits and addr bits configurable?
100  * NVM Commands - Microwire */
101 #define E82545_NVM_OPCODE_BITS	3
102 #define E82545_NVM_ADDR_BITS	6
103 #define E82545_NVM_DATA_BITS	16
104 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
105 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
106 #define E82545_NVM_OPCODE_MASK	\
107     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
108 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
109 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
110 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
111 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
112 
113 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
114 
115 #define E1000_ICR_SRPD		0x00010000
116 
117 /* This is an arbitrary number.  There is no hard limit on the chip. */
118 #define I82545_MAX_TXSEGS	64
119 
120 /* Legacy receive descriptor */
121 struct e1000_rx_desc {
122 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
123 	uint16_t length;	/* Length of data DMAed into data buffer */
124 	uint16_t csum;		/* Packet checksum */
125 	uint8_t	 status;       	/* Descriptor status */
126 	uint8_t  errors;	/* Descriptor Errors */
127 	uint16_t special;
128 };
129 
130 /* Transmit descriptor types */
131 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
132 #define E1000_TXD_TYP_L		(0)
133 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
134 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
135 
136 /* Legacy transmit descriptor */
137 struct e1000_tx_desc {
138 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
139 	union {
140 		uint32_t data;
141 		struct {
142 			uint16_t length;  /* Data buffer length */
143 			uint8_t  cso;  /* Checksum offset */
144 			uint8_t  cmd;  /* Descriptor control */
145 		} flags;
146 	} lower;
147 	union {
148 		uint32_t data;
149 		struct {
150 			uint8_t status; /* Descriptor status */
151 			uint8_t css;  /* Checksum start */
152 			uint16_t special;
153 		} fields;
154 	} upper;
155 };
156 
157 /* Context descriptor */
158 struct e1000_context_desc {
159 	union {
160 		uint32_t ip_config;
161 		struct {
162 			uint8_t ipcss;  /* IP checksum start */
163 			uint8_t ipcso;  /* IP checksum offset */
164 			uint16_t ipcse;  /* IP checksum end */
165 		} ip_fields;
166 	} lower_setup;
167 	union {
168 		uint32_t tcp_config;
169 		struct {
170 			uint8_t tucss;  /* TCP checksum start */
171 			uint8_t tucso;  /* TCP checksum offset */
172 			uint16_t tucse;  /* TCP checksum end */
173 		} tcp_fields;
174 	} upper_setup;
175 	uint32_t cmd_and_length;
176 	union {
177 		uint32_t data;
178 		struct {
179 			uint8_t status;  /* Descriptor status */
180 			uint8_t hdr_len;  /* Header length */
181 			uint16_t mss;  /* Maximum segment size */
182 		} fields;
183 	} tcp_seg_setup;
184 };
185 
186 /* Data descriptor */
187 struct e1000_data_desc {
188 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
189 	union {
190 		uint32_t data;
191 		struct {
192 			uint16_t length;  /* Data buffer length */
193 			uint8_t typ_len_ext;
194 			uint8_t cmd;
195 		} flags;
196 	} lower;
197 	union {
198 		uint32_t data;
199 		struct {
200 			uint8_t status;  /* Descriptor status */
201 			uint8_t popts;  /* Packet Options */
202 			uint16_t special;
203 		} fields;
204 	} upper;
205 };
206 
207 union e1000_tx_udesc {
208 	struct e1000_tx_desc td;
209 	struct e1000_context_desc cd;
210 	struct e1000_data_desc dd;
211 };
212 
213 /* Tx checksum info for a packet. */
214 struct ck_info {
215 	int	ck_valid;	/* ck_info is valid */
216 	uint8_t	ck_start;	/* start byte of cksum calcuation */
217 	uint8_t	ck_off;		/* offset of cksum insertion */
218 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
219 };
220 
221 /*
222  * Debug printf
223  */
224 static int e82545_debug = 0;
225 #define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
226 #define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
227 
228 #define	MIN(a,b) (((a)<(b))?(a):(b))
229 #define	MAX(a,b) (((a)>(b))?(a):(b))
230 
231 /* s/w representation of the RAL/RAH regs */
232 struct  eth_uni {
233 	int		eu_valid;
234 	int		eu_addrsel;
235 	struct ether_addr eu_eth;
236 };
237 
238 
239 struct e82545_softc {
240 	struct pci_devinst *esc_pi;
241 	struct vmctx	*esc_ctx;
242 	struct mevent   *esc_mevp;
243 	struct mevent   *esc_mevpitr;
244 	pthread_mutex_t	esc_mtx;
245 	struct ether_addr esc_mac;
246 	int		esc_tapfd;
247 
248 	/* General */
249 	uint32_t	esc_CTRL;	/* x0000 device ctl */
250 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
251 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
252 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
253 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
254 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
255 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
256 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
257 
258 	/* Interrupt control */
259 	int		esc_irq_asserted;
260 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
261 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
262 	uint32_t	esc_ICS;	/* x00C8 cause set */
263 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
264 	uint32_t	esc_IMC;	/* x00D8 mask clear */
265 
266 	/* Transmit */
267 	union e1000_tx_udesc *esc_txdesc;
268 	struct e1000_context_desc esc_txctx;
269 	pthread_t	esc_tx_tid;
270 	pthread_cond_t	esc_tx_cond;
271 	int		esc_tx_enabled;
272 	int		esc_tx_active;
273 	uint32_t	esc_TXCW;	/* x0178 transmit config */
274 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
275 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
276 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
277 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
278 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
279 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
280 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
281 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
282 	uint16_t	esc_TDHr;	/* internal read version of TDH */
283 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
284 	uint32_t	esc_TIDV;	/* x3820 intr delay */
285 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
286 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
287 
288 	/* L2 frame acceptance */
289 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
290 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
291 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
292 
293 	/* Receive */
294 	struct e1000_rx_desc *esc_rxdesc;
295 	pthread_cond_t	esc_rx_cond;
296 	int		esc_rx_enabled;
297 	int		esc_rx_active;
298 	int		esc_rx_loopback;
299 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
300 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
301 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
302 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
303 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
304 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
305 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
306 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
307 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
308 	uint32_t	esc_RDTR;	/* x2820 intr delay */
309 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
310 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
311 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
312 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
313 
314 	/* IO Port register access */
315 	uint32_t io_addr;
316 
317 	/* Shadow copy of MDIC */
318 	uint32_t mdi_control;
319 	/* Shadow copy of EECD */
320 	uint32_t eeprom_control;
321 	/* Latest NVM in/out */
322 	uint16_t nvm_data;
323 	uint16_t nvm_opaddr;
324 	/* stats */
325 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
326 	uint32_t pkt_rx_by_size[6];
327 	uint32_t pkt_tx_by_size[6];
328 	uint32_t good_pkt_rx_count;
329 	uint32_t bcast_pkt_rx_count;
330 	uint32_t mcast_pkt_rx_count;
331 	uint32_t good_pkt_tx_count;
332 	uint32_t bcast_pkt_tx_count;
333 	uint32_t mcast_pkt_tx_count;
334 	uint32_t oversize_rx_count;
335 	uint32_t tso_tx_count;
336 	uint64_t good_octets_rx;
337 	uint64_t good_octets_tx;
338 	uint64_t missed_octets; /* counts missed and oversized */
339 
340 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
341 	uint8_t nvm_mode:2;
342 #define E82545_NVM_MODE_OPADDR  0x0
343 #define E82545_NVM_MODE_DATAIN  0x1
344 #define E82545_NVM_MODE_DATAOUT 0x2
345         /* EEPROM data */
346         uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
347 };
348 
349 static void e82545_reset(struct e82545_softc *sc, int dev);
350 static void e82545_rx_enable(struct e82545_softc *sc);
351 static void e82545_rx_disable(struct e82545_softc *sc);
352 static void e82545_tap_callback(int fd, enum ev_type type, void *param);
353 static void e82545_tx_start(struct e82545_softc *sc);
354 static void e82545_tx_enable(struct e82545_softc *sc);
355 static void e82545_tx_disable(struct e82545_softc *sc);
356 
357 static inline int
358 e82545_size_stat_index(uint32_t size)
359 {
360 	if (size <= 64) {
361 		return 0;
362 	} else if (size >= 1024) {
363 		return 5;
364 	} else {
365 		/* should be 1-4 */
366 		return (ffs(size) - 6);
367 	}
368 }
369 
370 static void
371 e82545_init_eeprom(struct e82545_softc *sc)
372 {
373 	uint16_t checksum, i;
374 
375         /* mac addr */
376 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
377 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
378 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
379 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
380 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
381 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
382 
383 	/* pci ids */
384 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
385 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
386 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
387 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
388 
389 	/* fill in the checksum */
390         checksum = 0;
391 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
392 		checksum += sc->eeprom_data[i];
393 	}
394 	checksum = NVM_SUM - checksum;
395 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
396 	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
397 }
398 
399 static void
400 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
401 			uint8_t phy_addr, uint32_t data)
402 {
403 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
404 }
405 
406 static uint32_t
407 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
408 			uint8_t phy_addr)
409 {
410 	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
411 	switch (reg_addr) {
412 	case PHY_STATUS:
413 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
414 			MII_SR_AUTONEG_COMPLETE);
415 	case PHY_AUTONEG_ADV:
416 		return NWAY_AR_SELECTOR_FIELD;
417 	case PHY_LP_ABILITY:
418 		return 0;
419 	case PHY_1000T_STATUS:
420 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
421 			SR_1000T_LOCAL_RX_STATUS);
422 	case PHY_ID1:
423 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
424 	case PHY_ID2:
425 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
426 	default:
427 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
428 		return 0;
429 	}
430 	/* not reached */
431 }
432 
433 static void
434 e82545_eecd_strobe(struct e82545_softc *sc)
435 {
436 	/* Microwire state machine */
437 	/*
438 	DPRINTF("eeprom state machine srtobe "
439 		"0x%x 0x%x 0x%x 0x%x\r\n",
440 		sc->nvm_mode, sc->nvm_bits,
441 		sc->nvm_opaddr, sc->nvm_data);*/
442 
443 	if (sc->nvm_bits == 0) {
444 		DPRINTF("eeprom state machine not expecting data! "
445 			"0x%x 0x%x 0x%x 0x%x\r\n",
446 			sc->nvm_mode, sc->nvm_bits,
447 			sc->nvm_opaddr, sc->nvm_data);
448 		return;
449 	}
450 	sc->nvm_bits--;
451 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
452 		/* shifting out */
453 		if (sc->nvm_data & 0x8000) {
454 			sc->eeprom_control |= E1000_EECD_DO;
455 		} else {
456 			sc->eeprom_control &= ~E1000_EECD_DO;
457 		}
458 		sc->nvm_data <<= 1;
459 		if (sc->nvm_bits == 0) {
460 			/* read done, back to opcode mode. */
461 			sc->nvm_opaddr = 0;
462 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
463 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
464 		}
465 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
466 		/* shifting in */
467 		sc->nvm_data <<= 1;
468 		if (sc->eeprom_control & E1000_EECD_DI) {
469 			sc->nvm_data |= 1;
470 		}
471 		if (sc->nvm_bits == 0) {
472 			/* eeprom write */
473 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
474 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
475 			if (op != E82545_NVM_OPCODE_WRITE) {
476 				DPRINTF("Illegal eeprom write op 0x%x\r\n",
477 					sc->nvm_opaddr);
478 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
479 				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
480 					sc->nvm_opaddr);
481 			} else {
482 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
483 				addr, sc->nvm_data);
484 				sc->eeprom_data[addr] = sc->nvm_data;
485 			}
486 			/* back to opcode mode */
487 			sc->nvm_opaddr = 0;
488 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
489 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
490 		}
491 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
492 		sc->nvm_opaddr <<= 1;
493 		if (sc->eeprom_control & E1000_EECD_DI) {
494 			sc->nvm_opaddr |= 1;
495 		}
496 		if (sc->nvm_bits == 0) {
497 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
498 			switch (op) {
499 			case E82545_NVM_OPCODE_EWEN:
500 				DPRINTF("eeprom write enable: 0x%x\r\n",
501 					sc->nvm_opaddr);
502 				/* back to opcode mode */
503 				sc->nvm_opaddr = 0;
504 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
505 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
506 				break;
507 			case E82545_NVM_OPCODE_READ:
508 			{
509 				uint16_t addr = sc->nvm_opaddr &
510 					E82545_NVM_ADDR_MASK;
511 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
512 				sc->nvm_bits = E82545_NVM_DATA_BITS;
513 				if (addr < E82545_NVM_EEPROM_SIZE) {
514 					sc->nvm_data = sc->eeprom_data[addr];
515 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
516 						addr, sc->nvm_data);
517 				} else {
518 					DPRINTF("eeprom illegal read: 0x%x\r\n",
519 						sc->nvm_opaddr);
520 					sc->nvm_data = 0;
521 				}
522 				break;
523 			}
524 			case E82545_NVM_OPCODE_WRITE:
525 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
526 				sc->nvm_bits = E82545_NVM_DATA_BITS;
527 				sc->nvm_data = 0;
528 				break;
529 			default:
530 				DPRINTF("eeprom unknown op: 0x%x\r\r",
531 					sc->nvm_opaddr);
532 				/* back to opcode mode */
533 				sc->nvm_opaddr = 0;
534 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
535 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
536 			}
537 		}
538 	} else {
539 		DPRINTF("eeprom state machine wrong state! "
540 			"0x%x 0x%x 0x%x 0x%x\r\n",
541 			sc->nvm_mode, sc->nvm_bits,
542 			sc->nvm_opaddr, sc->nvm_data);
543 	}
544 }
545 
546 static void
547 e82545_itr_callback(int fd, enum ev_type type, void *param)
548 {
549 	uint32_t new;
550 	struct e82545_softc *sc = param;
551 
552 	pthread_mutex_lock(&sc->esc_mtx);
553 	new = sc->esc_ICR & sc->esc_IMS;
554 	if (new && !sc->esc_irq_asserted) {
555 		DPRINTF("itr callback: lintr assert %x\r\n", new);
556 		sc->esc_irq_asserted = 1;
557 		pci_lintr_assert(sc->esc_pi);
558 	} else {
559 		mevent_delete(sc->esc_mevpitr);
560 		sc->esc_mevpitr = NULL;
561 	}
562 	pthread_mutex_unlock(&sc->esc_mtx);
563 }
564 
565 static void
566 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
567 {
568 	uint32_t new;
569 
570 	DPRINTF("icr assert: 0x%x\r\n", bits);
571 
572 	/*
573 	 * An interrupt is only generated if bits are set that
574 	 * aren't already in the ICR, these bits are unmasked,
575 	 * and there isn't an interrupt already pending.
576 	 */
577 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
578 	sc->esc_ICR |= bits;
579 
580 	if (new == 0) {
581 		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
582 	} else if (sc->esc_mevpitr != NULL) {
583 		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
584 	} else if (!sc->esc_irq_asserted) {
585 		DPRINTF("icr assert: lintr assert %x\r\n", new);
586 		sc->esc_irq_asserted = 1;
587 		pci_lintr_assert(sc->esc_pi);
588 		if (sc->esc_ITR != 0) {
589 			sc->esc_mevpitr = mevent_add(
590 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
591 			    EVF_TIMER, e82545_itr_callback, sc);
592 		}
593 	}
594 }
595 
596 static void
597 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
598 {
599 	uint32_t new;
600 
601 	/*
602 	 * Changing the mask may allow previously asserted
603 	 * but masked interrupt requests to generate an interrupt.
604 	 */
605 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
606 	sc->esc_IMS |= bits;
607 
608 	if (new == 0) {
609 		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
610 	} else if (sc->esc_mevpitr != NULL) {
611 		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
612 	} else if (!sc->esc_irq_asserted) {
613 		DPRINTF("ims change: lintr assert %x\n\r", new);
614 		sc->esc_irq_asserted = 1;
615 		pci_lintr_assert(sc->esc_pi);
616 		if (sc->esc_ITR != 0) {
617 			sc->esc_mevpitr = mevent_add(
618 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
619 			    EVF_TIMER, e82545_itr_callback, sc);
620 		}
621 	}
622 }
623 
624 static void
625 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
626 {
627 
628 	DPRINTF("icr deassert: 0x%x\r\n", bits);
629 	sc->esc_ICR &= ~bits;
630 
631 	/*
632 	 * If there are no longer any interrupt sources and there
633 	 * was an asserted interrupt, clear it
634 	 */
635 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
636 		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
637 		pci_lintr_deassert(sc->esc_pi);
638 		sc->esc_irq_asserted = 0;
639 	}
640 }
641 
642 static void
643 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
644 {
645 
646 	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
647 
648 	switch (offset) {
649 	case E1000_ICR:
650 		e82545_icr_deassert(sc, value);
651 		break;
652 	case E1000_ITR:
653 		sc->esc_ITR = value;
654 		break;
655 	case E1000_ICS:
656 		sc->esc_ICS = value;	/* not used: store for debug */
657 		e82545_icr_assert(sc, value);
658 		break;
659 	case E1000_IMS:
660 		e82545_ims_change(sc, value);
661 		break;
662 	case E1000_IMC:
663 		sc->esc_IMC = value;	/* for debug */
664 		sc->esc_IMS &= ~value;
665 		// XXX clear interrupts if all ICR bits now masked
666 		// and interrupt was pending ?
667 		break;
668 	default:
669 		break;
670 	}
671 }
672 
673 static uint32_t
674 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
675 {
676 	uint32_t retval;
677 
678 	retval = 0;
679 
680 	DPRINTF("intr_read: off %x\n\r", offset);
681 
682 	switch (offset) {
683 	case E1000_ICR:
684 		retval = sc->esc_ICR;
685 		sc->esc_ICR = 0;
686 		e82545_icr_deassert(sc, ~0);
687 		break;
688 	case E1000_ITR:
689 		retval = sc->esc_ITR;
690 		break;
691 	case E1000_ICS:
692 		/* write-only register */
693 		break;
694 	case E1000_IMS:
695 		retval = sc->esc_IMS;
696 		break;
697 	case E1000_IMC:
698 		/* write-only register */
699 		break;
700 	default:
701 		break;
702 	}
703 
704 	return (retval);
705 }
706 
707 static void
708 e82545_devctl(struct e82545_softc *sc, uint32_t val)
709 {
710 
711 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
712 
713 	if (val & E1000_CTRL_RST) {
714 		DPRINTF("e1k: s/w reset, ctl %x\n", val);
715 		e82545_reset(sc, 1);
716 	}
717 	/* XXX check for phy reset ? */
718 }
719 
720 static void
721 e82545_rx_update_rdba(struct e82545_softc *sc)
722 {
723 
724 	/* XXX verify desc base/len within phys mem range */
725 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
726 	    sc->esc_RDBAL;
727 
728 	/* Cache host mapping of guest descriptor array */
729 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
730 	    sc->esc_rdba, sc->esc_RDLEN);
731 }
732 
733 static void
734 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
735 {
736 	int on;
737 
738 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
739 
740 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
741 	sc->esc_RCTL = val & ~0xF9204c01;
742 
743 	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
744 		on ? "on" : "off", sc->esc_RCTL, val);
745 
746 	/* state change requested */
747 	if (on != sc->esc_rx_enabled) {
748 		if (on) {
749 			/* Catch disallowed/unimplemented settings */
750 			//assert(!(val & E1000_RCTL_LBM_TCVR));
751 
752 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
753 				sc->esc_rx_loopback = 1;
754 			} else {
755 				sc->esc_rx_loopback = 0;
756 			}
757 
758 			e82545_rx_update_rdba(sc);
759 			e82545_rx_enable(sc);
760 		} else {
761 			e82545_rx_disable(sc);
762 			sc->esc_rx_loopback = 0;
763 			sc->esc_rdba = 0;
764 			sc->esc_rxdesc = NULL;
765 		}
766 	}
767 }
768 
769 static void
770 e82545_tx_update_tdba(struct e82545_softc *sc)
771 {
772 
773 	/* XXX verify desc base/len within phys mem range */
774 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
775 
776 	/* Cache host mapping of guest descriptor array */
777 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
778             sc->esc_TDLEN);
779 }
780 
781 static void
782 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
783 {
784 	int on;
785 
786 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
787 
788 	/* ignore TCTL_EN settings that don't change state */
789 	if (on == sc->esc_tx_enabled)
790 		return;
791 
792 	if (on) {
793 		e82545_tx_update_tdba(sc);
794 		e82545_tx_enable(sc);
795 	} else {
796 		e82545_tx_disable(sc);
797 		sc->esc_tdba = 0;
798 		sc->esc_txdesc = NULL;
799 	}
800 
801 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
802 	sc->esc_TCTL = val & ~0xFE800005;
803 }
804 
805 int
806 e82545_bufsz(uint32_t rctl)
807 {
808 
809 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
810 	case (E1000_RCTL_SZ_2048): return (2048);
811 	case (E1000_RCTL_SZ_1024): return (1024);
812 	case (E1000_RCTL_SZ_512): return (512);
813 	case (E1000_RCTL_SZ_256): return (256);
814 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
815 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
816 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
817 	}
818 	return (256);	/* Forbidden value. */
819 }
820 
821 static uint8_t dummybuf[2048];
822 
823 /* XXX one packet at a time until this is debugged */
824 static void
825 e82545_tap_callback(int fd, enum ev_type type, void *param)
826 {
827 	struct e82545_softc *sc = param;
828 	struct e1000_rx_desc *rxd;
829 	struct iovec vec[64];
830 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
831 	uint32_t cause = 0;
832 	uint16_t *tp, tag, head;
833 
834 	pthread_mutex_lock(&sc->esc_mtx);
835 	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
836 
837 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
838 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
839 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
840 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
841 		}
842 		goto done1;
843 	}
844 	bufsz = e82545_bufsz(sc->esc_RCTL);
845 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
846 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
847 	size = sc->esc_RDLEN / 16;
848 	head = sc->esc_RDH;
849 	left = (size + sc->esc_RDT - head) % size;
850 	if (left < maxpktdesc) {
851 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
852 		    left, maxpktdesc);
853 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
854 		}
855 		goto done1;
856 	}
857 
858 	sc->esc_rx_active = 1;
859 	pthread_mutex_unlock(&sc->esc_mtx);
860 
861 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
862 
863 		/* Grab rx descriptor pointed to by the head pointer */
864 		for (i = 0; i < maxpktdesc; i++) {
865 			rxd = &sc->esc_rxdesc[(head + i) % size];
866 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
867 			    rxd->buffer_addr, bufsz);
868 			vec[i].iov_len = bufsz;
869 		}
870 		len = readv(sc->esc_tapfd, vec, maxpktdesc);
871 		if (len <= 0) {
872 			DPRINTF("tap: readv() returned %d\n", len);
873 			goto done;
874 		}
875 
876 		/*
877 		 * Adjust the packet length based on whether the CRC needs
878 		 * to be stripped or if the packet is less than the minimum
879 		 * eth packet size.
880 		 */
881 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
882 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
883 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
884 			len += ETHER_CRC_LEN;
885 		n = (len + bufsz - 1) / bufsz;
886 
887 		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
888 		    len, n, head);
889 
890 		/* Apply VLAN filter. */
891 		tp = (uint16_t *)vec[0].iov_base + 6;
892 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
893 		    (ntohs(tp[0]) == sc->esc_VET)) {
894 			tag = ntohs(tp[1]) & 0x0fff;
895 			if ((sc->esc_fvlan[tag >> 5] &
896 			    (1 << (tag & 0x1f))) != 0) {
897 				DPRINTF("known VLAN %d\r\n", tag);
898 			} else {
899 				DPRINTF("unknown VLAN %d\r\n", tag);
900 				n = 0;
901 				continue;
902 			}
903 		}
904 
905 		/* Update all consumed descriptors. */
906 		for (i = 0; i < n - 1; i++) {
907 			rxd = &sc->esc_rxdesc[(head + i) % size];
908 			rxd->length = bufsz;
909 			rxd->csum = 0;
910 			rxd->errors = 0;
911 			rxd->special = 0;
912 			rxd->status = E1000_RXD_STAT_DD;
913 		}
914 		rxd = &sc->esc_rxdesc[(head + i) % size];
915 		rxd->length = len % bufsz;
916 		rxd->csum = 0;
917 		rxd->errors = 0;
918 		rxd->special = 0;
919 		/* XXX signal no checksum for now */
920 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
921 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
922 
923 		/* Schedule receive interrupts. */
924 		if (len <= sc->esc_RSRPD) {
925 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
926 		} else {
927 			/* XXX: RDRT and RADV timers should be here. */
928 			cause |= E1000_ICR_RXT0;
929 		}
930 
931 		head = (head + n) % size;
932 		left -= n;
933 	}
934 
935 done:
936 	pthread_mutex_lock(&sc->esc_mtx);
937 	sc->esc_rx_active = 0;
938 	if (sc->esc_rx_enabled == 0)
939 		pthread_cond_signal(&sc->esc_rx_cond);
940 
941 	sc->esc_RDH = head;
942 	/* Respect E1000_RCTL_RDMTS */
943 	left = (size + sc->esc_RDT - head) % size;
944 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
945 		cause |= E1000_ICR_RXDMT0;
946 	/* Assert all accumulated interrupts. */
947 	if (cause != 0)
948 		e82545_icr_assert(sc, cause);
949 done1:
950 	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
951 	pthread_mutex_unlock(&sc->esc_mtx);
952 }
953 
954 static uint16_t
955 e82545_carry(uint32_t sum)
956 {
957 
958 	sum = (sum & 0xFFFF) + (sum >> 16);
959 	if (sum > 0xFFFF)
960 		sum -= 0xFFFF;
961 	return (sum);
962 }
963 
964 static uint16_t
965 e82545_buf_checksum(uint8_t *buf, int len)
966 {
967 	int i;
968 	uint32_t sum = 0;
969 
970 	/* Checksum all the pairs of bytes first... */
971 	for (i = 0; i < (len & ~1U); i += 2)
972 		sum += *((u_int16_t *)(buf + i));
973 
974 	/*
975 	 * If there's a single byte left over, checksum it, too.
976 	 * Network byte order is big-endian, so the remaining byte is
977 	 * the high byte.
978 	 */
979 	if (i < len)
980 		sum += htons(buf[i] << 8);
981 
982 	return (e82545_carry(sum));
983 }
984 
985 static uint16_t
986 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
987 {
988 	int now, odd;
989 	uint32_t sum = 0, s;
990 
991 	/* Skip completely unneeded vectors. */
992 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
993 		off -= iov->iov_len;
994 		iov++;
995 		iovcnt--;
996 	}
997 
998 	/* Calculate checksum of requested range. */
999 	odd = 0;
1000 	while (len > 0 && iovcnt > 0) {
1001 		now = MIN(len, iov->iov_len - off);
1002 		s = e82545_buf_checksum(iov->iov_base + off, now);
1003 		sum += odd ? (s << 8) : s;
1004 		odd ^= (now & 1);
1005 		len -= now;
1006 		off = 0;
1007 		iov++;
1008 		iovcnt--;
1009 	}
1010 
1011 	return (e82545_carry(sum));
1012 }
1013 
1014 /*
1015  * Return the transmit descriptor type.
1016  */
1017 int
1018 e82545_txdesc_type(uint32_t lower)
1019 {
1020 	int type;
1021 
1022 	type = 0;
1023 
1024 	if (lower & E1000_TXD_CMD_DEXT)
1025 		type = lower & E1000_TXD_MASK;
1026 
1027 	return (type);
1028 }
1029 
1030 static void
1031 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1032 {
1033 	uint16_t cksum;
1034 	int cklen;
1035 
1036 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1037 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1038 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1039 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1040 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1041 }
1042 
1043 static void
1044 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1045 {
1046 
1047 	if (sc->esc_tapfd == -1)
1048 		return;
1049 
1050 	(void) writev(sc->esc_tapfd, iov, iovcnt);
1051 }
1052 
1053 static void
1054 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1055     uint16_t dsize, int *tdwb)
1056 {
1057 	union e1000_tx_udesc *dsc;
1058 
1059 	for ( ; head != tail; head = (head + 1) % dsize) {
1060 		dsc = &sc->esc_txdesc[head];
1061 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1062 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1063 			*tdwb = 1;
1064 		}
1065 	}
1066 }
1067 
1068 static int
1069 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1070     uint16_t dsize, uint16_t *rhead, int *tdwb)
1071 {
1072 	uint8_t *hdr, *hdrp;
1073 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1074 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1075 	struct e1000_context_desc *cd;
1076 	struct ck_info ckinfo[2];
1077 	struct iovec *iov;
1078 	union  e1000_tx_udesc *dsc;
1079 	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1080 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1081 	uint32_t tcpsum, tcpseq;
1082 	uint16_t ipcs, tcpcs, ipid, ohead;
1083 
1084 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1085 	iovcnt = 0;
1086 	tlen = 0;
1087 	ntype = 0;
1088 	tso = 0;
1089 	ohead = head;
1090 
1091 	/* iovb[0/1] may be used for writable copy of headers. */
1092 	iov = &iovb[2];
1093 
1094 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1095 		if (head == tail) {
1096 			*rhead = head;
1097 			return (0);
1098 		}
1099 		dsc = &sc->esc_txdesc[head];
1100 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1101 
1102 		if (desc == 0) {
1103 			switch (dtype) {
1104 			case E1000_TXD_TYP_C:
1105 				DPRINTF("tx ctxt desc idx %d: %016jx "
1106 				    "%08x%08x\r\n",
1107 				    head, dsc->td.buffer_addr,
1108 				    dsc->td.upper.data, dsc->td.lower.data);
1109 				/* Save context and return */
1110 				sc->esc_txctx = dsc->cd;
1111 				goto done;
1112 			case E1000_TXD_TYP_L:
1113 				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1114 				    head, dsc->td.upper.data, dsc->td.lower.data);
1115 				/*
1116 				 * legacy cksum start valid in first descriptor
1117 				 */
1118 				ntype = dtype;
1119 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1120 				break;
1121 			case E1000_TXD_TYP_D:
1122 				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1123 				    head, dsc->td.upper.data, dsc->td.lower.data);
1124 				ntype = dtype;
1125 				break;
1126 			default:
1127 				break;
1128 			}
1129 		} else {
1130 			/* Descriptor type must be consistent */
1131 			assert(dtype == ntype);
1132 			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1133 			    head, dsc->td.upper.data, dsc->td.lower.data);
1134 		}
1135 
1136 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1137 		    dsc->dd.lower.data & 0xFFFFF;
1138 
1139 		if (len > 0) {
1140 			/* Strip checksum supplied by guest. */
1141 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1142 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1143 				len -= 2;
1144 			tlen += len;
1145 			if (iovcnt < I82545_MAX_TXSEGS) {
1146 				iov[iovcnt].iov_base = paddr_guest2host(
1147 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1148 				iov[iovcnt].iov_len = len;
1149 			}
1150 			iovcnt++;
1151 		}
1152 
1153 		/*
1154 		 * Pull out info that is valid in the final descriptor
1155 		 * and exit descriptor loop.
1156 		 */
1157 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1158 			if (dtype == E1000_TXD_TYP_L) {
1159 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1160 					ckinfo[0].ck_valid = 1;
1161 					ckinfo[0].ck_off =
1162 					    dsc->td.lower.flags.cso;
1163 					ckinfo[0].ck_len = 0;
1164 				}
1165 			} else {
1166 				cd = &sc->esc_txctx;
1167 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1168 					tso = 1;
1169 				if (dsc->dd.upper.fields.popts &
1170 				    E1000_TXD_POPTS_IXSM)
1171 					ckinfo[0].ck_valid = 1;
1172 				if (dsc->dd.upper.fields.popts &
1173 				    E1000_TXD_POPTS_IXSM || tso) {
1174 					ckinfo[0].ck_start =
1175 					    cd->lower_setup.ip_fields.ipcss;
1176 					ckinfo[0].ck_off =
1177 					    cd->lower_setup.ip_fields.ipcso;
1178 					ckinfo[0].ck_len =
1179 					    cd->lower_setup.ip_fields.ipcse;
1180 				}
1181 				if (dsc->dd.upper.fields.popts &
1182 				    E1000_TXD_POPTS_TXSM)
1183 					ckinfo[1].ck_valid = 1;
1184 				if (dsc->dd.upper.fields.popts &
1185 				    E1000_TXD_POPTS_TXSM || tso) {
1186 					ckinfo[1].ck_start =
1187 					    cd->upper_setup.tcp_fields.tucss;
1188 					ckinfo[1].ck_off =
1189 					    cd->upper_setup.tcp_fields.tucso;
1190 					ckinfo[1].ck_len =
1191 					    cd->upper_setup.tcp_fields.tucse;
1192 				}
1193 			}
1194 			break;
1195 		}
1196 	}
1197 
1198 	if (iovcnt > I82545_MAX_TXSEGS) {
1199 		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1200 		    iovcnt, I82545_MAX_TXSEGS);
1201 		goto done;
1202 	}
1203 
1204 	hdrlen = vlen = 0;
1205 	/* Estimate writable space for VLAN header insertion. */
1206 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1207 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1208 		hdrlen = ETHER_ADDR_LEN*2;
1209 		vlen = ETHER_VLAN_ENCAP_LEN;
1210 	}
1211 	if (!tso) {
1212 		/* Estimate required writable space for checksums. */
1213 		if (ckinfo[0].ck_valid)
1214 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1215 		if (ckinfo[1].ck_valid)
1216 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1217 		/* Round up writable space to the first vector. */
1218 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1219 		    iov[0].iov_len < hdrlen + 100)
1220 			hdrlen = iov[0].iov_len;
1221 	} else {
1222 		/* In case of TSO header length provided by software. */
1223 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1224 	}
1225 
1226 	/* Allocate, fill and prepend writable header vector. */
1227 	if (hdrlen != 0) {
1228 		hdr = __builtin_alloca(hdrlen + vlen);
1229 		hdr += vlen;
1230 		for (left = hdrlen, hdrp = hdr; left > 0;
1231 		    left -= now, hdrp += now) {
1232 			now = MIN(left, iov->iov_len);
1233 			memcpy(hdrp, iov->iov_base, now);
1234 			iov->iov_base += now;
1235 			iov->iov_len -= now;
1236 			if (iov->iov_len == 0) {
1237 				iov++;
1238 				iovcnt--;
1239 			}
1240 		}
1241 		iov--;
1242 		iovcnt++;
1243 		iov->iov_base = hdr;
1244 		iov->iov_len = hdrlen;
1245 	}
1246 
1247 	/* Insert VLAN tag. */
1248 	if (vlen != 0) {
1249 		hdr -= ETHER_VLAN_ENCAP_LEN;
1250 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1251 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1252 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1253 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1254 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1255 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1256 		iov->iov_base = hdr;
1257 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1258 		/* Correct checksum offsets after VLAN tag insertion. */
1259 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1260 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1261 		if (ckinfo[0].ck_len != 0)
1262 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1263 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1264 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1265 		if (ckinfo[1].ck_len != 0)
1266 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1267 	}
1268 
1269 	/* Simple non-TSO case. */
1270 	if (!tso) {
1271 		/* Calculate checksums and transmit. */
1272 		if (ckinfo[0].ck_valid)
1273 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1274 		if (ckinfo[1].ck_valid)
1275 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1276 		e82545_transmit_backend(sc, iov, iovcnt);
1277 		goto done;
1278 	}
1279 
1280 	/* Doing TSO. */
1281 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1282 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1283 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1284 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1285 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1286 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1287 	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1288 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1289 	tcpcs = 0;
1290 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1291 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1292 	pv = 1;
1293 	pvoff = 0;
1294 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1295 		now = MIN(left, mss);
1296 
1297 		/* Construct IOVs for the segment. */
1298 		/* Include whole original header. */
1299 		tiov[0].iov_base = hdr;
1300 		tiov[0].iov_len = hdrlen;
1301 		tiovcnt = 1;
1302 		/* Include respective part of payload IOV. */
1303 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1304 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1305 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1306 			tiov[tiovcnt++].iov_len = nnow;
1307 			if (pvoff + nnow == iov[pv].iov_len) {
1308 				pv++;
1309 				pvoff = 0;
1310 			} else
1311 				pvoff += nnow;
1312 		}
1313 		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1314 		    seg, hdrlen, now, tiovcnt);
1315 
1316 		/* Update IP header. */
1317 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1318 			/* IPv4 -- set length and ID */
1319 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1320 			    htons(hdrlen - ckinfo[0].ck_start + now);
1321 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1322 			    htons(ipid + seg);
1323 		} else {
1324 			/* IPv6 -- set length */
1325 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1326 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1327 				  now);
1328 		}
1329 
1330 		/* Update pseudo-header checksum. */
1331 		tcpsum = tcpcs;
1332 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1333 
1334 		/* Update TCP/UDP headers. */
1335 		if (tcp) {
1336 			/* Update sequence number and FIN/PUSH flags. */
1337 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1338 			    htonl(tcpseq + paylen - left);
1339 			if (now < left) {
1340 				hdr[ckinfo[1].ck_start + 13] &=
1341 				    ~(TH_FIN | TH_PUSH);
1342 			}
1343 		} else {
1344 			/* Update payload length. */
1345 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1346 			    hdrlen - ckinfo[1].ck_start + now;
1347 		}
1348 
1349 		/* Calculate checksums and transmit. */
1350 		if (ckinfo[0].ck_valid) {
1351 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1352 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1353 		}
1354 		if (ckinfo[1].ck_valid) {
1355 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1356 			    e82545_carry(tcpsum);
1357 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1358 		}
1359 		e82545_transmit_backend(sc, tiov, tiovcnt);
1360 	}
1361 
1362 done:
1363 	head = (head + 1) % dsize;
1364 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1365 
1366 	*rhead = head;
1367 	return (desc + 1);
1368 }
1369 
1370 static void
1371 e82545_tx_run(struct e82545_softc *sc)
1372 {
1373 	uint32_t cause;
1374 	uint16_t head, rhead, tail, size;
1375 	int lim, tdwb, sent;
1376 
1377 	head = sc->esc_TDH;
1378 	tail = sc->esc_TDT;
1379 	size = sc->esc_TDLEN / 16;
1380 	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1381 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1382 
1383 	pthread_mutex_unlock(&sc->esc_mtx);
1384 	rhead = head;
1385 	tdwb = 0;
1386 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1387 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1388 		if (sent == 0)
1389 			break;
1390 		head = rhead;
1391 	}
1392 	pthread_mutex_lock(&sc->esc_mtx);
1393 
1394 	sc->esc_TDH = head;
1395 	sc->esc_TDHr = rhead;
1396 	cause = 0;
1397 	if (tdwb)
1398 		cause |= E1000_ICR_TXDW;
1399 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1400 		cause |= E1000_ICR_TXQE;
1401 	if (cause)
1402 		e82545_icr_assert(sc, cause);
1403 
1404 	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1405 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1406 }
1407 
1408 static void *
1409 e82545_tx_thread(void *param)
1410 {
1411 	struct e82545_softc *sc = param;
1412 
1413 	pthread_mutex_lock(&sc->esc_mtx);
1414 	for (;;) {
1415 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1416 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1417 				break;
1418 			sc->esc_tx_active = 0;
1419 			if (sc->esc_tx_enabled == 0)
1420 				pthread_cond_signal(&sc->esc_tx_cond);
1421 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1422 		}
1423 		sc->esc_tx_active = 1;
1424 
1425 		/* Process some tx descriptors.  Lock dropped inside. */
1426 		e82545_tx_run(sc);
1427 	}
1428 }
1429 
1430 static void
1431 e82545_tx_start(struct e82545_softc *sc)
1432 {
1433 
1434 	if (sc->esc_tx_active == 0)
1435 		pthread_cond_signal(&sc->esc_tx_cond);
1436 }
1437 
1438 static void
1439 e82545_tx_enable(struct e82545_softc *sc)
1440 {
1441 
1442 	sc->esc_tx_enabled = 1;
1443 }
1444 
1445 static void
1446 e82545_tx_disable(struct e82545_softc *sc)
1447 {
1448 
1449 	sc->esc_tx_enabled = 0;
1450 	while (sc->esc_tx_active)
1451 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1452 }
1453 
1454 static void
1455 e82545_rx_enable(struct e82545_softc *sc)
1456 {
1457 
1458 	sc->esc_rx_enabled = 1;
1459 }
1460 
1461 static void
1462 e82545_rx_disable(struct e82545_softc *sc)
1463 {
1464 
1465 	sc->esc_rx_enabled = 0;
1466 	while (sc->esc_rx_active)
1467 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1468 }
1469 
1470 static void
1471 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1472 {
1473         struct eth_uni *eu;
1474 	int idx;
1475 
1476 	idx = reg >> 1;
1477 	assert(idx < 15);
1478 
1479 	eu = &sc->esc_uni[idx];
1480 
1481 	if (reg & 0x1) {
1482 		/* RAH */
1483 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1484 		eu->eu_addrsel = (wval >> 16) & 0x3;
1485 		eu->eu_eth.octet[5] = wval >> 8;
1486 		eu->eu_eth.octet[4] = wval;
1487 	} else {
1488 		/* RAL */
1489 		eu->eu_eth.octet[3] = wval >> 24;
1490 		eu->eu_eth.octet[2] = wval >> 16;
1491 		eu->eu_eth.octet[1] = wval >> 8;
1492 		eu->eu_eth.octet[0] = wval;
1493 	}
1494 }
1495 
1496 static uint32_t
1497 e82545_read_ra(struct e82545_softc *sc, int reg)
1498 {
1499         struct eth_uni *eu;
1500 	uint32_t retval;
1501 	int idx;
1502 
1503 	idx = reg >> 1;
1504 	assert(idx < 15);
1505 
1506 	eu = &sc->esc_uni[idx];
1507 
1508 	if (reg & 0x1) {
1509 		/* RAH */
1510 		retval = (eu->eu_valid << 31) |
1511 			 (eu->eu_addrsel << 16) |
1512 			 (eu->eu_eth.octet[5] << 8) |
1513 			 eu->eu_eth.octet[4];
1514 	} else {
1515 		/* RAL */
1516 		retval = (eu->eu_eth.octet[3] << 24) |
1517 			 (eu->eu_eth.octet[2] << 16) |
1518 			 (eu->eu_eth.octet[1] << 8) |
1519 			 eu->eu_eth.octet[0];
1520 	}
1521 
1522 	return (retval);
1523 }
1524 
1525 static void
1526 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1527 {
1528 	int ridx;
1529 
1530 	if (offset & 0x3) {
1531 		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1532 		return;
1533 	}
1534 	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1535 
1536 	switch (offset) {
1537 	case E1000_CTRL:
1538 	case E1000_CTRL_DUP:
1539 		e82545_devctl(sc, value);
1540 		break;
1541 	case E1000_FCAL:
1542 		sc->esc_FCAL = value;
1543 		break;
1544 	case E1000_FCAH:
1545 		sc->esc_FCAH = value & ~0xFFFF0000;
1546 		break;
1547 	case E1000_FCT:
1548 		sc->esc_FCT = value & ~0xFFFF0000;
1549 		break;
1550 	case E1000_VET:
1551 		sc->esc_VET = value & ~0xFFFF0000;
1552 		break;
1553 	case E1000_FCTTV:
1554 		sc->esc_FCTTV = value & ~0xFFFF0000;
1555 		break;
1556 	case E1000_LEDCTL:
1557 		sc->esc_LEDCTL = value & ~0x30303000;
1558 		break;
1559 	case E1000_PBA:
1560 		sc->esc_PBA = value & 0x0000FF80;
1561 		break;
1562 	case E1000_ICR:
1563 	case E1000_ITR:
1564 	case E1000_ICS:
1565 	case E1000_IMS:
1566 	case E1000_IMC:
1567 		e82545_intr_write(sc, offset, value);
1568 		break;
1569 	case E1000_RCTL:
1570 		e82545_rx_ctl(sc, value);
1571 		break;
1572 	case E1000_FCRTL:
1573 		sc->esc_FCRTL = value & ~0xFFFF0007;
1574 		break;
1575 	case E1000_FCRTH:
1576 		sc->esc_FCRTH = value & ~0xFFFF0007;
1577 		break;
1578 	case E1000_RDBAL(0):
1579 		sc->esc_RDBAL = value & ~0xF;
1580 		if (sc->esc_rx_enabled) {
1581 			/* Apparently legal: update cached address */
1582 			e82545_rx_update_rdba(sc);
1583 		}
1584 		break;
1585 	case E1000_RDBAH(0):
1586 		assert(!sc->esc_rx_enabled);
1587 		sc->esc_RDBAH = value;
1588 		break;
1589 	case E1000_RDLEN(0):
1590 		assert(!sc->esc_rx_enabled);
1591 		sc->esc_RDLEN = value & ~0xFFF0007F;
1592 		break;
1593 	case E1000_RDH(0):
1594 		/* XXX should only ever be zero ? Range check ? */
1595 		sc->esc_RDH = value;
1596 		break;
1597 	case E1000_RDT(0):
1598 		/* XXX if this opens up the rx ring, do something ? */
1599 		sc->esc_RDT = value;
1600 		break;
1601 	case E1000_RDTR:
1602 		/* ignore FPD bit 31 */
1603 		sc->esc_RDTR = value & ~0xFFFF0000;
1604 		break;
1605 	case E1000_RXDCTL(0):
1606 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1607 		break;
1608 	case E1000_RADV:
1609 		sc->esc_RADV = value & ~0xFFFF0000;
1610 		break;
1611 	case E1000_RSRPD:
1612 		sc->esc_RSRPD = value & ~0xFFFFF000;
1613 		break;
1614 	case E1000_RXCSUM:
1615 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1616 		break;
1617 	case E1000_TXCW:
1618 		sc->esc_TXCW = value & ~0x3FFF0000;
1619 		break;
1620 	case E1000_TCTL:
1621 		e82545_tx_ctl(sc, value);
1622 		break;
1623 	case E1000_TIPG:
1624 		sc->esc_TIPG = value;
1625 		break;
1626 	case E1000_AIT:
1627 		sc->esc_AIT = value;
1628 		break;
1629 	case E1000_TDBAL(0):
1630 		sc->esc_TDBAL = value & ~0xF;
1631 		if (sc->esc_tx_enabled) {
1632 			/* Apparently legal */
1633 			e82545_tx_update_tdba(sc);
1634 		}
1635 		break;
1636 	case E1000_TDBAH(0):
1637 		//assert(!sc->esc_tx_enabled);
1638 		sc->esc_TDBAH = value;
1639 		break;
1640 	case E1000_TDLEN(0):
1641 		//assert(!sc->esc_tx_enabled);
1642 		sc->esc_TDLEN = value & ~0xFFF0007F;
1643 		break;
1644 	case E1000_TDH(0):
1645 		//assert(!sc->esc_tx_enabled);
1646 		/* XXX should only ever be zero ? Range check ? */
1647 		sc->esc_TDHr = sc->esc_TDH = value;
1648 		break;
1649 	case E1000_TDT(0):
1650 		/* XXX range check ? */
1651 		sc->esc_TDT = value;
1652 		if (sc->esc_tx_enabled)
1653 			e82545_tx_start(sc);
1654 		break;
1655 	case E1000_TIDV:
1656 		sc->esc_TIDV = value & ~0xFFFF0000;
1657 		break;
1658 	case E1000_TXDCTL(0):
1659 		//assert(!sc->esc_tx_enabled);
1660 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1661 		break;
1662 	case E1000_TADV:
1663 		sc->esc_TADV = value & ~0xFFFF0000;
1664 		break;
1665 	case E1000_RAL(0) ... E1000_RAH(15):
1666 		/* convert to u32 offset */
1667 		ridx = (offset - E1000_RAL(0)) >> 2;
1668 		e82545_write_ra(sc, ridx, value);
1669 		break;
1670 	case E1000_MTA ... (E1000_MTA + (127*4)):
1671 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1672 		break;
1673 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1674 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1675 		break;
1676 	case E1000_EECD:
1677 	{
1678 		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1679 		/* edge triggered low->high */
1680 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1681 			0 : (value & E1000_EECD_SK));
1682 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1683 					E1000_EECD_DI|E1000_EECD_REQ);
1684 		sc->eeprom_control &= ~eecd_mask;
1685 		sc->eeprom_control |= (value & eecd_mask);
1686 		/* grant/revoke immediately */
1687 		if (value & E1000_EECD_REQ) {
1688 			sc->eeprom_control |= E1000_EECD_GNT;
1689 		} else {
1690                         sc->eeprom_control &= ~E1000_EECD_GNT;
1691 		}
1692 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1693 			e82545_eecd_strobe(sc);
1694 		}
1695 		return;
1696 	}
1697 	case E1000_MDIC:
1698 	{
1699 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1700 						E1000_MDIC_REG_SHIFT);
1701 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1702 						E1000_MDIC_PHY_SHIFT);
1703 		sc->mdi_control =
1704 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1705 		if ((value & E1000_MDIC_READY) != 0) {
1706 			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1707 			return;
1708 		}
1709 		switch (value & E82545_MDIC_OP_MASK) {
1710 		case E1000_MDIC_OP_READ:
1711 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1712 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1713 			break;
1714 		case E1000_MDIC_OP_WRITE:
1715 			e82545_write_mdi(sc, reg_addr, phy_addr,
1716 				value & E82545_MDIC_DATA_MASK);
1717 			break;
1718 		default:
1719 			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1720 			return;
1721 		}
1722 		/* TODO: barrier? */
1723 		sc->mdi_control |= E1000_MDIC_READY;
1724 		if (value & E82545_MDIC_IE) {
1725 			// TODO: generate interrupt
1726 		}
1727 		return;
1728 	}
1729 	case E1000_MANC:
1730 	case E1000_STATUS:
1731 		return;
1732 	default:
1733 		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1734 		return;
1735 	}
1736 }
1737 
1738 static uint32_t
1739 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1740 {
1741 	uint32_t retval;
1742 	int ridx;
1743 
1744 	if (offset & 0x3) {
1745 		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1746 		return 0;
1747 	}
1748 
1749 	DPRINTF("Register read: 0x%x\r\n", offset);
1750 
1751 	switch (offset) {
1752 	case E1000_CTRL:
1753 		retval = sc->esc_CTRL;
1754 		break;
1755 	case E1000_STATUS:
1756 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1757 		    E1000_STATUS_SPEED_1000;
1758 		break;
1759 	case E1000_FCAL:
1760 		retval = sc->esc_FCAL;
1761 		break;
1762 	case E1000_FCAH:
1763 		retval = sc->esc_FCAH;
1764 		break;
1765 	case E1000_FCT:
1766 		retval = sc->esc_FCT;
1767 		break;
1768 	case E1000_VET:
1769 		retval = sc->esc_VET;
1770 		break;
1771 	case E1000_FCTTV:
1772 		retval = sc->esc_FCTTV;
1773 		break;
1774 	case E1000_LEDCTL:
1775 		retval = sc->esc_LEDCTL;
1776 		break;
1777 	case E1000_PBA:
1778 		retval = sc->esc_PBA;
1779 		break;
1780 	case E1000_ICR:
1781 	case E1000_ITR:
1782 	case E1000_ICS:
1783 	case E1000_IMS:
1784 	case E1000_IMC:
1785 		retval = e82545_intr_read(sc, offset);
1786 		break;
1787 	case E1000_RCTL:
1788 		retval = sc->esc_RCTL;
1789 		break;
1790 	case E1000_FCRTL:
1791 		retval = sc->esc_FCRTL;
1792 		break;
1793 	case E1000_FCRTH:
1794 		retval = sc->esc_FCRTH;
1795 		break;
1796 	case E1000_RDBAL(0):
1797 		retval = sc->esc_RDBAL;
1798 		break;
1799 	case E1000_RDBAH(0):
1800 		retval = sc->esc_RDBAH;
1801 		break;
1802 	case E1000_RDLEN(0):
1803 		retval = sc->esc_RDLEN;
1804 		break;
1805 	case E1000_RDH(0):
1806 		retval = sc->esc_RDH;
1807 		break;
1808 	case E1000_RDT(0):
1809 		retval = sc->esc_RDT;
1810 		break;
1811 	case E1000_RDTR:
1812 		retval = sc->esc_RDTR;
1813 		break;
1814 	case E1000_RXDCTL(0):
1815 		retval = sc->esc_RXDCTL;
1816 		break;
1817 	case E1000_RADV:
1818 		retval = sc->esc_RADV;
1819 		break;
1820 	case E1000_RSRPD:
1821 		retval = sc->esc_RSRPD;
1822 		break;
1823 	case E1000_RXCSUM:
1824 		retval = sc->esc_RXCSUM;
1825 		break;
1826 	case E1000_TXCW:
1827 		retval = sc->esc_TXCW;
1828 		break;
1829 	case E1000_TCTL:
1830 		retval = sc->esc_TCTL;
1831 		break;
1832 	case E1000_TIPG:
1833 		retval = sc->esc_TIPG;
1834 		break;
1835 	case E1000_AIT:
1836 		retval = sc->esc_AIT;
1837 		break;
1838 	case E1000_TDBAL(0):
1839 		retval = sc->esc_TDBAL;
1840 		break;
1841 	case E1000_TDBAH(0):
1842 		retval = sc->esc_TDBAH;
1843 		break;
1844 	case E1000_TDLEN(0):
1845 		retval = sc->esc_TDLEN;
1846 		break;
1847 	case E1000_TDH(0):
1848 		retval = sc->esc_TDH;
1849 		break;
1850 	case E1000_TDT(0):
1851 		retval = sc->esc_TDT;
1852 		break;
1853 	case E1000_TIDV:
1854 		retval = sc->esc_TIDV;
1855 		break;
1856 	case E1000_TXDCTL(0):
1857 		retval = sc->esc_TXDCTL;
1858 		break;
1859 	case E1000_TADV:
1860 		retval = sc->esc_TADV;
1861 		break;
1862 	case E1000_RAL(0) ... E1000_RAH(15):
1863 		/* convert to u32 offset */
1864 		ridx = (offset - E1000_RAL(0)) >> 2;
1865 		retval = e82545_read_ra(sc, ridx);
1866 		break;
1867 	case E1000_MTA ... (E1000_MTA + (127*4)):
1868 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1869 		break;
1870 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1871 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1872 		break;
1873 	case E1000_EECD:
1874 		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1875 		retval = sc->eeprom_control;
1876 		break;
1877 	case E1000_MDIC:
1878 		retval = sc->mdi_control;
1879 		break;
1880 	case E1000_MANC:
1881 		retval = 0;
1882 		break;
1883 	/* stats that we emulate. */
1884 	case E1000_MPC:
1885 		retval = sc->missed_pkt_count;
1886 		break;
1887 	case E1000_PRC64:
1888 		retval = sc->pkt_rx_by_size[0];
1889 		break;
1890 	case E1000_PRC127:
1891 		retval = sc->pkt_rx_by_size[1];
1892 		break;
1893 	case E1000_PRC255:
1894 		retval = sc->pkt_rx_by_size[2];
1895 		break;
1896 	case E1000_PRC511:
1897 		retval = sc->pkt_rx_by_size[3];
1898 		break;
1899 	case E1000_PRC1023:
1900 		retval = sc->pkt_rx_by_size[4];
1901 		break;
1902 	case E1000_PRC1522:
1903 		retval = sc->pkt_rx_by_size[5];
1904 		break;
1905 	case E1000_GPRC:
1906 		retval = sc->good_pkt_rx_count;
1907 		break;
1908 	case E1000_BPRC:
1909 		retval = sc->bcast_pkt_rx_count;
1910 		break;
1911 	case E1000_MPRC:
1912 		retval = sc->mcast_pkt_rx_count;
1913 		break;
1914 	case E1000_GPTC:
1915 	case E1000_TPT:
1916 		retval = sc->good_pkt_tx_count;
1917 		break;
1918 	case E1000_GORCL:
1919 		retval = (uint32_t)sc->good_octets_rx;
1920 		break;
1921 	case E1000_GORCH:
1922 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1923 		break;
1924 	case E1000_TOTL:
1925 	case E1000_GOTCL:
1926 		retval = (uint32_t)sc->good_octets_tx;
1927 		break;
1928 	case E1000_TOTH:
1929 	case E1000_GOTCH:
1930 		retval = (uint32_t)(sc->good_octets_tx >> 32);
1931 		break;
1932 	case E1000_ROC:
1933 		retval = sc->oversize_rx_count;
1934 		break;
1935 	case E1000_TORL:
1936 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1937 		break;
1938 	case E1000_TORH:
1939 		retval = (uint32_t)((sc->good_octets_rx +
1940 		    sc->missed_octets) >> 32);
1941 		break;
1942 	case E1000_TPR:
1943 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1944 		    sc->oversize_rx_count;
1945 		break;
1946 	case E1000_PTC64:
1947 		retval = sc->pkt_tx_by_size[0];
1948 		break;
1949 	case E1000_PTC127:
1950 		retval = sc->pkt_tx_by_size[1];
1951 		break;
1952 	case E1000_PTC255:
1953 		retval = sc->pkt_tx_by_size[2];
1954 		break;
1955 	case E1000_PTC511:
1956 		retval = sc->pkt_tx_by_size[3];
1957 		break;
1958 	case E1000_PTC1023:
1959 		retval = sc->pkt_tx_by_size[4];
1960 		break;
1961 	case E1000_PTC1522:
1962 		retval = sc->pkt_tx_by_size[5];
1963 		break;
1964 	case E1000_MPTC:
1965 		retval = sc->mcast_pkt_tx_count;
1966 		break;
1967 	case E1000_BPTC:
1968 		retval = sc->bcast_pkt_tx_count;
1969 		break;
1970 	case E1000_TSCTC:
1971 		retval = sc->tso_tx_count;
1972 		break;
1973 	/* stats that are always 0. */
1974 	case E1000_CRCERRS:
1975 	case E1000_ALGNERRC:
1976 	case E1000_SYMERRS:
1977 	case E1000_RXERRC:
1978 	case E1000_SCC:
1979 	case E1000_ECOL:
1980 	case E1000_MCC:
1981 	case E1000_LATECOL:
1982 	case E1000_COLC:
1983 	case E1000_DC:
1984 	case E1000_TNCRS:
1985 	case E1000_SEC:
1986 	case E1000_CEXTERR:
1987 	case E1000_RLEC:
1988 	case E1000_XONRXC:
1989 	case E1000_XONTXC:
1990 	case E1000_XOFFRXC:
1991 	case E1000_XOFFTXC:
1992 	case E1000_FCRUC:
1993 	case E1000_RNBC:
1994 	case E1000_RUC:
1995 	case E1000_RFC:
1996 	case E1000_RJC:
1997 	case E1000_MGTPRC:
1998 	case E1000_MGTPDC:
1999 	case E1000_MGTPTC:
2000 	case E1000_TSCTFC:
2001 		retval = 0;
2002 		break;
2003 	default:
2004 		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2005 		retval = 0;
2006 		break;
2007 	}
2008 
2009 	return (retval);
2010 }
2011 
2012 static void
2013 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2014 	     uint64_t offset, int size, uint64_t value)
2015 {
2016 	struct e82545_softc *sc;
2017 
2018 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2019 
2020 	sc = pi->pi_arg;
2021 
2022 	pthread_mutex_lock(&sc->esc_mtx);
2023 
2024 	switch (baridx) {
2025 	case E82545_BAR_IO:
2026 		switch (offset) {
2027 		case E82545_IOADDR:
2028 			if (size != 4) {
2029 				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2030 			} else
2031 				sc->io_addr = (uint32_t)value;
2032 			break;
2033 		case E82545_IODATA:
2034 			if (size != 4) {
2035 				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2036 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2037 				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2038 			} else
2039 				e82545_write_register(sc, sc->io_addr,
2040 						      (uint32_t)value);
2041 			break;
2042 		default:
2043 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2044 			break;
2045 		}
2046 		break;
2047 	case E82545_BAR_REGISTER:
2048 		if (size != 4) {
2049 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2050 		} else
2051 			e82545_write_register(sc, (uint32_t)offset,
2052 					      (uint32_t)value);
2053 		break;
2054 	default:
2055 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2056 			baridx, offset, value, size);
2057 	}
2058 
2059 	pthread_mutex_unlock(&sc->esc_mtx);
2060 }
2061 
2062 static uint64_t
2063 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2064 	    uint64_t offset, int size)
2065 {
2066 	struct e82545_softc *sc;
2067 	uint64_t retval;
2068 
2069 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2070 	sc = pi->pi_arg;
2071 	retval = 0;
2072 
2073 	pthread_mutex_lock(&sc->esc_mtx);
2074 
2075 	switch (baridx) {
2076 	case E82545_BAR_IO:
2077 		switch (offset) {
2078 		case E82545_IOADDR:
2079 			if (size != 4) {
2080 				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2081 			} else
2082 				retval = sc->io_addr;
2083 			break;
2084 		case E82545_IODATA:
2085 			if (size != 4) {
2086 				DPRINTF("Wrong io data read sz:%d\r\n", size);
2087 			}
2088 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2089 				DPRINTF("Non-register io read addr:0x%x\r\n",
2090 					sc->io_addr);
2091 			} else
2092 				retval = e82545_read_register(sc, sc->io_addr);
2093 			break;
2094 		default:
2095 			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2096 				offset, size);
2097 			break;
2098 		}
2099 		break;
2100 	case E82545_BAR_REGISTER:
2101 		if (size != 4) {
2102 			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2103 				size, offset);
2104 		} else
2105 			retval = e82545_read_register(sc, (uint32_t)offset);
2106 		break;
2107 	default:
2108 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2109 			baridx, offset, size);
2110 		break;
2111 	}
2112 
2113 	pthread_mutex_unlock(&sc->esc_mtx);
2114 
2115 	return (retval);
2116 }
2117 
2118 static void
2119 e82545_reset(struct e82545_softc *sc, int drvr)
2120 {
2121 	int i;
2122 
2123 	e82545_rx_disable(sc);
2124 	e82545_tx_disable(sc);
2125 
2126 	/* clear outstanding interrupts */
2127 	if (sc->esc_irq_asserted)
2128 		pci_lintr_deassert(sc->esc_pi);
2129 
2130 	/* misc */
2131 	if (!drvr) {
2132 		sc->esc_FCAL = 0;
2133 		sc->esc_FCAH = 0;
2134 		sc->esc_FCT = 0;
2135 		sc->esc_VET = 0;
2136 		sc->esc_FCTTV = 0;
2137 	}
2138 	sc->esc_LEDCTL = 0x07061302;
2139 	sc->esc_PBA = 0x00100030;
2140 
2141 	/* start nvm in opcode mode. */
2142 	sc->nvm_opaddr = 0;
2143 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2144 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2145 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2146 	e82545_init_eeprom(sc);
2147 
2148 	/* interrupt */
2149 	sc->esc_ICR = 0;
2150 	sc->esc_ITR = 250;
2151 	sc->esc_ICS = 0;
2152 	sc->esc_IMS = 0;
2153 	sc->esc_IMC = 0;
2154 
2155 	/* L2 filters */
2156 	if (!drvr) {
2157 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2158 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2159 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2160 
2161 		/* XXX not necessary on 82545 ?? */
2162 		sc->esc_uni[0].eu_valid = 1;
2163 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2164 		    ETHER_ADDR_LEN);
2165 	} else {
2166 		/* Clear RAH valid bits */
2167 		for (i = 0; i < 16; i++)
2168 			sc->esc_uni[i].eu_valid = 0;
2169 	}
2170 
2171 	/* receive */
2172 	if (!drvr) {
2173 		sc->esc_RDBAL = 0;
2174 		sc->esc_RDBAH = 0;
2175 	}
2176 	sc->esc_RCTL = 0;
2177 	sc->esc_FCRTL = 0;
2178 	sc->esc_FCRTH = 0;
2179 	sc->esc_RDLEN = 0;
2180 	sc->esc_RDH = 0;
2181 	sc->esc_RDT = 0;
2182 	sc->esc_RDTR = 0;
2183 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2184 	sc->esc_RADV = 0;
2185 	sc->esc_RXCSUM = 0;
2186 
2187 	/* transmit */
2188 	if (!drvr) {
2189 		sc->esc_TDBAL = 0;
2190 		sc->esc_TDBAH = 0;
2191 		sc->esc_TIPG = 0;
2192 		sc->esc_AIT = 0;
2193 		sc->esc_TIDV = 0;
2194 		sc->esc_TADV = 0;
2195 	}
2196 	sc->esc_tdba = 0;
2197 	sc->esc_txdesc = NULL;
2198 	sc->esc_TXCW = 0;
2199 	sc->esc_TCTL = 0;
2200 	sc->esc_TDLEN = 0;
2201 	sc->esc_TDT = 0;
2202 	sc->esc_TDHr = sc->esc_TDH = 0;
2203 	sc->esc_TXDCTL = 0;
2204 }
2205 
2206 static void
2207 e82545_open_tap(struct e82545_softc *sc, char *opts)
2208 {
2209 	char tbuf[80];
2210 #ifndef WITHOUT_CAPSICUM
2211 	cap_rights_t rights;
2212 #endif
2213 
2214 	if (opts == NULL) {
2215 		sc->esc_tapfd = -1;
2216 		return;
2217 	}
2218 
2219 	strcpy(tbuf, "/dev/");
2220 	strlcat(tbuf, opts, sizeof(tbuf));
2221 
2222 	sc->esc_tapfd = open(tbuf, O_RDWR);
2223 	if (sc->esc_tapfd == -1) {
2224 		DPRINTF("unable to open tap device %s\n", opts);
2225 		exit(1);
2226 	}
2227 
2228 	/*
2229 	 * Set non-blocking and register for read
2230 	 * notifications with the event loop
2231 	 */
2232 	int opt = 1;
2233 	if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
2234 		WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
2235 		close(sc->esc_tapfd);
2236 		sc->esc_tapfd = -1;
2237 	}
2238 
2239 #ifndef WITHOUT_CAPSICUM
2240 	cap_rights_init(&rights, CAP_EVENT, CAP_READ, CAP_WRITE);
2241 	if (cap_rights_limit(sc->esc_tapfd, &rights) == -1 && errno != ENOSYS)
2242 		errx(EX_OSERR, "Unable to apply rights for sandbox");
2243 #endif
2244 
2245 	sc->esc_mevp = mevent_add(sc->esc_tapfd,
2246 				  EVF_READ,
2247 				  e82545_tap_callback,
2248 				  sc);
2249 	if (sc->esc_mevp == NULL) {
2250 		DPRINTF("Could not register mevent %d\n", EVF_READ);
2251 		close(sc->esc_tapfd);
2252 		sc->esc_tapfd = -1;
2253 	}
2254 }
2255 
2256 static int
2257 e82545_parsemac(char *mac_str, uint8_t *mac_addr)
2258 {
2259 	struct ether_addr *ea;
2260 	char *tmpstr;
2261 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2262 
2263 	tmpstr = strsep(&mac_str,"=");
2264 	if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
2265 		ea = ether_aton(mac_str);
2266 		if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
2267 		    memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
2268 			fprintf(stderr, "Invalid MAC %s\n", mac_str);
2269 			return (1);
2270 		} else
2271 			memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
2272 	}
2273 	return (0);
2274 }
2275 
2276 static int
2277 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2278 {
2279 	DPRINTF("Loading with options: %s\r\n", opts);
2280 
2281 	MD5_CTX mdctx;
2282 	unsigned char digest[16];
2283 	char nstr[80];
2284 	struct e82545_softc *sc;
2285 	char *devname;
2286 	char *vtopts;
2287 	int mac_provided;
2288 
2289 	/* Setup our softc */
2290 	sc = calloc(1, sizeof(*sc));
2291 
2292 	pi->pi_arg = sc;
2293 	sc->esc_pi = pi;
2294 	sc->esc_ctx = ctx;
2295 
2296 	pthread_mutex_init(&sc->esc_mtx, NULL);
2297 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2298 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2299 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2300 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2301 	    pi->pi_func);
2302         pthread_set_name_np(sc->esc_tx_tid, nstr);
2303 
2304 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2305 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2306 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2307 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2308 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2309 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2310 
2311 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2312 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2313 
2314 	/* TODO: this card also supports msi, but the freebsd driver for it
2315 	 * does not, so I have not implemented it. */
2316 	pci_lintr_request(pi);
2317 
2318 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2319 		E82545_BAR_REGISTER_LEN);
2320 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2321 		E82545_BAR_FLASH_LEN);
2322 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2323 		E82545_BAR_IO_LEN);
2324 
2325 	/*
2326 	 * Attempt to open the tap device and read the MAC address
2327 	 * if specified.  Copied from virtio-net, slightly modified.
2328 	 */
2329 	mac_provided = 0;
2330 	sc->esc_tapfd = -1;
2331 	if (opts != NULL) {
2332 		int err;
2333 
2334 		devname = vtopts = strdup(opts);
2335 		(void) strsep(&vtopts, ",");
2336 
2337 		if (vtopts != NULL) {
2338 			err = e82545_parsemac(vtopts, sc->esc_mac.octet);
2339 			if (err != 0) {
2340 				free(devname);
2341 				return (err);
2342 			}
2343 			mac_provided = 1;
2344 		}
2345 
2346 		if (strncmp(devname, "tap", 3) == 0 ||
2347 		    strncmp(devname, "vmnet", 5) == 0)
2348 			e82545_open_tap(sc, devname);
2349 
2350 		free(devname);
2351 	}
2352 
2353 	/*
2354 	 * The default MAC address is the standard NetApp OUI of 00-a0-98,
2355 	 * followed by an MD5 of the PCI slot/func number and dev name
2356 	 */
2357 	if (!mac_provided) {
2358 		snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
2359 		    pi->pi_func, vmname);
2360 
2361 		MD5Init(&mdctx);
2362 		MD5Update(&mdctx, nstr, strlen(nstr));
2363 		MD5Final(digest, &mdctx);
2364 
2365 		sc->esc_mac.octet[0] = 0x00;
2366 		sc->esc_mac.octet[1] = 0xa0;
2367 		sc->esc_mac.octet[2] = 0x98;
2368 		sc->esc_mac.octet[3] = digest[0];
2369 		sc->esc_mac.octet[4] = digest[1];
2370 		sc->esc_mac.octet[5] = digest[2];
2371 	}
2372 
2373 	/* H/w initiated reset */
2374 	e82545_reset(sc, 0);
2375 
2376 	return (0);
2377 }
2378 
2379 struct pci_devemu pci_de_e82545 = {
2380 	.pe_emu = 	"e1000",
2381 	.pe_init =	e82545_init,
2382 	.pe_barwrite =	e82545_write,
2383 	.pe_barread =	e82545_read
2384 };
2385 PCI_EMUL_SET(pci_de_e82545);
2386 
2387