xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/linker_set.h>
36 #include <sys/mman.h>
37 
38 #include <ctype.h>
39 #include <err.h>
40 #include <errno.h>
41 #include <pthread.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <strings.h>
46 #include <assert.h>
47 #include <stdbool.h>
48 #include <sysexits.h>
49 
50 #include <machine/vmm.h>
51 #include <machine/vmm_snapshot.h>
52 #include <vmmapi.h>
53 
54 #include "acpi.h"
55 #include "bhyverun.h"
56 #include "config.h"
57 #include "debug.h"
58 #include "inout.h"
59 #include "ioapic.h"
60 #include "mem.h"
61 #include "pci_emul.h"
62 #include "pci_irq.h"
63 #include "pci_lpc.h"
64 
65 #define CONF1_ADDR_PORT	   0x0cf8
66 #define CONF1_DATA_PORT	   0x0cfc
67 
68 #define CONF1_ENABLE	   0x80000000ul
69 
70 #define	MAXBUSES	(PCI_BUSMAX + 1)
71 #define MAXSLOTS	(PCI_SLOTMAX + 1)
72 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
73 
74 #define GB		(1024 * 1024 * 1024UL)
75 
76 struct funcinfo {
77 	nvlist_t *fi_config;
78 	struct pci_devemu *fi_pde;
79 	struct pci_devinst *fi_devi;
80 };
81 
82 struct intxinfo {
83 	int	ii_count;
84 	int	ii_pirq_pin;
85 	int	ii_ioapic_irq;
86 };
87 
88 struct slotinfo {
89 	struct intxinfo si_intpins[4];
90 	struct funcinfo si_funcs[MAXFUNCS];
91 };
92 
93 struct businfo {
94 	uint16_t iobase, iolimit;		/* I/O window */
95 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
96 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
97 	struct slotinfo slotinfo[MAXSLOTS];
98 };
99 
100 static struct businfo *pci_businfo[MAXBUSES];
101 
102 SET_DECLARE(pci_devemu_set, struct pci_devemu);
103 
104 static uint64_t pci_emul_iobase;
105 static uint8_t *pci_emul_rombase;
106 static uint64_t pci_emul_romoffset;
107 static uint8_t *pci_emul_romlim;
108 static uint64_t pci_emul_membase32;
109 static uint64_t pci_emul_membase64;
110 static uint64_t pci_emul_memlim64;
111 
112 struct pci_bar_allocation {
113 	TAILQ_ENTRY(pci_bar_allocation) chain;
114 	struct pci_devinst *pdi;
115 	int idx;
116 	enum pcibar_type type;
117 	uint64_t size;
118 };
119 
120 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
121     TAILQ_HEAD_INITIALIZER(pci_bars);
122 
123 #define	PCI_EMUL_IOBASE		0x2000
124 #define	PCI_EMUL_IOLIMIT	0x10000
125 
126 #define PCI_EMUL_ROMSIZE 0x10000000
127 
128 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
129 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
130 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
131 
132 /*
133  * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
134  * change this address without changing it in OVMF.
135  */
136 #define PCI_EMUL_MEMBASE32 0xC0000000
137 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
138 #define PCI_EMUL_MEMSIZE64	(32*GB)
139 
140 static struct pci_devemu *pci_emul_finddev(const char *name);
141 static void pci_lintr_route(struct pci_devinst *pi);
142 static void pci_lintr_update(struct pci_devinst *pi);
143 static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
144     int func, int coff, int bytes, uint32_t *val);
145 
146 static __inline void
147 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
148 {
149 
150 	if (bytes == 1)
151 		pci_set_cfgdata8(pi, coff, val);
152 	else if (bytes == 2)
153 		pci_set_cfgdata16(pi, coff, val);
154 	else
155 		pci_set_cfgdata32(pi, coff, val);
156 }
157 
158 static __inline uint32_t
159 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
160 {
161 
162 	if (bytes == 1)
163 		return (pci_get_cfgdata8(pi, coff));
164 	else if (bytes == 2)
165 		return (pci_get_cfgdata16(pi, coff));
166 	else
167 		return (pci_get_cfgdata32(pi, coff));
168 }
169 
170 static int
171 is_pcir_bar(int coff)
172 {
173 	return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
174 }
175 
176 static int
177 is_pcir_bios(int coff)
178 {
179 	return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
180 }
181 
182 /*
183  * I/O access
184  */
185 
186 /*
187  * Slot options are in the form:
188  *
189  *  <bus>:<slot>:<func>,<emul>[,<config>]
190  *  <slot>[:<func>],<emul>[,<config>]
191  *
192  *  slot is 0..31
193  *  func is 0..7
194  *  emul is a string describing the type of PCI device e.g. virtio-net
195  *  config is an optional string, depending on the device, that can be
196  *  used for configuration.
197  *   Examples are:
198  *     1,virtio-net,tap0
199  *     3:0,dummy
200  */
201 static void
202 pci_parse_slot_usage(char *aopt)
203 {
204 
205 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
206 }
207 
208 /*
209  * Helper function to parse a list of comma-separated options where
210  * each option is formatted as "name[=value]".  If no value is
211  * provided, the option is treated as a boolean and is given a value
212  * of true.
213  */
214 int
215 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
216 {
217 	char *config, *name, *tofree, *value;
218 
219 	if (opt == NULL)
220 		return (0);
221 
222 	config = tofree = strdup(opt);
223 	while ((name = strsep(&config, ",")) != NULL) {
224 		value = strchr(name, '=');
225 		if (value != NULL) {
226 			*value = '\0';
227 			value++;
228 			set_config_value_node(nvl, name, value);
229 		} else
230 			set_config_bool_node(nvl, name, true);
231 	}
232 	free(tofree);
233 	return (0);
234 }
235 
236 /*
237  * PCI device configuration is stored in MIBs that encode the device's
238  * location:
239  *
240  * pci.<bus>.<slot>.<func>
241  *
242  * Where "bus", "slot", and "func" are all decimal values without
243  * leading zeroes.  Each valid device must have a "device" node which
244  * identifies the driver model of the device.
245  *
246  * Device backends can provide a parser for the "config" string.  If
247  * a custom parser is not provided, pci_parse_legacy_config() is used
248  * to parse the string.
249  */
250 int
251 pci_parse_slot(char *opt)
252 {
253 	char node_name[sizeof("pci.XXX.XX.X")];
254 	struct pci_devemu *pde;
255 	char *emul, *config, *str, *cp;
256 	int error, bnum, snum, fnum;
257 	nvlist_t *nvl;
258 
259 	error = -1;
260 	str = strdup(opt);
261 
262 	emul = config = NULL;
263 	if ((cp = strchr(str, ',')) != NULL) {
264 		*cp = '\0';
265 		emul = cp + 1;
266 		if ((cp = strchr(emul, ',')) != NULL) {
267 			*cp = '\0';
268 			config = cp + 1;
269 		}
270 	} else {
271 		pci_parse_slot_usage(opt);
272 		goto done;
273 	}
274 
275 	/* <bus>:<slot>:<func> */
276 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
277 		bnum = 0;
278 		/* <slot>:<func> */
279 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
280 			fnum = 0;
281 			/* <slot> */
282 			if (sscanf(str, "%d", &snum) != 1) {
283 				snum = -1;
284 			}
285 		}
286 	}
287 
288 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
289 	    fnum < 0 || fnum >= MAXFUNCS) {
290 		pci_parse_slot_usage(opt);
291 		goto done;
292 	}
293 
294 	pde = pci_emul_finddev(emul);
295 	if (pde == NULL) {
296 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
297 		    fnum, emul);
298 		goto done;
299 	}
300 
301 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
302 	    fnum);
303 	nvl = find_config_node(node_name);
304 	if (nvl != NULL) {
305 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
306 		    fnum);
307 		goto done;
308 	}
309 	nvl = create_config_node(node_name);
310 	if (pde->pe_alias != NULL)
311 		set_config_value_node(nvl, "device", pde->pe_alias);
312 	else
313 		set_config_value_node(nvl, "device", pde->pe_emu);
314 
315 	if (pde->pe_legacy_config != NULL)
316 		error = pde->pe_legacy_config(nvl, config);
317 	else
318 		error = pci_parse_legacy_config(nvl, config);
319 done:
320 	free(str);
321 	return (error);
322 }
323 
324 void
325 pci_print_supported_devices(void)
326 {
327 	struct pci_devemu **pdpp, *pdp;
328 
329 	SET_FOREACH(pdpp, pci_devemu_set) {
330 		pdp = *pdpp;
331 		printf("%s\n", pdp->pe_emu);
332 	}
333 }
334 
335 static int
336 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
337 {
338 
339 	if (offset < pi->pi_msix.pba_offset)
340 		return (0);
341 
342 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
343 		return (0);
344 	}
345 
346 	return (1);
347 }
348 
349 int
350 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
351 		     uint64_t value)
352 {
353 	int msix_entry_offset;
354 	int tab_index;
355 	char *dest;
356 
357 	/* support only 4 or 8 byte writes */
358 	if (size != 4 && size != 8)
359 		return (-1);
360 
361 	/*
362 	 * Return if table index is beyond what device supports
363 	 */
364 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
365 	if (tab_index >= pi->pi_msix.table_count)
366 		return (-1);
367 
368 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
369 
370 	/* support only aligned writes */
371 	if ((msix_entry_offset % size) != 0)
372 		return (-1);
373 
374 	dest = (char *)(pi->pi_msix.table + tab_index);
375 	dest += msix_entry_offset;
376 
377 	if (size == 4)
378 		*((uint32_t *)dest) = value;
379 	else
380 		*((uint64_t *)dest) = value;
381 
382 	return (0);
383 }
384 
385 uint64_t
386 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
387 {
388 	char *dest;
389 	int msix_entry_offset;
390 	int tab_index;
391 	uint64_t retval = ~0;
392 
393 	/*
394 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
395 	 * table but we also allow 1 byte access to accommodate reads from
396 	 * ddb.
397 	 */
398 	if (size != 1 && size != 4 && size != 8)
399 		return (retval);
400 
401 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
402 
403 	/* support only aligned reads */
404 	if ((msix_entry_offset % size) != 0) {
405 		return (retval);
406 	}
407 
408 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
409 
410 	if (tab_index < pi->pi_msix.table_count) {
411 		/* valid MSI-X Table access */
412 		dest = (char *)(pi->pi_msix.table + tab_index);
413 		dest += msix_entry_offset;
414 
415 		if (size == 1)
416 			retval = *((uint8_t *)dest);
417 		else if (size == 4)
418 			retval = *((uint32_t *)dest);
419 		else
420 			retval = *((uint64_t *)dest);
421 	} else if (pci_valid_pba_offset(pi, offset)) {
422 		/* return 0 for PBA access */
423 		retval = 0;
424 	}
425 
426 	return (retval);
427 }
428 
429 int
430 pci_msix_table_bar(struct pci_devinst *pi)
431 {
432 
433 	if (pi->pi_msix.table != NULL)
434 		return (pi->pi_msix.table_bar);
435 	else
436 		return (-1);
437 }
438 
439 int
440 pci_msix_pba_bar(struct pci_devinst *pi)
441 {
442 
443 	if (pi->pi_msix.table != NULL)
444 		return (pi->pi_msix.pba_bar);
445 	else
446 		return (-1);
447 }
448 
449 static int
450 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
451 		    uint32_t *eax, void *arg)
452 {
453 	struct pci_devinst *pdi = arg;
454 	struct pci_devemu *pe = pdi->pi_d;
455 	uint64_t offset;
456 	int i;
457 
458 	for (i = 0; i <= PCI_BARMAX; i++) {
459 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
460 		    port >= pdi->pi_bar[i].addr &&
461 		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
462 			offset = port - pdi->pi_bar[i].addr;
463 			if (in)
464 				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
465 							 offset, bytes);
466 			else
467 				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
468 						   bytes, *eax);
469 			return (0);
470 		}
471 	}
472 	return (-1);
473 }
474 
475 static int
476 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
477 		     int size, uint64_t *val, void *arg1, long arg2)
478 {
479 	struct pci_devinst *pdi = arg1;
480 	struct pci_devemu *pe = pdi->pi_d;
481 	uint64_t offset;
482 	int bidx = (int) arg2;
483 
484 	assert(bidx <= PCI_BARMAX);
485 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
486 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
487 	assert(addr >= pdi->pi_bar[bidx].addr &&
488 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
489 
490 	offset = addr - pdi->pi_bar[bidx].addr;
491 
492 	if (dir == MEM_F_WRITE) {
493 		if (size == 8) {
494 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
495 					   4, *val & 0xffffffff);
496 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
497 					   4, *val >> 32);
498 		} else {
499 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
500 					   size, *val);
501 		}
502 	} else {
503 		if (size == 8) {
504 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
505 						 offset, 4);
506 			*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
507 						  offset + 4, 4) << 32;
508 		} else {
509 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
510 						 offset, size);
511 		}
512 	}
513 
514 	return (0);
515 }
516 
517 
518 static int
519 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
520 			uint64_t *addr)
521 {
522 	uint64_t base;
523 
524 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
525 
526 	base = roundup2(*baseptr, size);
527 
528 	if (base + size <= limit) {
529 		*addr = base;
530 		*baseptr = base + size;
531 		return (0);
532 	} else
533 		return (-1);
534 }
535 
536 /*
537  * Register (or unregister) the MMIO or I/O region associated with the BAR
538  * register 'idx' of an emulated pci device.
539  */
540 static void
541 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
542 {
543 	struct pci_devemu *pe;
544 	int error;
545 	struct inout_port iop;
546 	struct mem_range mr;
547 
548 	pe = pi->pi_d;
549 	switch (pi->pi_bar[idx].type) {
550 	case PCIBAR_IO:
551 		bzero(&iop, sizeof(struct inout_port));
552 		iop.name = pi->pi_name;
553 		iop.port = pi->pi_bar[idx].addr;
554 		iop.size = pi->pi_bar[idx].size;
555 		if (registration) {
556 			iop.flags = IOPORT_F_INOUT;
557 			iop.handler = pci_emul_io_handler;
558 			iop.arg = pi;
559 			error = register_inout(&iop);
560 		} else
561 			error = unregister_inout(&iop);
562 		if (pe->pe_baraddr != NULL)
563 			(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
564 					  pi->pi_bar[idx].addr);
565 		break;
566 	case PCIBAR_MEM32:
567 	case PCIBAR_MEM64:
568 		bzero(&mr, sizeof(struct mem_range));
569 		mr.name = pi->pi_name;
570 		mr.base = pi->pi_bar[idx].addr;
571 		mr.size = pi->pi_bar[idx].size;
572 		if (registration) {
573 			mr.flags = MEM_F_RW;
574 			mr.handler = pci_emul_mem_handler;
575 			mr.arg1 = pi;
576 			mr.arg2 = idx;
577 			error = register_mem(&mr);
578 		} else
579 			error = unregister_mem(&mr);
580 		if (pe->pe_baraddr != NULL)
581 			(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
582 					  pi->pi_bar[idx].addr);
583 		break;
584 	case PCIBAR_ROM:
585 		error = 0;
586 		if (pe->pe_baraddr != NULL)
587 			(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
588 			    pi->pi_bar[idx].addr);
589 		break;
590 	default:
591 		error = EINVAL;
592 		break;
593 	}
594 	assert(error == 0);
595 }
596 
597 static void
598 unregister_bar(struct pci_devinst *pi, int idx)
599 {
600 
601 	modify_bar_registration(pi, idx, 0);
602 }
603 
604 static void
605 register_bar(struct pci_devinst *pi, int idx)
606 {
607 
608 	modify_bar_registration(pi, idx, 1);
609 }
610 
611 /* Is the ROM enabled for the emulated pci device? */
612 static int
613 romen(struct pci_devinst *pi)
614 {
615 	return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
616 	    PCIM_BIOS_ENABLE;
617 }
618 
619 /* Are we decoding i/o port accesses for the emulated pci device? */
620 static int
621 porten(struct pci_devinst *pi)
622 {
623 	uint16_t cmd;
624 
625 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
626 
627 	return (cmd & PCIM_CMD_PORTEN);
628 }
629 
630 /* Are we decoding memory accesses for the emulated pci device? */
631 static int
632 memen(struct pci_devinst *pi)
633 {
634 	uint16_t cmd;
635 
636 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
637 
638 	return (cmd & PCIM_CMD_MEMEN);
639 }
640 
641 /*
642  * Update the MMIO or I/O address that is decoded by the BAR register.
643  *
644  * If the pci device has enabled the address space decoding then intercept
645  * the address range decoded by the BAR register.
646  */
647 static void
648 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
649 {
650 	int decode;
651 
652 	if (pi->pi_bar[idx].type == PCIBAR_IO)
653 		decode = porten(pi);
654 	else
655 		decode = memen(pi);
656 
657 	if (decode)
658 		unregister_bar(pi, idx);
659 
660 	switch (type) {
661 	case PCIBAR_IO:
662 	case PCIBAR_MEM32:
663 		pi->pi_bar[idx].addr = addr;
664 		break;
665 	case PCIBAR_MEM64:
666 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
667 		pi->pi_bar[idx].addr |= addr;
668 		break;
669 	case PCIBAR_MEMHI64:
670 		pi->pi_bar[idx].addr &= 0xffffffff;
671 		pi->pi_bar[idx].addr |= addr;
672 		break;
673 	default:
674 		assert(0);
675 	}
676 
677 	if (decode)
678 		register_bar(pi, idx);
679 }
680 
681 int
682 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
683     uint64_t size)
684 {
685 	assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
686 	assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
687 
688 	if ((size & (size - 1)) != 0)
689 		size = 1UL << flsl(size);	/* round up to a power of 2 */
690 
691 	/* Enforce minimum BAR sizes required by the PCI standard */
692 	if (type == PCIBAR_IO) {
693 		if (size < 4)
694 			size = 4;
695 	} else if (type == PCIBAR_ROM) {
696 		if (size < ~PCIM_BIOS_ADDR_MASK + 1)
697 			size = ~PCIM_BIOS_ADDR_MASK + 1;
698 	} else {
699 		if (size < 16)
700 			size = 16;
701 	}
702 
703 	/*
704 	 * To reduce fragmentation of the MMIO space, we allocate the BARs by
705 	 * size. Therefore, don't allocate the BAR yet. We create a list of all
706 	 * BAR allocation which is sorted by BAR size. When all PCI devices are
707 	 * initialized, we will assign an address to the BARs.
708 	 */
709 
710 	/* create a new list entry */
711 	struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
712 	memset(new_bar, 0, sizeof(*new_bar));
713 	new_bar->pdi = pdi;
714 	new_bar->idx = idx;
715 	new_bar->type = type;
716 	new_bar->size = size;
717 
718 	/*
719 	 * Search for a BAR which size is lower than the size of our newly
720 	 * allocated BAR.
721 	 */
722 	struct pci_bar_allocation *bar = NULL;
723 	TAILQ_FOREACH(bar, &pci_bars, chain) {
724 		if (bar->size < size) {
725 			break;
726 		}
727 	}
728 
729 	if (bar == NULL) {
730 		/*
731 		 * Either the list is empty or new BAR is the smallest BAR of
732 		 * the list. Append it to the end of our list.
733 		 */
734 		TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
735 	} else {
736 		/*
737 		 * The found BAR is smaller than our new BAR. For that reason,
738 		 * insert our new BAR before the found BAR.
739 		 */
740 		TAILQ_INSERT_BEFORE(bar, new_bar, chain);
741 	}
742 
743 	/*
744 	 * pci_passthru devices synchronize their physical and virtual command
745 	 * register on init. For that reason, the virtual cmd reg should be
746 	 * updated as early as possible.
747 	 */
748 	uint16_t enbit = 0;
749 	switch (type) {
750 	case PCIBAR_IO:
751 		enbit = PCIM_CMD_PORTEN;
752 		break;
753 	case PCIBAR_MEM64:
754 	case PCIBAR_MEM32:
755 		enbit = PCIM_CMD_MEMEN;
756 		break;
757 	default:
758 		enbit = 0;
759 		break;
760 	}
761 
762 	const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
763 	pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
764 
765 	return (0);
766 }
767 
768 static int
769 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
770     const enum pcibar_type type, const uint64_t size)
771 {
772 	int error;
773 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
774 
775 	switch (type) {
776 	case PCIBAR_NONE:
777 		baseptr = NULL;
778 		addr = mask = lobits = 0;
779 		break;
780 	case PCIBAR_IO:
781 		baseptr = &pci_emul_iobase;
782 		limit = PCI_EMUL_IOLIMIT;
783 		mask = PCIM_BAR_IO_BASE;
784 		lobits = PCIM_BAR_IO_SPACE;
785 		break;
786 	case PCIBAR_MEM64:
787 		/*
788 		 * XXX
789 		 * Some drivers do not work well if the 64-bit BAR is allocated
790 		 * above 4GB. Allow for this by allocating small requests under
791 		 * 4GB unless then allocation size is larger than some arbitrary
792 		 * number (128MB currently).
793 		 */
794 		if (size > 128 * 1024 * 1024) {
795 			baseptr = &pci_emul_membase64;
796 			limit = pci_emul_memlim64;
797 			mask = PCIM_BAR_MEM_BASE;
798 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
799 				 PCIM_BAR_MEM_PREFETCH;
800 		} else {
801 			baseptr = &pci_emul_membase32;
802 			limit = PCI_EMUL_MEMLIMIT32;
803 			mask = PCIM_BAR_MEM_BASE;
804 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
805 		}
806 		break;
807 	case PCIBAR_MEM32:
808 		baseptr = &pci_emul_membase32;
809 		limit = PCI_EMUL_MEMLIMIT32;
810 		mask = PCIM_BAR_MEM_BASE;
811 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
812 		break;
813 	case PCIBAR_ROM:
814 		/* do not claim memory for ROM. OVMF will do it for us. */
815 		baseptr = NULL;
816 		limit = 0;
817 		mask = PCIM_BIOS_ADDR_MASK;
818 		lobits = 0;
819 		break;
820 	default:
821 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
822 		assert(0);
823 	}
824 
825 	if (baseptr != NULL) {
826 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
827 		if (error != 0)
828 			return (error);
829 	} else {
830 		addr = 0;
831 	}
832 
833 	pdi->pi_bar[idx].type = type;
834 	pdi->pi_bar[idx].addr = addr;
835 	pdi->pi_bar[idx].size = size;
836 	/*
837 	 * passthru devices are using same lobits as physical device they set
838 	 * this property
839 	 */
840 	if (pdi->pi_bar[idx].lobits != 0) {
841 		lobits = pdi->pi_bar[idx].lobits;
842 	} else {
843 		pdi->pi_bar[idx].lobits = lobits;
844 	}
845 
846 	/* Initialize the BAR register in config space */
847 	bar = (addr & mask) | lobits;
848 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
849 
850 	if (type == PCIBAR_MEM64) {
851 		assert(idx + 1 <= PCI_BARMAX);
852 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
853 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
854 	}
855 
856 	if (type != PCIBAR_ROM) {
857 		register_bar(pdi, idx);
858 	}
859 
860 	return (0);
861 }
862 
863 int
864 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
865     void **const addr)
866 {
867 	/* allocate ROM space once on first call */
868 	if (pci_emul_rombase == 0) {
869 		pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
870 		    "pcirom", PCI_EMUL_ROMSIZE);
871 		if (pci_emul_rombase == MAP_FAILED) {
872 			warnx("%s: failed to create rom segment", __func__);
873 			return (-1);
874 		}
875 		pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
876 		pci_emul_romoffset = 0;
877 	}
878 
879 	/* ROM size should be a power of 2 and greater than 2 KB */
880 	const uint64_t rom_size = MAX(1UL << flsl(size),
881 	    ~PCIM_BIOS_ADDR_MASK + 1);
882 
883 	/* check if ROM fits into ROM space */
884 	if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
885 		warnx("%s: no space left in rom segment:", __func__);
886 		warnx("%16lu bytes left",
887 		    PCI_EMUL_ROMSIZE - pci_emul_romoffset);
888 		warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
889 		    pdi->pi_slot, pdi->pi_func);
890 		return (-1);
891 	}
892 
893 	/* allocate ROM BAR */
894 	const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
895 	    rom_size);
896 	if (error)
897 		return error;
898 
899 	/* return address */
900 	*addr = pci_emul_rombase + pci_emul_romoffset;
901 
902 	/* save offset into ROM Space */
903 	pdi->pi_romoffset = pci_emul_romoffset;
904 
905 	/* increase offset for next ROM */
906 	pci_emul_romoffset += rom_size;
907 
908 	return (0);
909 }
910 
911 #define	CAP_START_OFFSET	0x40
912 static int
913 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
914 {
915 	int i, capoff, reallen;
916 	uint16_t sts;
917 
918 	assert(caplen > 0);
919 
920 	reallen = roundup2(caplen, 4);		/* dword aligned */
921 
922 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
923 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
924 		capoff = CAP_START_OFFSET;
925 	else
926 		capoff = pi->pi_capend + 1;
927 
928 	/* Check if we have enough space */
929 	if (capoff + reallen > PCI_REGMAX + 1)
930 		return (-1);
931 
932 	/* Set the previous capability pointer */
933 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
934 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
935 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
936 	} else
937 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
938 
939 	/* Copy the capability */
940 	for (i = 0; i < caplen; i++)
941 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
942 
943 	/* Set the next capability pointer */
944 	pci_set_cfgdata8(pi, capoff + 1, 0);
945 
946 	pi->pi_prevcap = capoff;
947 	pi->pi_capend = capoff + reallen - 1;
948 	return (0);
949 }
950 
951 static struct pci_devemu *
952 pci_emul_finddev(const char *name)
953 {
954 	struct pci_devemu **pdpp, *pdp;
955 
956 	SET_FOREACH(pdpp, pci_devemu_set) {
957 		pdp = *pdpp;
958 		if (!strcmp(pdp->pe_emu, name)) {
959 			return (pdp);
960 		}
961 	}
962 
963 	return (NULL);
964 }
965 
966 static int
967 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
968     int func, struct funcinfo *fi)
969 {
970 	struct pci_devinst *pdi;
971 	int err;
972 
973 	pdi = calloc(1, sizeof(struct pci_devinst));
974 
975 	pdi->pi_vmctx = ctx;
976 	pdi->pi_bus = bus;
977 	pdi->pi_slot = slot;
978 	pdi->pi_func = func;
979 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
980 	pdi->pi_lintr.pin = 0;
981 	pdi->pi_lintr.state = IDLE;
982 	pdi->pi_lintr.pirq_pin = 0;
983 	pdi->pi_lintr.ioapic_irq = 0;
984 	pdi->pi_d = pde;
985 	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
986 
987 	/* Disable legacy interrupts */
988 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
989 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
990 
991 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
992 
993 	err = (*pde->pe_init)(ctx, pdi, fi->fi_config);
994 	if (err == 0)
995 		fi->fi_devi = pdi;
996 	else
997 		free(pdi);
998 
999 	return (err);
1000 }
1001 
1002 void
1003 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1004 {
1005 	int mmc;
1006 
1007 	/* Number of msi messages must be a power of 2 between 1 and 32 */
1008 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1009 	mmc = ffs(msgnum) - 1;
1010 
1011 	bzero(msicap, sizeof(struct msicap));
1012 	msicap->capid = PCIY_MSI;
1013 	msicap->nextptr = nextptr;
1014 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1015 }
1016 
1017 int
1018 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1019 {
1020 	struct msicap msicap;
1021 
1022 	pci_populate_msicap(&msicap, msgnum, 0);
1023 
1024 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1025 }
1026 
1027 static void
1028 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1029 		     uint32_t msix_tab_size)
1030 {
1031 
1032 	assert(msix_tab_size % 4096 == 0);
1033 
1034 	bzero(msixcap, sizeof(struct msixcap));
1035 	msixcap->capid = PCIY_MSIX;
1036 
1037 	/*
1038 	 * Message Control Register, all fields set to
1039 	 * zero except for the Table Size.
1040 	 * Note: Table size N is encoded as N-1
1041 	 */
1042 	msixcap->msgctrl = msgnum - 1;
1043 
1044 	/*
1045 	 * MSI-X BAR setup:
1046 	 * - MSI-X table start at offset 0
1047 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
1048 	 */
1049 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1050 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1051 }
1052 
1053 static void
1054 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1055 {
1056 	int i, table_size;
1057 
1058 	assert(table_entries > 0);
1059 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1060 
1061 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1062 	pi->pi_msix.table = calloc(1, table_size);
1063 
1064 	/* set mask bit of vector control register */
1065 	for (i = 0; i < table_entries; i++)
1066 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1067 }
1068 
1069 int
1070 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1071 {
1072 	uint32_t tab_size;
1073 	struct msixcap msixcap;
1074 
1075 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1076 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1077 
1078 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1079 
1080 	/* Align table size to nearest 4K */
1081 	tab_size = roundup2(tab_size, 4096);
1082 
1083 	pi->pi_msix.table_bar = barnum;
1084 	pi->pi_msix.pba_bar   = barnum;
1085 	pi->pi_msix.table_offset = 0;
1086 	pi->pi_msix.table_count = msgnum;
1087 	pi->pi_msix.pba_offset = tab_size;
1088 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1089 
1090 	pci_msix_table_init(pi, msgnum);
1091 
1092 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1093 
1094 	/* allocate memory for MSI-X Table and PBA */
1095 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1096 				tab_size + pi->pi_msix.pba_size);
1097 
1098 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1099 					sizeof(msixcap)));
1100 }
1101 
1102 static void
1103 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1104 		 int bytes, uint32_t val)
1105 {
1106 	uint16_t msgctrl, rwmask;
1107 	int off;
1108 
1109 	off = offset - capoff;
1110 	/* Message Control Register */
1111 	if (off == 2 && bytes == 2) {
1112 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1113 		msgctrl = pci_get_cfgdata16(pi, offset);
1114 		msgctrl &= ~rwmask;
1115 		msgctrl |= val & rwmask;
1116 		val = msgctrl;
1117 
1118 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1119 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1120 		pci_lintr_update(pi);
1121 	}
1122 
1123 	CFGWRITE(pi, offset, val, bytes);
1124 }
1125 
1126 static void
1127 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1128 		int bytes, uint32_t val)
1129 {
1130 	uint16_t msgctrl, rwmask, msgdata, mme;
1131 	uint32_t addrlo;
1132 
1133 	/*
1134 	 * If guest is writing to the message control register make sure
1135 	 * we do not overwrite read-only fields.
1136 	 */
1137 	if ((offset - capoff) == 2 && bytes == 2) {
1138 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1139 		msgctrl = pci_get_cfgdata16(pi, offset);
1140 		msgctrl &= ~rwmask;
1141 		msgctrl |= val & rwmask;
1142 		val = msgctrl;
1143 	}
1144 	CFGWRITE(pi, offset, val, bytes);
1145 
1146 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1147 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
1148 	if (msgctrl & PCIM_MSICTRL_64BIT)
1149 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
1150 	else
1151 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
1152 
1153 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1154 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1155 	if (pi->pi_msi.enabled) {
1156 		pi->pi_msi.addr = addrlo;
1157 		pi->pi_msi.msg_data = msgdata;
1158 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1159 	} else {
1160 		pi->pi_msi.maxmsgnum = 0;
1161 	}
1162 	pci_lintr_update(pi);
1163 }
1164 
1165 static void
1166 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1167     int bytes, uint32_t val)
1168 {
1169 
1170 	/* XXX don't write to the readonly parts */
1171 	CFGWRITE(pi, offset, val, bytes);
1172 }
1173 
1174 #define	PCIECAP_VERSION	0x2
1175 int
1176 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1177 {
1178 	int err;
1179 	struct pciecap pciecap;
1180 
1181 	bzero(&pciecap, sizeof(pciecap));
1182 
1183 	/*
1184 	 * Use the integrated endpoint type for endpoints on a root complex bus.
1185 	 *
1186 	 * NB: bhyve currently only supports a single PCI bus that is the root
1187 	 * complex bus, so all endpoints are integrated.
1188 	 */
1189 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1190 		type = PCIEM_TYPE_ROOT_INT_EP;
1191 
1192 	pciecap.capid = PCIY_EXPRESS;
1193 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1194 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
1195 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
1196 		pciecap.link_status = 0x11;		/* gen1, x1 */
1197 	}
1198 
1199 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1200 	return (err);
1201 }
1202 
1203 /*
1204  * This function assumes that 'coff' is in the capabilities region of the
1205  * config space. A capoff parameter of zero will force a search for the
1206  * offset and type.
1207  */
1208 void
1209 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1210     uint8_t capoff, int capid)
1211 {
1212 	uint8_t nextoff;
1213 
1214 	/* Do not allow un-aligned writes */
1215 	if ((offset & (bytes - 1)) != 0)
1216 		return;
1217 
1218 	if (capoff == 0) {
1219 		/* Find the capability that we want to update */
1220 		capoff = CAP_START_OFFSET;
1221 		while (1) {
1222 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
1223 			if (nextoff == 0)
1224 				break;
1225 			if (offset >= capoff && offset < nextoff)
1226 				break;
1227 
1228 			capoff = nextoff;
1229 		}
1230 		assert(offset >= capoff);
1231 		capid = pci_get_cfgdata8(pi, capoff);
1232 	}
1233 
1234 	/*
1235 	 * Capability ID and Next Capability Pointer are readonly.
1236 	 * However, some o/s's do 4-byte writes that include these.
1237 	 * For this case, trim the write back to 2 bytes and adjust
1238 	 * the data.
1239 	 */
1240 	if (offset == capoff || offset == capoff + 1) {
1241 		if (offset == capoff && bytes == 4) {
1242 			bytes = 2;
1243 			offset += 2;
1244 			val >>= 16;
1245 		} else
1246 			return;
1247 	}
1248 
1249 	switch (capid) {
1250 	case PCIY_MSI:
1251 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1252 		break;
1253 	case PCIY_MSIX:
1254 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1255 		break;
1256 	case PCIY_EXPRESS:
1257 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1258 		break;
1259 	default:
1260 		break;
1261 	}
1262 }
1263 
1264 static int
1265 pci_emul_iscap(struct pci_devinst *pi, int offset)
1266 {
1267 	uint16_t sts;
1268 
1269 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1270 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1271 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1272 			return (1);
1273 	}
1274 	return (0);
1275 }
1276 
1277 static int
1278 pci_emul_fallback_handler(struct vmctx *ctx __unused, int vcpu __unused,
1279     int dir, uint64_t addr __unused, int size __unused, uint64_t *val,
1280     void *arg1 __unused, long arg2 __unused)
1281 {
1282 	/*
1283 	 * Ignore writes; return 0xff's for reads. The mem read code
1284 	 * will take care of truncating to the correct size.
1285 	 */
1286 	if (dir == MEM_F_READ) {
1287 		*val = 0xffffffffffffffff;
1288 	}
1289 
1290 	return (0);
1291 }
1292 
1293 static int
1294 pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1295     int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
1296 {
1297 	int bus, slot, func, coff, in;
1298 
1299 	coff = addr & 0xfff;
1300 	func = (addr >> 12) & 0x7;
1301 	slot = (addr >> 15) & 0x1f;
1302 	bus = (addr >> 20) & 0xff;
1303 	in = (dir == MEM_F_READ);
1304 	if (in)
1305 		*val = ~0UL;
1306 	pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
1307 	return (0);
1308 }
1309 
1310 uint64_t
1311 pci_ecfg_base(void)
1312 {
1313 
1314 	return (PCI_EMUL_ECFG_BASE);
1315 }
1316 
1317 #define	BUSIO_ROUNDUP		32
1318 #define	BUSMEM32_ROUNDUP	(1024 * 1024)
1319 #define	BUSMEM64_ROUNDUP	(512 * 1024 * 1024)
1320 
1321 int
1322 init_pci(struct vmctx *ctx)
1323 {
1324 	char node_name[sizeof("pci.XXX.XX.X")];
1325 	struct mem_range mr;
1326 	struct pci_devemu *pde;
1327 	struct businfo *bi;
1328 	struct slotinfo *si;
1329 	struct funcinfo *fi;
1330 	nvlist_t *nvl;
1331 	const char *emul;
1332 	size_t lowmem;
1333 	int bus, slot, func;
1334 	int error;
1335 
1336 	if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1337 		errx(EX_OSERR, "Invalid lowmem limit");
1338 
1339 	pci_emul_iobase = PCI_EMUL_IOBASE;
1340 	pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1341 
1342 	pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
1343 	pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1344 	pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1345 
1346 	for (bus = 0; bus < MAXBUSES; bus++) {
1347 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1348 		nvl = find_config_node(node_name);
1349 		if (nvl == NULL)
1350 			continue;
1351 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1352 		bi = pci_businfo[bus];
1353 
1354 		/*
1355 		 * Keep track of the i/o and memory resources allocated to
1356 		 * this bus.
1357 		 */
1358 		bi->iobase = pci_emul_iobase;
1359 		bi->membase32 = pci_emul_membase32;
1360 		bi->membase64 = pci_emul_membase64;
1361 
1362 		/* first run: init devices */
1363 		for (slot = 0; slot < MAXSLOTS; slot++) {
1364 			si = &bi->slotinfo[slot];
1365 			for (func = 0; func < MAXFUNCS; func++) {
1366 				fi = &si->si_funcs[func];
1367 				snprintf(node_name, sizeof(node_name),
1368 				    "pci.%d.%d.%d", bus, slot, func);
1369 				nvl = find_config_node(node_name);
1370 				if (nvl == NULL)
1371 					continue;
1372 
1373 				fi->fi_config = nvl;
1374 				emul = get_config_value_node(nvl, "device");
1375 				if (emul == NULL) {
1376 					EPRINTLN("pci slot %d:%d:%d: missing "
1377 					    "\"device\" value", bus, slot, func);
1378 					return (EINVAL);
1379 				}
1380 				pde = pci_emul_finddev(emul);
1381 				if (pde == NULL) {
1382 					EPRINTLN("pci slot %d:%d:%d: unknown "
1383 					    "device \"%s\"", bus, slot, func,
1384 					    emul);
1385 					return (EINVAL);
1386 				}
1387 				if (pde->pe_alias != NULL) {
1388 					EPRINTLN("pci slot %d:%d:%d: legacy "
1389 					    "device \"%s\", use \"%s\" instead",
1390 					    bus, slot, func, emul,
1391 					    pde->pe_alias);
1392 					return (EINVAL);
1393 				}
1394 				fi->fi_pde = pde;
1395 				error = pci_emul_init(ctx, pde, bus, slot,
1396 				    func, fi);
1397 				if (error)
1398 					return (error);
1399 			}
1400 		}
1401 
1402 		/* second run: assign BARs and free list */
1403 		struct pci_bar_allocation *bar;
1404 		struct pci_bar_allocation *bar_tmp;
1405 		TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1406 			pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1407 			    bar->size);
1408 			free(bar);
1409 		}
1410 		TAILQ_INIT(&pci_bars);
1411 
1412 		/*
1413 		 * Add some slop to the I/O and memory resources decoded by
1414 		 * this bus to give a guest some flexibility if it wants to
1415 		 * reprogram the BARs.
1416 		 */
1417 		pci_emul_iobase += BUSIO_ROUNDUP;
1418 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1419 		bi->iolimit = pci_emul_iobase;
1420 
1421 		pci_emul_membase32 += BUSMEM32_ROUNDUP;
1422 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1423 		    BUSMEM32_ROUNDUP);
1424 		bi->memlimit32 = pci_emul_membase32;
1425 
1426 		pci_emul_membase64 += BUSMEM64_ROUNDUP;
1427 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1428 		    BUSMEM64_ROUNDUP);
1429 		bi->memlimit64 = pci_emul_membase64;
1430 	}
1431 
1432 	/*
1433 	 * PCI backends are initialized before routing INTx interrupts
1434 	 * so that LPC devices are able to reserve ISA IRQs before
1435 	 * routing PIRQ pins.
1436 	 */
1437 	for (bus = 0; bus < MAXBUSES; bus++) {
1438 		if ((bi = pci_businfo[bus]) == NULL)
1439 			continue;
1440 
1441 		for (slot = 0; slot < MAXSLOTS; slot++) {
1442 			si = &bi->slotinfo[slot];
1443 			for (func = 0; func < MAXFUNCS; func++) {
1444 				fi = &si->si_funcs[func];
1445 				if (fi->fi_devi == NULL)
1446 					continue;
1447 				pci_lintr_route(fi->fi_devi);
1448 			}
1449 		}
1450 	}
1451 	lpc_pirq_routed();
1452 
1453 	/*
1454 	 * The guest physical memory map looks like the following:
1455 	 * [0,		    lowmem)		guest system memory
1456 	 * [lowmem,	    0xC0000000)		memory hole (may be absent)
1457 	 * [0xC0000000,     0xE0000000)		PCI hole (32-bit BAR allocation)
1458 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1459 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1460 	 * [4GB,	    4GB + highmem)
1461 	 */
1462 
1463 	/*
1464 	 * Accesses to memory addresses that are not allocated to system
1465 	 * memory or PCI devices return 0xff's.
1466 	 */
1467 	lowmem = vm_get_lowmem_size(ctx);
1468 	bzero(&mr, sizeof(struct mem_range));
1469 	mr.name = "PCI hole";
1470 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1471 	mr.base = lowmem;
1472 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1473 	mr.handler = pci_emul_fallback_handler;
1474 	error = register_mem_fallback(&mr);
1475 	assert(error == 0);
1476 
1477 	/* PCI extended config space */
1478 	bzero(&mr, sizeof(struct mem_range));
1479 	mr.name = "PCI ECFG";
1480 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1481 	mr.base = PCI_EMUL_ECFG_BASE;
1482 	mr.size = PCI_EMUL_ECFG_SIZE;
1483 	mr.handler = pci_emul_ecfg_handler;
1484 	error = register_mem(&mr);
1485 	assert(error == 0);
1486 
1487 	return (0);
1488 }
1489 
1490 static void
1491 pci_apic_prt_entry(int bus __unused, int slot, int pin, int pirq_pin __unused,
1492     int ioapic_irq, void *arg __unused)
1493 {
1494 
1495 	dsdt_line("  Package ()");
1496 	dsdt_line("  {");
1497 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1498 	dsdt_line("    0x%02X,", pin - 1);
1499 	dsdt_line("    Zero,");
1500 	dsdt_line("    0x%X", ioapic_irq);
1501 	dsdt_line("  },");
1502 }
1503 
1504 static void
1505 pci_pirq_prt_entry(int bus __unused, int slot, int pin, int pirq_pin,
1506     int ioapic_irq __unused, void *arg __unused)
1507 {
1508 	char *name;
1509 
1510 	name = lpc_pirq_name(pirq_pin);
1511 	if (name == NULL)
1512 		return;
1513 	dsdt_line("  Package ()");
1514 	dsdt_line("  {");
1515 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1516 	dsdt_line("    0x%02X,", pin - 1);
1517 	dsdt_line("    %s,", name);
1518 	dsdt_line("    0x00");
1519 	dsdt_line("  },");
1520 	free(name);
1521 }
1522 
1523 /*
1524  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1525  * corresponding to each PCI bus.
1526  */
1527 static void
1528 pci_bus_write_dsdt(int bus)
1529 {
1530 	struct businfo *bi;
1531 	struct slotinfo *si;
1532 	struct pci_devinst *pi;
1533 	int count, func, slot;
1534 
1535 	/*
1536 	 * If there are no devices on this 'bus' then just return.
1537 	 */
1538 	if ((bi = pci_businfo[bus]) == NULL) {
1539 		/*
1540 		 * Bus 0 is special because it decodes the I/O ports used
1541 		 * for PCI config space access even if there are no devices
1542 		 * on it.
1543 		 */
1544 		if (bus != 0)
1545 			return;
1546 	}
1547 
1548 	dsdt_line("  Device (PC%02X)", bus);
1549 	dsdt_line("  {");
1550 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1551 
1552 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1553 	dsdt_line("    {");
1554 	dsdt_line("        Return (0x%08X)", bus);
1555 	dsdt_line("    }");
1556 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1557 	dsdt_line("    {");
1558 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1559 	    "MaxFixed, PosDecode,");
1560 	dsdt_line("        0x0000,             // Granularity");
1561 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1562 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1563 	dsdt_line("        0x0000,             // Translation Offset");
1564 	dsdt_line("        0x0001,             // Length");
1565 	dsdt_line("        ,, )");
1566 
1567 	if (bus == 0) {
1568 		dsdt_indent(3);
1569 		dsdt_fixed_ioport(0xCF8, 8);
1570 		dsdt_unindent(3);
1571 
1572 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1573 		    "PosDecode, EntireRange,");
1574 		dsdt_line("        0x0000,             // Granularity");
1575 		dsdt_line("        0x0000,             // Range Minimum");
1576 		dsdt_line("        0x0CF7,             // Range Maximum");
1577 		dsdt_line("        0x0000,             // Translation Offset");
1578 		dsdt_line("        0x0CF8,             // Length");
1579 		dsdt_line("        ,, , TypeStatic)");
1580 
1581 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1582 		    "PosDecode, EntireRange,");
1583 		dsdt_line("        0x0000,             // Granularity");
1584 		dsdt_line("        0x0D00,             // Range Minimum");
1585 		dsdt_line("        0x%04X,             // Range Maximum",
1586 		    PCI_EMUL_IOBASE - 1);
1587 		dsdt_line("        0x0000,             // Translation Offset");
1588 		dsdt_line("        0x%04X,             // Length",
1589 		    PCI_EMUL_IOBASE - 0x0D00);
1590 		dsdt_line("        ,, , TypeStatic)");
1591 
1592 		if (bi == NULL) {
1593 			dsdt_line("    })");
1594 			goto done;
1595 		}
1596 	}
1597 	assert(bi != NULL);
1598 
1599 	/* i/o window */
1600 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1601 	    "PosDecode, EntireRange,");
1602 	dsdt_line("        0x0000,             // Granularity");
1603 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1604 	dsdt_line("        0x%04X,             // Range Maximum",
1605 	    bi->iolimit - 1);
1606 	dsdt_line("        0x0000,             // Translation Offset");
1607 	dsdt_line("        0x%04X,             // Length",
1608 	    bi->iolimit - bi->iobase);
1609 	dsdt_line("        ,, , TypeStatic)");
1610 
1611 	/* mmio window (32-bit) */
1612 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1613 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1614 	dsdt_line("        0x00000000,         // Granularity");
1615 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1616 	dsdt_line("        0x%08X,         // Range Maximum\n",
1617 	    bi->memlimit32 - 1);
1618 	dsdt_line("        0x00000000,         // Translation Offset");
1619 	dsdt_line("        0x%08X,         // Length\n",
1620 	    bi->memlimit32 - bi->membase32);
1621 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1622 
1623 	/* mmio window (64-bit) */
1624 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1625 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1626 	dsdt_line("        0x0000000000000000, // Granularity");
1627 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1628 	dsdt_line("        0x%016lX, // Range Maximum\n",
1629 	    bi->memlimit64 - 1);
1630 	dsdt_line("        0x0000000000000000, // Translation Offset");
1631 	dsdt_line("        0x%016lX, // Length\n",
1632 	    bi->memlimit64 - bi->membase64);
1633 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1634 	dsdt_line("    })");
1635 
1636 	count = pci_count_lintr(bus);
1637 	if (count != 0) {
1638 		dsdt_indent(2);
1639 		dsdt_line("Name (PPRT, Package ()");
1640 		dsdt_line("{");
1641 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1642 		dsdt_line("})");
1643 		dsdt_line("Name (APRT, Package ()");
1644 		dsdt_line("{");
1645 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1646 		dsdt_line("})");
1647 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1648 		dsdt_line("{");
1649 		dsdt_line("  If (PICM)");
1650 		dsdt_line("  {");
1651 		dsdt_line("    Return (APRT)");
1652 		dsdt_line("  }");
1653 		dsdt_line("  Else");
1654 		dsdt_line("  {");
1655 		dsdt_line("    Return (PPRT)");
1656 		dsdt_line("  }");
1657 		dsdt_line("}");
1658 		dsdt_unindent(2);
1659 	}
1660 
1661 	dsdt_indent(2);
1662 	for (slot = 0; slot < MAXSLOTS; slot++) {
1663 		si = &bi->slotinfo[slot];
1664 		for (func = 0; func < MAXFUNCS; func++) {
1665 			pi = si->si_funcs[func].fi_devi;
1666 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1667 				pi->pi_d->pe_write_dsdt(pi);
1668 		}
1669 	}
1670 	dsdt_unindent(2);
1671 done:
1672 	dsdt_line("  }");
1673 }
1674 
1675 void
1676 pci_write_dsdt(void)
1677 {
1678 	int bus;
1679 
1680 	dsdt_indent(1);
1681 	dsdt_line("Name (PICM, 0x00)");
1682 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1683 	dsdt_line("{");
1684 	dsdt_line("  Store (Arg0, PICM)");
1685 	dsdt_line("}");
1686 	dsdt_line("");
1687 	dsdt_line("Scope (_SB)");
1688 	dsdt_line("{");
1689 	for (bus = 0; bus < MAXBUSES; bus++)
1690 		pci_bus_write_dsdt(bus);
1691 	dsdt_line("}");
1692 	dsdt_unindent(1);
1693 }
1694 
1695 int
1696 pci_bus_configured(int bus)
1697 {
1698 	assert(bus >= 0 && bus < MAXBUSES);
1699 	return (pci_businfo[bus] != NULL);
1700 }
1701 
1702 int
1703 pci_msi_enabled(struct pci_devinst *pi)
1704 {
1705 	return (pi->pi_msi.enabled);
1706 }
1707 
1708 int
1709 pci_msi_maxmsgnum(struct pci_devinst *pi)
1710 {
1711 	if (pi->pi_msi.enabled)
1712 		return (pi->pi_msi.maxmsgnum);
1713 	else
1714 		return (0);
1715 }
1716 
1717 int
1718 pci_msix_enabled(struct pci_devinst *pi)
1719 {
1720 
1721 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1722 }
1723 
1724 void
1725 pci_generate_msix(struct pci_devinst *pi, int index)
1726 {
1727 	struct msix_table_entry *mte;
1728 
1729 	if (!pci_msix_enabled(pi))
1730 		return;
1731 
1732 	if (pi->pi_msix.function_mask)
1733 		return;
1734 
1735 	if (index >= pi->pi_msix.table_count)
1736 		return;
1737 
1738 	mte = &pi->pi_msix.table[index];
1739 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1740 		/* XXX Set PBA bit if interrupt is disabled */
1741 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1742 	}
1743 }
1744 
1745 void
1746 pci_generate_msi(struct pci_devinst *pi, int index)
1747 {
1748 
1749 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1750 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1751 			     pi->pi_msi.msg_data + index);
1752 	}
1753 }
1754 
1755 static bool
1756 pci_lintr_permitted(struct pci_devinst *pi)
1757 {
1758 	uint16_t cmd;
1759 
1760 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1761 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1762 		(cmd & PCIM_CMD_INTxDIS)));
1763 }
1764 
1765 void
1766 pci_lintr_request(struct pci_devinst *pi)
1767 {
1768 	struct businfo *bi;
1769 	struct slotinfo *si;
1770 	int bestpin, bestcount, pin;
1771 
1772 	bi = pci_businfo[pi->pi_bus];
1773 	assert(bi != NULL);
1774 
1775 	/*
1776 	 * Just allocate a pin from our slot.  The pin will be
1777 	 * assigned IRQs later when interrupts are routed.
1778 	 */
1779 	si = &bi->slotinfo[pi->pi_slot];
1780 	bestpin = 0;
1781 	bestcount = si->si_intpins[0].ii_count;
1782 	for (pin = 1; pin < 4; pin++) {
1783 		if (si->si_intpins[pin].ii_count < bestcount) {
1784 			bestpin = pin;
1785 			bestcount = si->si_intpins[pin].ii_count;
1786 		}
1787 	}
1788 
1789 	si->si_intpins[bestpin].ii_count++;
1790 	pi->pi_lintr.pin = bestpin + 1;
1791 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1792 }
1793 
1794 static void
1795 pci_lintr_route(struct pci_devinst *pi)
1796 {
1797 	struct businfo *bi;
1798 	struct intxinfo *ii;
1799 
1800 	if (pi->pi_lintr.pin == 0)
1801 		return;
1802 
1803 	bi = pci_businfo[pi->pi_bus];
1804 	assert(bi != NULL);
1805 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1806 
1807 	/*
1808 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1809 	 * is not yet assigned.
1810 	 */
1811 	if (ii->ii_ioapic_irq == 0)
1812 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1813 	assert(ii->ii_ioapic_irq > 0);
1814 
1815 	/*
1816 	 * Attempt to allocate a PIRQ pin for this intpin if one is
1817 	 * not yet assigned.
1818 	 */
1819 	if (ii->ii_pirq_pin == 0)
1820 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
1821 	assert(ii->ii_pirq_pin > 0);
1822 
1823 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1824 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1825 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1826 }
1827 
1828 void
1829 pci_lintr_assert(struct pci_devinst *pi)
1830 {
1831 
1832 	assert(pi->pi_lintr.pin > 0);
1833 
1834 	pthread_mutex_lock(&pi->pi_lintr.lock);
1835 	if (pi->pi_lintr.state == IDLE) {
1836 		if (pci_lintr_permitted(pi)) {
1837 			pi->pi_lintr.state = ASSERTED;
1838 			pci_irq_assert(pi);
1839 		} else
1840 			pi->pi_lintr.state = PENDING;
1841 	}
1842 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1843 }
1844 
1845 void
1846 pci_lintr_deassert(struct pci_devinst *pi)
1847 {
1848 
1849 	assert(pi->pi_lintr.pin > 0);
1850 
1851 	pthread_mutex_lock(&pi->pi_lintr.lock);
1852 	if (pi->pi_lintr.state == ASSERTED) {
1853 		pi->pi_lintr.state = IDLE;
1854 		pci_irq_deassert(pi);
1855 	} else if (pi->pi_lintr.state == PENDING)
1856 		pi->pi_lintr.state = IDLE;
1857 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1858 }
1859 
1860 static void
1861 pci_lintr_update(struct pci_devinst *pi)
1862 {
1863 
1864 	pthread_mutex_lock(&pi->pi_lintr.lock);
1865 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1866 		pci_irq_deassert(pi);
1867 		pi->pi_lintr.state = PENDING;
1868 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1869 		pi->pi_lintr.state = ASSERTED;
1870 		pci_irq_assert(pi);
1871 	}
1872 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1873 }
1874 
1875 int
1876 pci_count_lintr(int bus)
1877 {
1878 	int count, slot, pin;
1879 	struct slotinfo *slotinfo;
1880 
1881 	count = 0;
1882 	if (pci_businfo[bus] != NULL) {
1883 		for (slot = 0; slot < MAXSLOTS; slot++) {
1884 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1885 			for (pin = 0; pin < 4; pin++) {
1886 				if (slotinfo->si_intpins[pin].ii_count != 0)
1887 					count++;
1888 			}
1889 		}
1890 	}
1891 	return (count);
1892 }
1893 
1894 void
1895 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1896 {
1897 	struct businfo *bi;
1898 	struct slotinfo *si;
1899 	struct intxinfo *ii;
1900 	int slot, pin;
1901 
1902 	if ((bi = pci_businfo[bus]) == NULL)
1903 		return;
1904 
1905 	for (slot = 0; slot < MAXSLOTS; slot++) {
1906 		si = &bi->slotinfo[slot];
1907 		for (pin = 0; pin < 4; pin++) {
1908 			ii = &si->si_intpins[pin];
1909 			if (ii->ii_count != 0)
1910 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1911 				    ii->ii_ioapic_irq, arg);
1912 		}
1913 	}
1914 }
1915 
1916 /*
1917  * Return 1 if the emulated device in 'slot' is a multi-function device.
1918  * Return 0 otherwise.
1919  */
1920 static int
1921 pci_emul_is_mfdev(int bus, int slot)
1922 {
1923 	struct businfo *bi;
1924 	struct slotinfo *si;
1925 	int f, numfuncs;
1926 
1927 	numfuncs = 0;
1928 	if ((bi = pci_businfo[bus]) != NULL) {
1929 		si = &bi->slotinfo[slot];
1930 		for (f = 0; f < MAXFUNCS; f++) {
1931 			if (si->si_funcs[f].fi_devi != NULL) {
1932 				numfuncs++;
1933 			}
1934 		}
1935 	}
1936 	return (numfuncs > 1);
1937 }
1938 
1939 /*
1940  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1941  * whether or not is a multi-function being emulated in the pci 'slot'.
1942  */
1943 static void
1944 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1945 {
1946 	int mfdev;
1947 
1948 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1949 		mfdev = pci_emul_is_mfdev(bus, slot);
1950 		switch (bytes) {
1951 		case 1:
1952 		case 2:
1953 			*rv &= ~PCIM_MFDEV;
1954 			if (mfdev) {
1955 				*rv |= PCIM_MFDEV;
1956 			}
1957 			break;
1958 		case 4:
1959 			*rv &= ~(PCIM_MFDEV << 16);
1960 			if (mfdev) {
1961 				*rv |= (PCIM_MFDEV << 16);
1962 			}
1963 			break;
1964 		}
1965 	}
1966 }
1967 
1968 /*
1969  * Update device state in response to changes to the PCI command
1970  * register.
1971  */
1972 void
1973 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
1974 {
1975 	int i;
1976 	uint16_t changed, new;
1977 
1978 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
1979 	changed = old ^ new;
1980 
1981 	/*
1982 	 * If the MMIO or I/O address space decoding has changed then
1983 	 * register/unregister all BARs that decode that address space.
1984 	 */
1985 	for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
1986 		switch (pi->pi_bar[i].type) {
1987 			case PCIBAR_NONE:
1988 			case PCIBAR_MEMHI64:
1989 				break;
1990 			case PCIBAR_IO:
1991 				/* I/O address space decoding changed? */
1992 				if (changed & PCIM_CMD_PORTEN) {
1993 					if (new & PCIM_CMD_PORTEN)
1994 						register_bar(pi, i);
1995 					else
1996 						unregister_bar(pi, i);
1997 				}
1998 				break;
1999 			case PCIBAR_ROM:
2000 				/* skip (un-)register of ROM if it disabled */
2001 				if (!romen(pi))
2002 					break;
2003 				/* fallthrough */
2004 			case PCIBAR_MEM32:
2005 			case PCIBAR_MEM64:
2006 				/* MMIO address space decoding changed? */
2007 				if (changed & PCIM_CMD_MEMEN) {
2008 					if (new & PCIM_CMD_MEMEN)
2009 						register_bar(pi, i);
2010 					else
2011 						unregister_bar(pi, i);
2012 				}
2013 				break;
2014 			default:
2015 				assert(0);
2016 		}
2017 	}
2018 
2019 	/*
2020 	 * If INTx has been unmasked and is pending, assert the
2021 	 * interrupt.
2022 	 */
2023 	pci_lintr_update(pi);
2024 }
2025 
2026 static void
2027 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2028 {
2029 	int rshift;
2030 	uint32_t cmd, old, readonly;
2031 
2032 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
2033 
2034 	/*
2035 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2036 	 *
2037 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2038 	 * 'write 1 to clear'. However these bits are not set to '1' by
2039 	 * any device emulation so it is simpler to treat them as readonly.
2040 	 */
2041 	rshift = (coff & 0x3) * 8;
2042 	readonly = 0xFFFFF880 >> rshift;
2043 
2044 	old = CFGREAD(pi, coff, bytes);
2045 	new &= ~readonly;
2046 	new |= (old & readonly);
2047 	CFGWRITE(pi, coff, new, bytes);			/* update config */
2048 
2049 	pci_emul_cmd_changed(pi, cmd);
2050 }
2051 
2052 static void
2053 pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
2054     int coff, int bytes, uint32_t *eax)
2055 {
2056 	struct businfo *bi;
2057 	struct slotinfo *si;
2058 	struct pci_devinst *pi;
2059 	struct pci_devemu *pe;
2060 	int idx, needcfg;
2061 	uint64_t addr, bar, mask;
2062 
2063 	if ((bi = pci_businfo[bus]) != NULL) {
2064 		si = &bi->slotinfo[slot];
2065 		pi = si->si_funcs[func].fi_devi;
2066 	} else
2067 		pi = NULL;
2068 
2069 	/*
2070 	 * Just return if there is no device at this slot:func or if the
2071 	 * the guest is doing an un-aligned access.
2072 	 */
2073 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2074 	    (coff & (bytes - 1)) != 0) {
2075 		if (in)
2076 			*eax = 0xffffffff;
2077 		return;
2078 	}
2079 
2080 	/*
2081 	 * Ignore all writes beyond the standard config space and return all
2082 	 * ones on reads.
2083 	 */
2084 	if (coff >= PCI_REGMAX + 1) {
2085 		if (in) {
2086 			*eax = 0xffffffff;
2087 			/*
2088 			 * Extended capabilities begin at offset 256 in config
2089 			 * space. Absence of extended capabilities is signaled
2090 			 * with all 0s in the extended capability header at
2091 			 * offset 256.
2092 			 */
2093 			if (coff <= PCI_REGMAX + 4)
2094 				*eax = 0x00000000;
2095 		}
2096 		return;
2097 	}
2098 
2099 	pe = pi->pi_d;
2100 
2101 	/*
2102 	 * Config read
2103 	 */
2104 	if (in) {
2105 		/* Let the device emulation override the default handler */
2106 		if (pe->pe_cfgread != NULL) {
2107 			needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
2108 			    eax);
2109 		} else {
2110 			needcfg = 1;
2111 		}
2112 
2113 		if (needcfg)
2114 			*eax = CFGREAD(pi, coff, bytes);
2115 
2116 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
2117 	} else {
2118 		/* Let the device emulation override the default handler */
2119 		if (pe->pe_cfgwrite != NULL &&
2120 		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
2121 			return;
2122 
2123 		/*
2124 		 * Special handling for write to BAR and ROM registers
2125 		 */
2126 		if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2127 			/*
2128 			 * Ignore writes to BAR registers that are not
2129 			 * 4-byte aligned.
2130 			 */
2131 			if (bytes != 4 || (coff & 0x3) != 0)
2132 				return;
2133 
2134 			if (is_pcir_bar(coff)) {
2135 				idx = (coff - PCIR_BAR(0)) / 4;
2136 			} else if (is_pcir_bios(coff)) {
2137 				idx = PCI_ROM_IDX;
2138 			} else {
2139 				errx(4, "%s: invalid BAR offset %d", __func__,
2140 				    coff);
2141 			}
2142 
2143 			mask = ~(pi->pi_bar[idx].size - 1);
2144 			switch (pi->pi_bar[idx].type) {
2145 			case PCIBAR_NONE:
2146 				pi->pi_bar[idx].addr = bar = 0;
2147 				break;
2148 			case PCIBAR_IO:
2149 				addr = *eax & mask;
2150 				addr &= 0xffff;
2151 				bar = addr | pi->pi_bar[idx].lobits;
2152 				/*
2153 				 * Register the new BAR value for interception
2154 				 */
2155 				if (addr != pi->pi_bar[idx].addr) {
2156 					update_bar_address(pi, addr, idx,
2157 							   PCIBAR_IO);
2158 				}
2159 				break;
2160 			case PCIBAR_MEM32:
2161 				addr = bar = *eax & mask;
2162 				bar |= pi->pi_bar[idx].lobits;
2163 				if (addr != pi->pi_bar[idx].addr) {
2164 					update_bar_address(pi, addr, idx,
2165 							   PCIBAR_MEM32);
2166 				}
2167 				break;
2168 			case PCIBAR_MEM64:
2169 				addr = bar = *eax & mask;
2170 				bar |= pi->pi_bar[idx].lobits;
2171 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2172 					update_bar_address(pi, addr, idx,
2173 							   PCIBAR_MEM64);
2174 				}
2175 				break;
2176 			case PCIBAR_MEMHI64:
2177 				mask = ~(pi->pi_bar[idx - 1].size - 1);
2178 				addr = ((uint64_t)*eax << 32) & mask;
2179 				bar = addr >> 32;
2180 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2181 					update_bar_address(pi, addr, idx - 1,
2182 							   PCIBAR_MEMHI64);
2183 				}
2184 				break;
2185 			case PCIBAR_ROM:
2186 				addr = bar = *eax & mask;
2187 				if (memen(pi) && romen(pi)) {
2188 					unregister_bar(pi, idx);
2189 				}
2190 				pi->pi_bar[idx].addr = addr;
2191 				pi->pi_bar[idx].lobits = *eax &
2192 				    PCIM_BIOS_ENABLE;
2193 				/* romen could have changed it value */
2194 				if (memen(pi) && romen(pi)) {
2195 					register_bar(pi, idx);
2196 				}
2197 				bar |= pi->pi_bar[idx].lobits;
2198 				break;
2199 			default:
2200 				assert(0);
2201 			}
2202 			pci_set_cfgdata32(pi, coff, bar);
2203 
2204 		} else if (pci_emul_iscap(pi, coff)) {
2205 			pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0);
2206 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2207 			pci_emul_cmdsts_write(pi, coff, *eax, bytes);
2208 		} else {
2209 			CFGWRITE(pi, coff, *eax, bytes);
2210 		}
2211 	}
2212 }
2213 
2214 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2215 
2216 static int
2217 pci_emul_cfgaddr(struct vmctx *ctx __unused, int vcpu __unused, int in,
2218     int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2219 {
2220 	uint32_t x;
2221 
2222 	if (bytes != 4) {
2223 		if (in)
2224 			*eax = (bytes == 2) ? 0xffff : 0xff;
2225 		return (0);
2226 	}
2227 
2228 	if (in) {
2229 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2230 		if (cfgenable)
2231 			x |= CONF1_ENABLE;
2232 		*eax = x;
2233 	} else {
2234 		x = *eax;
2235 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2236 		cfgoff = (x & PCI_REGMAX) & ~0x03;
2237 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
2238 		cfgslot = (x >> 11) & PCI_SLOTMAX;
2239 		cfgbus = (x >> 16) & PCI_BUSMAX;
2240 	}
2241 
2242 	return (0);
2243 }
2244 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2245 
2246 static int
2247 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
2248     uint32_t *eax, void *arg __unused)
2249 {
2250 	int coff;
2251 
2252 	assert(bytes == 1 || bytes == 2 || bytes == 4);
2253 
2254 	coff = cfgoff + (port - CONF1_DATA_PORT);
2255 	if (cfgenable) {
2256 		pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
2257 		    eax);
2258 	} else {
2259 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
2260 		if (in)
2261 			*eax = 0xffffffff;
2262 	}
2263 	return (0);
2264 }
2265 
2266 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2267 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2268 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2269 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2270 
2271 #ifdef BHYVE_SNAPSHOT
2272 /*
2273  * Saves/restores PCI device emulated state. Returns 0 on success.
2274  */
2275 static int
2276 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2277 {
2278 	struct pci_devinst *pi;
2279 	int i;
2280 	int ret;
2281 
2282 	pi = meta->dev_data;
2283 
2284 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2285 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2286 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2287 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2288 
2289 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2290 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2291 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2292 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2293 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2294 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2295 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2296 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2297 
2298 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2299 			      meta, ret, done);
2300 
2301 	for (i = 0; i < nitems(pi->pi_bar); i++) {
2302 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2303 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2304 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2305 	}
2306 
2307 	/* Restore MSI-X table. */
2308 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2309 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2310 				      meta, ret, done);
2311 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2312 				      meta, ret, done);
2313 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2314 				      meta, ret, done);
2315 	}
2316 
2317 done:
2318 	return (ret);
2319 }
2320 
2321 static int
2322 pci_find_slotted_dev(const char *dev_name, struct pci_devemu **pde,
2323 		     struct pci_devinst **pdi)
2324 {
2325 	struct businfo *bi;
2326 	struct slotinfo *si;
2327 	struct funcinfo *fi;
2328 	int bus, slot, func;
2329 
2330 	assert(dev_name != NULL);
2331 	assert(pde != NULL);
2332 	assert(pdi != NULL);
2333 
2334 	for (bus = 0; bus < MAXBUSES; bus++) {
2335 		if ((bi = pci_businfo[bus]) == NULL)
2336 			continue;
2337 
2338 		for (slot = 0; slot < MAXSLOTS; slot++) {
2339 			si = &bi->slotinfo[slot];
2340 			for (func = 0; func < MAXFUNCS; func++) {
2341 				fi = &si->si_funcs[func];
2342 				if (fi->fi_pde == NULL)
2343 					continue;
2344 				if (strcmp(dev_name, fi->fi_pde->pe_emu) != 0)
2345 					continue;
2346 
2347 				*pde = fi->fi_pde;
2348 				*pdi = fi->fi_devi;
2349 				return (0);
2350 			}
2351 		}
2352 	}
2353 
2354 	return (EINVAL);
2355 }
2356 
2357 int
2358 pci_snapshot(struct vm_snapshot_meta *meta)
2359 {
2360 	struct pci_devemu *pde;
2361 	struct pci_devinst *pdi;
2362 	int ret;
2363 
2364 	assert(meta->dev_name != NULL);
2365 
2366 	ret = pci_find_slotted_dev(meta->dev_name, &pde, &pdi);
2367 	if (ret != 0) {
2368 		fprintf(stderr, "%s: no such name: %s\r\n",
2369 			__func__, meta->dev_name);
2370 		memset(meta->buffer.buf_start, 0, meta->buffer.buf_size);
2371 		return (0);
2372 	}
2373 
2374 	meta->dev_data = pdi;
2375 
2376 	if (pde->pe_snapshot == NULL) {
2377 		fprintf(stderr, "%s: not implemented yet for: %s\r\n",
2378 			__func__, meta->dev_name);
2379 		return (-1);
2380 	}
2381 
2382 	ret = pci_snapshot_pci_dev(meta);
2383 	if (ret != 0) {
2384 		fprintf(stderr, "%s: failed to snapshot pci dev\r\n",
2385 			__func__);
2386 		return (-1);
2387 	}
2388 
2389 	ret = (*pde->pe_snapshot)(meta);
2390 
2391 	return (ret);
2392 }
2393 
2394 int
2395 pci_pause(struct vmctx *ctx, const char *dev_name)
2396 {
2397 	struct pci_devemu *pde;
2398 	struct pci_devinst *pdi;
2399 	int ret;
2400 
2401 	assert(dev_name != NULL);
2402 
2403 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
2404 	if (ret != 0) {
2405 		/*
2406 		 * It is possible to call this function without
2407 		 * checking that the device is inserted first.
2408 		 */
2409 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
2410 		return (0);
2411 	}
2412 
2413 	if (pde->pe_pause == NULL) {
2414 		/* The pause/resume functionality is optional. */
2415 		fprintf(stderr, "%s: not implemented for: %s\n",
2416 			__func__, dev_name);
2417 		return (0);
2418 	}
2419 
2420 	return (*pde->pe_pause)(ctx, pdi);
2421 }
2422 
2423 int
2424 pci_resume(struct vmctx *ctx, const char *dev_name)
2425 {
2426 	struct pci_devemu *pde;
2427 	struct pci_devinst *pdi;
2428 	int ret;
2429 
2430 	assert(dev_name != NULL);
2431 
2432 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
2433 	if (ret != 0) {
2434 		/*
2435 		 * It is possible to call this function without
2436 		 * checking that the device is inserted first.
2437 		 */
2438 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
2439 		return (0);
2440 	}
2441 
2442 	if (pde->pe_resume == NULL) {
2443 		/* The pause/resume functionality is optional. */
2444 		fprintf(stderr, "%s: not implemented for: %s\n",
2445 			__func__, dev_name);
2446 		return (0);
2447 	}
2448 
2449 	return (*pde->pe_resume)(ctx, pdi);
2450 }
2451 #endif
2452 
2453 #define PCI_EMUL_TEST
2454 #ifdef PCI_EMUL_TEST
2455 /*
2456  * Define a dummy test device
2457  */
2458 #define DIOSZ	8
2459 #define DMEMSZ	4096
2460 struct pci_emul_dsoftc {
2461 	uint8_t   ioregs[DIOSZ];
2462 	uint8_t	  memregs[2][DMEMSZ];
2463 };
2464 
2465 #define	PCI_EMUL_MSI_MSGS	 4
2466 #define	PCI_EMUL_MSIX_MSGS	16
2467 
2468 static int
2469 pci_emul_dinit(struct vmctx *ctx __unused, struct pci_devinst *pi,
2470     nvlist_t *nvl __unused)
2471 {
2472 	int error;
2473 	struct pci_emul_dsoftc *sc;
2474 
2475 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2476 
2477 	pi->pi_arg = sc;
2478 
2479 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2480 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2481 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2482 
2483 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2484 	assert(error == 0);
2485 
2486 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2487 	assert(error == 0);
2488 
2489 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2490 	assert(error == 0);
2491 
2492 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2493 	assert(error == 0);
2494 
2495 	return (0);
2496 }
2497 
2498 static void
2499 pci_emul_diow(struct vmctx *ctx __unused, int vcpu __unused,
2500     struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2501     uint64_t value)
2502 {
2503 	int i;
2504 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2505 
2506 	if (baridx == 0) {
2507 		if (offset + size > DIOSZ) {
2508 			printf("diow: iow too large, offset %ld size %d\n",
2509 			       offset, size);
2510 			return;
2511 		}
2512 
2513 		if (size == 1) {
2514 			sc->ioregs[offset] = value & 0xff;
2515 		} else if (size == 2) {
2516 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2517 		} else if (size == 4) {
2518 			*(uint32_t *)&sc->ioregs[offset] = value;
2519 		} else {
2520 			printf("diow: iow unknown size %d\n", size);
2521 		}
2522 
2523 		/*
2524 		 * Special magic value to generate an interrupt
2525 		 */
2526 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2527 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2528 
2529 		if (value == 0xabcdef) {
2530 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2531 				pci_generate_msi(pi, i);
2532 		}
2533 	}
2534 
2535 	if (baridx == 1 || baridx == 2) {
2536 		if (offset + size > DMEMSZ) {
2537 			printf("diow: memw too large, offset %ld size %d\n",
2538 			       offset, size);
2539 			return;
2540 		}
2541 
2542 		i = baridx - 1;		/* 'memregs' index */
2543 
2544 		if (size == 1) {
2545 			sc->memregs[i][offset] = value;
2546 		} else if (size == 2) {
2547 			*(uint16_t *)&sc->memregs[i][offset] = value;
2548 		} else if (size == 4) {
2549 			*(uint32_t *)&sc->memregs[i][offset] = value;
2550 		} else if (size == 8) {
2551 			*(uint64_t *)&sc->memregs[i][offset] = value;
2552 		} else {
2553 			printf("diow: memw unknown size %d\n", size);
2554 		}
2555 
2556 		/*
2557 		 * magic interrupt ??
2558 		 */
2559 	}
2560 
2561 	if (baridx > 2 || baridx < 0) {
2562 		printf("diow: unknown bar idx %d\n", baridx);
2563 	}
2564 }
2565 
2566 static uint64_t
2567 pci_emul_dior(struct vmctx *ctx __unused, int vcpu __unused,
2568     struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2569 {
2570 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2571 	uint32_t value;
2572 	int i;
2573 
2574 	if (baridx == 0) {
2575 		if (offset + size > DIOSZ) {
2576 			printf("dior: ior too large, offset %ld size %d\n",
2577 			       offset, size);
2578 			return (0);
2579 		}
2580 
2581 		value = 0;
2582 		if (size == 1) {
2583 			value = sc->ioregs[offset];
2584 		} else if (size == 2) {
2585 			value = *(uint16_t *) &sc->ioregs[offset];
2586 		} else if (size == 4) {
2587 			value = *(uint32_t *) &sc->ioregs[offset];
2588 		} else {
2589 			printf("dior: ior unknown size %d\n", size);
2590 		}
2591 	}
2592 
2593 	if (baridx == 1 || baridx == 2) {
2594 		if (offset + size > DMEMSZ) {
2595 			printf("dior: memr too large, offset %ld size %d\n",
2596 			       offset, size);
2597 			return (0);
2598 		}
2599 
2600 		i = baridx - 1;		/* 'memregs' index */
2601 
2602 		if (size == 1) {
2603 			value = sc->memregs[i][offset];
2604 		} else if (size == 2) {
2605 			value = *(uint16_t *) &sc->memregs[i][offset];
2606 		} else if (size == 4) {
2607 			value = *(uint32_t *) &sc->memregs[i][offset];
2608 		} else if (size == 8) {
2609 			value = *(uint64_t *) &sc->memregs[i][offset];
2610 		} else {
2611 			printf("dior: ior unknown size %d\n", size);
2612 		}
2613 	}
2614 
2615 
2616 	if (baridx > 2 || baridx < 0) {
2617 		printf("dior: unknown bar idx %d\n", baridx);
2618 		return (0);
2619 	}
2620 
2621 	return (value);
2622 }
2623 
2624 #ifdef BHYVE_SNAPSHOT
2625 int
2626 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2627 {
2628 	return (0);
2629 }
2630 #endif
2631 
2632 static const struct pci_devemu pci_dummy = {
2633 	.pe_emu = "dummy",
2634 	.pe_init = pci_emul_dinit,
2635 	.pe_barwrite = pci_emul_diow,
2636 	.pe_barread = pci_emul_dior,
2637 #ifdef BHYVE_SNAPSHOT
2638 	.pe_snapshot = pci_emul_snapshot,
2639 #endif
2640 };
2641 PCI_EMUL_SET(pci_dummy);
2642 
2643 #endif /* PCI_EMUL_TEST */
2644