xref: /freebsd/usr.sbin/bhyve/virtio.h (revision 19261079)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013  Chris Torek <torek @ torek net>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #ifndef	_BHYVE_VIRTIO_H_
32 #define	_BHYVE_VIRTIO_H_
33 
34 #include <machine/atomic.h>
35 
36 #include <dev/virtio/virtio.h>
37 #include <dev/virtio/virtio_ring.h>
38 #include <dev/virtio/pci/virtio_pci_var.h>
39 
40 /*
41  * These are derived from several virtio specifications.
42  *
43  * Some useful links:
44  *    https://github.com/rustyrussell/virtio-spec
45  *    http://people.redhat.com/pbonzini/virtio-spec.pdf
46  */
47 
48 /*
49  * A virtual device has zero or more "virtual queues" (virtqueue).
50  * Each virtqueue uses at least two 4096-byte pages, laid out thus:
51  *
52  *      +-----------------------------------------------+
53  *      |    "desc":  <N> descriptors, 16 bytes each    |
54  *      |   -----------------------------------------   |
55  *      |   "avail":   2 uint16; <N> uint16; 1 uint16   |
56  *      |   -----------------------------------------   |
57  *      |              pad to 4k boundary               |
58  *      +-----------------------------------------------+
59  *      |   "used": 2 x uint16; <N> elems; 1 uint16     |
60  *      |   -----------------------------------------   |
61  *      |              pad to 4k boundary               |
62  *      +-----------------------------------------------+
63  *
64  * The number <N> that appears here is always a power of two and is
65  * limited to no more than 32768 (as it must fit in a 16-bit field).
66  * If <N> is sufficiently large, the above will occupy more than
67  * two pages.  In any case, all pages must be physically contiguous
68  * within the guest's physical address space.
69  *
70  * The <N> 16-byte "desc" descriptors consist of a 64-bit guest
71  * physical address <addr>, a 32-bit length <len>, a 16-bit
72  * <flags>, and a 16-bit <next> field (all in guest byte order).
73  *
74  * There are three flags that may be set :
75  *	NEXT    descriptor is chained, so use its "next" field
76  *	WRITE   descriptor is for host to write into guest RAM
77  *		(else host is to read from guest RAM)
78  *	INDIRECT   descriptor address field is (guest physical)
79  *		address of a linear array of descriptors
80  *
81  * Unless INDIRECT is set, <len> is the number of bytes that may
82  * be read/written from guest physical address <addr>.  If
83  * INDIRECT is set, WRITE is ignored and <len> provides the length
84  * of the indirect descriptors (and <len> must be a multiple of
85  * 16).  Note that NEXT may still be set in the main descriptor
86  * pointing to the indirect, and should be set in each indirect
87  * descriptor that uses the next descriptor (these should generally
88  * be numbered sequentially).  However, INDIRECT must not be set
89  * in the indirect descriptors.  Upon reaching an indirect descriptor
90  * without a NEXT bit, control returns to the direct descriptors.
91  *
92  * Except inside an indirect, each <next> value must be in the
93  * range [0 .. N) (i.e., the half-open interval).  (Inside an
94  * indirect, each <next> must be in the range [0 .. <len>/16).)
95  *
96  * The "avail" data structures reside in the same pages as the
97  * "desc" structures since both together are used by the device to
98  * pass information to the hypervisor's virtual driver.  These
99  * begin with a 16-bit <flags> field and 16-bit index <idx>, then
100  * have <N> 16-bit <ring> values, followed by one final 16-bit
101  * field <used_event>.  The <N> <ring> entries are simply indices
102  * indices into the descriptor ring (and thus must meet the same
103  * constraints as each <next> value).  However, <idx> is counted
104  * up from 0 (initially) and simply wraps around after 65535; it
105  * is taken mod <N> to find the next available entry.
106  *
107  * The "used" ring occupies a separate page or pages, and contains
108  * values written from the virtual driver back to the guest OS.
109  * This begins with a 16-bit <flags> and 16-bit <idx>, then there
110  * are <N> "vring_used" elements, followed by a 16-bit <avail_event>.
111  * The <N> "vring_used" elements consist of a 32-bit <id> and a
112  * 32-bit <len> (vu_tlen below).  The <id> is simply the index of
113  * the head of a descriptor chain the guest made available
114  * earlier, and the <len> is the number of bytes actually written,
115  * e.g., in the case of a network driver that provided a large
116  * receive buffer but received only a small amount of data.
117  *
118  * The two event fields, <used_event> and <avail_event>, in the
119  * avail and used rings (respectively -- note the reversal!), are
120  * always provided, but are used only if the virtual device
121  * negotiates the VIRTIO_RING_F_EVENT_IDX feature during feature
122  * negotiation.  Similarly, both rings provide a flag --
123  * VRING_AVAIL_F_NO_INTERRUPT and VRING_USED_F_NO_NOTIFY -- in
124  * their <flags> field, indicating that the guest does not need an
125  * interrupt, or that the hypervisor driver does not need a
126  * notify, when descriptors are added to the corresponding ring.
127  * (These are provided only for interrupt optimization and need
128  * not be implemented.)
129  */
130 #define VRING_ALIGN	4096
131 
132 /*
133  * The address of any given virtual queue is determined by a single
134  * Page Frame Number register.  The guest writes the PFN into the
135  * PCI config space.  However, a device that has two or more
136  * virtqueues can have a different PFN, and size, for each queue.
137  * The number of queues is determinable via the PCI config space
138  * VTCFG_R_QSEL register.  Writes to QSEL select the queue: 0 means
139  * queue #0, 1 means queue#1, etc.  Once a queue is selected, the
140  * remaining PFN and QNUM registers refer to that queue.
141  *
142  * QNUM is a read-only register containing a nonzero power of two
143  * that indicates the (hypervisor's) queue size.  Or, if reading it
144  * produces zero, the hypervisor does not have a corresponding
145  * queue.  (The number of possible queues depends on the virtual
146  * device.  The block device has just one; the network device
147  * provides either two -- 0 = receive, 1 = transmit -- or three,
148  * with 2 = control.)
149  *
150  * PFN is a read/write register giving the physical page address of
151  * the virtqueue in guest memory (the guest must allocate enough space
152  * based on the hypervisor's provided QNUM).
153  *
154  * QNOTIFY is effectively write-only: when the guest writes a queue
155  * number to the register, the hypervisor should scan the specified
156  * virtqueue. (Reading QNOTIFY currently always gets 0).
157  */
158 
159 /*
160  * PFN register shift amount
161  */
162 #define	VRING_PFN		12
163 
164 /*
165  * PCI vendor/device IDs
166  */
167 #define	VIRTIO_VENDOR		0x1AF4
168 #define	VIRTIO_DEV_NET		0x1000
169 #define	VIRTIO_DEV_BLOCK	0x1001
170 #define	VIRTIO_DEV_CONSOLE	0x1003
171 #define	VIRTIO_DEV_RANDOM	0x1005
172 #define	VIRTIO_DEV_SCSI		0x1008
173 #define	VIRTIO_DEV_9P		0x1009
174 #define VIRTIO_DEV_INPUT	0x1052
175 
176 /*
177  * PCI revision IDs
178  */
179 #define VIRTIO_REV_INPUT	1
180 
181 /*
182  * PCI subvendor IDs
183  */
184 #define VIRTIO_SUBVEN_INPUT	0x108E
185 
186 /*
187  * PCI subdevice IDs
188  */
189 #define VIRTIO_SUBDEV_INPUT	0x1100
190 
191 /* From section 2.3, "Virtqueue Configuration", of the virtio specification */
192 static inline int
193 vring_size_aligned(u_int qsz)
194 {
195 	return (roundup2(vring_size(qsz, VRING_ALIGN), VRING_ALIGN));
196 }
197 
198 struct vmctx;
199 struct pci_devinst;
200 struct vqueue_info;
201 struct vm_snapshot_meta;
202 
203 /*
204  * A virtual device, with some number (possibly 0) of virtual
205  * queues and some size (possibly 0) of configuration-space
206  * registers private to the device.  The virtio_softc should come
207  * at the front of each "derived class", so that a pointer to the
208  * virtio_softc is also a pointer to the more specific, derived-
209  * from-virtio driver's softc.
210  *
211  * Note: inside each hypervisor virtio driver, changes to these
212  * data structures must be locked against other threads, if any.
213  * Except for PCI config space register read/write, we assume each
214  * driver does the required locking, but we need a pointer to the
215  * lock (if there is one) for PCI config space read/write ops.
216  *
217  * When the guest reads or writes the device's config space, the
218  * generic layer checks for operations on the special registers
219  * described above.  If the offset of the register(s) being read
220  * or written is past the CFG area (CFG0 or CFG1), the request is
221  * passed on to the virtual device, after subtracting off the
222  * generic-layer size.  (So, drivers can just use the offset as
223  * an offset into "struct config", for instance.)
224  *
225  * (The virtio layer also makes sure that the read or write is to/
226  * from a "good" config offset, hence vc_cfgsize, and on BAR #0.
227  * However, the driver must verify the read or write size and offset
228  * and that no one is writing a readonly register.)
229  *
230  * The BROKED flag ("this thing done gone and broked") is for future
231  * use.
232  */
233 #define	VIRTIO_USE_MSIX		0x01
234 #define	VIRTIO_EVENT_IDX	0x02	/* use the event-index values */
235 #define	VIRTIO_BROKED		0x08	/* ??? */
236 
237 struct virtio_softc {
238 	struct virtio_consts *vs_vc;	/* constants (see below) */
239 	int	vs_flags;		/* VIRTIO_* flags from above */
240 	pthread_mutex_t *vs_mtx;	/* POSIX mutex, if any */
241 	struct pci_devinst *vs_pi;	/* PCI device instance */
242 	uint32_t vs_negotiated_caps;	/* negotiated capabilities */
243 	struct vqueue_info *vs_queues;	/* one per vc_nvq */
244 	int	vs_curq;		/* current queue */
245 	uint8_t	vs_status;		/* value from last status write */
246 	uint8_t	vs_isr;			/* ISR flags, if not MSI-X */
247 	uint16_t vs_msix_cfg_idx;	/* MSI-X vector for config event */
248 };
249 
250 #define	VS_LOCK(vs)							\
251 do {									\
252 	if (vs->vs_mtx)							\
253 		pthread_mutex_lock(vs->vs_mtx);				\
254 } while (0)
255 
256 #define	VS_UNLOCK(vs)							\
257 do {									\
258 	if (vs->vs_mtx)							\
259 		pthread_mutex_unlock(vs->vs_mtx);			\
260 } while (0)
261 
262 struct virtio_consts {
263 	const char *vc_name;		/* name of driver (for diagnostics) */
264 	int	vc_nvq;			/* number of virtual queues */
265 	size_t	vc_cfgsize;		/* size of dev-specific config regs */
266 	void	(*vc_reset)(void *);	/* called on virtual device reset */
267 	void	(*vc_qnotify)(void *, struct vqueue_info *);
268 					/* called on QNOTIFY if no VQ notify */
269 	int	(*vc_cfgread)(void *, int, int, uint32_t *);
270 					/* called to read config regs */
271 	int	(*vc_cfgwrite)(void *, int, int, uint32_t);
272 					/* called to write config regs */
273 	void    (*vc_apply_features)(void *, uint64_t);
274 				/* called to apply negotiated features */
275 	uint64_t vc_hv_caps;		/* hypervisor-provided capabilities */
276 	void	(*vc_pause)(void *);	/* called to pause device activity */
277 	void	(*vc_resume)(void *);	/* called to resume device activity */
278 	int	(*vc_snapshot)(void *, struct vm_snapshot_meta *);
279 				/* called to save / restore device state */
280 };
281 
282 /*
283  * Data structure allocated (statically) per virtual queue.
284  *
285  * Drivers may change vq_qsize after a reset.  When the guest OS
286  * requests a device reset, the hypervisor first calls
287  * vs->vs_vc->vc_reset(); then the data structure below is
288  * reinitialized (for each virtqueue: vs->vs_vc->vc_nvq).
289  *
290  * The remaining fields should only be fussed-with by the generic
291  * code.
292  *
293  * Note: the addresses of vq_desc, vq_avail, and vq_used are all
294  * computable from each other, but it's a lot simpler if we just
295  * keep a pointer to each one.  The event indices are similarly
296  * (but more easily) computable, and this time we'll compute them:
297  * they're just XX_ring[N].
298  */
299 #define	VQ_ALLOC	0x01	/* set once we have a pfn */
300 #define	VQ_BROKED	0x02	/* ??? */
301 struct vqueue_info {
302 	uint16_t vq_qsize;	/* size of this queue (a power of 2) */
303 	void	(*vq_notify)(void *, struct vqueue_info *);
304 				/* called instead of vc_notify, if not NULL */
305 
306 	struct virtio_softc *vq_vs;	/* backpointer to softc */
307 	uint16_t vq_num;	/* we're the num'th queue in the softc */
308 
309 	uint16_t vq_flags;	/* flags (see above) */
310 	uint16_t vq_last_avail;	/* a recent value of vq_avail->idx */
311 	uint16_t vq_next_used;	/* index of the next used slot to be filled */
312 	uint16_t vq_save_used;	/* saved vq_used->idx; see vq_endchains */
313 	uint16_t vq_msix_idx;	/* MSI-X index, or VIRTIO_MSI_NO_VECTOR */
314 
315 	uint32_t vq_pfn;	/* PFN of virt queue (not shifted!) */
316 
317 	volatile struct vring_desc *vq_desc;	/* descriptor array */
318 	volatile struct vring_avail *vq_avail;	/* the "avail" ring */
319 	volatile struct vring_used *vq_used;	/* the "used" ring */
320 
321 };
322 /* as noted above, these are sort of backwards, name-wise */
323 #define VQ_AVAIL_EVENT_IDX(vq) \
324 	(*(volatile uint16_t *)&(vq)->vq_used->ring[(vq)->vq_qsize])
325 #define VQ_USED_EVENT_IDX(vq) \
326 	((vq)->vq_avail->ring[(vq)->vq_qsize])
327 
328 /*
329  * Is this ring ready for I/O?
330  */
331 static inline int
332 vq_ring_ready(struct vqueue_info *vq)
333 {
334 
335 	return (vq->vq_flags & VQ_ALLOC);
336 }
337 
338 /*
339  * Are there "available" descriptors?  (This does not count
340  * how many, just returns True if there are some.)
341  */
342 static inline int
343 vq_has_descs(struct vqueue_info *vq)
344 {
345 
346 	return (vq_ring_ready(vq) && vq->vq_last_avail !=
347 	    vq->vq_avail->idx);
348 }
349 
350 /*
351  * Deliver an interrupt to the guest for a specific MSI-X queue or
352  * event.
353  */
354 static inline void
355 vi_interrupt(struct virtio_softc *vs, uint8_t isr, uint16_t msix_idx)
356 {
357 
358 	if (pci_msix_enabled(vs->vs_pi))
359 		pci_generate_msix(vs->vs_pi, msix_idx);
360 	else {
361 		VS_LOCK(vs);
362 		vs->vs_isr |= isr;
363 		pci_generate_msi(vs->vs_pi, 0);
364 		pci_lintr_assert(vs->vs_pi);
365 		VS_UNLOCK(vs);
366 	}
367 }
368 
369 /*
370  * Deliver an interrupt to the guest on the given virtual queue (if
371  * possible, or a generic MSI interrupt if not using MSI-X).
372  */
373 static inline void
374 vq_interrupt(struct virtio_softc *vs, struct vqueue_info *vq)
375 {
376 
377 	vi_interrupt(vs, VIRTIO_PCI_ISR_INTR, vq->vq_msix_idx);
378 }
379 
380 static inline void
381 vq_kick_enable(struct vqueue_info *vq)
382 {
383 
384 	vq->vq_used->flags &= ~VRING_USED_F_NO_NOTIFY;
385 	/*
386 	 * Full memory barrier to make sure the store to vq_used->flags
387 	 * happens before the load from vq_avail->idx, which results from a
388 	 * subsequent call to vq_has_descs().
389 	 */
390 	atomic_thread_fence_seq_cst();
391 }
392 
393 static inline void
394 vq_kick_disable(struct vqueue_info *vq)
395 {
396 
397 	vq->vq_used->flags |= VRING_USED_F_NO_NOTIFY;
398 }
399 
400 struct iovec;
401 
402 /*
403  * Request description returned by vq_getchain.
404  *
405  * Writable iovecs start at iov[req.readable].
406  */
407 struct vi_req {
408 	int readable;		/* num of readable iovecs */
409 	int writable;		/* num of writable iovecs */
410 	unsigned int idx;	/* ring index */
411 };
412 
413 void	vi_softc_linkup(struct virtio_softc *vs, struct virtio_consts *vc,
414 			void *dev_softc, struct pci_devinst *pi,
415 			struct vqueue_info *queues);
416 int	vi_intr_init(struct virtio_softc *vs, int barnum, int use_msix);
417 void	vi_reset_dev(struct virtio_softc *);
418 void	vi_set_io_bar(struct virtio_softc *, int);
419 
420 int	vq_getchain(struct vqueue_info *vq, struct iovec *iov, int niov,
421 	    struct vi_req *reqp);
422 void	vq_retchains(struct vqueue_info *vq, uint16_t n_chains);
423 void	vq_relchain_prepare(struct vqueue_info *vq, uint16_t idx,
424 			    uint32_t iolen);
425 void	vq_relchain_publish(struct vqueue_info *vq);
426 void	vq_relchain(struct vqueue_info *vq, uint16_t idx, uint32_t iolen);
427 void	vq_endchains(struct vqueue_info *vq, int used_all_avail);
428 
429 uint64_t vi_pci_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
430 		     int baridx, uint64_t offset, int size);
431 void	vi_pci_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
432 		     int baridx, uint64_t offset, int size, uint64_t value);
433 #ifdef BHYVE_SNAPSHOT
434 int	vi_pci_snapshot(struct vm_snapshot_meta *meta);
435 int	vi_pci_pause(struct vmctx *ctx, struct pci_devinst *pi);
436 int	vi_pci_resume(struct vmctx *ctx, struct pci_devinst *pi);
437 #endif
438 #endif	/* _BHYVE_VIRTIO_H_ */
439