1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/fm/protocol.h> 28 #include <limits.h> 29 30 #include <fmd_alloc.h> 31 #include <fmd_subr.h> 32 #include <fmd_event.h> 33 #include <fmd_string.h> 34 #include <fmd_module.h> 35 #include <fmd_case.h> 36 #include <fmd_log.h> 37 #include <fmd_time.h> 38 #include <fmd_topo.h> 39 #include <fmd_ctl.h> 40 41 #include <fmd.h> 42 43 static void 44 fmd_event_nvwrap(fmd_event_impl_t *ep) 45 { 46 (void) nvlist_remove_all(ep->ev_nvl, FMD_EVN_TTL); 47 (void) nvlist_remove_all(ep->ev_nvl, FMD_EVN_TOD); 48 49 (void) nvlist_add_uint8(ep->ev_nvl, 50 FMD_EVN_TTL, ep->ev_ttl); 51 (void) nvlist_add_uint64_array(ep->ev_nvl, 52 FMD_EVN_TOD, (uint64_t *)&ep->ev_time, 2); 53 } 54 55 static void 56 fmd_event_nvunwrap(fmd_event_impl_t *ep, const fmd_timeval_t *tp) 57 { 58 uint64_t *tod; 59 uint_t n; 60 61 if (nvlist_lookup_uint8(ep->ev_nvl, FMD_EVN_TTL, &ep->ev_ttl) != 0) { 62 ep->ev_flags |= FMD_EVF_LOCAL; 63 ep->ev_ttl = (uint8_t)fmd.d_xprt_ttl; 64 } 65 66 if (tp != NULL) 67 ep->ev_time = *tp; 68 else if (nvlist_lookup_uint64_array(ep->ev_nvl, 69 FMD_EVN_TOD, &tod, &n) == 0 && n >= 2) 70 ep->ev_time = *(const fmd_timeval_t *)tod; 71 else 72 fmd_time_sync(&ep->ev_time, &ep->ev_hrt, 1); 73 } 74 75 fmd_event_t * 76 fmd_event_recreate(uint_t type, const fmd_timeval_t *tp, 77 nvlist_t *nvl, void *data, fmd_log_t *lp, off64_t off, size_t len) 78 { 79 fmd_event_impl_t *ep = fmd_alloc(sizeof (fmd_event_impl_t), FMD_SLEEP); 80 81 fmd_timeval_t tod; 82 hrtime_t hr0; 83 84 (void) pthread_mutex_init(&ep->ev_lock, NULL); 85 ep->ev_refs = 0; 86 ASSERT(type < FMD_EVT_NTYPES); 87 ep->ev_type = (uint8_t)type; 88 ep->ev_state = FMD_EVS_RECEIVED; 89 ep->ev_flags = FMD_EVF_REPLAY; 90 ep->ev_nvl = nvl; 91 ep->ev_data = data; 92 ep->ev_log = lp; 93 ep->ev_off = off; 94 ep->ev_len = len; 95 96 fmd_event_nvunwrap(ep, tp); 97 98 /* 99 * If we're not restoring from a log, the event is marked volatile. If 100 * we are restoring from a log, then hold the log pointer and increment 101 * the pending count. If we're using a log but no offset and data len 102 * are specified, it's a checkpoint event: don't replay or set pending. 103 */ 104 if (lp == NULL) 105 ep->ev_flags |= FMD_EVF_VOLATILE; 106 else if (off != 0 && len != 0) 107 fmd_log_hold_pending(lp); 108 else { 109 ep->ev_flags &= ~FMD_EVF_REPLAY; 110 fmd_log_hold(lp); 111 } 112 113 /* 114 * Sample a (TOD, hrtime) pair from the current system clocks and then 115 * compute ev_hrt by taking the delta between this TOD and ev_time. 116 */ 117 fmd_time_sync(&tod, &hr0, 1); 118 fmd_time_tod2hrt(hr0, &tod, &ep->ev_time, &ep->ev_hrt); 119 120 fmd_event_nvwrap(ep); 121 return ((fmd_event_t *)ep); 122 } 123 124 fmd_event_t * 125 fmd_event_create(uint_t type, hrtime_t hrt, nvlist_t *nvl, void *data) 126 { 127 fmd_event_impl_t *ep = fmd_alloc(sizeof (fmd_event_impl_t), FMD_SLEEP); 128 129 fmd_timeval_t tod; 130 hrtime_t hr0; 131 const char *p; 132 uint64_t ena; 133 134 (void) pthread_mutex_init(&ep->ev_lock, NULL); 135 ep->ev_refs = 0; 136 ASSERT(type < FMD_EVT_NTYPES); 137 ep->ev_type = (uint8_t)type; 138 ep->ev_state = FMD_EVS_RECEIVED; 139 ep->ev_flags = FMD_EVF_VOLATILE | FMD_EVF_REPLAY | FMD_EVF_LOCAL; 140 ep->ev_ttl = (uint8_t)fmd.d_xprt_ttl; 141 ep->ev_nvl = nvl; 142 ep->ev_data = data; 143 ep->ev_log = NULL; 144 ep->ev_off = 0; 145 ep->ev_len = 0; 146 147 /* 148 * Sample TOD and then set ev_time to the earlier TOD corresponding to 149 * the input hrtime value. This needs to be improved later: hrestime 150 * should be sampled by the transport and passed as an input parameter. 151 */ 152 fmd_time_sync(&tod, &hr0, 1); 153 154 if (hrt == FMD_HRT_NOW) 155 hrt = hr0; /* use hrtime sampled by fmd_time_sync() */ 156 157 /* 158 * If this is an FMA protocol event of class "ereport.*" that contains 159 * valid ENA, we can compute a more precise bound on the event time. 160 */ 161 if (type == FMD_EVT_PROTOCOL && (p = strchr(data, '.')) != NULL && 162 strncmp(data, FM_EREPORT_CLASS, (size_t)(p - (char *)data)) == 0 && 163 nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) == 0 && 164 fmd.d_clockops == &fmd_timeops_native) 165 hrt = fmd_time_ena2hrt(hrt, ena); 166 167 fmd_time_hrt2tod(hr0, &tod, hrt, &ep->ev_time); 168 ep->ev_hrt = hrt; 169 170 fmd_event_nvwrap(ep); 171 return ((fmd_event_t *)ep); 172 } 173 174 void 175 fmd_event_destroy(fmd_event_t *e) 176 { 177 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 178 179 ASSERT(MUTEX_HELD(&ep->ev_lock)); 180 ASSERT(ep->ev_refs == 0); 181 182 /* 183 * If the current state is RECEIVED (i.e. no module has accepted the 184 * event) and the event was logged, then change the state to DISCARDED. 185 */ 186 if (ep->ev_state == FMD_EVS_RECEIVED) 187 ep->ev_state = FMD_EVS_DISCARDED; 188 189 /* 190 * If the current state is DISCARDED, ACCEPTED, or DIAGNOSED and the 191 * event has not yet been commited, then attempt to commit it now. 192 */ 193 if (ep->ev_state != FMD_EVS_RECEIVED && (ep->ev_flags & ( 194 FMD_EVF_VOLATILE | FMD_EVF_REPLAY)) == FMD_EVF_REPLAY) 195 fmd_log_commit(ep->ev_log, e); 196 197 if (ep->ev_log != NULL) { 198 if (ep->ev_flags & FMD_EVF_REPLAY) 199 fmd_log_decommit(ep->ev_log, e); 200 fmd_log_rele(ep->ev_log); 201 } 202 203 /* 204 * Perform any event type-specific cleanup activities, and then free 205 * the name-value pair list and underlying event data structure. 206 */ 207 switch (ep->ev_type) { 208 case FMD_EVT_TIMEOUT: 209 fmd_free(ep->ev_data, sizeof (fmd_modtimer_t)); 210 break; 211 case FMD_EVT_CLOSE: 212 case FMD_EVT_PUBLISH: 213 fmd_case_rele(ep->ev_data); 214 break; 215 case FMD_EVT_CTL: 216 fmd_ctl_fini(ep->ev_data); 217 break; 218 case FMD_EVT_TOPO: 219 fmd_topo_rele(ep->ev_data); 220 break; 221 } 222 223 nvlist_free(ep->ev_nvl); 224 225 fmd_free(ep, sizeof (fmd_event_impl_t)); 226 } 227 228 void 229 fmd_event_hold(fmd_event_t *e) 230 { 231 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 232 233 (void) pthread_mutex_lock(&ep->ev_lock); 234 ep->ev_refs++; 235 ASSERT(ep->ev_refs != 0); 236 (void) pthread_mutex_unlock(&ep->ev_lock); 237 238 if (ep->ev_type == FMD_EVT_CTL) 239 fmd_ctl_hold(ep->ev_data); 240 } 241 242 void 243 fmd_event_rele(fmd_event_t *e) 244 { 245 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 246 247 if (ep->ev_type == FMD_EVT_CTL) 248 fmd_ctl_rele(ep->ev_data); 249 250 (void) pthread_mutex_lock(&ep->ev_lock); 251 ASSERT(ep->ev_refs != 0); 252 253 if (--ep->ev_refs == 0) 254 fmd_event_destroy(e); 255 else 256 (void) pthread_mutex_unlock(&ep->ev_lock); 257 } 258 259 /* 260 * Transition event from its current state to the specified state. The states 261 * for events are defined in fmd_event.h and work according to the diagram: 262 * 263 * ------------- ------------- State Description 264 * ( RECEIVED =1 )-->( ACCEPTED =2 ) ---------- --------------------------- 265 * -----+-------\ ------+------ DISCARDED No active references in fmd 266 * | \ | RECEIVED Active refs in fmd, no case 267 * -----v------- \ ------v------ ACCEPTED Active refs, case assigned 268 * ( DISCARDED=0 ) v( DIAGNOSED=3 ) DIAGNOSED Active refs, case solved 269 * ------------- ------------- 270 * 271 * Since events are reference counted on behalf of multiple subscribers, any 272 * attempt to transition an event to an "earlier" or "equal" state (as defined 273 * by the numeric state values shown in the diagram) is silently ignored. 274 * An event begins life in the RECEIVED state, so the RECEIVED -> DISCARDED 275 * transition is handled by fmd_event_destroy() when no references remain. 276 */ 277 void 278 fmd_event_transition(fmd_event_t *e, uint_t state) 279 { 280 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 281 282 (void) pthread_mutex_lock(&ep->ev_lock); 283 284 TRACE((FMD_DBG_EVT, "event %p transition %u -> %u", 285 (void *)ep, ep->ev_state, state)); 286 287 if (state <= ep->ev_state) { 288 (void) pthread_mutex_unlock(&ep->ev_lock); 289 return; /* no state change necessary */ 290 } 291 292 if (ep->ev_state < FMD_EVS_RECEIVED || ep->ev_state > FMD_EVS_DIAGNOSED) 293 fmd_panic("illegal transition %u -> %u\n", ep->ev_state, state); 294 295 ep->ev_state = state; 296 (void) pthread_mutex_unlock(&ep->ev_lock); 297 } 298 299 /* 300 * If the specified event is DISCARDED, ACCEPTED, OR DIAGNOSED and it has been 301 * written to a log but is still marked for replay, attempt to commit it to the 302 * log so that it will not be replayed. If fmd_log_commit() is successful, it 303 * will clear the FMD_EVF_REPLAY flag on the event for us. 304 */ 305 void 306 fmd_event_commit(fmd_event_t *e) 307 { 308 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 309 310 (void) pthread_mutex_lock(&ep->ev_lock); 311 312 if (ep->ev_state != FMD_EVS_RECEIVED && (ep->ev_flags & ( 313 FMD_EVF_VOLATILE | FMD_EVF_REPLAY)) == FMD_EVF_REPLAY) 314 fmd_log_commit(ep->ev_log, e); 315 316 (void) pthread_mutex_unlock(&ep->ev_lock); 317 } 318 319 /* 320 * Compute the delta between events in nanoseconds. To account for very old 321 * events which are replayed, we must handle the case where ev_hrt is negative. 322 * We convert the hrtime_t's to unsigned 64-bit integers and then handle the 323 * case where 'old' is greater than 'new' (i.e. high-res time has wrapped). 324 */ 325 hrtime_t 326 fmd_event_delta(fmd_event_t *e1, fmd_event_t *e2) 327 { 328 uint64_t old = ((fmd_event_impl_t *)e1)->ev_hrt; 329 uint64_t new = ((fmd_event_impl_t *)e2)->ev_hrt; 330 331 return (new >= old ? new - old : (UINT64_MAX - old) + new + 1); 332 } 333 334 hrtime_t 335 fmd_event_hrtime(fmd_event_t *ep) 336 { 337 return (((fmd_event_impl_t *)ep)->ev_hrt); 338 } 339 340 int 341 fmd_event_match(fmd_event_t *e, uint_t type, const void *data) 342 { 343 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 344 345 if (ep->ev_type != type) 346 return (0); 347 348 if (type == FMD_EVT_PROTOCOL) 349 return (fmd_strmatch(ep->ev_data, data)); 350 else if (type == FMD_EVT_TIMEOUT) 351 return ((id_t)data == ((fmd_modtimer_t *)ep->ev_data)->mt_id); 352 else 353 return (ep->ev_data == data); 354 } 355 356 int 357 fmd_event_equal(fmd_event_t *e1, fmd_event_t *e2) 358 { 359 fmd_event_impl_t *ep1 = (fmd_event_impl_t *)e1; 360 fmd_event_impl_t *ep2 = (fmd_event_impl_t *)e2; 361 362 return (ep1->ev_log != NULL && 363 ep1->ev_log == ep2->ev_log && ep1->ev_off == ep2->ev_off); 364 } 365