1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2015, Joyent, Inc. All rights reserved. 29 */ 30 31 /* 32 * Dump an elf file. 33 */ 34 #include <stddef.h> 35 #include <sys/elf_386.h> 36 #include <sys/elf_amd64.h> 37 #include <sys/elf_SPARC.h> 38 #include <_libelf.h> 39 #include <dwarf.h> 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <errno.h> 43 #include <strings.h> 44 #include <debug.h> 45 #include <conv.h> 46 #include <msg.h> 47 #include <_elfdump.h> 48 49 50 /* 51 * VERSYM_STATE is used to maintain information about the VERSYM section 52 * in the object being analyzed. It is filled in by versions(), and used 53 * by init_symtbl_state() when displaying symbol information. 54 * 55 * There are three forms of symbol versioning known to us: 56 * 57 * 1) The original form, introduced with Solaris 2.5, in which 58 * the Versym contains indexes to Verdef records, and the 59 * Versym values for UNDEF symbols resolved by other objects 60 * are all set to 0. 61 * 2) The GNU form, which is backward compatible with the original 62 * Solaris form, but which adds several extensions: 63 * - The Versym also contains indexes to Verneed records, recording 64 * which object/version contributed the external symbol at 65 * link time. These indexes start with the next value following 66 * the final Verdef index. The index is written to the previously 67 * reserved vna_other field of the ELF Vernaux structure. 68 * - The top bit of the Versym value is no longer part of the index, 69 * but is used as a "hidden bit" to prevent binding to the symbol. 70 * - Multiple implementations of a given symbol, contained in varying 71 * versions are allowed, using special assembler pseudo ops, 72 * and encoded in the symbol name using '@' characters. 73 * 3) Modified Solaris form, in which we adopt the first GNU extension 74 * (Versym indexes to Verneed records), but not the others. 75 * 76 * elfdump can handle any of these cases. The presence of a DT_VERSYM 77 * dynamic element indicates a full GNU object. An object that lacks 78 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux 79 * structures is a modified Solaris object. An object that has neither of 80 * these uses the original form. 81 * 82 * max_verndx contains the largest version index that can appear 83 * in a Versym entry. This can never be less than 1: In the case where 84 * there is no verdef/verneed sections, the [0] index is reserved 85 * for local symbols, and the [1] index for globals. If the original 86 * Solaris versioning rules are in effect and there is a verdef section, 87 * then max_verndex is the number of defined versions. If one of the 88 * other versioning forms is in effect, then: 89 * 1) If there is no verneed section, it is the same as for 90 * original Solaris versioning. 91 * 2) If there is a verneed section, the vna_other field of the 92 * Vernaux structs contain versions, and max_verndx is the 93 * largest such index. 94 * 95 * If gnu_full is True, the object uses the full GNU form of versioning. 96 * The value of the gnu_full field is based on the presence of 97 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and 98 * Solaris ld does not. 99 * 100 * The gnu_needed field is True if the Versym contains indexes to 101 * Verneed records, as indicated by non-zero vna_other fields in the Verneed 102 * section. If gnu_full is True, then gnu_needed will always be true. 103 * However, gnu_needed can be true without gnu_full. This is the modified 104 * Solaris form. 105 */ 106 typedef struct { 107 Cache *cache; /* Pointer to cache entry for VERSYM */ 108 Versym *data; /* Pointer to versym array */ 109 int gnu_full; /* True if object uses GNU versioning rules */ 110 int gnu_needed; /* True if object uses VERSYM indexes for */ 111 /* VERNEED (subset of gnu_full) */ 112 int max_verndx; /* largest versym index value */ 113 } VERSYM_STATE; 114 115 /* 116 * SYMTBL_STATE is used to maintain information about a single symbol 117 * table section, for use by the routines that display symbol information. 118 */ 119 typedef struct { 120 const char *file; /* Name of file */ 121 Ehdr *ehdr; /* ELF header for file */ 122 Cache *cache; /* Cache of all section headers */ 123 uchar_t osabi; /* OSABI to use */ 124 Word shnum; /* # of sections in cache */ 125 Cache *seccache; /* Cache of symbol table section hdr */ 126 Word secndx; /* Index of symbol table section hdr */ 127 const char *secname; /* Name of section */ 128 uint_t flags; /* Command line option flags */ 129 struct { /* Extended section index data */ 130 int checked; /* TRUE if already checked for shxndx */ 131 Word *data; /* NULL, or extended section index */ 132 /* used for symbol table entries */ 133 uint_t n; /* # items in shxndx.data */ 134 } shxndx; 135 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */ 136 Sym *sym; /* Array of symbols */ 137 Word symn; /* # of symbols */ 138 } SYMTBL_STATE; 139 140 /* 141 * A variable of this type is used to track information related to 142 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame(). 143 */ 144 typedef struct { 145 Word frame_cnt; /* # .eh_frame sections seen */ 146 Word frame_ndx; /* Section index of 1st .eh_frame */ 147 Word hdr_cnt; /* # .eh_frame_hdr sections seen */ 148 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */ 149 uint64_t frame_ptr; /* Value of FramePtr field from first */ 150 /* .eh_frame_hdr section */ 151 uint64_t frame_base; /* Data addr of 1st .eh_frame */ 152 } gnu_eh_state_t; 153 154 /* 155 * C++ .exception_ranges entries make use of the signed ptrdiff_t 156 * type to record self-relative pointer values. We need a type 157 * for this that is matched to the ELFCLASS being processed. 158 */ 159 #if defined(_ELF64) 160 typedef int64_t PTRDIFF_T; 161 #else 162 typedef int32_t PTRDIFF_T; 163 #endif 164 165 /* 166 * The Sun C++ ABI uses this struct to define each .exception_ranges 167 * entry. From the ABI: 168 * 169 * The field ret_addr is a self relative pointer to the start of the address 170 * range. The name was chosen because in the current implementation the range 171 * typically starts at the return address for a call site. 172 * 173 * The field length is the difference, in bytes, between the pc of the last 174 * instruction covered by the exception range and the first. When only a 175 * single call site is represented without optimization, this will equal zero. 176 * 177 * The field handler_addr is a relative pointer which stores the difference 178 * between the start of the exception range and the address of all code to 179 * catch exceptions and perform the cleanup for stack unwinding. 180 * 181 * The field type_block is a relative pointer which stores the difference 182 * between the start of the exception range and the address of an array used 183 * for storing a list of the types of exceptions which can be caught within 184 * the exception range. 185 */ 186 typedef struct { 187 PTRDIFF_T ret_addr; 188 Xword length; 189 PTRDIFF_T handler_addr; 190 PTRDIFF_T type_block; 191 Xword reserved; 192 } exception_range_entry; 193 194 /* 195 * Focal point for verifying symbol names. 196 */ 197 static const char * 198 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name) 199 { 200 /* 201 * If an error in this routine is due to a property of the string 202 * section, as opposed to a bad offset into the section (a property of 203 * the referencing section), then we will detect the same error on 204 * every call involving those sections. We use these static variables 205 * to retain the information needed to only issue each such error once. 206 */ 207 static Cache *last_refsec; /* Last referencing section seen */ 208 static int strsec_err; /* True if error issued */ 209 210 const char *strs; 211 Word strn; 212 213 if ((strsec->c_data == NULL) || (strsec->c_data->d_buf == NULL)) 214 return (NULL); 215 216 strs = (char *)strsec->c_data->d_buf; 217 strn = strsec->c_data->d_size; 218 219 /* 220 * We only print a diagnostic regarding a bad string table once per 221 * input section being processed. If the refsec has changed, reset 222 * our retained error state. 223 */ 224 if (last_refsec != refsec) { 225 last_refsec = refsec; 226 strsec_err = 0; 227 } 228 229 /* Verify that strsec really is a string table */ 230 if (strsec->c_shdr->sh_type != SHT_STRTAB) { 231 if (!strsec_err) { 232 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB), 233 file, strsec->c_ndx, refsec->c_ndx); 234 strsec_err = 1; 235 } 236 return (MSG_INTL(MSG_STR_UNKNOWN)); 237 } 238 239 /* 240 * Is the string table offset within range of the available strings? 241 */ 242 if (name >= strn) { 243 /* 244 * Do we have a empty string table? 245 */ 246 if (strs == NULL) { 247 if (!strsec_err) { 248 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 249 file, strsec->c_name); 250 strsec_err = 1; 251 } 252 } else { 253 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF), 254 file, refsec->c_name, EC_WORD(ndx), strsec->c_name, 255 EC_WORD(name), EC_WORD(strn - 1)); 256 } 257 258 /* 259 * Return the empty string so that the calling function can 260 * continue it's output diagnostics. 261 */ 262 return (MSG_INTL(MSG_STR_UNKNOWN)); 263 } 264 return (strs + name); 265 } 266 267 /* 268 * Relocations can reference section symbols and standard symbols. If the 269 * former, establish the section name. 270 */ 271 static const char * 272 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum, 273 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file) 274 { 275 Sym *sym; 276 const char *name; 277 278 if (symndx >= symnum) { 279 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX), 280 file, EC_WORD(symndx), EC_WORD(relndx)); 281 return (MSG_INTL(MSG_STR_UNKNOWN)); 282 } 283 284 sym = (Sym *)(syms + symndx); 285 name = string(csec, symndx, strsec, file, sym->st_name); 286 287 /* 288 * If the symbol represents a section offset construct an appropriate 289 * string. Note, although section symbol table entries typically have 290 * a NULL name pointer, entries do exist that point into the string 291 * table to their own NULL strings. 292 */ 293 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && 294 ((sym->st_name == 0) || (*name == '\0'))) { 295 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION), 296 cache[sym->st_shndx].c_name); 297 return ((const char *)secstr); 298 } 299 300 return (name); 301 } 302 303 /* 304 * Focal point for establishing a string table section. Data such as the 305 * dynamic information simply points to a string table. Data such as 306 * relocations, reference a symbol table, which in turn is associated with a 307 * string table. 308 */ 309 static int 310 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file, 311 Word *symnum, Cache **symsec, Cache **strsec) 312 { 313 Shdr *shdr = cache[ndx].c_shdr; 314 315 /* 316 * If symtab is non-zero, the ndx we are called with represents a 317 * shdr which links to a symbol table (which then links to a string 318 * table) 319 */ 320 if (symtab != 0) { 321 /* 322 * Validate the symbol table linkage. 323 */ 324 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 325 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 326 file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); 327 return (0); 328 } 329 330 /* 331 * Establish the symbol table index. 332 */ 333 ndx = shdr->sh_link; 334 shdr = cache[ndx].c_shdr; 335 336 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 337 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 338 file, cache[ndx].c_name); 339 return (0); 340 } 341 342 /* 343 * Obtain, and verify the symbol table data. 344 */ 345 if ((cache[ndx].c_data == NULL) || 346 (cache[ndx].c_data->d_buf == NULL)) { 347 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 348 file, cache[ndx].c_name); 349 return (0); 350 } 351 352 /* 353 * Return symbol table information. 354 */ 355 if (symnum) 356 *symnum = (shdr->sh_size / shdr->sh_entsize); 357 if (symsec) 358 *symsec = &cache[ndx]; 359 } 360 361 /* 362 * Validate the string table linkage. 363 */ 364 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 365 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 366 file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); 367 return (0); 368 } 369 370 if (strsec) 371 *strsec = &cache[shdr->sh_link]; 372 373 return (1); 374 } 375 376 /* 377 * Lookup a symbol and set Sym accordingly. 378 * 379 * entry: 380 * name - Name of symbol to lookup 381 * cache - Cache of all section headers 382 * shnum - # of sections in cache 383 * sym - Address of pointer to receive symbol 384 * target - NULL, or section to which the symbol must be associated. 385 * symtab - Symbol table to search for symbol 386 * file - Name of file 387 * 388 * exit: 389 * If the symbol is found, *sym is set to reference it, and True is 390 * returned. If target is non-NULL, the symbol must reference the given 391 * section --- otherwise the section is not checked. 392 * 393 * If no symbol is found, False is returned. 394 */ 395 static int 396 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym, 397 Cache *target, Cache *symtab, const char *file) 398 { 399 Shdr *shdr; 400 Word symn, cnt; 401 Sym *syms; 402 403 if (symtab == 0) 404 return (0); 405 406 shdr = symtab->c_shdr; 407 408 /* 409 * Determine the symbol data and number. 410 */ 411 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 412 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 413 file, symtab->c_name); 414 return (0); 415 } 416 if ((symtab->c_data == NULL) || (symtab->c_data->d_buf == NULL)) 417 return (0); 418 419 /* LINTED */ 420 symn = (Word)(shdr->sh_size / shdr->sh_entsize); 421 syms = (Sym *)symtab->c_data->d_buf; 422 423 /* 424 * Get the associated string table section. 425 */ 426 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 427 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 428 file, symtab->c_name, EC_WORD(shdr->sh_link)); 429 return (0); 430 } 431 432 /* 433 * Loop through the symbol table to find a match. 434 */ 435 *sym = NULL; 436 for (cnt = 0; cnt < symn; syms++, cnt++) { 437 const char *symname; 438 439 symname = string(symtab, cnt, &cache[shdr->sh_link], file, 440 syms->st_name); 441 442 if (symname && (strcmp(name, symname) == 0) && 443 ((target == NULL) || (target->c_ndx == syms->st_shndx))) { 444 /* 445 * It is possible, though rare, for a local and 446 * global symbol of the same name to exist, each 447 * contributed by a different input object. If the 448 * symbol just found is local, remember it, but 449 * continue looking. 450 */ 451 *sym = syms; 452 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL) 453 break; 454 } 455 } 456 457 return (*sym != NULL); 458 } 459 460 /* 461 * Print section headers. 462 */ 463 static void 464 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi) 465 { 466 size_t seccnt; 467 468 for (seccnt = 1; seccnt < shnum; seccnt++) { 469 Cache *_cache = &cache[seccnt]; 470 Shdr *shdr = _cache->c_shdr; 471 const char *secname = _cache->c_name; 472 473 /* 474 * Although numerous section header entries can be zero, it's 475 * usually a sign of trouble if the type is zero. 476 */ 477 if (shdr->sh_type == 0) { 478 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE), 479 file, secname, EC_WORD(shdr->sh_type)); 480 } 481 482 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type)) 483 continue; 484 485 /* 486 * Identify any sections that are suspicious. A .got section 487 * shouldn't exist in a relocatable object. 488 */ 489 if (ehdr->e_type == ET_REL) { 490 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT), 491 MSG_ELF_GOT_SIZE) == 0) { 492 (void) fprintf(stderr, 493 MSG_INTL(MSG_GOT_UNEXPECTED), file, 494 secname); 495 } 496 } 497 498 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 499 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname); 500 Elf_shdr(0, osabi, ehdr->e_machine, shdr); 501 } 502 } 503 504 /* 505 * Obtain a specified Phdr entry. 506 */ 507 static Phdr * 508 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf) 509 { 510 Word cnt, tcnt; 511 Phdr *phdr; 512 513 if ((phdr = elf_getphdr(elf)) == NULL) { 514 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 515 return (NULL); 516 } 517 518 for (cnt = 0; cnt < phnum; phdr++, cnt++) { 519 for (tcnt = 0; tcnt < type_cnt; tcnt++) { 520 if (phdr->p_type == type_arr[tcnt]) 521 return (phdr); 522 } 523 } 524 return (NULL); 525 } 526 527 /* 528 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr 529 * sections. 530 * 531 * entry: 532 * cache - Cache of all section headers 533 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed 534 * shnum - Total number of sections which exist 535 * uphdr - NULL, or unwind program header associated with 536 * the .eh_frame_hdr section. 537 * ehdr - ELF header for file 538 * eh_state - Data used across calls to this routine. The 539 * caller should zero it before the first call, and 540 * pass it on every call. 541 * osabi - OSABI to use in displaying information 542 * file - Name of file 543 * flags - Command line option flags 544 */ 545 static void 546 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr, 547 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags) 548 { 549 #if defined(_ELF64) 550 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64 551 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64 552 #else 553 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32 554 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32 555 #endif 556 557 Cache *_cache = &cache[shndx]; 558 Shdr *shdr = _cache->c_shdr; 559 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf); 560 size_t datasize = _cache->c_data->d_size; 561 Conv_dwarf_ehe_buf_t dwarf_ehe_buf; 562 uint64_t ndx, frame_ptr, fde_cnt, tabndx; 563 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc; 564 uint64_t initloc, initloc0 = 0; 565 uint64_t gotaddr = 0; 566 int cnt; 567 568 for (cnt = 1; cnt < shnum; cnt++) { 569 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), 570 MSG_ELF_GOT_SIZE) == 0) { 571 gotaddr = cache[cnt].c_shdr->sh_addr; 572 break; 573 } 574 } 575 576 if ((data == NULL) || (datasize == 0)) { 577 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 578 file, _cache ->c_name); 579 return; 580 } 581 582 /* 583 * Is this a .eh_frame_hdr? 584 */ 585 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) || 586 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR), 587 MSG_SCN_FRMHDR_SIZE) == 0)) { 588 /* 589 * There can only be a single .eh_frame_hdr. 590 * Flag duplicates. 591 */ 592 if (++eh_state->hdr_cnt > 1) 593 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR), 594 file, EC_WORD(shndx), _cache->c_name); 595 596 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR)); 597 ndx = 0; 598 599 vers = data[ndx++]; 600 frame_ptr_enc = data[ndx++]; 601 fde_cnt_enc = data[ndx++]; 602 table_enc = data[ndx++]; 603 604 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers); 605 606 switch (dwarf_ehe_extract(data, datasize, &ndx, 607 &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE, 608 shdr->sh_addr, ndx, gotaddr)) { 609 case DW_OVERFLOW: 610 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), 611 file, _cache->c_name); 612 return; 613 case DW_BAD_ENCODING: 614 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), 615 file, _cache->c_name, frame_ptr_enc); 616 return; 617 case DW_SUCCESS: 618 break; 619 } 620 if (eh_state->hdr_cnt == 1) { 621 eh_state->hdr_ndx = shndx; 622 eh_state->frame_ptr = frame_ptr; 623 } 624 625 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC), 626 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf), 627 EC_XWORD(frame_ptr)); 628 629 switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt, 630 fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, 631 gotaddr)) { 632 case DW_OVERFLOW: 633 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), 634 file, _cache->c_name); 635 return; 636 case DW_BAD_ENCODING: 637 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), 638 file, _cache->c_name, fde_cnt_enc); 639 return; 640 case DW_SUCCESS: 641 break; 642 } 643 644 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC), 645 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf), 646 EC_XWORD(fde_cnt)); 647 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC), 648 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf)); 649 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1)); 650 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2)); 651 652 for (tabndx = 0; tabndx < fde_cnt; tabndx++) { 653 uint64_t table; 654 655 switch (dwarf_ehe_extract(data, datasize, &ndx, 656 &initloc, table_enc, ehdr->e_ident, B_TRUE, 657 shdr->sh_addr, ndx, gotaddr)) { 658 case DW_OVERFLOW: 659 (void) fprintf(stderr, 660 MSG_INTL(MSG_ERR_DWOVRFLW), file, 661 _cache->c_name); 662 return; 663 case DW_BAD_ENCODING: 664 (void) fprintf(stderr, 665 MSG_INTL(MSG_ERR_DWBADENC), file, 666 _cache->c_name, table_enc); 667 return; 668 case DW_SUCCESS: 669 break; 670 } 671 if ((tabndx != 0) && (initloc0 > initloc)) 672 (void) fprintf(stderr, 673 MSG_INTL(MSG_ERR_BADSORT), file, 674 _cache->c_name, EC_WORD(tabndx)); 675 switch (dwarf_ehe_extract(data, datasize, &ndx, &table, 676 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, 677 ndx, gotaddr)) { 678 case DW_OVERFLOW: 679 (void) fprintf(stderr, 680 MSG_INTL(MSG_ERR_DWOVRFLW), file, 681 _cache->c_name); 682 return; 683 case DW_BAD_ENCODING: 684 (void) fprintf(stderr, 685 MSG_INTL(MSG_ERR_DWBADENC), file, 686 _cache->c_name, table_enc); 687 return; 688 case DW_SUCCESS: 689 break; 690 } 691 692 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT), 693 EC_XWORD(initloc), 694 EC_XWORD(table)); 695 initloc0 = initloc; 696 } 697 } else { /* Display the .eh_frame section */ 698 eh_state->frame_cnt++; 699 if (eh_state->frame_cnt == 1) { 700 eh_state->frame_ndx = shndx; 701 eh_state->frame_base = shdr->sh_addr; 702 } else if ((eh_state->frame_cnt > 1) && 703 (ehdr->e_type != ET_REL)) { 704 Conv_inv_buf_t inv_buf; 705 706 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM), 707 file, EC_WORD(shndx), _cache->c_name, 708 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf)); 709 } 710 dump_eh_frame(file, _cache->c_name, data, datasize, 711 shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr); 712 } 713 714 /* 715 * If we've seen the .eh_frame_hdr and the first .eh_frame section, 716 * compare the header frame_ptr to the address of the actual frame 717 * section to ensure the link-editor got this right. Note, this 718 * diagnostic is only produced when unwind information is explicitly 719 * asked for, as shared objects built with an older ld(1) may reveal 720 * this inconsistency. Although an inconsistency, it doesn't seem to 721 * have any adverse effect on existing tools. 722 */ 723 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) && 724 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) && 725 (eh_state->frame_ptr != eh_state->frame_base)) 726 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR), 727 file, EC_WORD(eh_state->hdr_ndx), 728 cache[eh_state->hdr_ndx].c_name, 729 EC_XWORD(eh_state->frame_ptr), 730 EC_WORD(eh_state->frame_ndx), 731 cache[eh_state->frame_ndx].c_name, 732 EC_XWORD(eh_state->frame_base)); 733 #undef MSG_UNW_BINSRTAB2 734 #undef MSG_UNW_BINSRTABENT 735 } 736 737 /* 738 * Convert a self relative pointer into an address. A self relative 739 * pointer adds the address where the pointer resides to the offset 740 * contained in the pointer. The benefit is that the value of the 741 * pointer does not require relocation. 742 * 743 * entry: 744 * base_addr - Address of the pointer. 745 * delta - Offset relative to base_addr giving desired address 746 * 747 * exit: 748 * The computed address is returned. 749 * 750 * note: 751 * base_addr is an unsigned value, while ret_addr is signed. This routine 752 * used explicit testing and casting to explicitly control type 753 * conversion, and ensure that we handle the maximum possible range. 754 */ 755 static Addr 756 srelptr(Addr base_addr, PTRDIFF_T delta) 757 { 758 if (delta < 0) 759 return (base_addr - (Addr) (-delta)); 760 761 return (base_addr + (Addr) delta); 762 } 763 764 /* 765 * Byte swap a PTRDIFF_T value. 766 */ 767 static PTRDIFF_T 768 swap_ptrdiff(PTRDIFF_T value) 769 { 770 PTRDIFF_T r; 771 uchar_t *dst = (uchar_t *)&r; 772 uchar_t *src = (uchar_t *)&value; 773 774 UL_ASSIGN_BSWAP_XWORD(dst, src); 775 return (r); 776 } 777 778 /* 779 * Display exception_range_entry items from the .exception_ranges section 780 * of a Sun C++ object. 781 */ 782 static void 783 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap) 784 { 785 /* 786 * Translate a PTRDIFF_T self-relative address field of 787 * an exception_range_entry struct into an address. 788 * 789 * entry: 790 * exc_addr - Address of base of exception_range_entry struct 791 * cur_ent - Pointer to data in the struct to be translated 792 * 793 * _f - Field of struct to be translated 794 */ 795 #define SRELPTR(_f) \ 796 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f) 797 798 #if defined(_ELF64) 799 #define MSG_EXR_TITLE MSG_EXR_TITLE_64 800 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64 801 #else 802 #define MSG_EXR_TITLE MSG_EXR_TITLE_32 803 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32 804 #endif 805 806 exception_range_entry scratch, *ent, *cur_ent = &scratch; 807 char index[MAXNDXSIZE]; 808 Word i, nelts; 809 Addr addr, addr0 = 0, offset = 0; 810 Addr exc_addr = _cache->c_shdr->sh_addr; 811 812 dbg_print(0, MSG_INTL(MSG_EXR_TITLE)); 813 ent = (exception_range_entry *)(_cache->c_data->d_buf); 814 nelts = _cache->c_data->d_size / sizeof (exception_range_entry); 815 816 for (i = 0; i < nelts; i++, ent++) { 817 if (do_swap) { 818 /* 819 * Copy byte swapped values into the scratch buffer. 820 * The reserved field is not used, so we skip it. 821 */ 822 scratch.ret_addr = swap_ptrdiff(ent->ret_addr); 823 scratch.length = BSWAP_XWORD(ent->length); 824 scratch.handler_addr = swap_ptrdiff(ent->handler_addr); 825 scratch.type_block = swap_ptrdiff(ent->type_block); 826 } else { 827 cur_ent = ent; 828 } 829 830 /* 831 * The table is required to be sorted by the address 832 * derived from ret_addr, to allow binary searching. Ensure 833 * that addresses grow monotonically. 834 */ 835 addr = SRELPTR(ret_addr); 836 if ((i != 0) && (addr0 > addr)) 837 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT), 838 file, _cache->c_name, EC_WORD(i)); 839 840 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), 841 EC_XWORD(i)); 842 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset), 843 EC_ADDR(addr), EC_ADDR(cur_ent->length), 844 EC_ADDR(SRELPTR(handler_addr)), 845 EC_ADDR(SRELPTR(type_block))); 846 847 addr0 = addr; 848 exc_addr += sizeof (exception_range_entry); 849 offset += sizeof (exception_range_entry); 850 } 851 852 #undef SRELPTR 853 #undef MSG_EXR_TITLE 854 #undef MSG_EXR_ENTRY 855 } 856 857 /* 858 * Display information from unwind/exception sections: 859 * 860 * - GNU/amd64 .eh_frame and .eh_frame_hdr 861 * - Sun C++ .exception_ranges 862 * 863 */ 864 static void 865 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi, 866 const char *file, Elf *elf, uint_t flags) 867 { 868 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME }; 869 870 Word cnt; 871 Phdr *uphdr = NULL; 872 gnu_eh_state_t eh_state; 873 874 /* 875 * Historical background: .eh_frame and .eh_frame_hdr sections 876 * come from the GNU compilers (particularly C++), and are used 877 * under all architectures. Their format is based on DWARF. When 878 * the amd64 ABI was defined, these sections were adopted wholesale 879 * from the existing practice. 880 * 881 * When amd64 support was added to Solaris, support for these 882 * sections was added, using the SHT_AMD64_UNWIND section type 883 * to identify them. At first, we ignored them in objects for 884 * non-amd64 targets, but later broadened our support to include 885 * other architectures in order to better support gcc-generated 886 * objects. 887 * 888 * .exception_ranges implement the same basic concepts, but 889 * were invented at Sun for the Sun C++ compiler. 890 * 891 * We match these sections by name, rather than section type, 892 * because they can come in as either SHT_AMD64_UNWIND, or as 893 * SHT_PROGBITS, and because the type isn't enough to determine 894 * how they should be interpreted. 895 */ 896 /* Find the program header for .eh_frame_hdr if present */ 897 if (phnum) 898 uphdr = getphdr(phnum, phdr_types, 899 sizeof (phdr_types) / sizeof (*phdr_types), file, elf); 900 901 /* 902 * eh_state is used to retain data used by unwind_eh_frame() 903 * across calls. 904 */ 905 bzero(&eh_state, sizeof (eh_state)); 906 907 for (cnt = 1; cnt < shnum; cnt++) { 908 Cache *_cache = &cache[cnt]; 909 Shdr *shdr = _cache->c_shdr; 910 int is_exrange; 911 912 /* 913 * Skip sections of the wrong type. On amd64, they 914 * can be SHT_AMD64_UNWIND. On all platforms, they 915 * can be SHT_PROGBITS (including amd64, if using 916 * the GNU compilers). 917 * 918 * Skip anything other than these two types. The name 919 * test below will thin out the SHT_PROGBITS that don't apply. 920 */ 921 if ((shdr->sh_type != SHT_PROGBITS) && 922 (shdr->sh_type != SHT_AMD64_UNWIND)) 923 continue; 924 925 /* 926 * Only sections with certain well known names are of interest. 927 * These are: 928 * 929 * .eh_frame - amd64/GNU-compiler unwind sections 930 * .eh_frame_hdr - Sorted table referencing .eh_frame 931 * .exception_ranges - Sun C++ unwind sections 932 * 933 * We do a prefix comparison, allowing for naming conventions 934 * like .eh_frame.foo, hence the use of strncmp() rather than 935 * strcmp(). This means that we only really need to test for 936 * .eh_frame, as it's a prefix of .eh_frame_hdr. 937 */ 938 is_exrange = strncmp(_cache->c_name, 939 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0; 940 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM), 941 MSG_SCN_FRM_SIZE) != 0) && !is_exrange) 942 continue; 943 944 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 945 continue; 946 947 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 948 continue; 949 950 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 951 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name); 952 953 if (is_exrange) 954 unwind_exception_ranges(_cache, file, 955 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]); 956 else 957 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr, 958 &eh_state, osabi, file, flags); 959 } 960 } 961 962 /* 963 * Initialize a symbol table state structure 964 * 965 * entry: 966 * state - State structure to be initialized 967 * cache - Cache of all section headers 968 * shnum - # of sections in cache 969 * secndx - Index of symbol table section 970 * ehdr - ELF header for file 971 * versym - Information about versym section 972 * file - Name of file 973 * flags - Command line option flags 974 */ 975 static int 976 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx, 977 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file, 978 uint_t flags) 979 { 980 Shdr *shdr; 981 982 state->file = file; 983 state->ehdr = ehdr; 984 state->cache = cache; 985 state->osabi = osabi; 986 state->shnum = shnum; 987 state->seccache = &cache[secndx]; 988 state->secndx = secndx; 989 state->secname = state->seccache->c_name; 990 state->flags = flags; 991 state->shxndx.checked = 0; 992 state->shxndx.data = NULL; 993 state->shxndx.n = 0; 994 995 shdr = state->seccache->c_shdr; 996 997 /* 998 * Check the symbol data and per-item size. 999 */ 1000 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 1001 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1002 file, state->secname); 1003 return (0); 1004 } 1005 if ((state->seccache->c_data == NULL) || 1006 (state->seccache->c_data->d_buf == NULL)) 1007 return (0); 1008 1009 /* LINTED */ 1010 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize); 1011 state->sym = (Sym *)state->seccache->c_data->d_buf; 1012 1013 /* 1014 * Check associated string table section. 1015 */ 1016 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 1017 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1018 file, state->secname, EC_WORD(shdr->sh_link)); 1019 return (0); 1020 } 1021 1022 /* 1023 * Determine if there is a associated Versym section 1024 * with this Symbol Table. 1025 */ 1026 if (versym && versym->cache && 1027 (versym->cache->c_shdr->sh_link == state->secndx)) 1028 state->versym = versym; 1029 else 1030 state->versym = NULL; 1031 1032 1033 return (1); 1034 } 1035 1036 /* 1037 * Determine the extended section index used for symbol tables entries. 1038 */ 1039 static void 1040 symbols_getxindex(SYMTBL_STATE *state) 1041 { 1042 uint_t symn; 1043 Word symcnt; 1044 1045 state->shxndx.checked = 1; /* Note that we've been called */ 1046 for (symcnt = 1; symcnt < state->shnum; symcnt++) { 1047 Cache *_cache = &state->cache[symcnt]; 1048 Shdr *shdr = _cache->c_shdr; 1049 1050 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) || 1051 (shdr->sh_link != state->secndx)) 1052 continue; 1053 1054 if ((shdr->sh_entsize) && 1055 /* LINTED */ 1056 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0)) 1057 continue; 1058 1059 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 1060 continue; 1061 1062 state->shxndx.data = _cache->c_data->d_buf; 1063 state->shxndx.n = symn; 1064 return; 1065 } 1066 } 1067 1068 /* 1069 * Produce a line of output for the given symbol 1070 * 1071 * entry: 1072 * state - Symbol table state 1073 * symndx - Index of symbol within the table 1074 * info - Value of st_info (indicates local/global range) 1075 * symndx_disp - Index to display. This may not be the same 1076 * as symndx if the display is relative to the logical 1077 * combination of the SUNW_ldynsym/dynsym tables. 1078 * sym - Symbol to display 1079 */ 1080 static void 1081 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx, 1082 Sym *sym) 1083 { 1084 /* 1085 * Symbol types for which we check that the specified 1086 * address/size land inside the target section. 1087 */ 1088 static const int addr_symtype[] = { 1089 0, /* STT_NOTYPE */ 1090 1, /* STT_OBJECT */ 1091 1, /* STT_FUNC */ 1092 0, /* STT_SECTION */ 1093 0, /* STT_FILE */ 1094 1, /* STT_COMMON */ 1095 0, /* STT_TLS */ 1096 0, /* 7 */ 1097 0, /* 8 */ 1098 0, /* 9 */ 1099 0, /* 10 */ 1100 0, /* 11 */ 1101 0, /* 12 */ 1102 0, /* STT_SPARC_REGISTER */ 1103 0, /* 14 */ 1104 0, /* 15 */ 1105 }; 1106 #if STT_NUM != (STT_TLS + 1) 1107 #error "STT_NUM has grown. Update addr_symtype[]" 1108 #endif 1109 1110 char index[MAXNDXSIZE]; 1111 const char *symname, *sec; 1112 Versym verndx; 1113 int gnuver; 1114 uchar_t type; 1115 Shdr *tshdr; 1116 Word shndx; 1117 Conv_inv_buf_t inv_buf; 1118 1119 /* Ensure symbol index is in range */ 1120 if (symndx >= state->symn) { 1121 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX), 1122 state->file, state->secname, EC_WORD(symndx)); 1123 return; 1124 } 1125 1126 /* 1127 * If we are using extended symbol indexes, find the 1128 * corresponding SHN_SYMTAB_SHNDX table. 1129 */ 1130 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0)) 1131 symbols_getxindex(state); 1132 1133 /* LINTED */ 1134 symname = string(state->seccache, symndx, 1135 &state->cache[state->seccache->c_shdr->sh_link], state->file, 1136 sym->st_name); 1137 1138 tshdr = NULL; 1139 sec = NULL; 1140 1141 if (state->ehdr->e_type == ET_CORE) { 1142 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN); 1143 } else if (state->flags & FLG_CTL_FAKESHDR) { 1144 /* 1145 * If we are using fake section headers derived from 1146 * the program headers, then the section indexes 1147 * in the symbols do not correspond to these headers. 1148 * The section names are not available, so all we can 1149 * do is to display them in numeric form. 1150 */ 1151 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine, 1152 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf); 1153 } else if ((sym->st_shndx < SHN_LORESERVE) && 1154 (sym->st_shndx < state->shnum)) { 1155 shndx = sym->st_shndx; 1156 tshdr = state->cache[shndx].c_shdr; 1157 sec = state->cache[shndx].c_name; 1158 } else if (sym->st_shndx == SHN_XINDEX) { 1159 if (state->shxndx.data) { 1160 Word _shxndx; 1161 1162 if (symndx > state->shxndx.n) { 1163 (void) fprintf(stderr, 1164 MSG_INTL(MSG_ERR_BADSYMXINDEX1), 1165 state->file, state->secname, 1166 EC_WORD(symndx)); 1167 } else if ((_shxndx = 1168 state->shxndx.data[symndx]) > state->shnum) { 1169 (void) fprintf(stderr, 1170 MSG_INTL(MSG_ERR_BADSYMXINDEX2), 1171 state->file, state->secname, 1172 EC_WORD(symndx), EC_WORD(_shxndx)); 1173 } else { 1174 shndx = _shxndx; 1175 tshdr = state->cache[shndx].c_shdr; 1176 sec = state->cache[shndx].c_name; 1177 } 1178 } else { 1179 (void) fprintf(stderr, 1180 MSG_INTL(MSG_ERR_BADSYMXINDEX3), 1181 state->file, state->secname, EC_WORD(symndx)); 1182 } 1183 } else if ((sym->st_shndx < SHN_LORESERVE) && 1184 (sym->st_shndx >= state->shnum)) { 1185 (void) fprintf(stderr, 1186 MSG_INTL(MSG_ERR_BADSYM5), state->file, 1187 state->secname, EC_WORD(symndx), 1188 demangle(symname, state->flags), sym->st_shndx); 1189 } 1190 1191 /* 1192 * If versioning is available display the 1193 * version index. If not, then use 0. 1194 */ 1195 if (state->versym) { 1196 Versym test_verndx; 1197 1198 verndx = test_verndx = state->versym->data[symndx]; 1199 gnuver = state->versym->gnu_full; 1200 1201 /* 1202 * Check to see if this is a defined symbol with a 1203 * version index that is outside the valid range for 1204 * the file. The interpretation of this depends on 1205 * the style of versioning used by the object. 1206 * 1207 * Versions >= VER_NDX_LORESERVE have special meanings, 1208 * and are exempt from this checking. 1209 * 1210 * GNU style version indexes use the top bit of the 1211 * 16-bit index value (0x8000) as the "hidden bit". 1212 * We must mask off this bit in order to compare 1213 * the version against the maximum value. 1214 */ 1215 if (gnuver) 1216 test_verndx &= ~0x8000; 1217 1218 if ((test_verndx > state->versym->max_verndx) && 1219 (verndx < VER_NDX_LORESERVE)) 1220 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER), 1221 state->file, state->secname, EC_WORD(symndx), 1222 EC_HALF(test_verndx), state->versym->max_verndx); 1223 } else { 1224 verndx = 0; 1225 gnuver = 0; 1226 } 1227 1228 /* 1229 * Error checking for TLS. 1230 */ 1231 type = ELF_ST_TYPE(sym->st_info); 1232 if (type == STT_TLS) { 1233 if (tshdr && 1234 (sym->st_shndx != SHN_UNDEF) && 1235 ((tshdr->sh_flags & SHF_TLS) == 0)) { 1236 (void) fprintf(stderr, 1237 MSG_INTL(MSG_ERR_BADSYM3), state->file, 1238 state->secname, EC_WORD(symndx), 1239 demangle(symname, state->flags)); 1240 } 1241 } else if ((type != STT_SECTION) && sym->st_size && 1242 tshdr && (tshdr->sh_flags & SHF_TLS)) { 1243 (void) fprintf(stderr, 1244 MSG_INTL(MSG_ERR_BADSYM4), state->file, 1245 state->secname, EC_WORD(symndx), 1246 demangle(symname, state->flags)); 1247 } 1248 1249 /* 1250 * If a symbol with non-zero size has a type that 1251 * specifies an address, then make sure the location 1252 * it references is actually contained within the 1253 * section. UNDEF symbols don't count in this case, 1254 * so we ignore them. 1255 * 1256 * The meaning of the st_value field in a symbol 1257 * depends on the type of object. For a relocatable 1258 * object, it is the offset within the section. 1259 * For sharable objects, it is the offset relative to 1260 * the base of the object, and for other types, it is 1261 * the virtual address. To get an offset within the 1262 * section for non-ET_REL files, we subtract the 1263 * base address of the section. 1264 */ 1265 if (addr_symtype[type] && (sym->st_size > 0) && 1266 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) || 1267 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) { 1268 Word v = sym->st_value; 1269 if (state->ehdr->e_type != ET_REL) 1270 v -= tshdr->sh_addr; 1271 if (((v + sym->st_size) > tshdr->sh_size)) { 1272 (void) fprintf(stderr, 1273 MSG_INTL(MSG_ERR_BADSYM6), state->file, 1274 state->secname, EC_WORD(symndx), 1275 demangle(symname, state->flags), 1276 EC_WORD(shndx), EC_XWORD(tshdr->sh_size), 1277 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size)); 1278 } 1279 } 1280 1281 /* 1282 * A typical symbol table uses the sh_info field to indicate one greater 1283 * than the symbol table index of the last local symbol, STB_LOCAL. 1284 * Therefore, symbol indexes less than sh_info should have local 1285 * binding. Symbol indexes greater than, or equal to sh_info, should 1286 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero 1287 * value and size, as these symbols may be the result of an mcs(1) 1288 * section deletion. 1289 */ 1290 if (info) { 1291 uchar_t bind = ELF_ST_BIND(sym->st_info); 1292 1293 if ((symndx < info) && (bind != STB_LOCAL)) { 1294 (void) fprintf(stderr, 1295 MSG_INTL(MSG_ERR_BADSYM7), state->file, 1296 state->secname, EC_WORD(symndx), 1297 demangle(symname, state->flags), EC_XWORD(info)); 1298 1299 } else if ((symndx >= info) && (bind == STB_LOCAL) && 1300 ((sym->st_shndx != SHN_UNDEF) || 1301 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) || 1302 (sym->st_size != 0) || (sym->st_value != 0))) { 1303 (void) fprintf(stderr, 1304 MSG_INTL(MSG_ERR_BADSYM8), state->file, 1305 state->secname, EC_WORD(symndx), 1306 demangle(symname, state->flags), EC_XWORD(info)); 1307 } 1308 } 1309 1310 (void) snprintf(index, MAXNDXSIZE, 1311 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx)); 1312 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi, 1313 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname); 1314 } 1315 1316 /* 1317 * Process a SHT_SUNW_cap capabilities section. 1318 */ 1319 static int 1320 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache, 1321 uchar_t osabi, Ehdr *ehdr, uint_t flags) 1322 { 1323 SYMTBL_STATE state; 1324 Word cnum, capnum, nulls, symcaps; 1325 int descapndx, objcap, title; 1326 Cap *cap = (Cap *)ccache->c_data->d_buf; 1327 Shdr *cishdr, *cshdr = ccache->c_shdr; 1328 Cache *cicache, *strcache; 1329 Capinfo *capinfo = NULL; 1330 Word capinfonum; 1331 const char *strs = NULL; 1332 size_t strs_size; 1333 1334 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) { 1335 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1336 file, ccache->c_name); 1337 return (0); 1338 } 1339 1340 /* 1341 * If this capabilities section is associated with symbols, then the 1342 * sh_link field points to the associated capabilities information 1343 * section. The sh_link field of the capabilities information section 1344 * points to the associated symbol table. 1345 */ 1346 if (cshdr->sh_link) { 1347 Cache *scache; 1348 Shdr *sshdr; 1349 1350 /* 1351 * Validate that the sh_link field points to a capabilities 1352 * information section. 1353 */ 1354 if (cshdr->sh_link >= shnum) { 1355 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1356 file, ccache->c_name, EC_WORD(cshdr->sh_link)); 1357 return (0); 1358 } 1359 1360 cicache = &cache[cshdr->sh_link]; 1361 cishdr = cicache->c_shdr; 1362 1363 if (cishdr->sh_type != SHT_SUNW_capinfo) { 1364 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), 1365 file, ccache->c_name, EC_WORD(cshdr->sh_link)); 1366 return (0); 1367 } 1368 1369 capinfo = cicache->c_data->d_buf; 1370 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize); 1371 1372 /* 1373 * Validate that the sh_link field of the capabilities 1374 * information section points to a valid symbol table. 1375 */ 1376 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) { 1377 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1378 file, cicache->c_name, EC_WORD(cishdr->sh_link)); 1379 return (0); 1380 } 1381 scache = &cache[cishdr->sh_link]; 1382 sshdr = scache->c_shdr; 1383 1384 if ((sshdr->sh_type != SHT_SYMTAB) && 1385 (sshdr->sh_type != SHT_DYNSYM)) { 1386 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1), 1387 file, cicache->c_name, EC_WORD(cishdr->sh_link)); 1388 return (0); 1389 } 1390 1391 if (!init_symtbl_state(&state, cache, shnum, 1392 cishdr->sh_link, ehdr, osabi, NULL, file, flags)) 1393 return (0); 1394 } 1395 1396 /* 1397 * If this capabilities section contains capability string entries, 1398 * then determine the associated string table. Capabilities entries 1399 * that define names require that the capability section indicate 1400 * which string table to use via sh_info. 1401 */ 1402 if (cshdr->sh_info) { 1403 Shdr *strshdr; 1404 1405 /* 1406 * Validate that the sh_info field points to a string table. 1407 */ 1408 if (cshdr->sh_info >= shnum) { 1409 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1410 file, ccache->c_name, EC_WORD(cshdr->sh_info)); 1411 return (0); 1412 } 1413 1414 strcache = &cache[cshdr->sh_info]; 1415 strshdr = strcache->c_shdr; 1416 1417 if (strshdr->sh_type != SHT_STRTAB) { 1418 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), 1419 file, ccache->c_name, EC_WORD(cshdr->sh_info)); 1420 return (0); 1421 } 1422 strs = (const char *)strcache->c_data->d_buf; 1423 strs_size = strcache->c_data->d_size; 1424 } 1425 1426 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1427 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name); 1428 1429 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize); 1430 1431 nulls = symcaps = 0; 1432 objcap = title = 1; 1433 descapndx = -1; 1434 1435 /* 1436 * Traverse the capabilities section printing each capability group. 1437 * The first capabilities group defines any object capabilities. Any 1438 * following groups define symbol capabilities. In the case where no 1439 * object capabilities exist, but symbol capabilities do, a single 1440 * CA_SUNW_NULL terminator for the object capabilities exists. 1441 */ 1442 for (cnum = 0; cnum < capnum; cap++, cnum++) { 1443 if (cap->c_tag == CA_SUNW_NULL) { 1444 /* 1445 * A CA_SUNW_NULL tag terminates a capabilities group. 1446 * If the first capabilities tag is CA_SUNW_NULL, then 1447 * no object capabilities exist. 1448 */ 1449 if ((nulls++ == 0) && (cnum == 0)) 1450 objcap = 0; 1451 title = 1; 1452 } else { 1453 if (title) { 1454 if (nulls == 0) { 1455 /* 1456 * If this capabilities group represents 1457 * the object capabilities (i.e., no 1458 * CA_SUNW_NULL tag has been processed 1459 * yet), then display an object 1460 * capabilities title. 1461 */ 1462 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1463 dbg_print(0, 1464 MSG_INTL(MSG_OBJ_CAP_TITLE)); 1465 } else { 1466 /* 1467 * If this is a symbols capabilities 1468 * group (i.e., a CA_SUNW_NULL tag has 1469 * already be found that terminates 1470 * the object capabilities group), then 1471 * display a symbol capabilities title, 1472 * and retain this capabilities index 1473 * for later processing. 1474 */ 1475 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1476 dbg_print(0, 1477 MSG_INTL(MSG_SYM_CAP_TITLE)); 1478 descapndx = cnum; 1479 } 1480 Elf_cap_title(0); 1481 title = 0; 1482 } 1483 1484 /* 1485 * Print the capabilities data. 1486 * 1487 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID 1488 * entries require a string table, which should have 1489 * already been established. 1490 */ 1491 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) || 1492 (cap->c_tag == CA_SUNW_MACH) || 1493 (cap->c_tag == CA_SUNW_ID))) { 1494 (void) fprintf(stderr, 1495 MSG_INTL(MSG_WARN_INVCAP4), file, 1496 EC_WORD(elf_ndxscn(ccache->c_scn)), 1497 ccache->c_name, EC_WORD(cshdr->sh_info)); 1498 } 1499 Elf_cap_entry(0, cap, cnum, strs, strs_size, 1500 ehdr->e_machine); 1501 } 1502 1503 /* 1504 * If this CA_SUNW_NULL tag terminates a symbol capabilities 1505 * group, determine the associated symbols. 1506 */ 1507 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) && 1508 (descapndx != -1)) { 1509 Capinfo *cip; 1510 Word inum; 1511 1512 symcaps++; 1513 1514 /* 1515 * Make sure we've discovered a SHT_SUNW_capinfo table. 1516 */ 1517 if ((cip = capinfo) == NULL) { 1518 (void) fprintf(stderr, 1519 MSG_INTL(MSG_ERR_INVCAP), file, 1520 ccache->c_name, EC_WORD(cshdr->sh_link)); 1521 return (0); 1522 } 1523 1524 /* 1525 * Determine what symbols reference this capabilities 1526 * group. 1527 */ 1528 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1529 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES)); 1530 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 1531 1532 for (inum = 1, cip++; inum < capinfonum; 1533 inum++, cip++) { 1534 Word gndx = (Word)ELF_C_GROUP(*cip); 1535 1536 if (gndx && (gndx == descapndx)) { 1537 output_symbol(&state, inum, 0, 1538 inum, state.sym + inum); 1539 } 1540 } 1541 descapndx = -1; 1542 continue; 1543 } 1544 1545 /* 1546 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit 1547 * object is suspicious as it has no effect. 1548 */ 1549 if ((cap->c_tag == CA_SUNW_SF_1) && 1550 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) && 1551 (cap->c_un.c_val & SF1_SUNW_ADDR32)) { 1552 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1), 1553 file, ccache->c_name); 1554 } 1555 } 1556 1557 /* 1558 * If this is a dynamic object, with symbol capabilities, then a 1559 * .SUNW_capchain section should exist. This section contains a chain 1560 * of symbol indexes for each capabilities family. This is the list 1561 * that is searched by ld.so.1 to determine the best capabilities 1562 * candidate. 1563 * 1564 * Note, more than one capabilities lead symbol can point to the same 1565 * family chain. For example, a weak/global pair of symbols can both 1566 * represent the same family of capabilities symbols. Therefore, to 1567 * display all possible families we traverse the capabilities 1568 * information section looking for CAPINFO_SUNW_GLOB lead symbols. 1569 * From these we determine the associated capabilities chain to inspect. 1570 */ 1571 if (symcaps && 1572 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { 1573 Capinfo *cip; 1574 Capchain *chain; 1575 Cache *chcache; 1576 Shdr *chshdr; 1577 Word chainnum, inum; 1578 1579 /* 1580 * Validate that the sh_info field of the capabilities 1581 * information section points to a capabilities chain section. 1582 */ 1583 if (cishdr->sh_info >= shnum) { 1584 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1585 file, cicache->c_name, EC_WORD(cishdr->sh_info)); 1586 return (0); 1587 } 1588 1589 chcache = &cache[cishdr->sh_info]; 1590 chshdr = chcache->c_shdr; 1591 1592 if (chshdr->sh_type != SHT_SUNW_capchain) { 1593 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2), 1594 file, cicache->c_name, EC_WORD(cishdr->sh_info)); 1595 return (0); 1596 } 1597 1598 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize); 1599 chain = (Capchain *)chcache->c_data->d_buf; 1600 1601 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1602 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name); 1603 1604 /* 1605 * Traverse the capabilities information section looking for 1606 * CAPINFO_SUNW_GLOB lead capabilities symbols. 1607 */ 1608 cip = capinfo; 1609 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) { 1610 const char *name; 1611 Sym *sym; 1612 Word sndx, cndx; 1613 Word gndx = (Word)ELF_C_GROUP(*cip); 1614 1615 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB)) 1616 continue; 1617 1618 /* 1619 * Determine the symbol that is associated with this 1620 * capability information entry, and use this to 1621 * identify this capability family. 1622 */ 1623 sym = (Sym *)(state.sym + inum); 1624 name = string(cicache, inum, strcache, file, 1625 sym->st_name); 1626 1627 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1628 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name); 1629 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY)); 1630 1631 cndx = (Word)ELF_C_SYM(*cip); 1632 1633 /* 1634 * Traverse this families chain and identify each 1635 * family member. 1636 */ 1637 for (;;) { 1638 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE]; 1639 1640 if (cndx >= chainnum) { 1641 (void) fprintf(stderr, 1642 MSG_INTL(MSG_ERR_INVCAPINFO3), file, 1643 cicache->c_name, EC_WORD(inum), 1644 EC_WORD(cndx)); 1645 break; 1646 } 1647 if ((sndx = chain[cndx]) == 0) 1648 break; 1649 1650 /* 1651 * Determine this entries symbol reference. 1652 */ 1653 if (sndx > state.symn) { 1654 (void) fprintf(stderr, 1655 MSG_INTL(MSG_ERR_CHBADSYMNDX), file, 1656 EC_WORD(sndx), chcache->c_name, 1657 EC_WORD(cndx)); 1658 name = MSG_INTL(MSG_STR_UNKNOWN); 1659 } else { 1660 sym = (Sym *)(state.sym + sndx); 1661 name = string(chcache, sndx, 1662 strcache, file, sym->st_name); 1663 } 1664 1665 /* 1666 * Display the family member. 1667 */ 1668 (void) snprintf(_chain, MAXNDXSIZE, 1669 MSG_ORIG(MSG_FMT_INTEGER), cndx); 1670 (void) snprintf(_symndx, MAXNDXSIZE, 1671 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx)); 1672 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO), 1673 _chain, _symndx, demangle(name, flags)); 1674 1675 cndx++; 1676 } 1677 } 1678 } 1679 return (objcap); 1680 } 1681 1682 /* 1683 * Print the capabilities. 1684 * 1685 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated, 1686 * capabilities groups. The first group defines the object capabilities. 1687 * This group defines the minimum capability requirements of the entire 1688 * object file. If this is a dynamic object, this group should be associated 1689 * with a PT_SUNWCAP program header. 1690 * 1691 * Additional capabilities groups define the association of individual symbols 1692 * to specific capabilities. 1693 */ 1694 static void 1695 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, 1696 uchar_t osabi, Elf *elf, uint_t flags) 1697 { 1698 Word cnt; 1699 Shdr *cshdr = NULL; 1700 Cache *ccache; 1701 Off cphdr_off = 0; 1702 Xword cphdr_sz; 1703 1704 /* 1705 * Determine if a global capabilities header exists. 1706 */ 1707 if (phnum) { 1708 Phdr *phdr; 1709 1710 if ((phdr = elf_getphdr(elf)) == NULL) { 1711 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 1712 return; 1713 } 1714 1715 for (cnt = 0; cnt < phnum; phdr++, cnt++) { 1716 if (phdr->p_type == PT_SUNWCAP) { 1717 cphdr_off = phdr->p_offset; 1718 cphdr_sz = phdr->p_filesz; 1719 break; 1720 } 1721 } 1722 } 1723 1724 /* 1725 * Determine if a capabilities section exists. 1726 */ 1727 for (cnt = 1; cnt < shnum; cnt++) { 1728 Cache *_cache = &cache[cnt]; 1729 Shdr *shdr = _cache->c_shdr; 1730 1731 /* 1732 * Process any capabilities information. 1733 */ 1734 if (shdr->sh_type == SHT_SUNW_cap) { 1735 if (cap_section(file, cache, shnum, _cache, osabi, 1736 ehdr, flags)) { 1737 /* 1738 * If this section defined an object capability 1739 * group, retain the section information for 1740 * program header validation. 1741 */ 1742 ccache = _cache; 1743 cshdr = shdr; 1744 } 1745 continue; 1746 } 1747 } 1748 1749 if ((cshdr == NULL) && (cphdr_off == 0)) 1750 return; 1751 1752 if (cphdr_off && (cshdr == NULL)) 1753 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file); 1754 1755 /* 1756 * If this object is an executable or shared object, and it provided 1757 * an object capabilities group, then the group should have an 1758 * accompanying PT_SUNWCAP program header. 1759 */ 1760 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { 1761 if (cphdr_off == 0) { 1762 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2), 1763 file, EC_WORD(elf_ndxscn(ccache->c_scn)), 1764 ccache->c_name); 1765 } else if ((cphdr_off != cshdr->sh_offset) || 1766 (cphdr_sz != cshdr->sh_size)) { 1767 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3), 1768 file, EC_WORD(elf_ndxscn(ccache->c_scn)), 1769 ccache->c_name); 1770 } 1771 } 1772 } 1773 1774 /* 1775 * Print the interpretor. 1776 */ 1777 static void 1778 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf) 1779 { 1780 static Word phdr_types[] = { PT_INTERP }; 1781 1782 1783 Word cnt; 1784 Shdr *ishdr = NULL; 1785 Cache *icache = NULL; 1786 Off iphdr_off = 0; 1787 Xword iphdr_fsz; 1788 1789 /* 1790 * Determine if an interp header exists. 1791 */ 1792 if (phnum) { 1793 Phdr *phdr; 1794 1795 phdr = getphdr(phnum, phdr_types, 1796 sizeof (phdr_types) / sizeof (*phdr_types), file, elf); 1797 if (phdr != NULL) { 1798 iphdr_off = phdr->p_offset; 1799 iphdr_fsz = phdr->p_filesz; 1800 } 1801 } 1802 1803 if (iphdr_off == 0) 1804 return; 1805 1806 /* 1807 * Determine if an interp section exists. 1808 */ 1809 for (cnt = 1; cnt < shnum; cnt++) { 1810 Cache *_cache = &cache[cnt]; 1811 Shdr *shdr = _cache->c_shdr; 1812 1813 /* 1814 * Scan sections to find a section which contains the PT_INTERP 1815 * string. The target section can't be in a NOBITS section. 1816 */ 1817 if ((shdr->sh_type == SHT_NOBITS) || 1818 (iphdr_off < shdr->sh_offset) || 1819 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size)) 1820 continue; 1821 1822 icache = _cache; 1823 ishdr = shdr; 1824 break; 1825 } 1826 1827 /* 1828 * Print the interpreter string based on the offset defined in the 1829 * program header, as this is the offset used by the kernel. 1830 */ 1831 if ((ishdr != NULL) && 1832 (icache != NULL) && 1833 (icache->c_data != NULL) && 1834 (icache->c_data->d_buf != NULL) && 1835 (icache->c_data->d_size > 0)) { 1836 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1837 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name); 1838 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT), 1839 (char *)icache->c_data->d_buf + 1840 (iphdr_off - ishdr->sh_offset)); 1841 } else 1842 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file); 1843 1844 /* 1845 * If there are any inconsistences between the program header and 1846 * section information, flag them. 1847 */ 1848 if (ishdr && ((iphdr_off != ishdr->sh_offset) || 1849 (iphdr_fsz != ishdr->sh_size))) { 1850 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file, 1851 icache->c_name); 1852 } 1853 } 1854 1855 /* 1856 * Print the syminfo section. 1857 */ 1858 static void 1859 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 1860 { 1861 Shdr *infoshdr; 1862 Syminfo *info; 1863 Sym *syms; 1864 Dyn *dyns; 1865 Word infonum, cnt, ndx, symnum, dynnum; 1866 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec; 1867 Boolean *dynerr; 1868 1869 for (cnt = 1; cnt < shnum; cnt++) { 1870 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) { 1871 infocache = &cache[cnt]; 1872 break; 1873 } 1874 } 1875 if (infocache == NULL) 1876 return; 1877 1878 infoshdr = infocache->c_shdr; 1879 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) { 1880 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1881 file, infocache->c_name); 1882 return; 1883 } 1884 if ((infocache->c_data == NULL) || (infocache->c_data->d_buf == NULL)) 1885 return; 1886 1887 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize); 1888 info = (Syminfo *)infocache->c_data->d_buf; 1889 1890 /* 1891 * If there is no associated dynamic section, determine if one 1892 * is needed, and if so issue a warning. If there is an 1893 * associated dynamic section, validate it and get the data buffer 1894 * for it. 1895 */ 1896 dyns = NULL; 1897 dynnum = 0; 1898 if (infoshdr->sh_info == 0) { 1899 Syminfo *_info = info + 1; 1900 1901 for (ndx = 1; ndx < infonum; ndx++, _info++) { 1902 if ((_info->si_flags == 0) && (_info->si_boundto == 0)) 1903 continue; 1904 1905 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE) 1906 (void) fprintf(stderr, 1907 MSG_INTL(MSG_ERR_BADSHINFO), file, 1908 infocache->c_name, 1909 EC_WORD(infoshdr->sh_info)); 1910 } 1911 } else if ((infoshdr->sh_info >= shnum) || 1912 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) { 1913 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), 1914 file, infocache->c_name, EC_WORD(infoshdr->sh_info)); 1915 } else { 1916 dyncache = &cache[infoshdr->sh_info]; 1917 if ((dyncache->c_data == NULL) || 1918 ((dyns = dyncache->c_data->d_buf) == NULL)) { 1919 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1920 file, dyncache->c_name); 1921 } 1922 if (dyns != NULL) { 1923 if ((dyncache->c_shdr->sh_entsize == 0) || 1924 (dyncache->c_shdr->sh_size == 0)) { 1925 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1926 file, dyncache->c_name); 1927 return; 1928 } 1929 1930 dynnum = dyncache->c_shdr->sh_size / 1931 dyncache->c_shdr->sh_entsize; 1932 1933 /* 1934 * We validate the type of dynamic elements referenced 1935 * from the syminfo. This array is used report any 1936 * bad dynamic entries. 1937 */ 1938 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) == 1939 NULL) { 1940 int err = errno; 1941 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 1942 file, strerror(err)); 1943 return; 1944 } 1945 } 1946 } 1947 1948 /* 1949 * Get the data buffer for the associated symbol table and string table. 1950 */ 1951 if (stringtbl(cache, 1, cnt, shnum, file, 1952 &symnum, &symsec, &strsec) == 0) 1953 return; 1954 1955 syms = symsec->c_data->d_buf; 1956 1957 /* 1958 * Loop through the syminfo entries. 1959 */ 1960 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1961 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name); 1962 Elf_syminfo_title(0); 1963 1964 for (ndx = 1, info++; ndx < infonum; ndx++, info++) { 1965 Sym *sym; 1966 const char *needed, *name; 1967 Word expect_dt; 1968 Word boundto = info->si_boundto; 1969 1970 if ((info->si_flags == 0) && (boundto == 0)) 1971 continue; 1972 1973 sym = &syms[ndx]; 1974 name = string(infocache, ndx, strsec, file, sym->st_name); 1975 1976 /* Is si_boundto set to one of the reserved values? */ 1977 if (boundto >= SYMINFO_BT_LOWRESERVE) { 1978 Elf_syminfo_entry(0, ndx, info, name, NULL); 1979 continue; 1980 } 1981 1982 /* 1983 * si_boundto is referencing a dynamic section. If we don't 1984 * have one, an error was already issued above, so it suffices 1985 * to display an empty string. If we are out of bounds, then 1986 * report that and then display an empty string. 1987 */ 1988 if ((dyns == NULL) || (boundto >= dynnum)) { 1989 if (dyns != NULL) 1990 (void) fprintf(stderr, 1991 MSG_INTL(MSG_ERR_BADSIDYNNDX), file, 1992 infocache->c_ndx, infocache->c_name, 1993 EC_WORD(ndx), EC_WORD(dynnum - 1), 1994 EC_WORD(boundto)); 1995 Elf_syminfo_entry(0, ndx, info, name, 1996 MSG_ORIG(MSG_STR_EMPTY)); 1997 continue; 1998 } 1999 2000 /* 2001 * The si_boundto reference expects a specific dynamic element 2002 * type at the given index. The dynamic element is always a 2003 * string that gives an object name. The specific type depends 2004 * on the si_flags present. Ensure that we've got the right 2005 * type. 2006 */ 2007 if (info->si_flags & SYMINFO_FLG_FILTER) 2008 expect_dt = DT_SUNW_FILTER; 2009 else if (info->si_flags & SYMINFO_FLG_AUXILIARY) 2010 expect_dt = DT_SUNW_AUXILIARY; 2011 else if (info->si_flags & (SYMINFO_FLG_DIRECT | 2012 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND)) 2013 expect_dt = DT_NEEDED; 2014 else 2015 expect_dt = DT_NULL; /* means we ignore the type */ 2016 2017 if ((dyns[boundto].d_tag != expect_dt) && 2018 (expect_dt != DT_NULL)) { 2019 Conv_inv_buf_t buf1, buf2; 2020 2021 /* Only complain about each dynamic element once */ 2022 if (!dynerr[boundto]) { 2023 (void) fprintf(stderr, 2024 MSG_INTL(MSG_ERR_BADSIDYNTAG), 2025 file, infocache->c_ndx, infocache->c_name, 2026 EC_WORD(ndx), dyncache->c_ndx, 2027 dyncache->c_name, EC_WORD(boundto), 2028 conv_dyn_tag(expect_dt, osabi, 2029 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), 2030 conv_dyn_tag(dyns[boundto].d_tag, osabi, 2031 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2)); 2032 dynerr[boundto] = TRUE; 2033 } 2034 } 2035 2036 /* 2037 * Whether or not the DT item we're pointing at is 2038 * of the right type, if it's a type we recognize as 2039 * providing a string, go ahead and show it. Otherwise 2040 * an empty string. 2041 */ 2042 switch (dyns[boundto].d_tag) { 2043 case DT_NEEDED: 2044 case DT_SONAME: 2045 case DT_RPATH: 2046 case DT_RUNPATH: 2047 case DT_CONFIG: 2048 case DT_DEPAUDIT: 2049 case DT_USED: 2050 case DT_AUDIT: 2051 case DT_SUNW_AUXILIARY: 2052 case DT_SUNW_FILTER: 2053 case DT_FILTER: 2054 case DT_AUXILIARY: 2055 needed = string(infocache, boundto, 2056 strsec, file, dyns[boundto].d_un.d_val); 2057 break; 2058 default: 2059 needed = MSG_ORIG(MSG_STR_EMPTY); 2060 } 2061 Elf_syminfo_entry(0, ndx, info, name, needed); 2062 } 2063 if (dyns != NULL) 2064 free(dynerr); 2065 } 2066 2067 /* 2068 * Print version definition section entries. 2069 */ 2070 static void 2071 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache, 2072 const char *file) 2073 { 2074 Word cnt; 2075 char index[MAXNDXSIZE]; 2076 2077 Elf_ver_def_title(0); 2078 2079 for (cnt = 1; cnt <= vdf_num; cnt++, 2080 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) { 2081 Conv_ver_flags_buf_t ver_flags_buf; 2082 const char *name, *dep; 2083 Half vcnt = vdf->vd_cnt - 1; 2084 Half ndx = vdf->vd_ndx; 2085 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux); 2086 2087 /* 2088 * Obtain the name and first dependency (if any). 2089 */ 2090 name = string(vcache, cnt, scache, file, vdap->vda_name); 2091 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); 2092 if (vcnt) 2093 dep = string(vcache, cnt, scache, file, vdap->vda_name); 2094 else 2095 dep = MSG_ORIG(MSG_STR_EMPTY); 2096 2097 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), 2098 EC_XWORD(ndx)); 2099 Elf_ver_line_1(0, index, name, dep, 2100 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf)); 2101 2102 /* 2103 * Print any additional dependencies. 2104 */ 2105 if (vcnt) { 2106 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); 2107 for (vcnt--; vcnt; vcnt--, 2108 vdap = (Verdaux *)((uintptr_t)vdap + 2109 vdap->vda_next)) { 2110 dep = string(vcache, cnt, scache, file, 2111 vdap->vda_name); 2112 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep); 2113 } 2114 } 2115 } 2116 } 2117 2118 /* 2119 * Print version needed section entries. 2120 * 2121 * entry: 2122 * vnd - Address of verneed data 2123 * vnd_num - # of Verneed entries 2124 * vcache - Cache of verneed section being processed 2125 * scache - Cache of associated string table section 2126 * file - Name of object being processed. 2127 * versym - Information about versym section 2128 * 2129 * exit: 2130 * The versions have been printed. If GNU style versioning 2131 * is in effect, versym->max_verndx has been updated to 2132 * contain the largest version index seen. 2133 * 2134 * note: 2135 * The versym section of an object that follows the original 2136 * Solaris versioning rules only contains indexes into the verdef 2137 * section. Symbols defined in other objects (UNDEF) are given 2138 * a version of 0, indicating that they are not defined by 2139 * this file, and the Verneed entries do not have associated version 2140 * indexes. For these reasons, we do not display a version index 2141 * for original-style Verneed sections. 2142 * 2143 * The GNU versioning extensions alter this: Symbols defined in other 2144 * objects receive a version index in the range above those defined 2145 * by the Verdef section, and the vna_other field of the Vernaux 2146 * structs inside the Verneed section contain the version index for 2147 * that item. We therefore display the index when showing the 2148 * contents of a GNU style Verneed section. You should not 2149 * necessarily expect these indexes to appear in sorted 2150 * order --- it seems that the GNU ld assigns the versions as 2151 * symbols are encountered during linking, and then the results 2152 * are assembled into the Verneed section afterwards. 2153 */ 2154 static void 2155 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache, 2156 const char *file, VERSYM_STATE *versym) 2157 { 2158 Word cnt; 2159 char index[MAXNDXSIZE]; 2160 const char *index_str; 2161 2162 Elf_ver_need_title(0, versym->gnu_needed); 2163 2164 for (cnt = 1; cnt <= vnd_num; cnt++, 2165 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { 2166 Conv_ver_flags_buf_t ver_flags_buf; 2167 const char *name, *dep; 2168 Half vcnt = vnd->vn_cnt; 2169 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); 2170 2171 /* 2172 * Obtain the name of the needed file and the version name 2173 * within it that we're dependent on. Note that the count 2174 * should be at least one, otherwise this is a pretty bogus 2175 * entry. 2176 */ 2177 name = string(vcache, cnt, scache, file, vnd->vn_file); 2178 if (vcnt) 2179 dep = string(vcache, cnt, scache, file, vnap->vna_name); 2180 else 2181 dep = MSG_INTL(MSG_STR_NULL); 2182 2183 if (vnap->vna_other == 0) { /* Traditional form */ 2184 index_str = MSG_ORIG(MSG_STR_EMPTY); 2185 } else { /* GNU form */ 2186 index_str = index; 2187 /* Format the version index value */ 2188 (void) snprintf(index, MAXNDXSIZE, 2189 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other)); 2190 if (vnap->vna_other > versym->max_verndx) 2191 versym->max_verndx = vnap->vna_other; 2192 } 2193 Elf_ver_line_1(0, index_str, name, dep, 2194 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf)); 2195 2196 /* 2197 * Print any additional version dependencies. 2198 */ 2199 if (vcnt) { 2200 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); 2201 for (vcnt--; vcnt; vcnt--, 2202 vnap = (Vernaux *)((uintptr_t)vnap + 2203 vnap->vna_next)) { 2204 dep = string(vcache, cnt, scache, file, 2205 vnap->vna_name); 2206 if (vnap->vna_other > 0) { 2207 /* Format the next index value */ 2208 (void) snprintf(index, MAXNDXSIZE, 2209 MSG_ORIG(MSG_FMT_INDEX), 2210 EC_XWORD(vnap->vna_other)); 2211 Elf_ver_line_1(0, index, 2212 MSG_ORIG(MSG_STR_EMPTY), dep, 2213 conv_ver_flags(vnap->vna_flags, 2214 0, &ver_flags_buf)); 2215 if (vnap->vna_other > 2216 versym->max_verndx) 2217 versym->max_verndx = 2218 vnap->vna_other; 2219 } else { 2220 Elf_ver_line_3(0, 2221 MSG_ORIG(MSG_STR_EMPTY), dep, 2222 conv_ver_flags(vnap->vna_flags, 2223 0, &ver_flags_buf)); 2224 } 2225 } 2226 } 2227 } 2228 } 2229 2230 /* 2231 * Examine the Verneed section for information related to GNU 2232 * style Versym indexing: 2233 * - A non-zero vna_other field indicates that Versym indexes can 2234 * reference Verneed records. 2235 * - If the object uses GNU style Versym indexing, the 2236 * maximum index value is needed to detect bad Versym entries. 2237 * 2238 * entry: 2239 * vnd - Address of verneed data 2240 * vnd_num - # of Verneed entries 2241 * versym - Information about versym section 2242 * 2243 * exit: 2244 * If a non-zero vna_other field is seen, versym->gnu_needed is set. 2245 * 2246 * versym->max_verndx has been updated to contain the largest 2247 * version index seen. 2248 */ 2249 static void 2250 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym) 2251 { 2252 Word cnt; 2253 2254 for (cnt = 1; cnt <= vnd_num; cnt++, 2255 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { 2256 Half vcnt = vnd->vn_cnt; 2257 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); 2258 2259 /* 2260 * A non-zero value of vna_other indicates that this 2261 * object references VERNEED items from the VERSYM 2262 * array. 2263 */ 2264 if (vnap->vna_other != 0) { 2265 versym->gnu_needed = 1; 2266 if (vnap->vna_other > versym->max_verndx) 2267 versym->max_verndx = vnap->vna_other; 2268 } 2269 2270 /* 2271 * Check any additional version dependencies. 2272 */ 2273 if (vcnt) { 2274 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); 2275 for (vcnt--; vcnt; vcnt--, 2276 vnap = (Vernaux *)((uintptr_t)vnap + 2277 vnap->vna_next)) { 2278 if (vnap->vna_other == 0) 2279 continue; 2280 2281 versym->gnu_needed = 1; 2282 if (vnap->vna_other > versym->max_verndx) 2283 versym->max_verndx = vnap->vna_other; 2284 } 2285 } 2286 } 2287 } 2288 2289 /* 2290 * Display version section information if the flags require it. 2291 * Return version information needed by other output. 2292 * 2293 * entry: 2294 * cache - Cache of all section headers 2295 * shnum - # of sections in cache 2296 * file - Name of file 2297 * flags - Command line option flags 2298 * versym - VERSYM_STATE block to be filled in. 2299 */ 2300 static void 2301 versions(Cache *cache, Word shnum, const char *file, uint_t flags, 2302 VERSYM_STATE *versym) 2303 { 2304 GElf_Word cnt; 2305 Cache *verdef_cache = NULL, *verneed_cache = NULL; 2306 2307 2308 /* Gather information about the version sections */ 2309 versym->max_verndx = 1; 2310 for (cnt = 1; cnt < shnum; cnt++) { 2311 Cache *_cache = &cache[cnt]; 2312 Shdr *shdr = _cache->c_shdr; 2313 Dyn *dyn; 2314 ulong_t numdyn; 2315 2316 switch (shdr->sh_type) { 2317 case SHT_DYNAMIC: 2318 /* 2319 * The GNU ld puts a DT_VERSYM entry in the dynamic 2320 * section so that the runtime linker can use it to 2321 * implement their versioning rules. They allow multiple 2322 * incompatible functions with the same name to exist 2323 * in different versions. The Solaris ld does not 2324 * support this mechanism, and as such, does not 2325 * produce DT_VERSYM. We use this fact to determine 2326 * which ld produced this object, and how to interpret 2327 * the version values. 2328 */ 2329 if ((shdr->sh_entsize == 0) || 2330 (shdr->sh_size == 0) || 2331 (_cache->c_data == NULL) || 2332 (_cache->c_data->d_buf == NULL)) 2333 continue; 2334 numdyn = shdr->sh_size / shdr->sh_entsize; 2335 dyn = (Dyn *)_cache->c_data->d_buf; 2336 for (; numdyn-- > 0; dyn++) 2337 if (dyn->d_tag == DT_VERSYM) { 2338 versym->gnu_full = 2339 versym->gnu_needed = 1; 2340 break; 2341 } 2342 break; 2343 2344 case SHT_SUNW_versym: 2345 /* Record data address for later symbol processing */ 2346 if (_cache->c_data != NULL) { 2347 versym->cache = _cache; 2348 versym->data = _cache->c_data->d_buf; 2349 continue; 2350 } 2351 break; 2352 2353 case SHT_SUNW_verdef: 2354 case SHT_SUNW_verneed: 2355 /* 2356 * Ensure the data is non-NULL and the number 2357 * of items is non-zero. Otherwise, we don't 2358 * understand the section, and will not use it. 2359 */ 2360 if ((_cache->c_data == NULL) || 2361 (_cache->c_data->d_buf == NULL)) { 2362 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 2363 file, _cache->c_name); 2364 continue; 2365 } 2366 if (shdr->sh_info == 0) { 2367 (void) fprintf(stderr, 2368 MSG_INTL(MSG_ERR_BADSHINFO), 2369 file, _cache->c_name, 2370 EC_WORD(shdr->sh_info)); 2371 continue; 2372 } 2373 2374 /* Make sure the string table index is in range */ 2375 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 2376 (void) fprintf(stderr, 2377 MSG_INTL(MSG_ERR_BADSHLINK), file, 2378 _cache->c_name, EC_WORD(shdr->sh_link)); 2379 continue; 2380 } 2381 2382 /* 2383 * The section is usable. Save the cache entry. 2384 */ 2385 if (shdr->sh_type == SHT_SUNW_verdef) { 2386 verdef_cache = _cache; 2387 /* 2388 * Under Solaris rules, if there is a verdef 2389 * section, the max versym index is number 2390 * of version definitions it supplies. 2391 */ 2392 versym->max_verndx = shdr->sh_info; 2393 } else { 2394 verneed_cache = _cache; 2395 } 2396 break; 2397 } 2398 } 2399 2400 /* 2401 * If there is a Verneed section, examine it for information 2402 * related to GNU style versioning. 2403 */ 2404 if (verneed_cache != NULL) 2405 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf, 2406 verneed_cache->c_shdr->sh_info, versym); 2407 2408 /* 2409 * Now that all the information is available, display the 2410 * Verdef and Verneed section contents, if requested. 2411 */ 2412 if ((flags & FLG_SHOW_VERSIONS) == 0) 2413 return; 2414 if (verdef_cache != NULL) { 2415 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2416 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF), 2417 verdef_cache->c_name); 2418 version_def((Verdef *)verdef_cache->c_data->d_buf, 2419 verdef_cache->c_shdr->sh_info, verdef_cache, 2420 &cache[verdef_cache->c_shdr->sh_link], file); 2421 } 2422 if (verneed_cache != NULL) { 2423 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2424 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED), 2425 verneed_cache->c_name); 2426 /* 2427 * If GNU versioning applies to this object, version_need() 2428 * will update versym->max_verndx, and it is not 2429 * necessary to call update_gnu_verndx(). 2430 */ 2431 version_need((Verneed *)verneed_cache->c_data->d_buf, 2432 verneed_cache->c_shdr->sh_info, verneed_cache, 2433 &cache[verneed_cache->c_shdr->sh_link], file, versym); 2434 } 2435 } 2436 2437 /* 2438 * Search for and process any symbol tables. 2439 */ 2440 void 2441 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, 2442 VERSYM_STATE *versym, const char *file, uint_t flags) 2443 { 2444 SYMTBL_STATE state; 2445 Cache *_cache; 2446 Word secndx; 2447 2448 for (secndx = 1; secndx < shnum; secndx++) { 2449 Word symcnt; 2450 Shdr *shdr; 2451 2452 _cache = &cache[secndx]; 2453 shdr = _cache->c_shdr; 2454 2455 if ((shdr->sh_type != SHT_SYMTAB) && 2456 (shdr->sh_type != SHT_DYNSYM) && 2457 ((shdr->sh_type != SHT_SUNW_LDYNSYM) || 2458 (osabi != ELFOSABI_SOLARIS))) 2459 continue; 2460 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type)) 2461 continue; 2462 2463 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr, 2464 osabi, versym, file, flags)) 2465 continue; 2466 /* 2467 * Loop through the symbol tables entries. 2468 */ 2469 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2470 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname); 2471 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 2472 2473 for (symcnt = 0; symcnt < state.symn; symcnt++) 2474 output_symbol(&state, symcnt, shdr->sh_info, symcnt, 2475 state.sym + symcnt); 2476 } 2477 } 2478 2479 /* 2480 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections. 2481 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair. 2482 */ 2483 static void 2484 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, 2485 VERSYM_STATE *versym, const char *file, uint_t flags) 2486 { 2487 SYMTBL_STATE ldynsym_state, dynsym_state; 2488 Cache *sortcache, *symcache; 2489 Shdr *sortshdr, *symshdr; 2490 Word sortsecndx, symsecndx; 2491 Word ldynsym_cnt; 2492 Word *ndx; 2493 Word ndxn; 2494 int output_cnt = 0; 2495 Conv_inv_buf_t inv_buf; 2496 2497 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) { 2498 2499 sortcache = &cache[sortsecndx]; 2500 sortshdr = sortcache->c_shdr; 2501 2502 if ((sortshdr->sh_type != SHT_SUNW_symsort) && 2503 (sortshdr->sh_type != SHT_SUNW_tlssort)) 2504 continue; 2505 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx, 2506 sortshdr->sh_type)) 2507 continue; 2508 2509 /* 2510 * If the section references a SUNW_ldynsym, then we 2511 * expect to see the associated .dynsym immediately 2512 * following. If it references a .dynsym, there is no 2513 * SUNW_ldynsym. If it is any other type, then we don't 2514 * know what to do with it. 2515 */ 2516 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) { 2517 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 2518 file, sortcache->c_name, 2519 EC_WORD(sortshdr->sh_link)); 2520 continue; 2521 } 2522 symcache = &cache[sortshdr->sh_link]; 2523 symshdr = symcache->c_shdr; 2524 symsecndx = sortshdr->sh_link; 2525 ldynsym_cnt = 0; 2526 switch (symshdr->sh_type) { 2527 case SHT_SUNW_LDYNSYM: 2528 if (!init_symtbl_state(&ldynsym_state, cache, shnum, 2529 symsecndx, ehdr, osabi, versym, file, flags)) 2530 continue; 2531 ldynsym_cnt = ldynsym_state.symn; 2532 /* 2533 * We know that the dynsym follows immediately 2534 * after the SUNW_ldynsym, and so, should be at 2535 * (sortshdr->sh_link + 1). However, elfdump is a 2536 * diagnostic tool, so we do the full paranoid 2537 * search instead. 2538 */ 2539 for (symsecndx = 1; symsecndx < shnum; symsecndx++) { 2540 symcache = &cache[symsecndx]; 2541 symshdr = symcache->c_shdr; 2542 if (symshdr->sh_type == SHT_DYNSYM) 2543 break; 2544 } 2545 if (symsecndx >= shnum) { /* Dynsym not found! */ 2546 (void) fprintf(stderr, 2547 MSG_INTL(MSG_ERR_NODYNSYM), 2548 file, sortcache->c_name); 2549 continue; 2550 } 2551 /* Fallthrough to process associated dynsym */ 2552 /* FALLTHROUGH */ 2553 case SHT_DYNSYM: 2554 if (!init_symtbl_state(&dynsym_state, cache, shnum, 2555 symsecndx, ehdr, osabi, versym, file, flags)) 2556 continue; 2557 break; 2558 default: 2559 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC), 2560 file, sortcache->c_name, 2561 conv_sec_type(osabi, ehdr->e_machine, 2562 symshdr->sh_type, 0, &inv_buf)); 2563 continue; 2564 } 2565 2566 /* 2567 * Output header 2568 */ 2569 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2570 if (ldynsym_cnt > 0) { 2571 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2), 2572 sortcache->c_name, ldynsym_state.secname, 2573 dynsym_state.secname); 2574 /* 2575 * The data for .SUNW_ldynsym and dynsym sections 2576 * is supposed to be adjacent with SUNW_ldynsym coming 2577 * first. Check, and issue a warning if it isn't so. 2578 */ 2579 if (((ldynsym_state.sym + ldynsym_state.symn) 2580 != dynsym_state.sym) && 2581 ((flags & FLG_CTL_FAKESHDR) == 0)) 2582 (void) fprintf(stderr, 2583 MSG_INTL(MSG_ERR_LDYNNOTADJ), file, 2584 ldynsym_state.secname, 2585 dynsym_state.secname); 2586 } else { 2587 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1), 2588 sortcache->c_name, dynsym_state.secname); 2589 } 2590 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 2591 2592 /* If not first one, insert a line of white space */ 2593 if (output_cnt++ > 0) 2594 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2595 2596 /* 2597 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of 2598 * symbol indices. Iterate over the array entries, 2599 * dispaying the referenced symbols. 2600 */ 2601 ndxn = sortshdr->sh_size / sortshdr->sh_entsize; 2602 ndx = (Word *)sortcache->c_data->d_buf; 2603 for (; ndxn-- > 0; ndx++) { 2604 if (*ndx >= ldynsym_cnt) { 2605 Word sec_ndx = *ndx - ldynsym_cnt; 2606 2607 output_symbol(&dynsym_state, sec_ndx, 0, 2608 *ndx, dynsym_state.sym + sec_ndx); 2609 } else { 2610 output_symbol(&ldynsym_state, *ndx, 0, 2611 *ndx, ldynsym_state.sym + *ndx); 2612 } 2613 } 2614 } 2615 } 2616 2617 /* 2618 * Search for and process any relocation sections. 2619 */ 2620 static void 2621 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 2622 { 2623 Word cnt; 2624 2625 for (cnt = 1; cnt < shnum; cnt++) { 2626 Word type, symnum; 2627 Xword relndx, relnum, relsize; 2628 void *rels; 2629 Sym *syms; 2630 Cache *symsec, *strsec; 2631 Cache *_cache = &cache[cnt]; 2632 Shdr *shdr = _cache->c_shdr; 2633 char *relname = _cache->c_name; 2634 Conv_inv_buf_t inv_buf; 2635 2636 if (((type = shdr->sh_type) != SHT_RELA) && 2637 (type != SHT_REL)) 2638 continue; 2639 if (!match(MATCH_F_ALL, relname, cnt, type)) 2640 continue; 2641 2642 /* 2643 * Decide entry size. 2644 */ 2645 if (((relsize = shdr->sh_entsize) == 0) || 2646 (relsize > shdr->sh_size)) { 2647 if (type == SHT_RELA) 2648 relsize = sizeof (Rela); 2649 else 2650 relsize = sizeof (Rel); 2651 } 2652 2653 /* 2654 * Determine the number of relocations available. 2655 */ 2656 if (shdr->sh_size == 0) { 2657 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 2658 file, relname); 2659 continue; 2660 } 2661 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 2662 continue; 2663 2664 rels = _cache->c_data->d_buf; 2665 relnum = shdr->sh_size / relsize; 2666 2667 /* 2668 * Get the data buffer for the associated symbol table and 2669 * string table. 2670 */ 2671 if (stringtbl(cache, 1, cnt, shnum, file, 2672 &symnum, &symsec, &strsec) == 0) 2673 continue; 2674 2675 syms = symsec->c_data->d_buf; 2676 2677 /* 2678 * Loop through the relocation entries. 2679 */ 2680 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2681 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name); 2682 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type); 2683 2684 for (relndx = 0; relndx < relnum; relndx++, 2685 rels = (void *)((char *)rels + relsize)) { 2686 Half mach = ehdr->e_machine; 2687 char section[BUFSIZ]; 2688 const char *symname; 2689 Word symndx, reltype; 2690 Rela *rela; 2691 Rel *rel; 2692 2693 /* 2694 * Unravel the relocation and determine the symbol with 2695 * which this relocation is associated. 2696 */ 2697 if (type == SHT_RELA) { 2698 rela = (Rela *)rels; 2699 symndx = ELF_R_SYM(rela->r_info); 2700 reltype = ELF_R_TYPE(rela->r_info, mach); 2701 } else { 2702 rel = (Rel *)rels; 2703 symndx = ELF_R_SYM(rel->r_info); 2704 reltype = ELF_R_TYPE(rel->r_info, mach); 2705 } 2706 2707 symname = relsymname(cache, _cache, strsec, symndx, 2708 symnum, relndx, syms, section, BUFSIZ, file); 2709 2710 /* 2711 * A zero symbol index is only valid for a few 2712 * relocations. 2713 */ 2714 if (symndx == 0) { 2715 int badrel = 0; 2716 2717 if ((mach == EM_SPARC) || 2718 (mach == EM_SPARC32PLUS) || 2719 (mach == EM_SPARCV9)) { 2720 if ((reltype != R_SPARC_NONE) && 2721 (reltype != R_SPARC_REGISTER) && 2722 (reltype != R_SPARC_RELATIVE)) 2723 badrel++; 2724 } else if (mach == EM_386) { 2725 if ((reltype != R_386_NONE) && 2726 (reltype != R_386_RELATIVE)) 2727 badrel++; 2728 } else if (mach == EM_AMD64) { 2729 if ((reltype != R_AMD64_NONE) && 2730 (reltype != R_AMD64_RELATIVE)) 2731 badrel++; 2732 } 2733 2734 if (badrel) { 2735 (void) fprintf(stderr, 2736 MSG_INTL(MSG_ERR_BADREL1), file, 2737 conv_reloc_type(mach, reltype, 2738 0, &inv_buf)); 2739 } 2740 } 2741 2742 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP, 2743 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type, 2744 rels, relname, symname, 0); 2745 } 2746 } 2747 } 2748 2749 2750 /* 2751 * This value controls which test dyn_test() performs. 2752 */ 2753 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t; 2754 2755 /* 2756 * Used by dynamic() to compare the value of a dynamic element against 2757 * the starting address of the section it references. 2758 * 2759 * entry: 2760 * test_type - Specify which dyn item is being tested. 2761 * sh_type - SHT_* type value for required section. 2762 * sec_cache - Cache entry for section, or NULL if the object lacks 2763 * a section of this type. 2764 * dyn - Dyn entry to be tested 2765 * dynsec_cnt - # of dynamic section being examined. The first 2766 * dynamic section is 1, the next is 2, and so on... 2767 * ehdr - ELF header for file 2768 * file - Name of file 2769 */ 2770 static void 2771 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn, 2772 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file) 2773 { 2774 Conv_inv_buf_t buf1, buf2; 2775 2776 /* 2777 * These tests are based around the implicit assumption that 2778 * there is only one dynamic section in an object, and also only 2779 * one of the sections it references. We have therefore gathered 2780 * all of the necessary information to test this in a single pass 2781 * over the section headers, which is very efficient. We are not 2782 * aware of any case where more than one dynamic section would 2783 * be meaningful in an ELF object, so this is a reasonable solution. 2784 * 2785 * To test multiple dynamic sections correctly would be more 2786 * expensive in code and time. We would have to build a data structure 2787 * containing all the dynamic elements. Then, we would use the address 2788 * to locate the section it references and ensure the section is of 2789 * the right type and that the address in the dynamic element is 2790 * to the start of the section. Then, we could check the size and 2791 * entsize values against those same sections. This is O(n^2), and 2792 * also complicated. 2793 * 2794 * In the highly unlikely case that there is more than one dynamic 2795 * section, we only test the first one, and simply allow the values 2796 * of the subsequent one to be displayed unchallenged. 2797 */ 2798 if (dynsec_cnt != 1) 2799 return; 2800 2801 /* 2802 * A DT_ item that references a section address should always find 2803 * the section in the file. 2804 */ 2805 if (sec_cache == NULL) { 2806 const char *name; 2807 2808 /* 2809 * Supply section names instead of section types for 2810 * things that reference progbits so that the error 2811 * message will make more sense. 2812 */ 2813 switch (dyn->d_tag) { 2814 case DT_INIT: 2815 name = MSG_ORIG(MSG_ELF_INIT); 2816 break; 2817 case DT_FINI: 2818 name = MSG_ORIG(MSG_ELF_FINI); 2819 break; 2820 default: 2821 name = conv_sec_type(osabi, ehdr->e_machine, 2822 sh_type, 0, &buf1); 2823 break; 2824 } 2825 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file, 2826 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2827 CONV_FMT_ALT_CF, &buf2)); 2828 return; 2829 } 2830 2831 2832 switch (test_type) { 2833 case DYN_TEST_ADDR: 2834 /* The section address should match the DT_ item value */ 2835 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr) 2836 (void) fprintf(stderr, 2837 MSG_INTL(MSG_ERR_DYNBADADDR), file, 2838 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2839 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val), 2840 sec_cache->c_ndx, sec_cache->c_name, 2841 EC_ADDR(sec_cache->c_shdr->sh_addr)); 2842 break; 2843 2844 case DYN_TEST_SIZE: 2845 /* The section size should match the DT_ item value */ 2846 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size) 2847 (void) fprintf(stderr, 2848 MSG_INTL(MSG_ERR_DYNBADSIZE), file, 2849 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2850 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), 2851 sec_cache->c_ndx, sec_cache->c_name, 2852 EC_XWORD(sec_cache->c_shdr->sh_size)); 2853 break; 2854 2855 case DYN_TEST_ENTSIZE: 2856 /* The sh_entsize value should match the DT_ item value */ 2857 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize) 2858 (void) fprintf(stderr, 2859 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file, 2860 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2861 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), 2862 sec_cache->c_ndx, sec_cache->c_name, 2863 EC_XWORD(sec_cache->c_shdr->sh_entsize)); 2864 break; 2865 } 2866 } 2867 2868 /* 2869 * There are some DT_ entries that have corresponding symbols 2870 * (e.g. DT_INIT and _init). It is expected that these items will 2871 * both have the same value if both are present. This routine 2872 * examines the well known symbol tables for such symbols and 2873 * issues warnings for any that don't match. 2874 * 2875 * entry: 2876 * dyn - Dyn entry to be tested 2877 * symname - Name of symbol that corresponds to dyn 2878 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check 2879 * target_cache - Section the symname section is expected to be 2880 * associated with. 2881 * cache - Cache of all section headers 2882 * shnum - # of sections in cache 2883 * ehdr - ELF header for file 2884 * osabi - OSABI to apply when interpreting object 2885 * file - Name of file 2886 */ 2887 static void 2888 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache, 2889 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache, 2890 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 2891 { 2892 Conv_inv_buf_t buf; 2893 int i; 2894 Sym *sym; 2895 Cache *_cache; 2896 2897 for (i = 0; i < 3; i++) { 2898 switch (i) { 2899 case 0: 2900 _cache = symtab_cache; 2901 break; 2902 case 1: 2903 _cache = dynsym_cache; 2904 break; 2905 case 2: 2906 _cache = ldynsym_cache; 2907 break; 2908 } 2909 2910 if ((_cache != NULL) && 2911 symlookup(symname, cache, shnum, &sym, target_cache, 2912 _cache, file) && (sym->st_value != dyn->d_un.d_val)) 2913 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL), 2914 file, _cache->c_name, conv_dyn_tag(dyn->d_tag, 2915 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf), 2916 symname, EC_ADDR(sym->st_value)); 2917 } 2918 } 2919 2920 /* 2921 * Search for and process a .dynamic section. 2922 */ 2923 static void 2924 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 2925 { 2926 struct { 2927 Cache *symtab; 2928 Cache *dynstr; 2929 Cache *dynsym; 2930 Cache *hash; 2931 Cache *fini; 2932 Cache *fini_array; 2933 Cache *init; 2934 Cache *init_array; 2935 Cache *preinit_array; 2936 Cache *rel; 2937 Cache *rela; 2938 Cache *sunw_cap; 2939 Cache *sunw_capinfo; 2940 Cache *sunw_capchain; 2941 Cache *sunw_ldynsym; 2942 Cache *sunw_move; 2943 Cache *sunw_syminfo; 2944 Cache *sunw_symsort; 2945 Cache *sunw_tlssort; 2946 Cache *sunw_verdef; 2947 Cache *sunw_verneed; 2948 Cache *sunw_versym; 2949 } sec; 2950 Word dynsec_ndx; 2951 Word dynsec_num; 2952 int dynsec_cnt; 2953 Word cnt; 2954 int osabi_solaris = osabi == ELFOSABI_SOLARIS; 2955 2956 /* 2957 * Make a pass over all the sections, gathering section information 2958 * we'll need below. 2959 */ 2960 dynsec_num = 0; 2961 bzero(&sec, sizeof (sec)); 2962 for (cnt = 1; cnt < shnum; cnt++) { 2963 Cache *_cache = &cache[cnt]; 2964 2965 switch (_cache->c_shdr->sh_type) { 2966 case SHT_DYNAMIC: 2967 if (dynsec_num == 0) { 2968 dynsec_ndx = cnt; 2969 2970 /* Does it have a valid string table? */ 2971 (void) stringtbl(cache, 0, cnt, shnum, file, 2972 0, 0, &sec.dynstr); 2973 } 2974 dynsec_num++; 2975 break; 2976 2977 2978 case SHT_PROGBITS: 2979 /* 2980 * We want to detect the .init and .fini sections, 2981 * if present. These are SHT_PROGBITS, so all we 2982 * have to go on is the section name. Normally comparing 2983 * names is a bad idea, but there are some special 2984 * names (i.e. .init/.fini/.interp) that are very 2985 * difficult to use in any other context, and for 2986 * these symbols, we do the heuristic match. 2987 */ 2988 if (strcmp(_cache->c_name, 2989 MSG_ORIG(MSG_ELF_INIT)) == 0) { 2990 if (sec.init == NULL) 2991 sec.init = _cache; 2992 } else if (strcmp(_cache->c_name, 2993 MSG_ORIG(MSG_ELF_FINI)) == 0) { 2994 if (sec.fini == NULL) 2995 sec.fini = _cache; 2996 } 2997 break; 2998 2999 case SHT_REL: 3000 /* 3001 * We want the SHT_REL section with the lowest 3002 * offset. The linker gathers them together, 3003 * and puts the address of the first one 3004 * into the DT_REL dynamic element. 3005 */ 3006 if ((sec.rel == NULL) || 3007 (_cache->c_shdr->sh_offset < 3008 sec.rel->c_shdr->sh_offset)) 3009 sec.rel = _cache; 3010 break; 3011 3012 case SHT_RELA: 3013 /* RELA is handled just like RELA above */ 3014 if ((sec.rela == NULL) || 3015 (_cache->c_shdr->sh_offset < 3016 sec.rela->c_shdr->sh_offset)) 3017 sec.rela = _cache; 3018 break; 3019 3020 /* 3021 * The GRAB macro is used for the simple case in which 3022 * we simply grab the first section of the desired type. 3023 */ 3024 #define GRAB(_sec_type, _sec_field) \ 3025 case _sec_type: \ 3026 if (sec._sec_field == NULL) \ 3027 sec._sec_field = _cache; \ 3028 break 3029 GRAB(SHT_SYMTAB, symtab); 3030 GRAB(SHT_DYNSYM, dynsym); 3031 GRAB(SHT_FINI_ARRAY, fini_array); 3032 GRAB(SHT_HASH, hash); 3033 GRAB(SHT_INIT_ARRAY, init_array); 3034 GRAB(SHT_SUNW_move, sunw_move); 3035 GRAB(SHT_PREINIT_ARRAY, preinit_array); 3036 GRAB(SHT_SUNW_cap, sunw_cap); 3037 GRAB(SHT_SUNW_capinfo, sunw_capinfo); 3038 GRAB(SHT_SUNW_capchain, sunw_capchain); 3039 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym); 3040 GRAB(SHT_SUNW_syminfo, sunw_syminfo); 3041 GRAB(SHT_SUNW_symsort, sunw_symsort); 3042 GRAB(SHT_SUNW_tlssort, sunw_tlssort); 3043 GRAB(SHT_SUNW_verdef, sunw_verdef); 3044 GRAB(SHT_SUNW_verneed, sunw_verneed); 3045 GRAB(SHT_SUNW_versym, sunw_versym); 3046 #undef GRAB 3047 } 3048 } 3049 3050 /* 3051 * If no dynamic section, return immediately. If more than one 3052 * dynamic section, then something odd is going on and an error 3053 * is in order, but then continue on and display them all. 3054 */ 3055 if (dynsec_num == 0) 3056 return; 3057 if (dynsec_num > 1) 3058 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN), 3059 file, EC_WORD(dynsec_num)); 3060 3061 3062 dynsec_cnt = 0; 3063 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num); 3064 cnt++) { 3065 Dyn *dyn; 3066 ulong_t numdyn; 3067 int ndx, end_ndx; 3068 Cache *_cache = &cache[cnt], *strsec; 3069 Shdr *shdr = _cache->c_shdr; 3070 int dumped = 0; 3071 3072 if (shdr->sh_type != SHT_DYNAMIC) 3073 continue; 3074 dynsec_cnt++; 3075 3076 /* 3077 * Verify the associated string table section. 3078 */ 3079 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0) 3080 continue; 3081 3082 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 3083 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3084 file, _cache->c_name); 3085 continue; 3086 } 3087 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 3088 continue; 3089 3090 numdyn = shdr->sh_size / shdr->sh_entsize; 3091 dyn = (Dyn *)_cache->c_data->d_buf; 3092 3093 /* 3094 * We expect the REL/RELA entries to reference the reloc 3095 * section with the lowest address. However, this is 3096 * not true for dumped objects. Detect if this object has 3097 * been dumped so that we can skip the reloc address test 3098 * in that case. 3099 */ 3100 for (ndx = 0; ndx < numdyn; dyn++, ndx++) { 3101 if (dyn->d_tag == DT_FLAGS_1) { 3102 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0; 3103 break; 3104 } 3105 } 3106 dyn = (Dyn *)_cache->c_data->d_buf; 3107 3108 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3109 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name); 3110 3111 Elf_dyn_title(0); 3112 3113 for (ndx = 0; ndx < numdyn; dyn++, ndx++) { 3114 union { 3115 Conv_inv_buf_t inv; 3116 Conv_dyn_flag_buf_t flag; 3117 Conv_dyn_flag1_buf_t flag1; 3118 Conv_dyn_posflag1_buf_t posflag1; 3119 Conv_dyn_feature1_buf_t feature1; 3120 } c_buf; 3121 const char *name = NULL; 3122 3123 /* 3124 * Print the information numerically, and if possible 3125 * as a string. If a string is available, name is 3126 * set to reference it. 3127 * 3128 * Also, take this opportunity to sanity check 3129 * the values of DT elements. In the code above, 3130 * we gathered information on sections that are 3131 * referenced by the dynamic section. Here, we 3132 * compare the attributes of those sections to 3133 * the DT_ items that reference them and report 3134 * on inconsistencies. 3135 * 3136 * Things not currently tested that could be improved 3137 * in later revisions include: 3138 * - We don't check PLT or GOT related items 3139 * - We don't handle computing the lengths of 3140 * relocation arrays. To handle this 3141 * requires examining data that spans 3142 * across sections, in a contiguous span 3143 * within a single segment. 3144 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be 3145 * verified without parsing the sections. 3146 * - We don't handle DT_SUNW_SYMSZ, which would 3147 * be the sum of the lengths of .dynsym and 3148 * .SUNW_ldynsym 3149 * - DT_SUNW_STRPAD can't be verified other than 3150 * to check that it's not larger than 3151 * the string table. 3152 * - Some items come in "all or none" clusters 3153 * that give an address, element size, 3154 * and data length in bytes. We don't 3155 * verify that there are no missing items 3156 * in such groups. 3157 */ 3158 switch (dyn->d_tag) { 3159 case DT_NULL: 3160 /* 3161 * Special case: DT_NULLs can come in groups 3162 * that we prefer to reduce to a single line. 3163 */ 3164 end_ndx = ndx; 3165 while ((end_ndx < (numdyn - 1)) && 3166 ((dyn + 1)->d_tag == DT_NULL)) { 3167 dyn++; 3168 end_ndx++; 3169 } 3170 Elf_dyn_null_entry(0, dyn, ndx, end_ndx); 3171 ndx = end_ndx; 3172 continue; 3173 3174 /* 3175 * String items all reference the dynstr. The string() 3176 * function does the necessary sanity checking. 3177 */ 3178 case DT_NEEDED: 3179 case DT_SONAME: 3180 case DT_FILTER: 3181 case DT_AUXILIARY: 3182 case DT_CONFIG: 3183 case DT_RPATH: 3184 case DT_RUNPATH: 3185 case DT_USED: 3186 case DT_DEPAUDIT: 3187 case DT_AUDIT: 3188 name = string(_cache, ndx, strsec, 3189 file, dyn->d_un.d_ptr); 3190 break; 3191 3192 case DT_SUNW_AUXILIARY: 3193 case DT_SUNW_FILTER: 3194 if (osabi_solaris) 3195 name = string(_cache, ndx, strsec, 3196 file, dyn->d_un.d_ptr); 3197 break; 3198 3199 case DT_FLAGS: 3200 name = conv_dyn_flag(dyn->d_un.d_val, 3201 0, &c_buf.flag); 3202 break; 3203 case DT_FLAGS_1: 3204 name = conv_dyn_flag1(dyn->d_un.d_val, 0, 3205 &c_buf.flag1); 3206 break; 3207 case DT_POSFLAG_1: 3208 name = conv_dyn_posflag1(dyn->d_un.d_val, 0, 3209 &c_buf.posflag1); 3210 break; 3211 case DT_FEATURE_1: 3212 name = conv_dyn_feature1(dyn->d_un.d_val, 0, 3213 &c_buf.feature1); 3214 break; 3215 case DT_DEPRECATED_SPARC_REGISTER: 3216 name = MSG_INTL(MSG_STR_DEPRECATED); 3217 break; 3218 3219 case DT_SUNW_LDMACH: 3220 if (!osabi_solaris) 3221 break; 3222 name = conv_ehdr_mach((Half)dyn->d_un.d_val, 3223 0, &c_buf.inv); 3224 break; 3225 3226 /* 3227 * Cases below this point are strictly sanity checking, 3228 * and do not generate a name string. The TEST_ macros 3229 * are used to hide the boiler plate arguments neeeded 3230 * by dyn_test(). 3231 */ 3232 #define TEST_ADDR(_sh_type, _sec_field) \ 3233 dyn_test(DYN_TEST_ADDR, _sh_type, \ 3234 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3235 osabi, file) 3236 #define TEST_SIZE(_sh_type, _sec_field) \ 3237 dyn_test(DYN_TEST_SIZE, _sh_type, \ 3238 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3239 osabi, file) 3240 #define TEST_ENTSIZE(_sh_type, _sec_field) \ 3241 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \ 3242 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3243 osabi, file) 3244 3245 case DT_FINI: 3246 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI), 3247 sec.symtab, sec.dynsym, sec.sunw_ldynsym, 3248 sec.fini, cache, shnum, ehdr, osabi, file); 3249 TEST_ADDR(SHT_PROGBITS, fini); 3250 break; 3251 3252 case DT_FINI_ARRAY: 3253 TEST_ADDR(SHT_FINI_ARRAY, fini_array); 3254 break; 3255 3256 case DT_FINI_ARRAYSZ: 3257 TEST_SIZE(SHT_FINI_ARRAY, fini_array); 3258 break; 3259 3260 case DT_HASH: 3261 TEST_ADDR(SHT_HASH, hash); 3262 break; 3263 3264 case DT_INIT: 3265 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT), 3266 sec.symtab, sec.dynsym, sec.sunw_ldynsym, 3267 sec.init, cache, shnum, ehdr, osabi, file); 3268 TEST_ADDR(SHT_PROGBITS, init); 3269 break; 3270 3271 case DT_INIT_ARRAY: 3272 TEST_ADDR(SHT_INIT_ARRAY, init_array); 3273 break; 3274 3275 case DT_INIT_ARRAYSZ: 3276 TEST_SIZE(SHT_INIT_ARRAY, init_array); 3277 break; 3278 3279 case DT_MOVEENT: 3280 TEST_ENTSIZE(SHT_SUNW_move, sunw_move); 3281 break; 3282 3283 case DT_MOVESZ: 3284 TEST_SIZE(SHT_SUNW_move, sunw_move); 3285 break; 3286 3287 case DT_MOVETAB: 3288 TEST_ADDR(SHT_SUNW_move, sunw_move); 3289 break; 3290 3291 case DT_PREINIT_ARRAY: 3292 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array); 3293 break; 3294 3295 case DT_PREINIT_ARRAYSZ: 3296 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array); 3297 break; 3298 3299 case DT_REL: 3300 if (!dumped) 3301 TEST_ADDR(SHT_REL, rel); 3302 break; 3303 3304 case DT_RELENT: 3305 TEST_ENTSIZE(SHT_REL, rel); 3306 break; 3307 3308 case DT_RELA: 3309 if (!dumped) 3310 TEST_ADDR(SHT_RELA, rela); 3311 break; 3312 3313 case DT_RELAENT: 3314 TEST_ENTSIZE(SHT_RELA, rela); 3315 break; 3316 3317 case DT_STRTAB: 3318 TEST_ADDR(SHT_STRTAB, dynstr); 3319 break; 3320 3321 case DT_STRSZ: 3322 TEST_SIZE(SHT_STRTAB, dynstr); 3323 break; 3324 3325 case DT_SUNW_CAP: 3326 if (osabi_solaris) 3327 TEST_ADDR(SHT_SUNW_cap, sunw_cap); 3328 break; 3329 3330 case DT_SUNW_CAPINFO: 3331 if (osabi_solaris) 3332 TEST_ADDR(SHT_SUNW_capinfo, 3333 sunw_capinfo); 3334 break; 3335 3336 case DT_SUNW_CAPCHAIN: 3337 if (osabi_solaris) 3338 TEST_ADDR(SHT_SUNW_capchain, 3339 sunw_capchain); 3340 break; 3341 3342 case DT_SUNW_SYMTAB: 3343 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym); 3344 break; 3345 3346 case DT_SYMENT: 3347 TEST_ENTSIZE(SHT_DYNSYM, dynsym); 3348 break; 3349 3350 case DT_SYMINENT: 3351 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo); 3352 break; 3353 3354 case DT_SYMINFO: 3355 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo); 3356 break; 3357 3358 case DT_SYMINSZ: 3359 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo); 3360 break; 3361 3362 case DT_SYMTAB: 3363 TEST_ADDR(SHT_DYNSYM, dynsym); 3364 break; 3365 3366 case DT_SUNW_SORTENT: 3367 /* 3368 * This entry is related to both the symsort and 3369 * tlssort sections. 3370 */ 3371 if (osabi_solaris) { 3372 int test_tls = 3373 (sec.sunw_tlssort != NULL); 3374 int test_sym = 3375 (sec.sunw_symsort != NULL) || 3376 !test_tls; 3377 if (test_sym) 3378 TEST_ENTSIZE(SHT_SUNW_symsort, 3379 sunw_symsort); 3380 if (test_tls) 3381 TEST_ENTSIZE(SHT_SUNW_tlssort, 3382 sunw_tlssort); 3383 } 3384 break; 3385 3386 3387 case DT_SUNW_SYMSORT: 3388 if (osabi_solaris) 3389 TEST_ADDR(SHT_SUNW_symsort, 3390 sunw_symsort); 3391 break; 3392 3393 case DT_SUNW_SYMSORTSZ: 3394 if (osabi_solaris) 3395 TEST_SIZE(SHT_SUNW_symsort, 3396 sunw_symsort); 3397 break; 3398 3399 case DT_SUNW_TLSSORT: 3400 if (osabi_solaris) 3401 TEST_ADDR(SHT_SUNW_tlssort, 3402 sunw_tlssort); 3403 break; 3404 3405 case DT_SUNW_TLSSORTSZ: 3406 if (osabi_solaris) 3407 TEST_SIZE(SHT_SUNW_tlssort, 3408 sunw_tlssort); 3409 break; 3410 3411 case DT_VERDEF: 3412 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef); 3413 break; 3414 3415 case DT_VERNEED: 3416 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed); 3417 break; 3418 3419 case DT_VERSYM: 3420 TEST_ADDR(SHT_SUNW_versym, sunw_versym); 3421 break; 3422 #undef TEST_ADDR 3423 #undef TEST_SIZE 3424 #undef TEST_ENTSIZE 3425 } 3426 3427 if (name == NULL) 3428 name = MSG_ORIG(MSG_STR_EMPTY); 3429 Elf_dyn_entry(0, dyn, ndx, name, 3430 osabi, ehdr->e_machine); 3431 } 3432 } 3433 } 3434 3435 /* 3436 * Search for and process a MOVE section. 3437 */ 3438 static void 3439 move(Cache *cache, Word shnum, const char *file, uint_t flags) 3440 { 3441 Word cnt; 3442 const char *fmt = NULL; 3443 3444 for (cnt = 1; cnt < shnum; cnt++) { 3445 Word movenum, symnum, ndx; 3446 Sym *syms; 3447 Cache *_cache = &cache[cnt]; 3448 Shdr *shdr = _cache->c_shdr; 3449 Cache *symsec, *strsec; 3450 Move *move; 3451 3452 if (shdr->sh_type != SHT_SUNW_move) 3453 continue; 3454 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 3455 continue; 3456 3457 /* 3458 * Determine the move data and number. 3459 */ 3460 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 3461 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3462 file, _cache->c_name); 3463 continue; 3464 } 3465 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 3466 continue; 3467 3468 move = (Move *)_cache->c_data->d_buf; 3469 movenum = shdr->sh_size / shdr->sh_entsize; 3470 3471 /* 3472 * Get the data buffer for the associated symbol table and 3473 * string table. 3474 */ 3475 if (stringtbl(cache, 1, cnt, shnum, file, 3476 &symnum, &symsec, &strsec) == 0) 3477 return; 3478 3479 syms = (Sym *)symsec->c_data->d_buf; 3480 3481 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3482 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name); 3483 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE)); 3484 3485 if (fmt == NULL) 3486 fmt = MSG_INTL(MSG_MOVE_ENTRY); 3487 3488 for (ndx = 0; ndx < movenum; move++, ndx++) { 3489 const char *symname; 3490 char index[MAXNDXSIZE], section[BUFSIZ]; 3491 Word symndx, shndx; 3492 Sym *sym; 3493 3494 /* 3495 * Check for null entries 3496 */ 3497 if ((move->m_info == 0) && (move->m_value == 0) && 3498 (move->m_poffset == 0) && (move->m_repeat == 0) && 3499 (move->m_stride == 0)) { 3500 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY), 3501 EC_XWORD(move->m_poffset), 0, 0, 0, 3502 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY)); 3503 continue; 3504 } 3505 if (((symndx = ELF_M_SYM(move->m_info)) == 0) || 3506 (symndx >= symnum)) { 3507 (void) fprintf(stderr, 3508 MSG_INTL(MSG_ERR_BADMINFO), file, 3509 _cache->c_name, EC_XWORD(move->m_info)); 3510 3511 (void) snprintf(index, MAXNDXSIZE, 3512 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); 3513 dbg_print(0, fmt, index, 3514 EC_XWORD(move->m_poffset), 3515 ELF_M_SIZE(move->m_info), move->m_repeat, 3516 move->m_stride, move->m_value, 3517 MSG_INTL(MSG_STR_UNKNOWN)); 3518 continue; 3519 } 3520 3521 symname = relsymname(cache, _cache, strsec, 3522 symndx, symnum, ndx, syms, section, BUFSIZ, file); 3523 sym = (Sym *)(syms + symndx); 3524 3525 /* 3526 * Additional sanity check. 3527 */ 3528 shndx = sym->st_shndx; 3529 if (!((shndx == SHN_COMMON) || 3530 (((shndx >= 1) && (shndx <= shnum)) && 3531 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) { 3532 (void) fprintf(stderr, 3533 MSG_INTL(MSG_ERR_BADSYM2), file, 3534 _cache->c_name, EC_WORD(symndx), 3535 demangle(symname, flags)); 3536 } 3537 3538 (void) snprintf(index, MAXNDXSIZE, 3539 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); 3540 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset), 3541 ELF_M_SIZE(move->m_info), move->m_repeat, 3542 move->m_stride, move->m_value, 3543 demangle(symname, flags)); 3544 } 3545 } 3546 } 3547 3548 /* 3549 * parse_note_t is used to track the state used by parse_note_entry() 3550 * between calls, and also to return the results of each call. 3551 */ 3552 typedef struct { 3553 /* pns_ fields track progress through the data */ 3554 const char *pns_file; /* File name */ 3555 Cache *pns_cache; /* Note section cache entry */ 3556 size_t pns_size; /* # unprocessed data bytes */ 3557 Word *pns_data; /* # to next unused data byte */ 3558 3559 /* pn_ fields return the results for a single call */ 3560 Word pn_namesz; /* Value of note namesz field */ 3561 Word pn_descsz; /* Value of note descsz field */ 3562 Word pn_type; /* Value of note type field */ 3563 const char *pn_name; /* if (namesz > 0) ptr to name bytes */ 3564 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */ 3565 } parse_note_t; 3566 3567 /* 3568 * Extract the various sub-parts of a note entry, and advance the 3569 * data pointer past it. 3570 * 3571 * entry: 3572 * The state pns_ fields contain current values for the Note section 3573 * 3574 * exit: 3575 * On success, True (1) is returned, the state pns_ fields have been 3576 * advanced to point at the start of the next entry, and the information 3577 * for the recovered note entry is found in the state pn_ fields. 3578 * 3579 * On failure, False (0) is returned. The values contained in state 3580 * are undefined. 3581 */ 3582 static int 3583 parse_note_entry(parse_note_t *state) 3584 { 3585 size_t pad, noteoff; 3586 3587 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size; 3588 /* 3589 * Make sure we can at least reference the 3 initial entries 3590 * (4-byte words) of the note information block. 3591 */ 3592 if (state->pns_size >= (sizeof (Word) * 3)) { 3593 state->pns_size -= (sizeof (Word) * 3); 3594 } else { 3595 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ), 3596 state->pns_file, state->pns_cache->c_name, 3597 EC_WORD(noteoff)); 3598 return (0); 3599 } 3600 3601 /* 3602 * Make sure any specified name string can be referenced. 3603 */ 3604 if ((state->pn_namesz = *state->pns_data++) != 0) { 3605 if (state->pns_size >= state->pn_namesz) { 3606 state->pns_size -= state->pn_namesz; 3607 } else { 3608 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ), 3609 state->pns_file, state->pns_cache->c_name, 3610 EC_WORD(noteoff), EC_WORD(state->pn_namesz)); 3611 return (0); 3612 } 3613 } 3614 3615 /* 3616 * Make sure any specified descriptor can be referenced. 3617 */ 3618 if ((state->pn_descsz = *state->pns_data++) != 0) { 3619 /* 3620 * If namesz isn't a 4-byte multiple, account for any 3621 * padding that must exist before the descriptor. 3622 */ 3623 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) { 3624 pad = sizeof (Word) - pad; 3625 state->pns_size -= pad; 3626 } 3627 if (state->pns_size >= state->pn_descsz) { 3628 state->pns_size -= state->pn_descsz; 3629 } else { 3630 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ), 3631 state->pns_file, state->pns_cache->c_name, 3632 EC_WORD(noteoff), EC_WORD(state->pn_namesz)); 3633 return (0); 3634 } 3635 } 3636 3637 state->pn_type = *state->pns_data++; 3638 3639 /* Name */ 3640 if (state->pn_namesz) { 3641 state->pn_name = (char *)state->pns_data; 3642 pad = (state->pn_namesz + 3643 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1); 3644 /* LINTED */ 3645 state->pns_data = (Word *)(state->pn_name + pad); 3646 } 3647 3648 /* 3649 * If multiple information blocks exist within a .note section 3650 * account for any padding that must exist before the next 3651 * information block. 3652 */ 3653 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) { 3654 pad = sizeof (Word) - pad; 3655 if (state->pns_size > pad) 3656 state->pns_size -= pad; 3657 } 3658 3659 /* Data */ 3660 if (state->pn_descsz) { 3661 state->pn_desc = (const char *)state->pns_data; 3662 /* LINTED */ 3663 state->pns_data = (Word *)(state->pn_desc + 3664 state->pn_descsz + pad); 3665 } 3666 3667 return (1); 3668 } 3669 3670 /* 3671 * Callback function for use with conv_str_to_c_literal() below. 3672 */ 3673 /*ARGSUSED2*/ 3674 static void 3675 c_literal_cb(const void *ptr, size_t size, void *uvalue) 3676 { 3677 (void) fwrite(ptr, size, 1, stdout); 3678 } 3679 3680 /* 3681 * Traverse a note section analyzing each note information block. 3682 * The data buffers size is used to validate references before they are made, 3683 * and is decremented as each element is processed. 3684 */ 3685 void 3686 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file) 3687 { 3688 int cnt = 0; 3689 int is_corenote; 3690 int do_swap; 3691 Conv_inv_buf_t inv_buf; 3692 parse_note_t pnstate; 3693 3694 pnstate.pns_file = file; 3695 pnstate.pns_cache = cache; 3696 pnstate.pns_size = size; 3697 pnstate.pns_data = data; 3698 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA]; 3699 3700 /* 3701 * Print out a single `note' information block. 3702 */ 3703 while (pnstate.pns_size > 0) { 3704 3705 if (parse_note_entry(&pnstate) == 0) 3706 return; 3707 3708 /* 3709 * Is this a Solaris core note? Such notes all have 3710 * the name "CORE". 3711 */ 3712 is_corenote = (ehdr->e_type == ET_CORE) && 3713 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) && 3714 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name, 3715 MSG_STR_CORE_SIZE + 1) == 0); 3716 3717 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3718 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt)); 3719 cnt++; 3720 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), 3721 EC_WORD(pnstate.pn_namesz)); 3722 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), 3723 EC_WORD(pnstate.pn_descsz)); 3724 3725 if (is_corenote) 3726 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR), 3727 conv_cnote_type(pnstate.pn_type, 0, &inv_buf)); 3728 else 3729 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), 3730 EC_WORD(pnstate.pn_type)); 3731 if (pnstate.pn_namesz) { 3732 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME)); 3733 /* 3734 * The name string can contain embedded 'null' 3735 * bytes and/or unprintable characters. Also, 3736 * the final NULL is documented in the ELF ABI 3737 * as being included in the namesz. So, display 3738 * the name using C literal string notation, and 3739 * include the terminating NULL in the output. 3740 * We don't show surrounding double quotes, as 3741 * that implies the termination that we are showing 3742 * explicitly. 3743 */ 3744 (void) fwrite(MSG_ORIG(MSG_STR_8SP), 3745 MSG_STR_8SP_SIZE, 1, stdout); 3746 conv_str_to_c_literal(pnstate.pn_name, 3747 pnstate.pn_namesz, c_literal_cb, NULL); 3748 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3749 } 3750 3751 if (pnstate.pn_descsz) { 3752 int hexdump = 1; 3753 3754 /* 3755 * If this is a core note, let the corenote() 3756 * function handle it. 3757 */ 3758 if (is_corenote) { 3759 /* We only issue the bad arch error once */ 3760 static int badnote_done = 0; 3761 corenote_ret_t corenote_ret; 3762 3763 corenote_ret = corenote(ehdr->e_machine, 3764 do_swap, pnstate.pn_type, pnstate.pn_desc, 3765 pnstate.pn_descsz); 3766 switch (corenote_ret) { 3767 case CORENOTE_R_OK_DUMP: 3768 hexdump = 1; 3769 break; 3770 case CORENOTE_R_OK: 3771 hexdump = 0; 3772 break; 3773 case CORENOTE_R_BADDATA: 3774 (void) fprintf(stderr, 3775 MSG_INTL(MSG_NOTE_BADCOREDATA), 3776 file); 3777 break; 3778 case CORENOTE_R_BADARCH: 3779 if (badnote_done) 3780 break; 3781 (void) fprintf(stderr, 3782 MSG_INTL(MSG_NOTE_BADCOREARCH), 3783 file, 3784 conv_ehdr_mach(ehdr->e_machine, 3785 0, &inv_buf)); 3786 break; 3787 case CORENOTE_R_BADTYPE: 3788 (void) fprintf(stderr, 3789 MSG_INTL(MSG_NOTE_BADCORETYPE), 3790 file, 3791 EC_WORD(pnstate.pn_type)); 3792 break; 3793 3794 } 3795 } 3796 3797 /* 3798 * The default thing when we don't understand 3799 * the note data is to display it as hex bytes. 3800 */ 3801 if (hexdump) { 3802 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC)); 3803 dump_hex_bytes(pnstate.pn_desc, 3804 pnstate.pn_descsz, 8, 4, 4); 3805 } 3806 } 3807 } 3808 } 3809 3810 /* 3811 * Search for and process .note sections. 3812 * 3813 * Returns the number of note sections seen. 3814 */ 3815 static Word 3816 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 3817 { 3818 Word cnt, note_cnt = 0; 3819 3820 /* 3821 * Otherwise look for any .note sections. 3822 */ 3823 for (cnt = 1; cnt < shnum; cnt++) { 3824 Cache *_cache = &cache[cnt]; 3825 Shdr *shdr = _cache->c_shdr; 3826 3827 if (shdr->sh_type != SHT_NOTE) 3828 continue; 3829 note_cnt++; 3830 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 3831 continue; 3832 3833 /* 3834 * As these sections are often hand rolled, make sure they're 3835 * properly aligned before proceeding, and issue an error 3836 * as necessary. 3837 * 3838 * Note that we will continue on to display the note even 3839 * if it has bad alignment. We can do this safely, because 3840 * libelf knows the alignment required for SHT_NOTE, and 3841 * takes steps to deliver a properly aligned buffer to us 3842 * even if the actual file is misaligned. 3843 */ 3844 if (shdr->sh_offset & (sizeof (Word) - 1)) 3845 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN), 3846 file, _cache->c_name); 3847 3848 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 3849 continue; 3850 3851 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3852 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name); 3853 note_entry(_cache, (Word *)_cache->c_data->d_buf, 3854 /* LINTED */ 3855 (Word)_cache->c_data->d_size, ehdr, file); 3856 } 3857 3858 return (note_cnt); 3859 } 3860 3861 /* 3862 * The Linux Standard Base defines a special note named .note.ABI-tag 3863 * that is used to maintain Linux ABI information. Presence of this section 3864 * is a strong indication that the object should be considered to be 3865 * ELFOSABI_LINUX. 3866 * 3867 * This function returns True (1) if such a note is seen, and False (0) 3868 * otherwise. 3869 */ 3870 static int 3871 has_linux_abi_note(Cache *cache, Word shnum, const char *file) 3872 { 3873 Word cnt; 3874 3875 for (cnt = 1; cnt < shnum; cnt++) { 3876 parse_note_t pnstate; 3877 Cache *_cache = &cache[cnt]; 3878 Shdr *shdr = _cache->c_shdr; 3879 3880 /* 3881 * Section must be SHT_NOTE, must have the name 3882 * .note.ABI-tag, and must have data. 3883 */ 3884 if ((shdr->sh_type != SHT_NOTE) || 3885 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG), 3886 _cache->c_name) != 0) || 3887 (_cache->c_data == NULL) || 3888 (_cache->c_data->d_buf == NULL)) 3889 continue; 3890 3891 pnstate.pns_file = file; 3892 pnstate.pns_cache = _cache; 3893 pnstate.pns_size = _cache->c_data->d_size; 3894 pnstate.pns_data = (Word *)_cache->c_data->d_buf; 3895 3896 while (pnstate.pns_size > 0) { 3897 Word *w; 3898 3899 if (parse_note_entry(&pnstate) == 0) 3900 break; 3901 3902 /* 3903 * The type must be 1, and the name must be "GNU". 3904 * The descsz must be at least 16 bytes. 3905 */ 3906 if ((pnstate.pn_type != 1) || 3907 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) || 3908 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name, 3909 MSG_STR_CORE_SIZE + 1) != 0) || 3910 (pnstate.pn_descsz < 16)) 3911 continue; 3912 3913 /* 3914 * desc contains 4 32-bit fields. Field 0 must be 0, 3915 * indicating Linux. The second, third, and fourth 3916 * fields represent the earliest Linux kernel 3917 * version compatible with this object. 3918 */ 3919 /*LINTED*/ 3920 w = (Word *) pnstate.pn_desc; 3921 if (*w == 0) 3922 return (1); 3923 } 3924 } 3925 3926 return (0); 3927 } 3928 3929 /* 3930 * Determine an individual hash entry. This may be the initial hash entry, 3931 * or an associated chain entry. 3932 */ 3933 static void 3934 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx, 3935 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts, 3936 uint_t flags, int chain) 3937 { 3938 Sym *sym; 3939 const char *symname, *str; 3940 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE]; 3941 ulong_t nbkt, nhash; 3942 3943 if (symndx > symn) { 3944 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file, 3945 EC_WORD(symndx), EC_WORD(hashndx)); 3946 symname = MSG_INTL(MSG_STR_UNKNOWN); 3947 } else { 3948 sym = (Sym *)(syms + symndx); 3949 symname = string(refsec, symndx, strsec, file, sym->st_name); 3950 } 3951 3952 if (chain == 0) { 3953 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), 3954 hashndx); 3955 str = (const char *)_bucket; 3956 } else 3957 str = MSG_ORIG(MSG_STR_EMPTY); 3958 3959 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2), 3960 EC_WORD(symndx)); 3961 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx, 3962 demangle(symname, flags)); 3963 3964 /* 3965 * Determine if this string is in the correct bucket. 3966 */ 3967 nhash = elf_hash(symname); 3968 nbkt = nhash % bkts; 3969 3970 if (nbkt != hashndx) { 3971 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file, 3972 hsecname, symname, EC_WORD(hashndx), nbkt); 3973 } 3974 } 3975 3976 #define MAXCOUNT 500 3977 3978 static void 3979 hash(Cache *cache, Word shnum, const char *file, uint_t flags) 3980 { 3981 static int count[MAXCOUNT]; 3982 Word cnt; 3983 Word ndx, bkts, nchain; 3984 char number[MAXNDXSIZE]; 3985 3986 for (cnt = 1; cnt < shnum; cnt++) { 3987 Word *hash, *chain; 3988 Cache *_cache = &cache[cnt]; 3989 Shdr *sshdr, *hshdr = _cache->c_shdr; 3990 char *ssecname, *hsecname = _cache->c_name; 3991 Sym *syms; 3992 Word symn; 3993 3994 if (hshdr->sh_type != SHT_HASH) 3995 continue; 3996 3997 /* 3998 * Check the hash table data and size. 3999 */ 4000 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) { 4001 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4002 file, hsecname); 4003 continue; 4004 } 4005 if ((_cache->c_data == NULL) || 4006 (_cache->c_data->d_buf == NULL)) { 4007 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4008 file, hsecname); 4009 continue; 4010 } 4011 4012 hash = (Word *)_cache->c_data->d_buf; 4013 bkts = *hash++; 4014 nchain = *hash++; 4015 chain = hash + bkts; 4016 4017 /* 4018 * The section holds the sizes in addition to the buckets and 4019 * chains. 4020 */ 4021 if (_cache->c_data->d_size < 4022 (bkts + nchain + 2) * sizeof (uint_t)) { 4023 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4024 file, hsecname); 4025 continue; 4026 } 4027 4028 /* 4029 * Get the data buffer for the associated symbol table. 4030 */ 4031 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) { 4032 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 4033 file, hsecname, EC_WORD(hshdr->sh_link)); 4034 continue; 4035 } 4036 4037 _cache = &cache[hshdr->sh_link]; 4038 ssecname = _cache->c_name; 4039 4040 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 4041 continue; 4042 4043 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) { 4044 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4045 file, ssecname); 4046 continue; 4047 } 4048 4049 sshdr = _cache->c_shdr; 4050 4051 if ((sshdr->sh_entsize == 0) || (sshdr->sh_size == 0)) { 4052 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4053 file, ssecname); 4054 continue; 4055 } 4056 4057 /* LINTED */ 4058 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize); 4059 4060 /* 4061 * Check that there is a chain for each symbol. 4062 */ 4063 if (symn > nchain) { 4064 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4065 file, ssecname); 4066 continue; 4067 } 4068 4069 /* 4070 * Get the associated string table section. 4071 */ 4072 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) { 4073 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 4074 file, ssecname, EC_WORD(sshdr->sh_link)); 4075 continue; 4076 } 4077 4078 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4079 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname); 4080 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO)); 4081 4082 /* 4083 * Loop through the hash buckets, printing the appropriate 4084 * symbols. 4085 */ 4086 for (ndx = 0; ndx < bkts; ndx++, hash++) { 4087 Word _ndx, _cnt; 4088 4089 if (*hash == 0) { 4090 count[0]++; 4091 continue; 4092 } 4093 4094 /* 4095 * Each hash bucket must contain to a valid chain index. 4096 * Because the symbol table is checked to be the same 4097 * length as the chain array, this also implicitly 4098 * checks those bounds. 4099 */ 4100 if (*hash > nchain) { 4101 (void) fprintf(stderr, 4102 MSG_INTL(MSG_ERR_BADCHAINIDX), file, 4103 ssecname, EC_WORD(*hash), EC_WORD(ndx), 4104 EC_WORD(nchain)); 4105 continue; 4106 } 4107 4108 hash_entry(_cache, &cache[sshdr->sh_link], hsecname, 4109 ndx, *hash, symn, syms, file, bkts, flags, 0); 4110 4111 /* 4112 * Determine if any other symbols are chained to this 4113 * bucket. 4114 */ 4115 _ndx = chain[*hash]; 4116 _cnt = 1; 4117 while (_ndx) { 4118 if (_ndx > nchain) { 4119 (void) fprintf(stderr, 4120 MSG_INTL(MSG_ERR_BADCHAINIDX), file, 4121 ssecname, EC_WORD(_ndx), 4122 EC_WORD(ndx), EC_WORD(nchain)); 4123 break; 4124 } 4125 hash_entry(_cache, &cache[sshdr->sh_link], 4126 hsecname, ndx, _ndx, symn, syms, file, 4127 bkts, flags, 1); 4128 _ndx = chain[_ndx]; 4129 _cnt++; 4130 } 4131 4132 if (_cnt >= MAXCOUNT) { 4133 (void) fprintf(stderr, 4134 MSG_INTL(MSG_HASH_OVERFLW), file, 4135 _cache->c_name, EC_WORD(ndx), 4136 EC_WORD(_cnt)); 4137 } else 4138 count[_cnt]++; 4139 } 4140 break; 4141 } 4142 4143 /* 4144 * Print out the count information. 4145 */ 4146 bkts = cnt = 0; 4147 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4148 4149 for (ndx = 0; ndx < MAXCOUNT; ndx++) { 4150 Word _cnt; 4151 4152 if ((_cnt = count[ndx]) == 0) 4153 continue; 4154 4155 (void) snprintf(number, MAXNDXSIZE, 4156 MSG_ORIG(MSG_FMT_INTEGER), _cnt); 4157 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number, 4158 EC_WORD(ndx)); 4159 bkts += _cnt; 4160 cnt += (Word)(ndx * _cnt); 4161 } 4162 if (cnt) { 4163 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), 4164 bkts); 4165 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number, 4166 EC_WORD(cnt)); 4167 } 4168 } 4169 4170 static void 4171 group(Cache *cache, Word shnum, const char *file, uint_t flags) 4172 { 4173 Word scnt; 4174 4175 for (scnt = 1; scnt < shnum; scnt++) { 4176 Cache *_cache = &cache[scnt]; 4177 Shdr *shdr = _cache->c_shdr; 4178 Word *grpdata, gcnt, grpcnt, symnum, unknown; 4179 Cache *symsec, *strsec; 4180 Sym *syms, *sym; 4181 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10]; 4182 const char *grpnam; 4183 4184 if (shdr->sh_type != SHT_GROUP) 4185 continue; 4186 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type)) 4187 continue; 4188 if ((_cache->c_data == NULL) || 4189 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL)) 4190 continue; 4191 grpcnt = shdr->sh_size / sizeof (Word); 4192 4193 /* 4194 * Get the data buffer for the associated symbol table and 4195 * string table. 4196 */ 4197 if (stringtbl(cache, 1, scnt, shnum, file, 4198 &symnum, &symsec, &strsec) == 0) 4199 return; 4200 4201 syms = symsec->c_data->d_buf; 4202 4203 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4204 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name); 4205 dbg_print(0, MSG_INTL(MSG_GRP_TITLE)); 4206 4207 /* 4208 * The first element of the group defines the group. The 4209 * associated symbol is defined by the sh_link field. 4210 */ 4211 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) { 4212 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), 4213 file, _cache->c_name, EC_WORD(shdr->sh_info)); 4214 return; 4215 } 4216 4217 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT)); 4218 if (grpdata[0] & GRP_COMDAT) { 4219 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT)); 4220 } 4221 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) { 4222 size_t len = strlen(flgstrbuf); 4223 4224 (void) snprintf(&flgstrbuf[len], 4225 (MSG_GRP_COMDAT_SIZE + 10 - len), 4226 MSG_ORIG(MSG_GRP_UNKNOWN), unknown); 4227 } 4228 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT)); 4229 sym = (Sym *)(syms + shdr->sh_info); 4230 4231 /* 4232 * The GNU assembler can use section symbols as the signature 4233 * symbol as described by this comment in the gold linker 4234 * (found via google): 4235 * 4236 * It seems that some versions of gas will create a 4237 * section group associated with a section symbol, and 4238 * then fail to give a name to the section symbol. In 4239 * such a case, use the name of the section. 4240 * 4241 * In order to support such objects, we do the same. 4242 */ 4243 grpnam = string(_cache, 0, strsec, file, sym->st_name); 4244 if (((sym->st_name == 0) || (*grpnam == '\0')) && 4245 (ELF_ST_TYPE(sym->st_info) == STT_SECTION)) 4246 grpnam = cache[sym->st_shndx].c_name; 4247 4248 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf, 4249 demangle(grpnam, flags)); 4250 4251 for (gcnt = 1; gcnt < grpcnt; gcnt++) { 4252 char index[MAXNDXSIZE]; 4253 const char *name; 4254 4255 (void) snprintf(index, MAXNDXSIZE, 4256 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt)); 4257 4258 if (grpdata[gcnt] >= shnum) 4259 name = MSG_INTL(MSG_GRP_INVALSCN); 4260 else 4261 name = cache[grpdata[gcnt]].c_name; 4262 4263 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name, 4264 EC_XWORD(grpdata[gcnt])); 4265 } 4266 } 4267 } 4268 4269 static void 4270 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 4271 { 4272 Cache *gotcache = NULL, *symtab = NULL; 4273 Addr gotbgn, gotend; 4274 Shdr *gotshdr; 4275 Word cnt, gotents, gotndx; 4276 size_t gentsize; 4277 Got_info *gottable; 4278 char *gotdata; 4279 Sym *gotsym; 4280 Xword gotsymaddr; 4281 uint_t sys_encoding; 4282 4283 /* 4284 * First, find the got. 4285 */ 4286 for (cnt = 1; cnt < shnum; cnt++) { 4287 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), 4288 MSG_ELF_GOT_SIZE) == 0) { 4289 gotcache = &cache[cnt]; 4290 break; 4291 } 4292 } 4293 if (gotcache == NULL) 4294 return; 4295 4296 /* 4297 * A got section within a relocatable object is suspicious. 4298 */ 4299 if (ehdr->e_type == ET_REL) { 4300 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file, 4301 gotcache->c_name); 4302 } 4303 4304 gotshdr = gotcache->c_shdr; 4305 if (gotshdr->sh_size == 0) { 4306 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4307 file, gotcache->c_name); 4308 return; 4309 } 4310 4311 gotbgn = gotshdr->sh_addr; 4312 gotend = gotbgn + gotshdr->sh_size; 4313 4314 /* 4315 * Some architectures don't properly set the sh_entsize for the GOT 4316 * table. If it's not set, default to a size of a pointer. 4317 */ 4318 if ((gentsize = gotshdr->sh_entsize) == 0) 4319 gentsize = sizeof (Xword); 4320 4321 if ((gotcache->c_data == NULL) || (gotcache->c_data->d_buf == NULL)) 4322 return; 4323 4324 /* LINTED */ 4325 gotents = (Word)(gotshdr->sh_size / gentsize); 4326 gotdata = gotcache->c_data->d_buf; 4327 4328 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) { 4329 int err = errno; 4330 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, 4331 strerror(err)); 4332 return; 4333 } 4334 4335 /* 4336 * Now we scan through all the sections looking for any relocations 4337 * that may be against the GOT. Since these may not be isolated to a 4338 * .rel[a].got section we check them all. 4339 * While scanning sections save the symbol table entry (a symtab 4340 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_. 4341 */ 4342 for (cnt = 1; cnt < shnum; cnt++) { 4343 Word type, symnum; 4344 Xword relndx, relnum, relsize; 4345 void *rels; 4346 Sym *syms; 4347 Cache *symsec, *strsec; 4348 Cache *_cache = &cache[cnt]; 4349 Shdr *shdr; 4350 4351 shdr = _cache->c_shdr; 4352 type = shdr->sh_type; 4353 4354 if ((symtab == 0) && (type == SHT_DYNSYM)) { 4355 symtab = _cache; 4356 continue; 4357 } 4358 if (type == SHT_SYMTAB) { 4359 symtab = _cache; 4360 continue; 4361 } 4362 if ((type != SHT_RELA) && (type != SHT_REL)) 4363 continue; 4364 4365 /* 4366 * Decide entry size. 4367 */ 4368 if (((relsize = shdr->sh_entsize) == 0) || 4369 (relsize > shdr->sh_size)) { 4370 if (type == SHT_RELA) 4371 relsize = sizeof (Rela); 4372 else 4373 relsize = sizeof (Rel); 4374 } 4375 4376 /* 4377 * Determine the number of relocations available. 4378 */ 4379 if (shdr->sh_size == 0) { 4380 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4381 file, _cache->c_name); 4382 continue; 4383 } 4384 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) 4385 continue; 4386 4387 rels = _cache->c_data->d_buf; 4388 relnum = shdr->sh_size / relsize; 4389 4390 /* 4391 * Get the data buffer for the associated symbol table and 4392 * string table. 4393 */ 4394 if (stringtbl(cache, 1, cnt, shnum, file, 4395 &symnum, &symsec, &strsec) == 0) 4396 continue; 4397 4398 syms = symsec->c_data->d_buf; 4399 4400 /* 4401 * Loop through the relocation entries. 4402 */ 4403 for (relndx = 0; relndx < relnum; relndx++, 4404 rels = (void *)((char *)rels + relsize)) { 4405 char section[BUFSIZ]; 4406 Addr offset; 4407 Got_info *gip; 4408 Word symndx, reltype; 4409 Rela *rela; 4410 Rel *rel; 4411 4412 /* 4413 * Unravel the relocation. 4414 */ 4415 if (type == SHT_RELA) { 4416 rela = (Rela *)rels; 4417 symndx = ELF_R_SYM(rela->r_info); 4418 reltype = ELF_R_TYPE(rela->r_info, 4419 ehdr->e_machine); 4420 offset = rela->r_offset; 4421 } else { 4422 rel = (Rel *)rels; 4423 symndx = ELF_R_SYM(rel->r_info); 4424 reltype = ELF_R_TYPE(rel->r_info, 4425 ehdr->e_machine); 4426 offset = rel->r_offset; 4427 } 4428 4429 /* 4430 * Only pay attention to relocations against the GOT. 4431 */ 4432 if ((offset < gotbgn) || (offset >= gotend)) 4433 continue; 4434 4435 if ((gotshdr->sh_entsize == 0) || 4436 (gotshdr->sh_size == 0)) { 4437 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4438 file, gotcache->c_name); 4439 continue; 4440 } 4441 4442 /* LINTED */ 4443 gotndx = (Word)((offset - gotbgn) / 4444 gotshdr->sh_entsize); 4445 gip = &gottable[gotndx]; 4446 4447 if (gip->g_reltype != 0) { 4448 (void) fprintf(stderr, 4449 MSG_INTL(MSG_GOT_MULTIPLE), file, 4450 EC_WORD(gotndx), EC_ADDR(offset)); 4451 continue; 4452 } 4453 4454 if (symndx) 4455 gip->g_symname = relsymname(cache, _cache, 4456 strsec, symndx, symnum, relndx, syms, 4457 section, BUFSIZ, file); 4458 gip->g_reltype = reltype; 4459 gip->g_rel = rels; 4460 } 4461 } 4462 4463 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL, 4464 symtab, file)) 4465 gotsymaddr = gotsym->st_value; 4466 else 4467 gotsymaddr = gotbgn; 4468 4469 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4470 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name); 4471 Elf_got_title(0); 4472 4473 sys_encoding = _elf_sys_encoding(); 4474 for (gotndx = 0; gotndx < gotents; gotndx++) { 4475 Got_info *gip; 4476 Sword gindex; 4477 Addr gaddr; 4478 Xword gotentry; 4479 4480 gip = &gottable[gotndx]; 4481 4482 gaddr = gotbgn + (gotndx * gentsize); 4483 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize; 4484 4485 if (gentsize == sizeof (Word)) 4486 /* LINTED */ 4487 gotentry = (Xword)(*((Word *)(gotdata) + gotndx)); 4488 else 4489 /* LINTED */ 4490 gotentry = *((Xword *)(gotdata) + gotndx); 4491 4492 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine, 4493 ehdr->e_ident[EI_DATA], sys_encoding, 4494 gip->g_reltype, gip->g_rel, gip->g_symname); 4495 } 4496 free(gottable); 4497 } 4498 4499 void 4500 checksum(Elf *elf) 4501 { 4502 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4503 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf)); 4504 } 4505 4506 /* 4507 * This variable is used by regular() to communicate the address of 4508 * the section header cache to sort_shdr_ndx_arr(). Unfortunately, 4509 * the qsort() interface does not include a userdata argument by which 4510 * such arbitrary data can be passed, so we are stuck using global data. 4511 */ 4512 static Cache *sort_shdr_ndx_arr_cache; 4513 4514 4515 /* 4516 * Used with qsort() to sort the section indices so that they can be 4517 * used to access the section headers in order of increasing data offset. 4518 * 4519 * entry: 4520 * sort_shdr_ndx_arr_cache - Contains address of 4521 * section header cache. 4522 * v1, v2 - Point at elements of sort_shdr_bits array to be compared. 4523 * 4524 * exit: 4525 * Returns -1 (less than), 0 (equal) or 1 (greater than). 4526 */ 4527 static int 4528 sort_shdr_ndx_arr(const void *v1, const void *v2) 4529 { 4530 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1); 4531 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2); 4532 4533 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset) 4534 return (-1); 4535 4536 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset) 4537 return (1); 4538 4539 return (0); 4540 } 4541 4542 4543 static int 4544 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx, 4545 size_t shnum, Cache **cache_ret, Word flags) 4546 { 4547 Elf_Scn *scn; 4548 Elf_Data *data; 4549 size_t ndx; 4550 Shdr *nameshdr; 4551 char *names = NULL; 4552 Cache *cache, *_cache; 4553 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt; 4554 4555 4556 /* 4557 * Obtain the .shstrtab data buffer to provide the required section 4558 * name strings. 4559 */ 4560 if (shstrndx == SHN_UNDEF) { 4561 /* 4562 * It is rare, but legal, for an object to lack a 4563 * header string table section. 4564 */ 4565 names = NULL; 4566 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file); 4567 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) { 4568 failure(file, MSG_ORIG(MSG_ELF_GETSCN)); 4569 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR), 4570 EC_XWORD(shstrndx)); 4571 4572 } else if ((data = elf_getdata(scn, NULL)) == NULL) { 4573 failure(file, MSG_ORIG(MSG_ELF_GETDATA)); 4574 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA), 4575 EC_XWORD(shstrndx)); 4576 4577 } else if ((nameshdr = elf_getshdr(scn)) == NULL) { 4578 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4579 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 4580 EC_WORD(elf_ndxscn(scn))); 4581 4582 } else if ((names = data->d_buf) == NULL) 4583 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file); 4584 4585 /* 4586 * Allocate a cache to maintain a descriptor for each section. 4587 */ 4588 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) { 4589 int err = errno; 4590 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4591 file, strerror(err)); 4592 return (0); 4593 } 4594 4595 *cache = cache_init; 4596 _cache = cache; 4597 _cache++; 4598 4599 /* 4600 * Allocate an array that will hold the section index for 4601 * each section that has data in the ELF file: 4602 * 4603 * - Is not a NOBITS section 4604 * - Data has non-zero length 4605 * 4606 * Note that shnum is an upper bound on the size required. It 4607 * is likely that we won't use a few of these array elements. 4608 * Allocating a modest amount of extra memory in this case means 4609 * that we can avoid an extra loop to count the number of needed 4610 * items, and can fill this array immediately in the first loop 4611 * below. 4612 */ 4613 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) { 4614 int err = errno; 4615 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4616 file, strerror(err)); 4617 return (0); 4618 } 4619 shdr_ndx_arr_cnt = 0; 4620 4621 /* 4622 * Traverse the sections of the file. This gathering of data is 4623 * carried out in two passes. First, the section headers are captured 4624 * and the section header names are evaluated. A verification pass is 4625 * then carried out over the section information. Files have been 4626 * known to exhibit overlapping (and hence erroneous) section header 4627 * information. 4628 * 4629 * Finally, the data for each section is obtained. This processing is 4630 * carried out after section verification because should any section 4631 * header overlap occur, and a file needs translating (ie. xlate'ing 4632 * information from a non-native architecture file), then the process 4633 * of translation can corrupt the section header information. Of 4634 * course, if there is any section overlap, the data related to the 4635 * sections is going to be compromised. However, it is the translation 4636 * of this data that has caused problems with elfdump()'s ability to 4637 * extract the data. 4638 */ 4639 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn); 4640 ndx++, _cache++) { 4641 char scnndxnm[100]; 4642 4643 _cache->c_ndx = ndx; 4644 _cache->c_scn = scn; 4645 4646 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) { 4647 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4648 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 4649 EC_WORD(elf_ndxscn(scn))); 4650 } 4651 4652 /* 4653 * If this section has data in the file, include it in 4654 * the array of sections to check for address overlap. 4655 */ 4656 if ((_cache->c_shdr->sh_size != 0) && 4657 (_cache->c_shdr->sh_type != SHT_NOBITS)) 4658 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx; 4659 4660 /* 4661 * If a shstrtab exists, assign the section name. 4662 */ 4663 if (names && _cache->c_shdr) { 4664 if (_cache->c_shdr->sh_name && 4665 /* LINTED */ 4666 (nameshdr->sh_size > _cache->c_shdr->sh_name)) { 4667 const char *symname; 4668 char *secname; 4669 4670 secname = names + _cache->c_shdr->sh_name; 4671 4672 /* 4673 * A SUN naming convention employs a "%" within 4674 * a section name to indicate a section/symbol 4675 * name. This originated from the compilers 4676 * -xF option, that places functions into their 4677 * own sections. This convention (which has no 4678 * formal standard) has also been followed for 4679 * COMDAT sections. To demangle the symbol 4680 * name, the name must be separated from the 4681 * section name. 4682 */ 4683 if (((flags & FLG_CTL_DEMANGLE) == 0) || 4684 ((symname = strchr(secname, '%')) == NULL)) 4685 _cache->c_name = secname; 4686 else { 4687 size_t secsz = ++symname - secname; 4688 size_t strsz; 4689 4690 symname = demangle(symname, flags); 4691 strsz = secsz + strlen(symname) + 1; 4692 4693 if ((_cache->c_name = 4694 malloc(strsz)) == NULL) { 4695 int err = errno; 4696 (void) fprintf(stderr, 4697 MSG_INTL(MSG_ERR_MALLOC), 4698 file, strerror(err)); 4699 return (0); 4700 } 4701 (void) snprintf(_cache->c_name, strsz, 4702 MSG_ORIG(MSG_FMT_SECSYM), 4703 EC_WORD(secsz), secname, symname); 4704 } 4705 4706 continue; 4707 } 4708 4709 /* 4710 * Generate an error if the section name index is zero 4711 * or exceeds the shstrtab data. Fall through to 4712 * fabricate a section name. 4713 */ 4714 if ((_cache->c_shdr->sh_name == 0) || 4715 /* LINTED */ 4716 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) { 4717 (void) fprintf(stderr, 4718 MSG_INTL(MSG_ERR_BADSHNAME), file, 4719 EC_WORD(ndx), 4720 EC_XWORD(_cache->c_shdr->sh_name)); 4721 } 4722 } 4723 4724 /* 4725 * If there exists no shstrtab data, or a section header has no 4726 * name (an invalid index of 0), then compose a name for the 4727 * section. 4728 */ 4729 (void) snprintf(scnndxnm, sizeof (scnndxnm), 4730 MSG_INTL(MSG_FMT_SCNNDX), ndx); 4731 4732 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) { 4733 int err = errno; 4734 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4735 file, strerror(err)); 4736 return (0); 4737 } 4738 (void) strcpy(_cache->c_name, scnndxnm); 4739 } 4740 4741 /* 4742 * Having collected all the sections, validate their address range. 4743 * Cases have existed where the section information has been invalid. 4744 * This can lead to all sorts of other, hard to diagnose errors, as 4745 * each section is processed individually (ie. with elf_getdata()). 4746 * Here, we carry out some address comparisons to catch a family of 4747 * overlapping memory issues we have observed (likely, there are others 4748 * that we have yet to discover). 4749 * 4750 * Note, should any memory overlap occur, obtaining any additional 4751 * data from the file is questionable. However, it might still be 4752 * possible to inspect the ELF header, Programs headers, or individual 4753 * sections, so rather than bailing on an error condition, continue 4754 * processing to see if any data can be salvaged. 4755 */ 4756 if (shdr_ndx_arr_cnt > 1) { 4757 sort_shdr_ndx_arr_cache = cache; 4758 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt, 4759 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr); 4760 } 4761 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) { 4762 Cache *_cache = cache + shdr_ndx_arr[ndx]; 4763 Shdr *shdr = _cache->c_shdr; 4764 Off bgn1, bgn = shdr->sh_offset; 4765 Off end1, end = shdr->sh_offset + shdr->sh_size; 4766 size_t ndx1; 4767 4768 /* 4769 * Check the section against all following ones, reporting 4770 * any overlaps. Since we've sorted the sections by offset, 4771 * we can stop after the first comparison that fails. There 4772 * are no overlaps in a properly formed ELF file, in which 4773 * case this algorithm runs in O(n) time. This will degenerate 4774 * to O(n^2) for a completely broken file. Such a file is 4775 * (1) highly unlikely, and (2) unusable, so it is reasonable 4776 * for the analysis to take longer. 4777 */ 4778 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) { 4779 Cache *_cache1 = cache + shdr_ndx_arr[ndx1]; 4780 Shdr *shdr1 = _cache1->c_shdr; 4781 4782 bgn1 = shdr1->sh_offset; 4783 end1 = shdr1->sh_offset + shdr1->sh_size; 4784 4785 if (((bgn1 <= bgn) && (end1 > bgn)) || 4786 ((bgn1 < end) && (end1 >= end))) { 4787 (void) fprintf(stderr, 4788 MSG_INTL(MSG_ERR_SECMEMOVER), file, 4789 EC_WORD(elf_ndxscn(_cache->c_scn)), 4790 _cache->c_name, EC_OFF(bgn), EC_OFF(end), 4791 EC_WORD(elf_ndxscn(_cache1->c_scn)), 4792 _cache1->c_name, EC_OFF(bgn1), 4793 EC_OFF(end1)); 4794 } else { /* No overlap, so can stop */ 4795 break; 4796 } 4797 } 4798 4799 /* 4800 * In addition to checking for sections overlapping 4801 * each other (done above), we should also make sure 4802 * the section doesn't overlap the section header array. 4803 */ 4804 bgn1 = ehdr->e_shoff; 4805 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum); 4806 4807 if (((bgn1 <= bgn) && (end1 > bgn)) || 4808 ((bgn1 < end) && (end1 >= end))) { 4809 (void) fprintf(stderr, 4810 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1), 4811 EC_OFF(end1), 4812 EC_WORD(elf_ndxscn(_cache->c_scn)), 4813 _cache->c_name, EC_OFF(bgn), EC_OFF(end)); 4814 } 4815 } 4816 4817 /* 4818 * Obtain the data for each section. 4819 */ 4820 for (ndx = 1; ndx < shnum; ndx++) { 4821 Cache *_cache = &cache[ndx]; 4822 Elf_Scn *scn = _cache->c_scn; 4823 4824 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) { 4825 failure(file, MSG_ORIG(MSG_ELF_GETDATA)); 4826 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA), 4827 EC_WORD(elf_ndxscn(scn))); 4828 } 4829 4830 /* 4831 * If a string table, verify that it has NULL first and 4832 * final bytes. 4833 */ 4834 if ((_cache->c_shdr->sh_type == SHT_STRTAB) && 4835 (_cache->c_data != NULL) && 4836 (_cache->c_data->d_buf != NULL) && 4837 (_cache->c_data->d_size > 0)) { 4838 const char *s = _cache->c_data->d_buf; 4839 4840 if ((*s != '\0') || 4841 (*(s + _cache->c_data->d_size - 1) != '\0')) 4842 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR), 4843 file, _cache->c_name); 4844 } 4845 } 4846 4847 return (1); 4848 } 4849 4850 4851 4852 /* 4853 * Generate a cache of section headers and related information 4854 * for use by the rest of elfdump. If requested (or the file 4855 * contains no section headers), we generate a fake set of 4856 * headers from the information accessible from the program headers. 4857 * Otherwise, we use the real section headers contained in the file. 4858 */ 4859 static int 4860 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache, 4861 size_t shstrndx, size_t *shnum, uint_t *flags) 4862 { 4863 /* 4864 * If there are no section headers, then resort to synthesizing 4865 * section headers from the program headers. This is normally 4866 * only done by explicit request, but in this case there's no 4867 * reason not to go ahead, since the alternative is simply to quit. 4868 */ 4869 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) { 4870 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file); 4871 *flags |= FLG_CTL_FAKESHDR; 4872 } 4873 4874 if (*flags & FLG_CTL_FAKESHDR) { 4875 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0) 4876 return (0); 4877 } else { 4878 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum, 4879 cache, *flags) == 0) 4880 return (0); 4881 } 4882 4883 return (1); 4884 } 4885 4886 int 4887 regular(const char *file, int fd, Elf *elf, uint_t flags, 4888 const char *wname, int wfd, uchar_t osabi) 4889 { 4890 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED; 4891 Elf_Scn *scn; 4892 Ehdr *ehdr; 4893 size_t ndx, shstrndx, shnum, phnum; 4894 Shdr *shdr; 4895 Cache *cache; 4896 VERSYM_STATE versym = { 0 }; 4897 int ret = 0; 4898 int addr_align; 4899 4900 if ((ehdr = elf_getehdr(elf)) == NULL) { 4901 failure(file, MSG_ORIG(MSG_ELF_GETEHDR)); 4902 return (ret); 4903 } 4904 4905 if (elf_getshdrnum(elf, &shnum) == -1) { 4906 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM)); 4907 return (ret); 4908 } 4909 4910 if (elf_getshdrstrndx(elf, &shstrndx) == -1) { 4911 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX)); 4912 return (ret); 4913 } 4914 4915 if (elf_getphdrnum(elf, &phnum) == -1) { 4916 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM)); 4917 return (ret); 4918 } 4919 /* 4920 * If the user requested section headers derived from the 4921 * program headers (-P option) and this file doesn't have 4922 * any program headers (i.e. ET_REL), then we can't do it. 4923 */ 4924 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) { 4925 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file); 4926 return (ret); 4927 } 4928 4929 4930 if ((scn = elf_getscn(elf, 0)) != NULL) { 4931 if ((shdr = elf_getshdr(scn)) == NULL) { 4932 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4933 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0); 4934 return (ret); 4935 } 4936 } else 4937 shdr = NULL; 4938 4939 /* 4940 * Print the elf header. 4941 */ 4942 if (flags & FLG_SHOW_EHDR) 4943 Elf_ehdr(0, ehdr, shdr); 4944 4945 /* 4946 * If the section headers or program headers have inadequate 4947 * alignment for the class of object, print a warning. libelf 4948 * can handle such files, but programs that use them can crash 4949 * when they dereference unaligned items. 4950 * 4951 * Note that the AMD64 ABI, although it is a 64-bit architecture, 4952 * allows access to data types smaller than 128-bits to be on 4953 * word alignment. 4954 */ 4955 if (ehdr->e_machine == EM_AMD64) 4956 addr_align = sizeof (Word); 4957 else 4958 addr_align = sizeof (Addr); 4959 4960 if (ehdr->e_phoff & (addr_align - 1)) 4961 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file); 4962 if (ehdr->e_shoff & (addr_align - 1)) 4963 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file); 4964 4965 4966 /* 4967 * Determine the Operating System ABI (osabi) we will use to 4968 * interpret the object. 4969 */ 4970 if (flags & FLG_CTL_OSABI) { 4971 /* 4972 * If the user explicitly specifies '-O none', we need 4973 * to display a completely generic view of the file. 4974 * However, libconv is written to assume that ELFOSABI_NONE 4975 * is equivalent to ELFOSABI_SOLARIS. To get the desired 4976 * effect, we use an osabi that libconv has no knowledge of. 4977 */ 4978 if (osabi == ELFOSABI_NONE) 4979 osabi = ELFOSABI_UNKNOWN4; 4980 } else { 4981 /* Determine osabi from file */ 4982 osabi = ehdr->e_ident[EI_OSABI]; 4983 if (osabi == ELFOSABI_NONE) { 4984 /* 4985 * Chicken/Egg scenario: 4986 * 4987 * Ideally, we wait to create the section header cache 4988 * until after the program headers are printed. If we 4989 * only output program headers, we can skip building 4990 * the cache entirely. 4991 * 4992 * Proper interpretation of program headers requires 4993 * the osabi, which is supposed to be in the ELF header. 4994 * However, many systems (Solaris and Linux included) 4995 * have a history of setting the osabi to the generic 4996 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS 4997 * in such cases, but would like to check the object 4998 * to see if it has a Linux .note.ABI-tag section, 4999 * which implies ELFOSABI_LINUX. This requires a 5000 * section header cache. 5001 * 5002 * To break the cycle, we create section headers now 5003 * if osabi is ELFOSABI_NONE, and later otherwise. 5004 * If it succeeds, we use them, if not, we defer 5005 * exiting until after the program headers are out. 5006 */ 5007 if (create_cache(file, fd, elf, ehdr, &cache, 5008 shstrndx, &shnum, &flags) == 0) { 5009 cache_state = CACHE_FAIL; 5010 } else { 5011 cache_state = CACHE_OK; 5012 if (has_linux_abi_note(cache, shnum, file)) { 5013 Conv_inv_buf_t ibuf1, ibuf2; 5014 5015 (void) fprintf(stderr, 5016 MSG_INTL(MSG_INFO_LINUXOSABI), file, 5017 conv_ehdr_osabi(osabi, 0, &ibuf1), 5018 conv_ehdr_osabi(ELFOSABI_LINUX, 5019 0, &ibuf2)); 5020 osabi = ELFOSABI_LINUX; 5021 } 5022 } 5023 } 5024 /* 5025 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS. 5026 * Mapping NONE to SOLARIS simplifies the required test. 5027 */ 5028 if (osabi == ELFOSABI_NONE) 5029 osabi = ELFOSABI_SOLARIS; 5030 } 5031 5032 /* 5033 * Print the program headers. 5034 */ 5035 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) { 5036 Phdr *phdr; 5037 5038 if ((phdr = elf_getphdr(elf)) == NULL) { 5039 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 5040 return (ret); 5041 } 5042 5043 for (ndx = 0; ndx < phnum; phdr++, ndx++) { 5044 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE, 5045 NULL, ndx, phdr->p_type)) 5046 continue; 5047 5048 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 5049 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx)); 5050 Elf_phdr(0, osabi, ehdr->e_machine, phdr); 5051 } 5052 } 5053 5054 /* 5055 * If we have flag bits set that explicitly require a show or calc 5056 * operation, but none of them require the section headers, then 5057 * we are done and can return now. 5058 */ 5059 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) && 5060 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0)) 5061 return (ret); 5062 5063 /* 5064 * Everything from this point on requires section headers. 5065 * If we have no section headers, there is no reason to continue. 5066 * 5067 * If we tried above to create the section header cache and failed, 5068 * it is time to exit. Otherwise, create it if needed. 5069 */ 5070 switch (cache_state) { 5071 case CACHE_NEEDED: 5072 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx, 5073 &shnum, &flags) == 0) 5074 return (ret); 5075 break; 5076 case CACHE_OK: 5077 break; 5078 case CACHE_FAIL: 5079 return (ret); 5080 } 5081 if (shnum <= 1) 5082 goto done; 5083 5084 /* 5085 * If -w was specified, find and write out the section(s) data. 5086 */ 5087 if (wfd) { 5088 for (ndx = 1; ndx < shnum; ndx++) { 5089 Cache *_cache = &cache[ndx]; 5090 5091 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, 5092 ndx, _cache->c_shdr->sh_type) && 5093 _cache->c_data && _cache->c_data->d_buf) { 5094 if (write(wfd, _cache->c_data->d_buf, 5095 _cache->c_data->d_size) != 5096 _cache->c_data->d_size) { 5097 int err = errno; 5098 (void) fprintf(stderr, 5099 MSG_INTL(MSG_ERR_WRITE), wname, 5100 strerror(err)); 5101 /* 5102 * Return an exit status of 1, because 5103 * the failure is not related to the 5104 * ELF file, but by system resources. 5105 */ 5106 ret = 1; 5107 goto done; 5108 } 5109 } 5110 } 5111 } 5112 5113 /* 5114 * If we have no flag bits set that explicitly require a show or calc 5115 * operation, but match options (-I, -N, -T) were used, then run 5116 * through the section headers and see if we can't deduce show flags 5117 * from the match options given. 5118 * 5119 * We don't do this if -w was specified, because (-I, -N, -T) used 5120 * with -w in lieu of some other option is supposed to be quiet. 5121 */ 5122 if ((wfd == 0) && (flags & FLG_CTL_MATCH) && 5123 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) { 5124 for (ndx = 1; ndx < shnum; ndx++) { 5125 Cache *_cache = &cache[ndx]; 5126 5127 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, 5128 ndx, _cache->c_shdr->sh_type)) 5129 continue; 5130 5131 switch (_cache->c_shdr->sh_type) { 5132 case SHT_PROGBITS: 5133 /* 5134 * Heuristic time: It is usually bad form 5135 * to assume the meaning/format of a PROGBITS 5136 * section based on its name. However, there 5137 * are ABI mandated exceptions. Check for 5138 * these special names. 5139 */ 5140 5141 /* The ELF ABI specifies .interp and .got */ 5142 if (strcmp(_cache->c_name, 5143 MSG_ORIG(MSG_ELF_INTERP)) == 0) { 5144 flags |= FLG_SHOW_INTERP; 5145 break; 5146 } 5147 if (strcmp(_cache->c_name, 5148 MSG_ORIG(MSG_ELF_GOT)) == 0) { 5149 flags |= FLG_SHOW_GOT; 5150 break; 5151 } 5152 /* 5153 * The GNU compilers, and amd64 ABI, define 5154 * .eh_frame and .eh_frame_hdr. The Sun 5155 * C++ ABI defines .exception_ranges. 5156 */ 5157 if ((strncmp(_cache->c_name, 5158 MSG_ORIG(MSG_SCN_FRM), 5159 MSG_SCN_FRM_SIZE) == 0) || 5160 (strncmp(_cache->c_name, 5161 MSG_ORIG(MSG_SCN_EXRANGE), 5162 MSG_SCN_EXRANGE_SIZE) == 0)) { 5163 flags |= FLG_SHOW_UNWIND; 5164 break; 5165 } 5166 break; 5167 5168 case SHT_SYMTAB: 5169 case SHT_DYNSYM: 5170 case SHT_SUNW_LDYNSYM: 5171 case SHT_SUNW_versym: 5172 case SHT_SYMTAB_SHNDX: 5173 flags |= FLG_SHOW_SYMBOLS; 5174 break; 5175 5176 case SHT_RELA: 5177 case SHT_REL: 5178 flags |= FLG_SHOW_RELOC; 5179 break; 5180 5181 case SHT_HASH: 5182 flags |= FLG_SHOW_HASH; 5183 break; 5184 5185 case SHT_DYNAMIC: 5186 flags |= FLG_SHOW_DYNAMIC; 5187 break; 5188 5189 case SHT_NOTE: 5190 flags |= FLG_SHOW_NOTE; 5191 break; 5192 5193 case SHT_GROUP: 5194 flags |= FLG_SHOW_GROUP; 5195 break; 5196 5197 case SHT_SUNW_symsort: 5198 case SHT_SUNW_tlssort: 5199 flags |= FLG_SHOW_SORT; 5200 break; 5201 5202 case SHT_SUNW_cap: 5203 flags |= FLG_SHOW_CAP; 5204 break; 5205 5206 case SHT_SUNW_move: 5207 flags |= FLG_SHOW_MOVE; 5208 break; 5209 5210 case SHT_SUNW_syminfo: 5211 flags |= FLG_SHOW_SYMINFO; 5212 break; 5213 5214 case SHT_SUNW_verdef: 5215 case SHT_SUNW_verneed: 5216 flags |= FLG_SHOW_VERSIONS; 5217 break; 5218 5219 case SHT_AMD64_UNWIND: 5220 flags |= FLG_SHOW_UNWIND; 5221 break; 5222 } 5223 } 5224 } 5225 5226 5227 if (flags & FLG_SHOW_SHDR) 5228 sections(file, cache, shnum, ehdr, osabi); 5229 5230 if (flags & FLG_SHOW_INTERP) 5231 interp(file, cache, shnum, phnum, elf); 5232 5233 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)) 5234 versions(cache, shnum, file, flags, &versym); 5235 5236 if (flags & FLG_SHOW_SYMBOLS) 5237 symbols(cache, shnum, ehdr, osabi, &versym, file, flags); 5238 5239 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS)) 5240 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags); 5241 5242 if (flags & FLG_SHOW_HASH) 5243 hash(cache, shnum, file, flags); 5244 5245 if (flags & FLG_SHOW_GOT) 5246 got(cache, shnum, ehdr, file); 5247 5248 if (flags & FLG_SHOW_GROUP) 5249 group(cache, shnum, file, flags); 5250 5251 if (flags & FLG_SHOW_SYMINFO) 5252 syminfo(cache, shnum, ehdr, osabi, file); 5253 5254 if (flags & FLG_SHOW_RELOC) 5255 reloc(cache, shnum, ehdr, file); 5256 5257 if (flags & FLG_SHOW_DYNAMIC) 5258 dynamic(cache, shnum, ehdr, osabi, file); 5259 5260 if (flags & FLG_SHOW_NOTE) { 5261 Word note_cnt; 5262 size_t note_shnum; 5263 Cache *note_cache; 5264 5265 note_cnt = note(cache, shnum, ehdr, file); 5266 5267 /* 5268 * Solaris core files have section headers, but these 5269 * headers do not include SHT_NOTE sections that reference 5270 * the core note sections. This means that note() won't 5271 * find the core notes. Fake section headers (-P option) 5272 * recover these sections, but it is inconvenient to require 5273 * users to specify -P in this situation. If the following 5274 * are all true: 5275 * 5276 * - No note sections were found 5277 * - This is a core file 5278 * - We are not already using fake section headers 5279 * 5280 * then we will automatically generate fake section headers 5281 * and then process them in a second call to note(). 5282 */ 5283 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) && 5284 !(flags & FLG_CTL_FAKESHDR) && 5285 (fake_shdr_cache(file, fd, elf, ehdr, 5286 ¬e_cache, ¬e_shnum) != 0)) { 5287 (void) note(note_cache, note_shnum, ehdr, file); 5288 fake_shdr_cache_free(note_cache, note_shnum); 5289 } 5290 } 5291 5292 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS)) 5293 move(cache, shnum, file, flags); 5294 5295 if (flags & FLG_CALC_CHECKSUM) 5296 checksum(elf); 5297 5298 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS)) 5299 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags); 5300 5301 if ((flags & FLG_SHOW_UNWIND) && 5302 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))) 5303 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags); 5304 5305 5306 /* Release the memory used to cache section headers */ 5307 done: 5308 if (flags & FLG_CTL_FAKESHDR) 5309 fake_shdr_cache_free(cache, shnum); 5310 else 5311 free(cache); 5312 5313 return (ret); 5314 } 5315